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Rotor Voltage Dynamics in the Doubly Fed Induction
Generator During Grid Faults

Francisco K. A. Lima, Alvaro Luna, Student Member, IEEE, Pedro Rodriguez, Member, IEEE,

Edson H. Watanabe, Senior Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—This paper presents a new control strategy for the
rotor-side converter (RSC) of wind turbines (WTs) based on dou-
bly fed induction generators (DFIG) that intends to improve its
low-voltage ride through capability. The main objective of this
work is to design an algorithm that would enable the system to
control the initial overcurrents that appear in the generator dur-
ing voltage sags, which can damage the RSC, without tripping it.
As a difference with classical solutions, based on the installation of
crowbar circuits, this operation mode permits to keep the inverter
connected to the generator, something that would permit the injec-
tion of power to the grid during the fault, as the new grid codes
demand. A theoretical study of the dynamical behavior of the rotor
voltage is also developed, in order to show that the voltage at the
rotor terminals required for the control strategy implementation
remains under controllable limits. In order to validate the pro-
posed control system simulation, results have been collected using
PSCAD/EMTDC and experimental tests have been carried out in
a scaled prototype.

Index Terms—AC generators, current control, electric variables
control, power system faults, wind power generation.

I. INTRODUCTION

T
HE INCREASING capacity of the installed wind power

generation facilities linked to the electrical network, as

well as the high-scale penetration of such systems in the next

future, has made it necessary to redesign the existing grid code

(GC) requirements, which now include specific requirements

regarding the operation of wind power generators and farms

[1], [2] under generic situations. Between these new demands,

those that concern the capability of wind power generators to

remain connected to the grid, in case of grid voltage sags, have

gained lately a great importance [3]–[6].

At the present time, all the existing GCs include fault ride-

through requirements for wind turbines (WTs). These standards

determine the fault boundaries among the ones a grid connected

WT shall remain connected to the network, giving rise to spe-
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Fig. 1. Comparison of different LVRT requirements for three-phase balanced
faults.

cific voltage profiles that specify the depth and clearance time

of the voltage sags that WTs must withstand without tripping.

Such requirements are known as fault ride through (FRT) or

low-voltage ride through (LVRT) and they are described by a

voltage versus time characteristic, denoting the minimum re-

quired immunity of the wind power station.

In Fig. 1, the LVRT requirements cited in different GCs

[3]–[7] for three-phase faults at HV level are presented together.

As it can be understood from the figure, there is a lack of stan-

dardization among the different transmission system operators,

as the FRT requirements depend highly on the specific charac-

teristics of the power systems in each country.

The LVRT capability is of special interest in wind power sys-

tems based on doubly fed induction generators (DFIGs). In this

sort of machine, the voltage drop in the stator windings, suffered

during a voltage dip, produces a sudden change in the stator flux

of the DFIG [7]. As a consequence of this transient the currents

in the stator increases rapidly, experiencing an overcurrent that

is transmitted, due to the magnetic coupling, to the rotor wind-

ings. These overcurrents, which can be up to three times the

nominal value of the current [8], can damage the rotor and sta-

tor windings, but its consequences can be especially critical for

the semiconductors of the rotor-side converter (RSC), that can

reach a thermal breakdown.

Nevertheless, and although this kind of facilities are very

sensitive to voltage faults, DFIG-based WTs are responsible of

producing the 50% of the installed wind power worldwide [9].

Therefore, improving its behavior in faulty scenarios, in order

to fulfill the new LVRT requirements, has become an issue of

great interest for WT manufacturers.

0885-8993/$26.00 © 2010 IEEE
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Fig. 2. Operation of a grid connected DFIG-WT controlled by means of a
back-to-back power converter.

Within this field several studies have been carried out in order

to improve the FRT capability of WTs [10]–[30]. Among the

different solutions, the most extended one is based on the use of

a protective circuit known as crowbar. This device consists of a

bank of resistors, which are connected to the rotor windings by

means of controllable switches [31]–[36]. When a fault occurs,

the rotor windings get connected to the resistors while the con-

verter is tripped. Thus, the short-circuit current flows through

this crowbar instead of the rotor-side inverter. In Fig. 2, the block

diagram of a DFIG WT equipped with such circuit is shown.

