
Rotons in a Hybrid Bose-Fermi System

Ivan A. Shelykh

Science Institute, University of Iceland, Dunhagi-3, IS-107, Reykjavik, Iceland and International Institute for Physics,
UFRN—Universidade Federal do Rio Grande do Norte, Campus Universitario Lagoa Nova, CEP: 59078-970, Natal- RN, Brazil

Thomas Taylor and Alexey V. Kavokin

School of Physics and Astronomy, University of Southampton, Highfield Southampton, SO171BJ, United Kingtom
(Received 17 June 2010; revised manuscript received 10 August 2010; published 28 September 2010)

We calculate the spectrum of elementary excitations in a two-dimensional exciton condensate in the

vicinity of a two-dimensional electron gas. We show that attraction of excitons due to their scattering with

free electrons may lead to formation of a roton minimum. The energy of this minimum may go below the

ground state energy which manifests breaking of the superfluidity. The Berezinsky-Kosterlitz-Thouless

phase transition temperature decreases due to the exciton-exciton attraction mediated by electrons.
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In this Letter we consider a hybrid Bose-Fermi system
consisting of a spatially separated but interacting Bose-
Einstein condensate (BEC) and Fermi sea. Such systems
have been discussed in relation to cold atom gases and
shown to be extremely rich in fundamental effects includ-
ing the BCS-BEC crossover [1], Tonks- Girardeau gases
[2], Cooper pairing, and superconductivity [3]. Hybrid
systems remain poorly studied experimentally as the real-
ization of spatially separated but interacting Fermi-sea and
Bose-Einstein condensate of cold atoms is a nontrivial
task. Recently, the potential of semiconductor coupled
quantum wells for the realization of BEC of cold excitons
has been revealed [4]. Spatially indirect excitons were
widely studied both experimentally and theoretically in
recent years (see Ref. [5] for a review). They may strongly
interact with remote free electrons due to their dipole mo-
ments. This is why the realization of a hybrid Bose-Fermi
system in a semiconductor structure containing n-doped
quantumwells (QWs), where the two-dimensional electron
gas (2DEG) is created, and undoped coupled QWs, where
the exciton BEC is induced, seems realistic. Recently, a
proposal has been made for the realization of exciton-
mediated superconductivity in microcavity structures [6].

Here we study the effect of interaction of a BEC of
spatially indirect excitons with a 2DEG on the energy
spectrum of excitations of the exciton BEC. It is well
established that in the absence of free electrons, the
Bogoliubov-like spectrum showing linear dispersion near
the ground state and parabolic dispersion at larger wave
vectors is formed due to exciton-exciton repulsion. We
show that due to their scattering with free electrons, exci-
tons with nonzero momenta attract each other, which leads
to the formation of a rotonlike minimum [7] in the exciton
dispersion. The depth of the minimum increases with the
increase of the exciton concentration, and consequently the
roton gap decreases. In this regime, the critical temperature
of the Berezinsky-Kosterlitz-Thouless (BKT) transition for

excitons [8] decreases. Eventually, the roton energy goes
below the ground state energy, and the roton gap collapses,
leading to the collapse of the exciton BEC.
Consider a system of three parallel semiconductor quan-

tum wells (QWs), one of which contains a free electron (or
hole) gas, and two others containing a BEC of spatially
indirect excitons. The effective interaction between elec-
trons and excitons can be represented in diagrammatic
form as is shown in Fig. 1. This figure shows the random
phase approximation (RPA) diagrams for the electronic
system and for the virtual excitations of the exciton BEC.
The first diagram represents the direct interaction of two
excitons and all subsequent ones correspond to the pro-
cesses involving the virtual excitation of the Fermi sea or/
and excitonic BEC at intermediate stages. For example, the
second diagram corresponds to the process of exciton
interaction with the electron Fermi sea creating a virtual
electron-hole pair in it, which afterwards disappears due to
its interaction with another exciton. Diagram 3 corresponds
to the process of exciton interaction with the condensate
creating its virtual excitation, which then disappears due to
the interaction with another exciton. Other diagrams cor-
respond to higher-order processes where several virtual
excitations are created at intermediate stages.
Using the standard rules for the evaluation of Feynman

diagrams [9], one can obtain the matrix elements of the
effective screened interaction:
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where V11ðqÞ is the matrix element of the unscreened
interaction between electrons, V22ðqÞ is the matrix element
of the unscreened interaction between excitons, V12ðqÞ is
the matrix element of the unscreened interaction between
electrons and excitons. �j ¼ �jðq; !Þ are polarization

operators. For the electron system one can obtain [10]

