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Roton-like acoustical dispersion relations in 3D
metamaterials
Yi Chen 1, Muamer Kadic2,3 & Martin Wegener 1,2✉

Roton dispersion relations have been restricted to correlated quantum systems at low

temperatures, such as liquid Helium-4, thin films of Helium-3, and Bose–Einstein con-

densates. This unusual kind of dispersion relation provides broadband acoustical backward

waves, connected to energy flow vortices due to a “return flow”, in the words of Feynman,

and three different coexisting acoustical modes with the same polarization at one frequency.

By building mechanisms into the unit cells of artificial materials, metamaterials allow for

molding the flow of waves. So far, researchers have exploited mechanisms based on various

types of local resonances, Bragg resonances, spatial and temporal symmetry breaking,

topology, and nonlinearities. Here, we introduce beyond-nearest-neighbor interactions as a

mechanism in elastic and airborne acoustical metamaterials. For a third-nearest-neighbor

interaction that is sufficiently strong compared to the nearest-neighbor interaction, this

mechanism allows us to engineer roton-like acoustical dispersion relations under ambient

conditions.
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F
or usual acoustical waves or phonons in gases, liquids, and
solids, energy and momentum are proportional to each
other1. Rotons can be seen as highly unusual acoustical

waves with a parabolic minimum of the energy versus momen-
tum at finite momentum and finite energy2. Based on a prediction
by Landau2 and following a suggestion by Feynman3,4, the roton
dispersion relation for longitudinal acoustical waves was observed
in liquid Helium-4 (a Bose-liquid) at low temperatures by means
of inelastic neutron scattering5–7. A bulk of later theoretical work
interpreted rotons in terms of strong spatial correlations in this
quantum system8–10. More recently, rotons have been found
experimentally in two-dimensional (2D) liquid Helium-311 (a
Fermi-liquid) and in Bose–Einstein condensates of erbium atoms
subject to weak magnetic dipole–dipole interactions12. The roton
dispersion relation has also been predicted theoretically for other
ultracold dipolar13 and quadrupolar14 gases confined in one-
dimensional (1D) and 2D geometries15–17, as well as for Rydberg-
dressed atoms18.

The roton dispersion relation is illustrated in Fig. 1, where we
represent energy as _ω, with the wave’s angular frequency ω, and
(quasi-)momentum by _k, with the wavenumber k. Apart from its
basic physics, the dispersion relation in Fig. 1 is interesting for
applications because it potentially allows to manipulate acoustical
waves in unusual ways. First, it comprises a region of negative slope
of ωðkÞ versus k, in which the wave’s phase velocity vph ¼ ω=k > 0
and group velocity vgr ¼ dω=dk < 0 have opposite sign. Such
behavior gives rise to backward waves and can lead to negative
refraction at interfaces19–21. We will see below that this character-
istic can occur without absorption/damping over a broad spectral
regime. Second, the extrema of the dispersion relation in Fig. 1
correspond to zero group velocity and hence to peaks in the wave
density of states. Third, at a given fixed angular frequency ω and for
k > 0, the single dispersion curve supports three (one backward, two
forward) wave modes with three different wavenumbers, phase
velocities, and wavelengths. Unfortunately, no natural or rationally
designed artificial materials showing roton-like dispersion behavior
under ambient conditions have been reported so far.

It is well known that the Euler equation for classical gases or
liquids22 and the Navier equation for elastic solids23 lead to
dispersion relations of the type ωðkÞ ¼ vphk for longitudinal or
transverse acoustical waves in the bulk. Thus, neither of them
captures roton-like behavior. In sharp contrast, it has recently
been shown that chiral Eringen micropolar continuum elasticity
theory24 can lead to roton-like dispersion relations for transverse
acoustical elastic waves25. In their work25, chirality has been a
necessary mechanism, whereas mechanisms based on periodicity,
such as ordinary or extraordinary Bragg reflections, are not
accounted for in micropolar elasticity theory24. More broadly
speaking, mechanisms such as ordinary Bragg reflection26,27, local
resonances28–31, near-ideal joints32–34 introducing soft modes,
spatial or temporal symmetry breaking35–38, topology39,40,
duality41,42, as well as geometrical nonlinearities34,43 have inde-
pendently given rise to a wealth of other unusual dispersion
relations and quasi-static behaviors of elastic and acoustical
metamaterials.

