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Abstract 
 

A geometric approach for the outer-rotor profile as a conjugate to the inner-rotor in a hypotrochoidal rotor pump 

(hypogerotor pump) is proposed by means of the principle of the instantaneous center and the homogeneous coordinate 

transformation. The inner-rotor profile is defined by the combination of two circular arcs. Next, the radius of curvature 

of the outer-rotor is derived with the relationships of the trochoid ratio and the inner-rotor tooth size ratio. Then by 

examining the minimum radius of curvature of the extended hypotrochoidal outer-rotor profile on the convex section, 

an explicit formula to avoid undercutting in the hypogerotor pump is proposed. It is found that undercut or self-

intersection does not occur so long as the minimum value of the radius of curvature on the convex section is not less 

than zero. Design examples are presented to simulate the operation and to demonstrate the feasibility of the approaches 

using a computer-aided design program developed on C++ language.  
 

Keywords: Hypogerotor pump; Inner-rotor; Outer-rotor; Instantaneous center; Tip clearance; Trochoid ratio; Inner-

rotor tooth size ratio; Radius of curvature; Undercut   
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1. Introduction 

Numerous applications in hydraulic and lubrication 

systems just require the circulation of the fluid. In 

such cases low noise emissions and little pressure 

ripples are more important than highly efficient 

transmission of energy. The gerotor pump is ideal 

principle for such applications. Compared to conven-

tional external gear pumps, the suction and pressure 

connection of the gerotor pump is axial to the driving 

shaft. This also supports the compact construction. 

Due to the solid tooth shape, the gerotor pump is re-

sistant to hydraulic and mechanical impact loads. The 

long durability of the gerotor pump is based on the 

relatively low sliding speed between the inner and the 

outer rotor. Furthermore, this pump is characterized 

by an extremely good smoothness and a low noise 

level. Designers of engines, compressors, machines 

tools, tractors, and other equipment requiring hydrau-

lic systems can now build pump components inte-

grally into these mechanisms. 

Some important literatures on the basic geometry 

and its related topics of the gerotor pump can be 

found: for example, Colbourne [1] proposed a geome-

try method to find the envelopes of trochoids that 

perform a planetary motion. Litvin ad Feng [2] used 

differential geometry to generate the conjugate sur-

faces of epitrochoidal gearing. Demenego et al. [3] 

developed a tooth contact analysis (TCA) computer 

program and discussed avoidance of tooth interfer-

ence and rapid wearing through modification of the 

rotor profile geometry of a cycloidal pump whose one 

pair of teeth is in mesh at every instant. Using the 

method for determining and tracing the limit curve, 

Mimmi and Pennacchi [4] obtained transcendental 

equations for the calculation of the limit dimensions 

to avoid undercutting. On the while, Ye et al. [5] pre-

sented simple explicit formulae by examining the 
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radius of curvature on the convex section for calculat-

ing the limit dimensions to avoid undercutting in the 

inner-rotor. 

However, most earlier studies focused on the 

commercially available gerotor pump using the equi-

distant shortened epitrochoid curve to the authors’ 

best knowledge. To improve the carryover phenome-

non of the traditional gerotor design, most recently 

Hwang and Hsieh [6] presented a geometry design 

procedure based upon the theories of envelope and 

conjugate surfaces for the hypotrochoidal gear pump 

(abbreviated as “hypogerotor pump” in this paper) 

using the equidistant extended hypotrochoid curve. 

They also presented non-undercutting conditions of 

the outer-rotor using the theory of gearing [7]. How-

ever, the procedure for obtaining the non-

undercutting conditions of [6] is somewhat compli-

cated with the added disadvantages that equations 

must be solved numerically. 

This paper presents the method on rotor profile de-

sign of a hypogerotor pump. The outer-rotor profile 

as a conjugate to the inner-rotor is defined by the 

principle of the instantaneous center and the homoge-

neous coordinate transformation in Section 2, and the 

inner-rotor profile is defined by the combination of 

two circular arcs in Section 3.  

Next, the radius of curvature of the outer-rotor is 

derived with the relationships of the trochoid ratio 

and the inner-rotor tooth size ratio in Section 4. Then 

by examining the minimum radius of curvature of the 

outer-rotor on the convex section following the meth-

odology of [5], an explicit formula for the limit di-

mensions to avoid self-intersecting or undercutting is 

proposed in Section 5. It is found that self-intersection 

does not occur so long as the minimum value of ra-

dius of curvature on the convex section is not less 

than zero. With the result obtained in this paper, the 

calculation becomes a much simpler task than that of 

[6].  