�1ðq; !Þ ¼ X
k

fk�q � fk

@ð!þ i�þ Eel
k�q � Eel

kÞ
; (4)

and for the condensate [9]

�2ðq; !Þ ¼ N0G
ex
0 ðq; !Þ ¼ 2N0E

ex
q

ð@!Þ2 � ðEex
q Þ2

(5)

where N0 is the occupation number of the condensate, Eex
q

and Eel
q are dispersions of the bare excitons and electrons,

respectively (parabolic, in the effective mass approxima-
tion), fq is the Fermi distribution. The electron-electron

interaction is described by a standard 2D Coulomb poten-
tial,

V11 ¼ e2

2�0�A

1

q
; (6)

with � being a dielectric constant of the media and A being
the sample area. The matrix element of exciton-exciton
interaction V22 can be estimated as [11,12]

V22ðqÞ � 6EBa
2
B

A
(7)

with EB and aB being the exciton binding energy and Bohr
radius, respectively. We neglect the q-dependent contribu-
tion due to dipole-dipole interaction of excitons, which is
essential for the problem of quantum diffusion of indirect
excitons [13] but is exactly 0 for q ¼ 0 and small com-
pared to exciton-electron interaction for small q in the case
of a uniform exciton BEC, which we consider here. The
expression for the matrix element of electron-exciton in-
teraction reads (the details of calculation can be found in,
e.g., Ref. [14]):
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(8)

where �e;h ¼ me;h=ðme þmhÞ with me;h being the effec-

tive masses of electron and hole, d being the dipole mo-
ment of the exciton in normal to the QW plane direction. In
order to interact efficiently with electrons, the excitons
must have a significant dipole moment (d� aB) which is
readily achieved in biased coupled QW structures where
one of the wells confines electrons and another one con-
fines holes [5].
The formula for the effective interaction can be rewritten

in a compact matrix form

V eff ¼ V � ð1��VÞ�1; (9)

where Veff , V, and � are 2� 2 matrices with matrix
elements given above. The polarization matrix� is diago-
nal, with the diagonal elements given by expressions (4)
and (5).
Expressions (9) fully determine all renormalized inter-

actions in the electron-exciton system and describe
simultaneously the screening effects, the Bogoliubov
renormalization of the dispersion of the excitations of the
condensate, the bogolon-mediated pairing of electrons
responsible for exciton-mediated superconductivity [6],
and effective attraction between excitons due to their scat-
tering with electrons. The matrix element of effective
exciton-exciton interaction taking into account all these
effects reads

Veff
ex�exðq;!Þ

¼ V22þ V2
12
ðqÞ�1ðq;!Þ

1�V11ðqÞ�1ðq;!Þ
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:

(10)

The first term in the numerator corresponds to the direct
repulsive exciton-exciton interaction, while the second

FIG. 1. RPA diagrammatic representation of the screened in-
teraction between excitons and electrons. Index 1 corresponds to
electrons, index 2 to excitons. Black dots correspond to the
exciton BEC.
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term describes the effective interaction between excitons
due to the virtual excitations in the electronic system. If
one neglects electron-electron interactions and polarizabil-
ity assuming V11ðqÞ ¼ 0, �ðq;!Þ ¼ 0, for the effective
interactions one recovers the result of Refs. [3,15].

The poles of the effective potential determine the dis-
persions of the collective modes of the system, given by the
equation

ð@!Þ2 ¼ ½EexðqÞ�2 þ 2N0
~V22ðqÞEexðqÞ; (11)

where

~V 22ðqÞ ¼ V22 þ V2
12ðqÞ�1ðq;!Þ=½1� V11ðqÞ�1ðq;!Þ�:

(12)

If the excitonic and electronic systems are uncoupled,
V12 ¼ 0, two independent collective modes coexist:
the Bogoliubov excitations of the condensate

(bogolons) whose dispersion is given by @!BðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EexðqÞ½EexðqÞ þ 2V22N0�

p
, and the plasmon mode whose

dispersion can be obtained from the transcendental equa-
tion 1� V11ðqÞ�1ðq;!Þ ¼ 0. On the other hand, if V12 �
0 and �1 � 0 dispersions of bogolons and plasmonic
excitations are coupled.