Here, we introduce and analyze a class of three-dimensional
(3D) microstructured elastic metamaterials supporting roton-like
transverse as well as longitudinal dispersion relations. We engi-
neer these metamaterials by tailoring beyond-nearest-neighbor
elastic interactions among the 3D metamaterial crystal unit cells
in addition to the usual nearest-neighbor interactions. Further-
more, we apply the same concept to airborne acoustical waves in
macroscopic three-dimensional channel-based metamaterials to
illustrate the general nature of the approach.

Results
One-dimensional toy model. Let us start our discussion by a
simple 1D mathematical toy model illustrated in Fig. 2a: Identical
masses m separated by distance a are connected to their
immediate neighbors by linear Hooke’s springs with spring
constant K1. In addition, each mass shall be coupled to the
masses separated by distance Na to the left and right (with integer
N ≥ 2) by springs with spring constant KN . Newton’s equation of
motion for the acceleration €un of the mass displacement un at

Fig. 1 Roton-like acoustical wave dispersion relation. a The acoustical wave’s angular frequency ω kð Þ is depicted versus wavenumber k. The dispersion

relation starts off with the usual linear increase of ω versus k. At a finite characteristic wavenumber, the dispersion relation exhibits a parabolic minimum. In

a certain frequency range (highlighted by the light-yellow background), a single frequency ω leads to three modes at different k (exemplified by the

dashed line and the black dots), hence different wavelengths λ ¼ 2π=k. In the hatched wavenumber interval, the group velocity vgr ¼ dω=dk is negative,

whereas the phase velocity vph ¼ ω=k is positive. In a crystal with period a, the edges of the first Brillouin zone at wavenumbers ± π=a are important.

b Corresponding group velocity versus angular frequency ω, normalized by the phase velocity in the long-wavelength limit, k ! 0. The different colors

serve to connect the different parts of the dispersion relation between a and b. Panels a and b can be taken as schemes. They actually correspond to

solutions of the 1D toy model (cf. Fig. 2b) with parameters N ¼ 3, KN=K1 ¼ 3, and ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1 þ KNN

2Þ=m
q

.
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lattice site n (with integer n ¼ �1; ¼ ;1) is given by

m€un ¼ K1 unþ1 � 2un þ un�1

� �
þ KN unþN � 2un þ un�N

� �
:

ð1Þ

The solution of this equation of motion are Bloch waves,
un tð Þ ¼ eu expðiðkna� ωtÞÞ with amplitude eu and the imaginary
unit i, following the dispersion relation

ω kð Þ ¼ ωð�kÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1

m
sin2

ka

2

� �
þ

KN

m
sin2

Nka

2

� �s
: ð2Þ

We emphasize that, for K1 ≠ 0 and K3 ≠ 0, the underlying
spatial period is strictly a. Therefore, the borders of the first
Brillouin zone lie at kj j ¼ ±π=a. For 0≤ k � π=a, we recover a
usual acoustic-wave dispersion relation with ω kð Þ ¼ vphk and

phase velocity vph ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1 þ KNN

2Þ=m
p

. For N ≥ 3 and

KN=K1 > 1=N , a minimum of ωðkÞ occurs inside of the first
Brillouin zone at wavenumber k � 2π=ðNaÞ< π=a.