Based on developed analytical expressions, some 

discussions are addressed in Section 6 to demonstrate 

the feasibility of the approaches. 
 

2. Outer-rotor tooth profile 

A hypogerotor pump (see Fig. 1) consists of two main 

components: an inner-rotor and an outer-rotor that has 

one more tooth than the inner-rotor. The inner-rotor 

centerline is positioned at a fixed eccentricity from 

the centerline of the outer-rotor. As the rotors rotate in 

the same direction about their respective axes, fluid is  

 
 

Fig. 1. Typical hypogerotor pump. 
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Fig. 2. Instantaneous centers in a hypogerotor pump. 

 

drawn into the enlarging chamber up to a maximum 

volume. As rotation continues, the chamber volume 

decreases, forcing fluid out of the chamber. This 

process, used primarily in liquid transportation and 

many fluid power applications, occurs constantly for 

each chamber, providing a smooth pumping action.  

We have displayed a schematic of the hypogerotor 

pump in Fig. 2. The number of teeth of the inner-rotor 

is always one less than the outer-rotor, i.e., they have 

N  and ( )1N +  teeth, respectively. We can choose 

any shape for the inner-rotor teeth, and the outer-rotor 

is then generated conjugate to the inner-rotor. We 

describe here only the inner-rotor having N arcs of 

circle in the placement of R  from its center with the 

radius of 
r

R . The center distance between rotors (or 

eccentricity) is E . It can be regarded kinematically 

as a mechanism of three-links and three-joints: the 

frame corresponding to 
2 3

E O O=  as Link 1, the 

outer-rotor as Link 2, and the inner-rotor as Link 3, 

respectively.  

The outer-rotor (Link 2) turns about 
2

O , and the 

inner-rotor (Link 3) turns about its center 
3

O , the 

angular velocity ratio being N :( )1N + . Two points 
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2
O  and 

3
O  are permanent instantaneous centers 

12
I  

and 
13

I , respectively. We will denote the two pitch 

radii 
2 2 23 2

r O I O P= =  and 
3 3 23 3

r O I O P= =  

which are unknowns to be determined below. The 

magnitude of the velocity 
23

V  at pitch point 
23

I ( P ) 

can be determined by 

 

23 2 2 3 3
V r rω ω= =  (1) 

 

The angular velocity ratio can be written as 
 

2 3

3 2
1

r N

r N

ω
ω
= =

+
 (2) 

 

From Eq. (2), we can easily determine the location of 

the pitch point 
23

I  with the aid of relation 

2 3
r r E− =  and Kennedy’s theorem [8] as follows: 

 

( )2
1r E N= + , 

3
r EN=  (3) 

 

Before deriving the profile equation of the outer-

rotor, three coordinate systems corresponding to the 

hypogerotor pump should be defined as shown in Fig. 

3: one stationary reference system 
2 f

S  attached to 

2
O , and two mobile reference systems 

2
S and 

3
S  

attached to 
2

O  and 
3

O , respectively. The angles of 

2
φ  and 

3
φ  are profile definition parameters of the 

reference systems 
2

S  and 
3

S , respectively. 

In Fig. 3, the contact point is C  and the common 

normal to both rotors passes through the pitch point 

23
I . Therefore, the mesh point 3C  in 

3
S -coordinate 

system and the corresponding leaning angle ψ  can 

be determined as below: 
 

3 cos
C r

x R R ψ= +
 

3 sin
C r

y R ψ=  (4) 
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Fig. 3. Three coordinate systems for outer-rotor profile defi-

nition. 

1 3

3

sin
tan

cos

φψ
µ φ

−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

 (5) 

 

where the parameter of 
3

/R rµ=  is used consis-

tently throughout this paper and is referred to as the 

trochoid ratio. It is recommended that the designer of 

the hypogerotor pump should adopt the curtate hy-

potrochoid curves (i.e. 1µ> ) to avoid self-

intersection phenomenon. 

The origin of coordinate system does not coincide 

with that of the outer-rotor in Eq. (4). In such a case 

the coordinate transformation may be used based on 

the application of homogeneous coordinates and 4×4 

matrices that describe separately rotation about a sta-

tionary axis and displacement of one coordinate sys-

tem with respect to the other [7]. For the homogene-

ous coordinate transformation from the contact point 

of 3C  in 
3

S -reference system to that of 2C  in 

2
S -reference system, the following matrix equation is 

defined: 
 

( ) ( )2 3 3

3
 C C Cφ φ= =

2,3 2,2f 2 2f,3
M M M  (6) 

 

where the matrix 
i, j

M  describes transformation 

from 
j

S -system to 
i

S -system, and 

 

( )

2 2

2 2

2

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

φ φ
φ φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

2,2f
M

 (7) 

( )

3 3

3 3

3

cos sin 0

sin cos 0 0

0 0 1 0

0 0 0 1

Eφ φ
φ φ

φ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

2f,3
M  (8) 

[ ]3 cos sin 0 1
T

r r
C R R Rψ ψ= +  (9) 

 

where the superscript T  in Eq. (9) means the trans-

pose of the matrix. 