Although crowbar circuits are able to protect the machine and

the converter during the fault, its usage implies the installation

of extra hardware in the system, something that finally increases

the costs and hinders its reliability. Moreover, and despite the

fact that a crowbar is able to reduce the current peaks, this

device does not avoid the disconnection of the RSC after the

fault is detected, something that disables the control of active

and reactive power to the grid in such conditions. This last issue

is of great importance in the present GCs that demand a certain

delivery of active and reactive power during the fault [37].

Regarding this drawback some authors have proposed new

solutions for reducing the overcurrents in the rotor in faulty

scenarios, by means of designing specific control algorithms for

the RSC that would permit to avoid its disconnection, improving

thus the controllability of the system. However, some of these

algorithms turn out to be complicated and depend strongly on

the estimation of certain parameters, what finally play against

its robustness. This is the case of Xiang et al. [10] who present a

solution based on counteracting the negative and zero sequence

of the stator’s flux during the fault by means of injecting the

appropriate current through the rotor windings.

The aim of this paper is to propose a new control strategy

for the RSC that would permit reducing the overcurrents in the

generator’s windings under fault conditions without tripping the

converter. As a difference with previous solutions, the proposed

control system is based on a simple concept that is to feedback

the measured currents in the stator as the set point for the current

controller of the RSC.

In the following, the performance of this strategy will be

studied analytically and tested through simulations based on

Fig. 3. Vectorial diagram in the dq reference frame considering a FOC phi-
losophy.

PSCAD/EMTDC and also by means of experimental results

obtained in a scaled workbench. This work will be not only

focused on the response of the current control but also on the

estimation of the rotor voltage that is needed to inject the de-

sired current. This study will present as a novel contribution, an

analytical expression for determining the maximum voltage at

the rotor windings, in function of the fault conditions, that can

be found using this strategy, permitting thus to dimension the

RSC depending on the desired FRT capabilities of the system.

II. SIMPLIFIED MODELING OF THE DFIG

This section will be devoted to the modeling of the DFIG.

The objective of this part will be focused on finding a simple

relationship between the state space variables that could permit

to predict the behavior of DFIG under fault conditions. Later

this analysis will constitute the basis for the design of the control

system for the RSC.

A. Reference Frame System

In this paper, the rotor-side controller has been implemented

considering a field-oriented control (FOC) philosophy in the dq

reference frame [38]. In this kind of systems, the dq-axes are

aligned with the stator flux, as it can be noticed from Fig. 3.

This reference frame, known as synchronous reference frame

(SRF), is useful in order to reduce partially the complexity of

the mathematical equations that describe the system.

As it can be deducted from Fig. 3, due to the low stator

resistance, the voltage of the stator vs can be considered to be

90◦ leaded with respect to the stator flux, and hence almost

completely aligned with the in-quadrature axis, q, while the

magnetizing current in the stator has a single component in the

d-axis.

B. Simplified Modeling for the DFIG

The voltage and magnetic flux of the stator in a fourth-order

model can be written as

vds = Rsids +
dλds

dt
− ωsλqs

vqs = Rsiqs +
dλqs

dt
+ ωsλds

λds = Lsids + Lm idr

λqs = Lsiqs + Lm iqr . (1)
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In an analogous way, the equations that describe the dynamics

of the voltage and magnetic flux at the rotor are

vdr = Rridr +
dλdr

dt
− ωslipλqr

vqr = Rriqr +
dλqr

dt
+ ωslipλdr

λdr = Lridr + Lm ids

λqr = Lriqr + Lm iqs (2)

where λs and λr are the stator and rotor magnetic flux; Ls , Lr ,

and Lm are the stator, rotor, and magnetizing inductances; vs

and is are the stator voltages and currents; vr and ir are the

rotor voltages and currents; Rr and Rs are the rotor and stator

resistances; ωs and ωr are the synchronous and rotating angular

frequencies, respectively, and ωslip is the slip frequency.

Considering that the system described by (1) and (2) is linear,

assuming that the magnetic circuit of the DFIG is linear, and

later applying the Laplace transform, it is possible to obtain the

following stator currents in the SRF [39]:

ids =
(Lss + Rs) vds + ωsLsvqs

(L2
s s

2 + 2LsRss + R2
s + ω2

s L2
s )

−
(

Lss
2 + Rss + ω2

s Ls

)

Lm idr − RsωsLm iqr

(L2
s s

2 + 2LsRss + R2
s + ω2

s L2
s )

(3)

iqs =
−ωsLsvds + (Lss + Rs) vqs

(L2
s s

2 + 2LsRss + R2
s + ω2

s L2
s )

−
RsωsLm idr +

(

Lss
2 + Rss + ω2

s Ls

)

Lm iqr

(L2
s s

2 + 2LsRss + R2
s + ω2

s L2
s )

. (4)

Equations (3) and (4) can be simplified considering that the

stator resistance is very low; thus, R2
s → 0. In addition, and

considering that in a FOC system the stator flux is aligned with

the d-axis of the dq SRF, its quadrature component, λqs , is null.