Example dispersion relations for N ¼ 3 and different ratios of
K3=K1 (see different colors) are depicted in Fig. 2b. For K3 ¼ 0
and K1 ≠ 0, we obtain the usual acoustical phonon dispersion
relation in the first Brillouin zone corresponding to spatial period
a, i.e., 0≤ k≤ π=a. For the opposite limit of K1 ¼ 0 and K3 ≠ 0,
the mass-and-spring model shown in Fig. 2a falls apart into N ¼
3 disconnected staggered one-dimensional chains, each with
spatial period Na ¼ 3a. We thus again obtain a usual acoustical
phonon dispersion relation, however, the first Brillouin zone is
given by kj j≤ π=ð3aÞ. For k 2 ½π=ð3aÞ; 2π=ð3aÞ�, the group
velocity is negative, regardless of which Brillouin zone we use
for the representation of the dispersion relation. The mean energy

flow (see Methods)

p kð Þ
� �

¼
1

2
eu2ω K1sin kað Þ þ NKNsin Nkað Þ

� �
ð3Þ

has two contributions. The contribution / K1 is always positive
for 0< k< π=a and stems from the nearest-neighbor interactions.
The contribution / KN due to the beyond-nearest-neighbor
interactions is negative in the interval k 2 ½π=ð3aÞ; 2π=ð3aÞ�,
leading to a net negative energy flow if KN=K1 > 1=N . This aspect
is analogous to what Feynman4 referred to as the “return flow” in
the context of the roton. Therefore, the sign of the group velocity
and that of the energy flow are identical and independent on the
choice of the Brillouin zone. The sign and magnitude of the phase
velocity ω=k, however, depend on the Brillouin zone. If and only
if the nearest-neighbor interaction is finite, i.e., for K1 ≠ 0, the
spatial period is a, hence kj j≤ π=a is the proper first Brillouin
zone. This leads to a positive phase velocity in the interval
k 2 ½0; π=a�, whereas the group velocity and the mean energy flow
are negative for part of this interval (approximately for
k 2 ½π=ð3aÞ; 2π=ð3aÞ�) for KN=K1 > 1=N . This behavior corre-
sponds to a backward wave. The two wavenumbers for which the
total energy flow and hence the group velocity are zero (cf.
Fig. 2b) are merely special cases. On the basis of this discussion,
the roton-like behavior can be seen as an unusual hybridization
between two ordinary acoustical phonon dispersion relations, one
for a mass-and-spring model with period a and the other for a
three-fold degenerate mass-and-spring model with period Na ¼
3a (cf. Fig. 2b).

In other words, the roton-like minimum in the dispersion
relation ωðkÞ of the 1D toy model with spatial period a results
from extraordinary Bragg reflections with reciprocal lattice vector
2π=l, corresponding to the length l ¼ Na of the beyond-nearest-
neighbor interaction. A roton-like minimum occurs if and only if
the interaction has sufficiently long range (i.e., N ≥ 3) and the
strength of the beyond-nearest-neighbor interaction is sufficiently
large (i.e., KN=K1>1=N). For N ≥ 4, even several minima can
occur within the first Brillouin zone.

To test our interpretation of the roton-like dispersion
relation, we prescribe the displacement of a single mass in
the middle of the 1D toy model chain (cf. Fig. 2a),

u0 tð Þ ¼ eucosðωtÞexpð� t=τ
� �2

Þ, by a temporal pulse with Gaus-
sian envelope and carrier frequency ω ¼ 0:5ω0 in the spectral
region of the roton-like dispersion relation for which kðωÞ has
three solutions. For the parameter range from K3=K1 � 2 to
K3=K1 � 5, this excitation launches two clearly visible triplets of
Gaussian wave packets (see Supplementary Figs. 1 and 2). This
dependence on the ratio K3=K1 indicates that the effects of the
discussed hybridization are most pronounced if the two
ingredient phonon dispersion relations effectively have about
equal weight. The right-going (left-going) triplet has positive
(negative) mean energy flow and group velocity. Each triplet
contains two forward waves and one backward wave. For the
latter, group and phase velocity have opposite sign (see insets in
Supplementary Fig. 1). These findings are consistent with the
expectation from Fig. 1b and confirm our reasoning. Further-
more, Supplementary Fig. 3 shows that each of the three right-
propagating modes can be excited selectively by tailoring of the
excitation conditions.