The resulting expression of Eq. (6) is 
 

( ) ( )

( )

( ) ( )

( )

2 3

2 3 2

2 2 3

2 3 2

cos cos

sin sin cos

cos sin

sin cos sin

0

1

r

r

r

r

R R

R E

R R
C

R E

ψ φ φ
ψ φ φ φ

ψ φ φ
ψ φ φ φ

⎡ ⎤+ −⎢ ⎥
⎢ ⎥+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + −⎢ ⎥= ⎢ ⎥+ − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(10) 
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From Eq. (2), we have the following relation, 

 

2 2 2

3 3 3

/

/ 1

d dt N

d dt N

ω φ φ
ω φ φ
= = =

+
 

(11) 

 

If we define φ  by the generated parameter of output 

motion, we can obtain 
2

Nφ φ=  and ( )3
1Nφ φ= + . 

Substituting these relations into Eq. (10) leads to the 

following lobe profile parametric equations in 
2

S -

reference system: 

 
2 cos cos( ) cos( )

C r
x R R E Nφ φ ψ φ= + + +  (12a) 

2 sin sin( ) sin( )
C r

y R R E Nφ φ ψ φ= + + −  (12b) 

 

where 

 

1 sin( 1)
tan

cos( 1)

N

N

φψ
µ φ

−
⎡ ⎤+⎢ ⎥= ⎢ ⎥− +⎣ ⎦

, ( 0 2φ π≤ ≤ ) (13) 

 

The real profiles are manufactured with techno-

logical gaps due to many practical considerations, 

such as precision of machining tools, prevention of 

jamming conditions, and application of lubricants. 

Although gear teeth gaps are inevitable, they may 

lead to fluid losses and occurrence of additional dy-

namic forces, decrease stability and increase noise 

and vibration, especially at high speeds. The require-

ment for a proper tip clearance is a trade-off problem. 

The equidistant curve principle is applied to realize 

the proper tolerances for the outer-rotor profile, and 

as a consequence, the offset profile to the ideal one of 

Eqs. (12) is obtained.  

This equidistant offset profile will be generated as 

equidistant of Eqs. (12) with equidistant radius larger 

or smaller than the theoretical one (
r

R ) by a tip clear-

ance, 
t
δ , as follows:  

 

( ) ( )2 cos cos( )

cos( )

C t r t
x R R

E N

δ φ δ φ ψ
φ

= + + +

+
 

(14a) 

( ) ( )2 sin sin( )

sin( )

C t r t
y R R

E N

δ φ δ φ ψ
φ

= + + +

−
 

(14b) 

 

These give a uniformly enlarged equidistant curve 

(Fig. 4) when 0
t
δ > . On the other hand, these give a 

uniformly contracted equidistant curve (Fig. 5) for 

0
t
δ < . Eqs. (14) are the equations of the profile on 

the non-ideal outer-rotor.  

We can observe that Eqs. (14) can be degenerated  

X2

Y2

O2

Offset outer-rotor

R
r

R
r+δ

t

 
 

Fig. 4. Equidistant offset outer-rotor lobe profile (dashed 

line). 
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Fig. 5. Outer-rotor shape in case of 
t r

Rδ =− . 

 

into the well-known standard hypotrochoid equations 

in the forms for the case when 
t r

Rδ =− (see Fig. 5): 

 
2 cos cos( )

C
x R E Nφ φ= +  (15a) 

2 sin sin( )
C

y R E Nφ φ= −  (15b) 

 

Next, we consider the outer-rotor rotated by the 

amount of 
2
θ (see Fig. 6) for the sake of generaliza-

tion. In that case, we can describe the outer-rotor pro-

file in the stationary 
2 f

S -reference system as fol-

lows: 

 

( )2 2

2

f C Cθ=
2f,2

M  (16) 
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Fig. 6. Outer-rotor profile in case of rotation of 
2
θ . 