In this regime, the roton minimum may appear in the
energy spectrum of the exciton condensate. One can see
that ~V22ð0Þ ¼ V22 as V11ð0Þ ¼ 1. Assuming ! � 0 and

using for �1 the static approximation, �1 � A mel

�@2
�

ðe��@2nel=kBTmel � 1Þ< 0wheremel and nel are the effective
masses and 2D concentration of the electrons, respectively
[10], one can easily see that the second term in the right
part of Eq. (12) is negative, and ~V22 is a decreasing
function of q, which is responsible for the appearance of
the roton minimum.

The position and depth of this minimum are dependent
on the strength of the exciton-electron interaction as Fig. 2
shows.

The minimum becomes deeper if the distance between
the QW containing the electron gas and the exciton BEC
decreases. It also deepens with increase of the exciton
concentration in the condensate. At some critical concen-
tration the energy of the roton minimum equals the energy
of the condensate at q ¼ 0, so that the roton gap collapses.
This manifests itself as a phase transition in the system:
beyond this point the exciton BEC becomes unstable and
eventually collapses due to uncontrollable escape of ex-
citons towards the roton minimum. The physical reason for
suppression of the exciton BEC is the attraction between
excitons induced by their interaction with free electrons.

Figure 3 shows the phase diagram of the transition
between the exciton BEC and classical condensation.
One can see that the collapse of the BEC may be achieved
at excitons concentrations much below the Mott density
provided that the distance between excitons and electrons
is small enough.

The calculations above have been done assuming zero
temperature T. If the superfluid phase exists at T ¼ 0, it
may be also found at higher temperatures up to the critical
temperature which can be found following Kosterlitz and
Nelson [16]:

TBKT ¼ �@2nsðTBKTÞ
2M

(13)

where M is the exciton mass, ns is a superfluid density. As
ns is a function of temperature, the above expression
represents a transcendental equation for TBKT.
ns can be found as

ns ¼ n� nnðTBKTÞ; (14)
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FIG. 2 (color online). Dispersion of the elementary excitations
of the condensate showing roton minimum. Plotted for parame-
ters of a coupled QW structure studied in Ref. [4] assuming that
a third n-doped QW is grown at a distance L from the coupled
QW structure, the dipole separation is l ¼ 12 nm and nel ¼ 4�
1012 cm�2. In the main plot L ¼ 12 nm and ns varies as 1, 0.5,
0:01� 1011 cm�2 (solid blue, dashed red, and dot-dashed green,
respectively). In the inset ns ¼ 1� 1011 cm�2 and L varies as
12, 25, 55 nm (solid blue, dashed red, and dot-dashed green,
respectively).
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FIG. 3 (color online). Phase diagram of the system—the ex-
citon BEC is unstable above the phase boundary surface, and
stable below. Plotted for the same structure as in the previous
figure.
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where n ¼ N0=A is a total 2D concentration of excitons (it
equals ns at zero temperature), nn is a normal fraction
concentration which can be estimated as in [8,17,18],

nnðT; nÞ ¼ @
2

2�MkBT

Z 1

0

q3e@!ðqÞ=kBT

ðe@!ðqÞ=kBT � 1Þ2 dq: (15)

The critical temperature TBKT is influenced by the
exciton-electron interaction as it depends on the modified
dispersion of the collective modes (11). Figure 4 shows
TBKT for our system as a function of L and n. One can see
that at the large L corresponding to a weak exciton-
electron coupling, TBKT is a linear function of the exciton
concentration as should be expected for a conventional gas
of interacting bosons. On the other hand, for small L where
the exciton-electron interaction is important, the critical
temperature behaves nonmonotonously as a function of n:
it initially increases, then decreases at larger n. This mani-
fests the gradual changes in the strength and sign of
exciton-exciton interactions: while at low concentrations
the excitons repel each other, at higher concentrations they
start attracting each other at large q.

In conclusion, we have analyzed the spectrum of super-
fluid excitations in a hybrid exciton-electron system and
found the roton minimum whose shape and depth depend
on the exciton concentration and the spatial separation
between excitons and electrons. The electron induced

exciton-exciton attraction leads to a decrease of the BKT
transition temperature and can eventually destroy the ex-
citon BEC.
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FIG. 4 (color online). Dependence of the Berezinsky-
Kosterlitz-Thouless critical temperature on concentration and
QW separation. Plotted for parameters as in previous figures.
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