Three-dimensional microstructured elastic metamaterial. Next,
we translate the behavior of the 1D mathematical toy model into
a practical metamaterial structure. From Fig. 2a it is clear that the
(red) beyond-nearest-neighbor springs unavoidably overlap in
two dimensions, making it necessary to go to three dimensions.
The 3D architecture depicted in Fig. 3 (also see Supplementary

Fig. 2 One-dimensional toy model. a Masses m (yellow dots) are

connected to their nearest neighbors separated by distance a by Hooke’s

springs with spring constants K1 (blue straight lines). In addition, all masses

are connected to their Nth-nearest neighbors at distance Na by springs with

Hooke’s spring constants KN (red curved lines). As an example, we choose

N ¼ 3. For K1 ≠0, the spatial period of this arrangement is a. Hence, the

first Brillouin zone is given by wavenumber kj j � π=a. b Dispersion relation

ω kð Þ ¼ ωð�kÞ. The differently colored curves (see legend) represent

different ratios of the spring constants K3=K1, increasing from top to

bottom. For clarity, we fix the phase velocity in the long-wavelength limit

k ! 0, i.e., vph ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1 þ KNN

2Þ=m
q

¼ const ¼ aω0.
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Movie 1) is composed of a single ordinary linear elastic con-
stituent material, e.g., a polymer. The masses in the 1D toy model
are replaced by the small cubes with side length t1. The effective
spring constants of the nearest-neighbor (beyond-nearest-neigh-
bor) interaction between these cubes are tailored by the radius of
the thin (thick) cylindrical rods r1ðr2Þ. The frame with height t2
serves as an auxiliary structure to mediate the beyond-nearest-
neighbor interaction for N ¼ 3. Starting from any one cube, the
oblique rods connect to the auxiliary frame, from which another
set of oblique rods connects to the third-nearest-neighbor of the
starting cube. Clearly, the two types of rods and the auxiliary
frames introduce substantial additional mass, which needs to be
considered. The resulting metamaterial structure in Fig. 3 is
highly anisotropic, has no center of inversion, but two mirror
planes and a rotation-reflection symmetry, namely a 90-degree
rotation around the z-axis combined with a reflection of a plane
parallel to the xy-plane. The structure is therefore not chiral and
the lowest two transverse acoustical bands are degenerate by
symmetry for propagation along the z-axis with wave vector
~k ¼ ð0; 0; kzÞ. When designing the elements mediating the
beyond-nearest-neighbor interaction, it is important that the
(local) resonance frequencies of these elements are pushed to
much higher frequencies than the frequencies of the lowest-
frequency acoustical bands. Otherwise, one obtains a complex
band diagram comprising band crossings and avoided crossings
such that the roton-like dispersion relation is obscured. Clearly,
fulfilling this condition becomes increasingly difficult with
increasing range of the beyond-nearest-neighbor interaction (i.e.,
with increasing integer N in the toy model) because increasing
length of beams clearly leads to decreasing beam resonance fre-
quency at otherwise fixed parameters.

In Fig. 4a, we depict the calculated phonon band structure of
the microstructure shown in Fig. 3. Here, we have numerically
solved the eigenvalue problem for the Navier equation23 for the

displacement vector field ~u (see Methods). The used parameters
for the ordinary elastic constituent material refer to a typical
polymer with Young’s modulus E ¼ 4:2 GPa, Poisson’s ratio
ν ¼ 0:4, and mass density ρ= 1140 kg m−3. These parameters
merely serve as an example. The frequency axis in Fig. 4 can easily
be scaled to other values of E, ρ, and a at fixed ν. In Fig. 4a, we
find roton-like dispersion relations for the two degenerate
transverse acoustical bands as well as for the longitudinal
acoustical phonon mode—as expected from our discussion of
the 1D toy model. The higher bands plotted in gray are of lesser
importance here. These bands emerging from kz ¼ 0 with finite ω
do not occur in the toy model. They are partly due to local
resonances of the long connecting cylindrical beams.