 

where  

 

( )

2 2

2 2

2

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

θ θ
θ θ

θ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

2f,2
M  (17) 

( ) ( ) ( )

( ) ( ) ( )2

cos cos cos

sin sin sin

0

1

r t

r t

R R E N

R R E N
C

φ δ φ ψ φ
φ δ φ ψ φ

⎡ ⎤+ + + +⎢ ⎥
⎢ ⎥+ + + −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

  

 (18) 

 

The outer-rotor profile in 
2 f

S -reference system be-

comes 

 

( ) ( )2

2 2

2

cos cos( )

cos( )

f

C r t
x R R

E N

φ θ δ φ ψ θ
φ θ

= + + + + +

+ −
 (19a) 

( ) ( )2

2 2

2

sin sin( )

sin( )

f

C r t
y R R

E N

φ θ δ φ ψ θ
φ θ

= + + + + +

− −
 (19b) 

 

3. Inner-rotor tooth profile and flow rate 

The inner-rotor (see Figs. 7 and 8) can be defined 

by the combination of two circular arcs: inner-rotor 

teeth circular arcs of Section I (
i i
α β≤Φ≤  and 

1i i
γ α +≤Φ≤ ), and fillet circular arcs of Section II 

(
i i
β γ≤Φ≤ ). The position angles shown in Fig. 7 

are 

 

( ) ( )3 3

2
, 1

i i
X O N i

N

πα =∠ = − ,( )1,2,3, ,i N=    

 (20a) 

O3

α i+1

β i

γ i

αi

δ

X3

Rf

R
r

Ni-1

Y3
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Ni

f

τ

t
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δ

ti+1 ti
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N1
 

 

Fig. 7. Definition of inner-rotor parameters. 
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Fig. 8. Schematic for determination of 
f

l .
 

 

( )3 3
,

i i i
X O tβ α δ=∠ = +  (20b) 

( )3 3 1 1
,

i i i
X O tγ α δ+ +=∠ = −  (20c) 

 

Here the section discrimination angle δ  can be de-

termined from 
3 1 1i i

O t N+ +∆  of Fig. 7 as 

 
2 2 2

1cos
2

r
t R R

tR
δ −

⎛ ⎞+ − ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (21) 

 

where 

 
2 2 2 cos
f f f f

t l R l R τ= + −  (22a) 

( )
( )

2
2 2

cos
2

f r f

f r f

l R R R

l R R
τ

+ + −
=

+
 (22b) 

( ) ( )

3

22 2

cos

cos

f i

r f

l O B R

R R R R

= = Ω

+ Ω − + +
 

(22c) 
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and ( )1
/ 2 /

i i
Nα α π+Ω= − = . 

Eq. (22a) is obtained by 
3 i i

O B t∆ , Eq. (22b) by 

3 i i
O N B∆ , and Eq. (22c) by 

3 1i i
O N B+∆  or 

3 i i
O N B∆  

of Fig. 8, respectively. 

The circular arc equations of Section I (Fig. 9) and 

Section II (Fig. 10) in the stationary 
3 f

S -reference 

system can be written, respectively, as follows: 
 

( )( )

( )( )

2
3

3

2
3 2

3

cos

sin

f

D i

f

D i r

x R

y R R

α θ

α θ

− +

+ − + =
 (23a) 

( )( )

( )( )

2
3

3

2
3 2

3

cos

sin

f

D f i

f

D f i f

x l

y l R

α θ

α θ

− +Ω+

+ − +Ω+ =
 (23b) 

 

where the angle 
3
θ  represents the rotation angle of 

the inner-rotor. The relation between the rotation 

angles of the rotors is 
2 3
/ /( 1)N Nθ θ = + . 

The 
3 f

S -coordinates of point D  in Figs. 9 and 10 

are  
 

( ) ( )3

3
cosf

D
x r θ= Φ Φ+

 
(24a) 

( ) ( )3

3
sinf

D
y r θ= Φ Φ+

 
(24b) 

 

where 

 

( )
( )

( )

3

1

3 3 33
, tan

f

C

f

C

y
X O C

x

φ
θ

φ
−
⎛ ⎞⎟⎜ ⎟⎜Φ=∠ = −⎟⎜ ⎟⎟⎜⎝ ⎠

 (25a) 

3 2f f

C C
x x E= − , 3 2f f

C C
y y=  (25b) 

 

Here we defined the position angle Φ  as Eq. (25a) 

(see Fig. 11) in order to calculate the chamber area 

easily. It allows the same position data between rotors.  