Besides, and assuming that the leakage inductance value is low,

the stator voltage vector can be considered to be almost aligned

with the in-quadrature axis, and hence the vds component can

be neglected as well. In this manner, the previous equations can

be rewritten as

ids =
ωsLsvqs

(Lss2 + 2Rss + ω2
s Ls) Ls

−
(

Lss
2 + Rss + ω2

s Ls

)

Lm idr − RsωsLm iqr

(Lss2 + 2Rss + ω2
s Ls) Ls

(5)

iqs =
(Lss + Rs) vqs

(Lss2 + 2Rss + ω2
s Ls) Ls

−
RsωsLm idr +

(

Lss
2 + Rss + ω2

s Ls

)

Lm iqr

(Lss2 + 2Rss + ω2
s Ls) Ls

. (6)

Equations (5) and (6) can be simplified further. Taking into

account that in the second term of both expressions, the crossed

terms of the rotor current idr and iqr are negligible, due to the

low value of the RsωsLm coefficient, and considering that the

quotient shown in the following equation is almost equal to 1:
(

Lss
2 + Rss + ω2

s Ls

)

(Lss2 + 2Rss + ω2
s Ls)

∼= 1 (7)

the final simplified model can be obtained as detailed in the

following:

ids =
1

Ls

ωs

s2 + 2 (Rs/Ls) s + ω2
s

vqs −
Lm

Ls
idr (8)

iqs =
1

Ls

s + Rs/Ls

s2 + 2 (Rs/Ls) s + ω2
s

vqs −
Lm

Ls
iqr . (9)

In both equations, the rotor current and the stator voltage

appear as the input variables, as the first one is fixed by the RSC

while vqs depends on the grid behavior.

As it can be deducted from (8) and (9), any variation in the

stator voltage introduce oscillations in the dq components of the

stator currents in the SRF. The frequency of such oscillation is

equal to the grid frequency and its damping is very poor, due

to the low value of the stator resistance Rs (generally around

0.005 p.u.).

This phenomenon can be specially noticed during voltage

sags. If there is a balanced sag, the stator currents in dq oscil-

late at ωs , on the contrary, if the sag is unbalanced the negative

sequence components that appear forces oscillations with a fre-

quency equal to 2ωs in vds and vqs that shall be added to the

ωs ones that are generated by the sudden change in the positive

sequence magnitude.

The steady-state equation of the simplified model described

in (8) and (9) are written as

ids =
1

Lsωs
vqs −

Lm

Ls
idr (10)

iqs =
Rs

L2
s ω

2
s

vqs −
Lm

Ls
iqr . (11)

By means of analyzing (11), it can be concluded that the mul-

tiplicative factor of the in-quadrature component of the stator’s

voltage tends to zero. Thus, and considering that Rs ≪ L2
s ω

2
s ,

this equation can be reduced to

iqs = −
Lm

Ls
iqr . (12)

In (12), iqs reveals the linear dependence between the stator

and rotor current components on the in-quadrature axis.

On the other hand, the final value of ids in (10) depends upon

two terms. The first one, considering the steady-state conditions,

describes its relationship with the magnetizing current, while the

second depends on the rotor’s direct current component.

C. Reliability of the Presented Model

In this section, the simplified DFIG model presented in

(8) and (9) is validated through simulations carried out in

PSCAD/EMTDC. The simulation results, depicted in Fig. 4(a)

and (b), show the response of the stator and rotor currents in the

dq axes when a 70% depth balanced voltage sag at the point of

common coupling (PCC) occurs at t = 2 s and last after 200 ms.
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Fig. 4. Transient response of the stator and rotor currents with the proposed
simplified model in front of the traditional fourth-order model, when a 70%
depth three-phase balanced fault is applied at t =2.0 s and cleared after 200 ms.
(a) Stator currents. (b) Rotor currents.