In Fig. 4b, we illustrate the energy flux along the z-direction in
one unit cell for three different Bloch modes of the longitudinal
band at the same frequency of 0:65 MHz. For the two eigenmodes
A and C with positive group velocity, the mean energy flow in the
vertical rods, acting as nearest-neighbor springs, and in the
oblique rods, mediating the beyond-nearest-neighbor coupling, is
positive. In contrast, for mode B with negative group velocity, the
oblique rods support a backward propagating partial wave, while
the partial wave in the vertical rods is a forward wave. The sum of
the two energy flows is negative, consistent with negative group
velocity. This behavior is the same as for the above 1D toy model.
In both cases, the partial forward and partial backward energy
flow lead to a vortex-like behavior of the energy flow. In his work
on rotons4, Feynman referred to the backward energy flow
contribution as a “return flow”.

The complete phonon band structure for all high-symmetry
directions in three dimensions is shown in Fig. 5. Roton behavior
only occurs along the ΓZ-direction (cf. Fig. 4a).

The roton-like behavior discussed thus far refers to the bulk,
i.e., to a metamaterial crystal which is infinitely extended along
all three spatial directions. It is interesting to ask whether the

Fig. 3 Designed three-dimensional elastic metamaterial structure. a The architecture incorporates nearest-neighbor as well as beyond-nearest-neighbor

interactions (cf. Fig. 2a) and is composed of a single ordinary linearly elastic constituent material. The colors are for illustration only. Elements mediating

the elastic interaction between one layer and its third-nearest-neighbor along the z-direction are highlighted in red. The blue and red cylindrical rods have a

radius of r1=az ¼ 0:08 and r2=az ¼ 0:12, respectively. The structure has no center of inversion but two mirror planes and a rotation-reflection symmetry,

making it achiral and leading to a degeneracy of the lowest two transverse acoustical bands (cf. Fig. 4). The period of the structure along the z-direction is

az, the corresponding first Brillouin zone edges lye at wavenumbers kz ¼ ± π=az (cf. Fig. 4). The period or lattice constant along the x- and y-directions is

axy ¼ 2az. The other geometrical parameters are t1=az ¼ 0:40, t2=az ¼ 0:60, and az ¼ 100 μm. b 3 ´ 3 ´ 5 unit cells out of a corresponding bulk

metamaterial, with the front corner cut out to allow for a view inside. The part highlighted in red illustrates the beyond-nearest-neighbor interaction. Two

red rods connect a first cube to the red frame (made partly transparent at the corner). Two further red rods connect this frame to a second cube, which has

a distance 3az with respect to the first cube. An animated view of the structure is given in Supplementary Movie 1.
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behavior is robust and could also be observed in a metamaterial
beam with finite cross section. Therefore, in Supplementary
Fig. 4, we show results for a beam with a cross section of merely
2 ´ 2 unit cells (cf. Fig. 3a). A roton-like dispersion relation
for the transverse bands is maintained. Roton-like behavior
is also found for the twist band in Supplementary Fig. 4,
which additionally appears due to the finite cross section of
the beam.

Furthermore, we have emphasized that the structure shown in
Fig. 3a, which contains the crucial beyond-nearest-neighbor
interactions, is not chiral. Therefore, chirality is clearly not a
necessary condition for roton-like behavior. Due to the absence
of chirality, the two lowest transverse bands in Fig. 4a are
degenerate and the associated eigenmodes do not contain any sort
of rotation. However, we can introduce chirality into this
metamaterial structure by “twisting the rods” mediating the

Fig. 4 Elastic metamaterial phonon band structure along z-direction. a The dispersion relation ω kz
� �

¼ ωð�kzÞ of the architecture in Fig. 3 is shown for

propagation of elastic waves along the z-direction with wavenumber kz. The spatial period is az, corresponding to the first Brillouin zone given by the

condition kz
		 		 � π=az (cf. Fig. 1). The two transverse acoustical bands, which are degenerate by symmetry, are plotted in red, the single longitudinal

acoustical band in blue. Higher dispersion branches are of lesser importance here and are depicted in gray. They partly result from local resonances within

the unit cell, leading to finite values of ω at zero wavenumber kz ¼ 0. b Mean energy flux Iz along the z-direction (on a false-color scale) corresponding to

three eigenmodes marked as A, B, and C of the longitudinal band for the same frequency 0:65 MHz. The left column shows an oblique view of the unit cell,

the right column a cut through the xy-plane. The mean energy flux in the thin vertical rods in the middle is positive for all three modes. The same holds true

for the mean energy flow through the thicker oblique rods for modes A and C. The oblique rods mediate the beyond-nearest-neighbor interactions. In

contrast, the energy flux through the oblique rods for mode B is negative, indicating a backward-wave behavior. Integration of the energy flux over the

xy-plane for this mode also leads to a negative total energy flow, consistent with a negative group velocity. Parameters are az ¼ 100 μm (cf. Fig. 3), aspect

ratios as given in Fig. 3, Young’s modulus E ¼ 4:2 GPa, Poisson’s ratio ν ¼ 0:4, and mass density ρ= 1140 kg m−3 for the constituent material.

Fig. 5 Elastic metamaterial phonon band structure in 3D. As Fig. 4 (for the metamaterial structure shown in Fig. 3), but for many high-symmetry

directions rather than only the ΓZ or z-direction as in Fig. 4. a Illustration of the first Brillouin zone of the tetragonal-symmetry real-space lattice and

selected high-symmetric directions in reciprocal space (marked in blue). b Calculated three-dimensional phonon band structure with the characteristic

directions as indicated in a. Clearly, due to the used tetragonal symmetry, roton-like acoustical dispersion relations only occur for the ΓZ direction. The

corresponding colored bands (blue and red) are the same as the ones shown in Fig. 4.
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beyond-nearest-neighbor interactions. We additionally double
the number of these rods to obtain four-fold rotational symmetry
around the z-axis. The resulting structure is illustrated in
Supplementary Fig. 5, which can be compared to its achiral
counterpart in Fig. 3. The corresponding phonon band structure
depicted in Supplementary Fig. 6 again shows a roton-like
dispersion relation. In addition, as a result of chirality,
the degeneracy of the two lowest transverse bands is lifted
(compare Fig. 4a and Supplementary Fig. 6) and the eigenmodes
become chiral (see Supplementary Fig. 6), which means that they
are directly associated to rotations within the unit cells. This
aspect makes the connection to the original interpretation of
rotons according to Landau2 and Feynman3 in terms of rotations
of groups of Helium-4 atoms even closer.

Three-dimensional tube-based metamaterial for airborne
sound. We now translate the findings of the 1D toy model to
airborne acoustical waves (or sound) rather than elastic waves in
the previous section. Recall that classical forces (in the sense of
Newton’s second law), which are mediated by the Hooke’s springs
in Fig. 2a or by the cylindrical solid elastic beams in Fig. 3, can be
interpreted as momentum currents44,45 in the language of con-
tinuum mechanics. For airborne acoustical waves, the momen-
tum current is directly related to the instantaneous air current.
The air current along the tube axis in a cylindrical tube with rigid
walls can obviously be controlled by the inner cross section of
the tube.

This analogy allows us to propose a 3D metamaterial
architecture for airborne sound. The structure is the complement
of the one shown in Fig. 4a. This means that the constituent
material is replaced by voids and vice versa. Air propagates in the
resulting channels inside a rigid material. By tailoring the inner
diameter of the channels, we engineer the effective strength of
the nearest-neighbor and beyond-nearest-neighbor interaction,
respectively. The calculated acoustical wave dispersion relation
shown in Fig. 6a again exhibits roton-like behavior. Here we have

neglected friction between air and the walls (see Methods). The
latter assumption has been used many times in the literature46,47

and is justified if the diameter of the channels is sufficiently large.
Therefore, we consider rather macroscopic parameters in Fig. 6
(az ¼ 10 cm). As air exclusively supports longitudinal pressure
waves (and no transverse modes), the resulting overall band
structure in Fig. 6a is simpler than the one for elastic waves in
Fig. 4. Finally, we depict examples of the energy flow in Fig. 6b.
As expected from the mentioned analogy between forces and air
currents, the behavior is closely similar to that shown in Fig. 4b
for the 3D elastic metamaterial.