Substituting Eqs. (24) into Eqs. (23), we find 

  

( ) ( )

( )

( )

2 2 2 2

cos

cos ,

i

r i

i i

r R

R R R

α

α

α β

Φ = Φ−

+ − + Φ−

≤Φ≤  

(26a) 

( ) ( )( )

( )( )

( )

3

2 2 2 2

3

cos

         cos , 

f i

f f f i

i i

r l

R l l

α θ

α θ

β γ

Φ = Φ− +Ω+

− − + Φ− +Ω+

≤Φ≤

  

 (26b) 

( ) ( )

( )

( )

1

2 2 2 2

1

1

cos

cos ,

i

r i

i i

r R

R R R

α

α

γ α

+

+

+

Φ = Φ−

+ − + Φ−

≤Φ≤

 (26c) 
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Fig. 9. Section I of inner-rotor tooth profile in 
3 f

S -system. 
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Fig. 10. Section II of inner-rotor tooth profile in 
3 f

S -system. 
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Fig. 11. Definition of generated parameter Φ . 

 

Once the generated shape and conjugate shape are 

known, the volume displaced by the working pocket, 

as this pocket goes through a complete cycle from 

maximum volume (
max

A H× ) to minimum volume 

(
min

A H× ), can be determined. Here 
max

A , 
min

A  and 

H
 
represent the maximum chamber area, the mini-

mum chamber area and the rotor thickness, respec-

tively. 

For this goal, the evaluation procedure of the i -th 

chamber area, 
i

A , at any instant should be preceded.  
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It can be carried out from Fig. 12 numerically as fol-

lows: 

 

( ) ( )
0

2 2 2 2

1

1 1

2 2

ni

i

n

i k k k k k

k

A C D d C D
Φ

Φ
=

= − Φ≈ − ∆Φ∑∫  (27) 

 

where 

 

( ) ( )2 3 2 3 2f f

k C ki C ki
C x yφ φ= +   (28a) 

( ) ( )2 3 2 3 2f f

k D ki D ki
D x y= Φ + Φ   (28b) 

( )1k ki k i−∆Φ =Φ −Φ  (28c) 

 

and 
0i
Φ  and 

ni
Φ  are the start and the end position 

angles of the i -th chamber, respectively. These an-

gles are calculated from the schematic of Fig. 13 for 

determination of contact angle ( )
c

iθ ,  
 

( )
( )

( )
1

0 3
tan

c

i c

c

Y i
i

X i
θ θ−

⎛ ⎞⎟⎜ ⎟⎜Φ = = −⎟⎜ ⎟⎟⎜⎝ ⎠
 

(29a)

 

( )
( )

( )
1

3

1
1 tan

1

c

ni c

c

Y i
i

X i
θ θ−

⎛ ⎞+ ⎟⎜ ⎟⎜Φ = + = −⎟⎜ ⎟⎟⎜ +⎝ ⎠
 

(29b) 
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Fig. 12. Schematic for chamber area. 
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Fig. 13. Schematic for determination of contact angle, 
c
θ . 

where  

 

( ) * 3cos 1 r r

c i

i i

R r R
X i R

m m
α
⎛ ⎞⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

(30a) 

( ) *sin 1 r

c i

i

R
Y i R

m
α
⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (30b) 

2 *

23 3
1 2 cos

i i i
m I N r µ µ α= = + −  (30c) 

 

and *

3i i
α α θ= + . 

To determine the working area of 
max min

A A A∆ = −  

with the aid of Eq. (27), it should be noted that both 

max
A  and 

min
A  occur simultaneously at 

( )3
2 1 /j Nθ π= −  (where 1,2, ,j N= ) for the 

case when N  is even number, while 
max

A  at 

( )3
2 1 /j Nθ π= −  and 

min
A  at ( )3

2 1 /j Nθ π= − , 

respectively, for the case when N  is odd number. 

Since 
max

A  or 
min

A  occur N  times for every rota-

tional turn of the inner-rotor, the specific flow rate 

th
V  (or theoretical displacement per unit revolution) 

can be determined as 
th

V A H N=∆ × × .  

Therefore, the oil flow rate of the hypogerotor pump 

is calculated as 

 

V th
q V rpmη= × ×  (31) 

 

where 
V
η  is the volumetric efficiency mainly de-

pending on tip clearance and face clearance, and 

( rpm ) is the rotational speed of the inner-rotor. 