In both figures, the output of a classical fourth-order model

is also shown in the same graph, in order to prove the accuracy

of the proposed simplified model. As it can be easily realized,

these results permit to conclude that the proposed simplified

model describes the DFIG’s behavior accurately.

In this point, it is worth to mention that the current waveforms

in Fig. 4(a) and (b) show clearly the current peaks that appear

in the rotor and in the stator windings when the fault occurs, as

well as when it is cleared. Although its magnitude depends upon

other parameters, the simulations show peaks that exceed two

times the rated current of the rotor side converter, something

that would damage seriously this device in a real wind power

plant.

In order to protect the power converter under such conditions,

the installation of crowbar circuits have been broadly used. In

these applications, there are two main requirements that give an

Fig. 5. Rotor and stator currents during a voltage sag when a crowbar circuit
is used. In this case, the sag appears at t = 2.0 s and last after 300 ms, and the
crowbar is connected at 2.005 s.

upper and a lower limit to the crowbar resistance. The resistance

should be high to limit the short-circuit current, but at the same

time, it should be low enough to avoid a too HV in the rotor

circuit [34].

In Fig. 5, the typical behavior of the stator and rotor currents,

considering its aggregate value iΣ =
√

i2a + i2b + i2c under fault

conditions when using a crowbar circuit, is shown. The dynam-

ics of the system stands out clearly the efficiency of the crowbar

circuit to avoid overcurrents in the generator.

III. CONTROL STRATEGY FOR THE RSC UNDER

FAULT CONDITIONS

A. Feedback of the Stator Currents as the Reference for the RSC

This proposal intends to design a control strategy for reducing

the currents in the stator/rotor windings when a fault affects

the generator. The philosophy of this control is to feedback the

measured stator currents as the set point for the current controller

of the RSC when a voltage dip occurs. In this manner, the current

control system synthesizes rotor currents that generate currents

waveforms in the stator windings, with the same shape of the

currents generated during the sag but in counter phase.

The objective of this strategy is to reduce the stator overcur-

rents and, as a consequence, the rotor overcurrents that appear

in the DFIG windings during the sag, by means of adapting the

control of the RSC during this kind of events and without using

any external crowbar circuit.

The layout of the proposed strategy is shown in Fig. 6. As it

is depicted in the figure, the control system under steady-state

conditions would track the PQ references, while the dashed line

of the control diagram of the rotor converter is responsible of

controlling the DFIG during the voltage sag, when the switch

will be placed in position 2.

When this switch is triggered, the external PQ control loop

gets disconnected, and the rotor currents set point matches the

measured values of the stator currents in the dq reference frame,

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 22,2010 at 09:32:38 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Layout of the proposed control system for the RSC. The position of the switch is modified from 1 to 2 when the fault is detected, enabling the proposed
control strategy during the sag.

as it is indicated in the following:

i∗dr = ids (13)

i∗qr = iqs . (14)

Considering that the current control of the converter is fast

and accurate, so that the currents of the rotor track the references

given in (13) and (14), then the behavior of the stator currents

shown in (8) and (9) can be written as

ids =
1

Ls + Lm

ωs

s2 + 2 (Rs/Ls) s + ω2
s

vqs (15)

iqs =
1

Ls + Lm

s + Rs/Ls

s2 + 2 (Rs/Ls) s + ω2
s

vqs . (16)

Through (15) and (16), it can be concluded that the feedback

of the stator currents produce an oscillation with an attenuation

factor equal to 1/ (Ls + Lm ).
It is worth to mention that in the proposed control strategy,

the stator currents will be never equal to zero, since there is

always a little residual voltage at the PCC. Thus, there is a small

magnetizing current (Ims) due to the voltage at the machine

winding, which is the direct result of the current components of

both stator and rotor, ids and idr , each contributing with 50% of

Ims approximately.

In Fig. 7(a) and (b), the same comparison performed in

Fig. 4(a) and (b) is shown. However, in this case, the proposed

control strategy is controlling the rotor current during the fault.

B. Grid Fault Detection Based on a DSOGI-FLL

A good monitoring of the grid voltage is a crucial issue in the

implementation of the presented control strategy for the RSC.