Discussion
The famous roton dispersion relation for acoustical waves has
first been predicted for and later observed in the Bose-liquid
Helium-4 at low temperatures2–6. More recently, it has also been
discussed for the Fermi-liquid Helium-3 at low temperatures11

and for interacting atoms in Bose–Einstein condensates12–17.
Here, we have realized roton-like dispersion relations by designed
periodic metamaterials for both, elastic waves or phonons in
solids and pressure waves in gases. All of these are classical sys-
tems operating under ambient conditions. The underlying
mechanism is based on designed third-nearest-neighbor interac-
tions in addition to the usual nearest-neighbor interactions. The
third-nearest-neighbor interaction gives rise to a hybridization of
phonon branches with different spatial periods and hence to
extraordinary Bragg reflections with reciprocal lattice vectors
smaller than the wave vector at the edge of the first Brillouin
zone. For both, the proposed (achiral and chiral) 3D microscopic
microstructures for elastic waves and the proposed 3D macro-
scopic channel-based structures for airborne sound waves, the 3D
additive manufacturing technology required to make the meta-
material unit cells is readily available. However, large numbers of
unit cells are needed to avoid edge effects. This aspect together
with directly measuring the roton-like dispersion relations
represents a challenge.

Fig. 6 Roton-like behavior for airborne sound. We consider a structure which is the complement of the one shown in Fig. 3. This leads to a network of

channels inside a rigid material in which air can flow. a Acoustical dispersion relation ω kz
� �

¼ ωð�kzÞ for air pressure waves propagating along the

z-direction, exhibiting a roton-like minimum within the first Brillouin zone kz
		 		 � π=az. Higher bands at (much) higher frequencies are not shown. b Mean

energy flux Iz on a false-color scale along the z-direction for the three eigenmodes A, B, and C marked in a at the same frequency of 150 Hz. As in Fig. 4b,

backward-wave behavior is observed for mode B, for which the group velocity is negative. The lattice constant is chosen as az ¼ 10 cm. All other parameter

ratios are the same as in Fig. 3. We assume ambient conditions, corresponding to an airborne speed of sound of vair ¼ 340 m=s and a mass density of

ρair ¼ 1:29 kgm�3.
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The approach can be generalized to more than just two types of
interactions, i.e., to the combined action of nearest-neighbor,
second-nearest-neighbor, third-nearest-neighbor, etc. interac-
tions. This generalization would allow for tailoring almost any
wanted dispersion relation of acoustical waves or phonons in the
spirit of a Fourier expansion. However, feasible corresponding
three-dimensional microstructures would need to be designed.
The idea of beyond-nearest-neighbor interactions can also be
combined with a variety of established other mechanisms in
metamaterial design to obtain further unusual and useful effective
material behaviors.

Methods
Energy flow in the 1D toy model. Equation (3) for the energy flow in the 1D toy
model has been derived as follows. For the Bloch waves with wavenumber k and
angular frequency ω, the displacement of the mass at lattice site n is given by
un tð Þ ¼ eu expðiðkna� ωtÞÞ. The energy, which is transmitted through the Hooke’s
springs that couple neighboring masses (cf. Fig. 2a), averaged over an oscillation
period, is given by

p1ðkÞ
� �

¼
1

2
Re K1 un�1 � un

� � du*n
dt


 �
¼

1

2
eu2ωK1sin kað Þ: ð4Þ

Herein, the term K1 un�1 � un
� �

is the force acting onto the mass at lattice site n

by the Hooke’s spring to its left and the symbol * stands for the complex conjugate.
Similarly, the mean energy flow through the Hooke’s springs that mediate the
beyond-nearest-neighbor coupling is