 

4. Radius of curvature for outer-rotor 

During the design stage of the hypogerotor pump, 

the size (
r

R  ) and the placement ( R ) of the cylindri-

cal inner-rotor teeth are those of important dimen-

sions. If 
r

R  is larger than a maximum value or R  

is less than a minimum value, then the enveloped 

tooth profile of the outer rotor will self-intersect (see 

Fig. 14). The tooth profile of the outer-rotor will 

therefore be undercut. This will produce backlash 

between rotors during running and become a potential 

problem, e.g., a decrease in volumetric efficiency. It 

is therefore important to calculate limit dimensions to 

avoid undercutting on the outer-rotor when designing 

the geotor pump. It is also well known that the wear 

rate can be reduced by increasing the radius of curva-

ture of the lobes. The radius of curvature is a function 

of the size and the placement of the inner-rotor teeth 

which generate the lobe shape.  
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As is well known, the formula for the radius of 

curvature of a parametric curve is 

 

( ) ( )
3

2 2 2

x y

x y x y
ρ

⎡ ⎤′ ′+⎢ ⎥⎣ ⎦=
′′ ′ ′ ′′−

 

(32) 

 

where ( x , y ) are coordinates of the parametric 

curve, ( x′ , y′ ) and ( x′′ , y′′ ) are the first and the 

second derivatives of ( x , y ) with respect to pa-

rameter, respectively. If 0ρ>  in Eq. (32), then the 

location of the center of curvature is to the right of the 

path (i.e., convex profile). 

If the mesh points of 2C  in Eqs. (12) are differenti-

ated with respect to φ , then the resulting formula for 

the radius of curvature of the tooth profile of the 

outer-rotor will be very complicated because of the 

term of ψ . It will be impossible to obtain directly an 

explicit formula. However, it will be overcome with 

the introduction of the radius of curvature for the 

standard hypotrochoid curve (see Fig. 5). When 

t r
Rδ =−  in Eqs. (14), we can obtain the standard 

hypotrochoid curve as in Eqs. (15). With the radius of 

curvature 
iN
ρ  of the standard hypotrochoid curve, 

the radius of curvature of the outer-rotor path (ex-

tended hypotrochoid curve) traced by the mesh point 
2C , at a specified input position φ , can be found as 
 

iN r
Rρ ρ= −

 
(33) 

 

To find 
iN
ρ , we consider Eqs. (14) and (15), i.e., 

2 ( )
C t r

x x Rδ= =−  and 2 ( )
C t r

y y Rδ= =− . 

Substituting Eqs. (15) into Eq. (32) yields a simpler 

formula with parameter of ( )3
1Nφ φ= +  as follows: 

 

( )
3/ 2

2

3 3

2

3

1 2 cos

( 1)cos
r

r
R

N N

µ µ φ
ρ

µ µ φ
+ −

= −
− − −

 

(34a) 

 

or in the normalized form of radius of curvature 

 ( )
3/ 2

2

3

2

3

1 2 cos

( 1)cosR N N

µ µ φρρ λ
µ µ µ φ

∗
+ −

= = −⎡ ⎤− − −⎣ ⎦  

(34b) 

 

where /
r

R Rλ=  is the inner-rotor tooth size ratio. 

The transition between concave and convex por-

tions results in the radius of curvature becoming infi-

nite. This inflection point will occur in the hypotro-

choidal path when the denominator in Eqs. (34) tends 

to zero: 

 

( )2

3
1 cos 0N Nµ µ φ− − − =

 
(35a) 

 

or 

 

( )

2

3
cos

1

N

N

µφ
µ

−
=

−
 

(35b) 

 

Since N  and µ  are positive and real values, then 

3
cos 0φ > , i.e., 

3
0 / 2φ π≤ ≤ . Therefore, an inflec-

tion point will occur when 

 

( )

2

0 1
1

N

N

µ

µ

−
< ≤

−
 

(36) 

 

5. Non-undercut condition for outer-rotor 

To demonstrate the interference (or self-

intersecting) phenomenon, two outer-rotors are de-

picted simultaneously in Fig. 14. The same design 

parameters ( R =32, N =8, E =3.5) have been used 

in Fig. 14, with the exception of 
r

R  (equal to 4 in 

the smaller rotor and 20 in the larger rotor). Shown in 

Fig. 15 is the relationship between radius of curvature 

ρ  of the tooth profile and the generated parameter 

3
φ . From Fig. 15, we can observe that the radius 

r
R  

of the inner-rotor tooth increases, then ρ  decreases. 

If 
r

R  is larger than a limit value, the minimum ra-

dius of curvature on the convex section will be nega-

tive and the tooth profile of the outer-rotor will be 

intersecting. This will produce backlash between the 

outer-rotor and inner-rotor during running. To avoid 

this self-intersecting, the point with zero radius of 

curvature must be avoided, i.e., the minimum value of 

ρ  of the tooth profile on the convex section should 

not be less than zero.  
 

undercut

Rr=20

Rr=4

R=32, N=8, E=3.5

 
 

Fig. 14. Outer-rotor profile design example for showing 

undercut. 
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Fig. 15. Radius of curvature for the design example. 

 

In order to calculate 
min
ρ  on the convex section, 

Eqs. (34) are differentiated with respect to 
3
φ  and 

setting the result equal to zero. After rearranging, the 

equation is observed to be of the form  

 

0A B C× × =  (37) 

 

where  

 

3
sinA φ=

 
(38a) 

2

3
1 2 cosB µ µ φ= + −

 
(38b) 

( ) ( )2

3
2 1 2 1 cosC N N Nµ µ φ= + − + − −

 
(38c) 

 

It is clear from Eq. (37) that there are three distinct 

cases where stationary curvature in the hypotrochoi-

dal path could occur: when 0A= , and/or 0B= , 

and/or 0C = . As it is important to understand each 

case, they are presented now in some detail. 

 

(Case 1). Consider 0A= ; i.e., 
3

sin 0φ = . 

The values of the generated parameter which satisfy 

this condition are 
3

0φ =  or 
3
φ π= . Substituting 

3
0φ =  and 

3
φ π=  into Eq. (34a) and simplifying, 

the first and the second local extrema are 

 

( )
3

2

3

1 0

1
r

r
R

N
φ

µ
ρ ρ

µ
=

−
= =− −

+
 

(39) 

( )
3

2

3

2

1
r

r
R

N
φ π

µ
ρ ρ

µ
=

+
= = −

−
 

(40) 

 

These first and second local extrema are the radius of 

curvature of the initial generated point at the bottom 

of the lobe for internal contact and the radius of cur-

vature occurring at the top of the lobe for internal 

contact, respectively.  

 

(Case 2). Consider 0B= ; i.e., Eq. (38b) may be 

written as 
 

2

3
1 2 cos 0µ µ φ+ − =

 
(41) 

 

For Eq. (41) to be a possible solution, the relationship 

between the trochoid ratio and the generating angle is 
 

2

3 3
cos cos 1µ φ φ= ± −

 
(42) 

 

Since 0µ> , then the only value of 
3
φ  which sat-

isfy this condition is 
3

0φ = . Substituting this value 

into Eq. (42) gives 1µ= . Then substituting 1µ=  

into Eq. (39), we see that the first local extremum 

( )1
0

iN r
Rρ ρ= = − . This defines a cusp in the path of 

point 
i

N  and is a special case which may not be a 

practical solution. 

 

(Case 3). Consider 0C = ; i.e., Eq. (38c) may be 

written as 

 

( ) ( )2

3
2 1 2 1 cos 0N N Nµ µ φ+ − + − − =

 
(43a) 

 

or 

 ( )

( )

2

3

2 1 2
cos

1

N N

N

µ
φ

µ

+ − +
=

−
 

(43b) 

 

As 
3

cos 1φ ≤ , the third local extremum occurs 

when the trochoid ratio is 

 2 1
1

2

N

N
µ

+
< <

+  
(44) 

 

This equation is the most general result for the tro-

choid ratio of a practical hypotrochoidal gerotor.  

Substituting Eq. (43b) into Eqs. (34) and simplifying, 

the third local extremum is 
 

( )( )
3/ 2

2

3 3

3
1 1

1
r

r N R
N

ρ µ
⎛ ⎞⎟⎜= − + −⎟⎜ ⎟⎟⎜⎝ ⎠−

 

(45a) 

 

or 
 

( )( )
3/ 2

* 2

3

1 3
1 1

1
N

N
ρ µ λ

µ

⎛ ⎞⎟⎜= − + −⎟⎜ ⎟⎟⎜⎝ ⎠−
 

(45b) 
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If the trochoid ratio satisfies Eq. (44) then all three 

local extrema will occur on the path. However, if the 

trochoid ratio ( ) ( )2 1 / 2N Nµ≥ + + , then only the 

first and second local extrema can occur on the path. 

As stated before, to avoid self-intersecting, the val-

ue of 
min
ρ  on the convex section should not be less 

than zero. Setting 
3

0ρ =  results in an explicit for-

mula for calculating the maximum value of 
max
λ  of 

the inner-rotor tooth size ratio to avoid undercutting 

on the outer-rotor 

 

( )
( )( )

3/ 2

2max

max

1 3
1 1

1

r
R

N
R N

λ µ
µ

⎛ ⎞⎟⎜= = − +⎟⎜ ⎟⎟⎜⎝ ⎠−
 (46) 

 

If 
r

R  has been determined beforehand, then the 

minimum distance 
min

R  can be calculated by the 

following explicit formula derived from Eq. (46): 

 

( )

( )

32

2

min 3

1

27 1

r
R N

R r
N

−
= +

+
 

(47) 

 

Using Eqs. (46) and (47) it is very easy to calculate 

limit dimensions. For an example, if the design pa-

rameters are given by R =32, N =8, and E =3.5 as 

in Figs. 14 and 15, the maximum inner-rotor tooth 

radius to avoid undercutting is ( )
maxr

R =13.04. 