pN ðkÞ
� �

¼
1

2
Re KN un�N � un

� � du*n
dt


 �
¼

1

2
eu2ωKN sin Nkað Þ: ð5Þ

The total mean energy flow through the 1D toy model is the sum of these two
contributions

pðkÞ
� �

¼ p1ðkÞ
� �

þ N pN ðkÞ
� �

¼
1

2
eu2ωðK1sin kað Þ þ NKN sin Nkað ÞÞ: ð6Þ

Elastic metamaterials. We have numerically solved the eigenvalue equation
derived from linear Cauchy elasticity23 for the displacement vector field~u~k;ið~rÞ with

band index i at wave vector ~k and for the angular frequency ωið
~kÞ

E

2 1þ νð Þ 1� 2νð Þ
~∇ ~∇ �~u~k;ið~rÞ
� 

þ
E

2 1þ νð Þ
~∇

2
~u~k;ið~rÞ ¼ �ρω2

i ð
~kÞ~u~k;ið~rÞ ð7Þ

by using the commercial software Comsol Multiphysics, its MUMPS solver,
Floquet-Bloch periodic boundary conditions corresponding to the three-
dimensional geometry shown in Fig. 3 for all three spatial directions, and traction-
free boundary conditions for all interfaces to voids (air or vacuum). E is the
Young’s modulus, ν the Poisson’s ratio, and ρ the mass density of the constituent
material. The geometry shown in Fig. 3 has been meshed by about 100 thousand
tetrahedra to achieve convergence of the results. The energy flux vector averaged
over one temporal oscillation period has been evaluated by the formula

~Iið
~kÞ ¼

1

2
Re �

Eν

1þ νð Þ 1� 2νð Þ
~∇ �~u~k;i ~rð Þ
�  d~u*~k;i ~rð Þ

dt

(

�
E

2 1þ νð Þ
~∇~u~k;i ~rð Þ �

d~u*~k;i ~rð Þ

dt
þ~u~k;i ~rð Þ

~∇ �
d~u*~k;i ~rð Þ

dt

 !)
;

ð8Þ

where * denotes the complex conjugate. In Fig. 4b, the z-component of this vector,
Iz , is plotted. This component has been obtained directly from the Solid Mechanics
Module of Comsol Multiphysics.

Metamaterials for airborne acoustical waves. In the calculations shown in
Fig. 6b, we have solved the scalar wave equation22 for the air pressure modulation
eP~k;ið~rÞ of the band with band index i at wave vector ~k in the Fourier domain,

corresponding to the eigenvalue problem

~∇ � ~∇eP~k;ið~rÞ
� 

¼ �
ω2
i ð
~kÞ

v2air
eP~k;ið~rÞ ð9Þ

with the speed of sound in air vair ¼ 340 m=s, by using the commercial software
Comsol Multiphysics. The considered geometry is the complement of the geometry
illustrated and defined in Fig. 3. We assume Bloch periodic boundary conditions
along all three spatial directions and the walls of all channels as rigid immovable
boundaries via Neumann boundary conditions. The energy flux vector averaged

over one temporal oscillation period has been evaluated by

~Iið
~kÞ ¼

1

2
Re

i

ωið
~kÞρair

eP~k;i ~rð Þ~∇eP
*

~k;i ~rð Þ

( )
; ð10Þ

with the imaginary unit i and the air mass density ρair ¼ 1:29 kgm�3 . In Fig. 6b,
the z-component of this vector, Iz , is plotted. For the numerical calculations, the
Pressure Acoustics Module of Comsol Multiphysics has been used. The quantity Iz
has been obtained directly by this module.

Data availability
The data that support the plots within this paper and other findings of this study are

available from the corresponding author upon reasonable request.

Code availability
Numerical simulations in this work for the 1D toy model are all performed using the

commercial software MATLAB. Numerical simulations in this work for the elastic and

acoustic metamaterials are all performed using the commercial software COMSOL

Multiphysics. All related codes can be built with the instructions provided in the main

text and in the Methods section.
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