 

6. Discussion 

Based on the obtained results, a computer-aided 

package “HypoGerotor V2.0” has been developed to 

design the hypogerotor pump using C
++

 language in 

connection with OpenGL. This CAD program has the 

characteristics of the graphic user interface and the 

simulation of the real operation for the hypogerotor 

pump.  

To validate of the proposed approach, we revisit 

the existing result of Hwang and Hsieh [6]. They 

presented two special cases as in Table 1.  

These two cases have no undercutting on the profiles, 

causing the design values of 
r

R  to be lower than 

their ( )
maxr

R  values. As can be shown in Fig. 16, our 

results are in exact agreement with those of [6].  

According to the result of Saenko and Gorbatyuk 

[9], the theoretical displacement of the epitrochoidal 

gerotor pump is approximately evaluated as 

( )4
th r

V E R R Hπ≈ − . In other words, 
th

V  increases 

in that pump with the increase of R  and E , but 

decreases with the increase of 
r

R . However, it  

Table 1. Design parameters for comparison. 
 

 Parameters given in [6] Design constraint 

Case 1 N=4, R=30, E=6.9, Rr=4.2 (Rr)max=26.29
 

Case 2 N=6, R=20, E=3.0, Rr=3.0 (Rr)max =10.72
 

 

 

 

(a) Case 1 

 

 

(b) Case 2 
 

Fig. 16. Comparison with the existing result [6]. 

 

should be noted that the theoretical displacement 
th

V  

of the hypogerotor increases as increasing of R , E  

and 
r

R . This trend is somewhat different from that 

of the epitrochoidal gerotor pump. 

The trochoid ratio µ  for all commercially available 

hypogerotor pump will have a value that satisfies Eq. 

(44); i.e. the local extremum given by Eqs. (45) is the 

most common minimum radius of curvature on the 

convex section of the tooth profile. For an illustrative 

purpose, the maximum inner-rotor tooth size ratio of 

Eq. (46) is graphically represented in Fig. 17 with the 

variation of the trochoid ratio under the limit condi-

tion of Eq. (44). From Fig. 17, we can observe that (a) 

permissible 
max
λ  increases as µ  increases; (b) 

permissible 
max
λ  decreases with the increase of N ; 

and (c) the range of µ  for practical purpose is get-

ting wider as N  increases because of the limit con-

dition of Eq. (44).  
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Fig. 17. Maximum tooth size ratio with the variation of tro-

choid ratio. 

 

Besides, in the hypogerotor pump design, to avoid 

contact with or interference between the two neighbor 

inner-rotor teeth or existence of the fillet radius of 

( )
minf

R , the maximum permissible value of the inner-

rotor tooth size ratio is denoted as 
c
λ  and the inner-

rotor tooth radius or the inner-rotor tooth size ratio 

may be constrained by the following relation (see Fig. 

8): 

 

0 sin
r

R R< < Ω
 

(48a) 

0 sin
c

λ λ< < = Ω
 

(48b) 

 

However, because Eqs. (48) only determine the de-

sign range of the inner-rotor tooth size, Eq. (46) (the 

equation of undercutting) must be employed to the 

feasible design. 

 

7. Conclusions 

The exact outer-rotor profile and some explicit 

formulae for the limit dimensions to avoid undercut-

ting in the hypogerotor pump have been obtained by 

the principle of the instantaneous center, and by ex-

amining the minimum radius of curvature on the con-

vex section of the lobe profile, respectively. The fol-

lowing conclusions can be drawn: 

 

(1) The parametric lobe profile equations of the outer-

rotor in a hypogerotor pump are analyzed and ob-

tained by the principle of the instantaneous center.  

The present results are easy to understand and ex-

act. 

(2) Simple explicit formulae for no interference con-

ditions are presented by examining the minimum 

radius of curvature on the convex section of the 

outer-rotor profile. 

(3) The developed design methodology has been suc-

cessfully applied to the hypogerotor pump using a 

computer-aided program, and some examples 

have been presented to verify the validity of the 

developed methodology. 
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