A rapid detection of any voltage sag at the DFIG windings

would permit a fast triggering of the proposed control system

that changes the standard current reference for rotor-side cur-

rent controller, set by the outer active/reactive power control

loop, by the direct feedback of the stator currents in counter

phase. In this paper, a frequency-locked loop (FLL) system,

namely dual second-order generalized integrator–frequency-

locked loop (DSOGI-FLL), has been implemented in order to

Fig. 7. Transient response of the stator and rotor currents, with both simplified
model and proposed control strategy, when a three phase 70% depth balanced
fault is applied at t = 2.0 s and cleared after 200 ms. (a) Stator currents. (b)
Rotor currents.
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Fig. 8. Block diagram of the DSOGI-FLL.

detect the magnitude of the symmetrical components of the grid

voltage at the point of coupling of the DFIG.

This synchronization system was presented in [40], where

it was proven its accuracy and fast estimation of the voltage

variables under unbalanced and distorted conditions of the elec-

trical network. The layout of the DSOGI-FLL is shown in Fig. 8.

The operating principle of the DSOGI-FLL for estimating the

positive- and negative-sequence components of the grid volt-

age vectors is based on using the instantaneous symmetrical

components (ISC) method on the α−β stationary reference

frame [41], [42].

However, in order to apply the ISC method, it is necessary

to have a first set of signals vα−vβ signals representing the

input voltage vector on the α−β stationary reference frame

together with a second set of signals qvα−qvβ , which are in-

quadrature and lagged respect to vα−vβ . In the DSOGI-FLL,

these signals are obtained using a DSOGI, which is an adaptive

bandpass filter [43], [44]. As it is detailed in the figure, the

DSOGI provides at its output four signals, namely, v′
α and v′

β ,

which are filtered versions of vα and vβ , respectively, and qv′
α

and qv′
β , which are the in-quadrature versions of v′

α and v′
β ,

respectively.

The main characteristic of the DSOGI-FLL is its frequency

adapting loop, i.e., the FLL. Since the DSOGI is an adaptive

filter, the fundamental frequency of the grid must be estimated.

To match the tuning frequency of the DSOGI to the center

frequency of the input signals, an interesting characteristic is

exploited, i.e., the error signal provided by the SOGI (e) and its

in-quadrature output (qv) are either in phase or in counter-phase

depending on if the frequency of the input signal is either lower

or higher than the tuning frequency of the SOGI, respectively.

Therefore, if both signals are multiplied, the dc value of the re-

sulting signal will be either positive or negative as a function of

the error in matching the SOGI tuning frequency to the funda-

mental grid frequency. As can be readily intuited, the integration

of the product signal (εf = eqv) permits obtaining a closed loop

(FLL) for canceling out the dc error in frequency estimation,

where the dynamics of the loop will be set by the gain δ.

In this work, the estimation of the peak value of the positive

sequence of the voltage has been used for triggering the proposed

control strategy when this magnitude drops below the 90% of

its nominal value. In order to show the good performance of this

estimation, two different experimental tests where this value is

estimated when a balanced and unbalanced voltage sag occur

are shown in Fig. 9.

Moreover, the elapsed time until the 10% voltage drop is

detected has been measured as well, by means of performing

a zoom around the transient of both faults. In Fig. 10(a), the

transient in the estimation of the positive sequence is shown. As

it can be seen in this figure, the DSOGI-FLL needs only 1.59 ms

to detect the 10% voltage drop and hence to activate the specific

control strategy for protecting the RSC. In Fig. 10(b), the same

time has been measured for the unbalanced sag case. Due to the

low severity of the fault, the estimation of the voltage drop is

slower; however, after 5.97 ms the fault is detected.

IV. DYNAMIC BEHAVIOR OF THE ROTOR VOLTAGE

The injection of the rotor currents indicated in (15) and (16)

requires a certain voltage at the rotor windings. It is important

therefore to determine the performance of this variable, in order

to prove the feasibility of this proposal as well as for dimen-

sioning the power converter of the rotor. This section will be

devoted to find the time response of the rotor voltage during the

fault, giving a special attention to its peak value.

By combining the equations of both voltage and magnetic

fluxes of the rotor machine described in (2), and replacing the

current equations (15) and (16) found in the previous section, it

is possible to determinate the time response of the rotor voltage

during the fault.

Although the time response of both d and q axes rotor voltage

obtained by this method is somehow complicated, after a few

simplifications it results in a second-order system, where the

performance of the rotor’s voltage depends only on the stator’s

voltage as in the following:

vqr (s)

vqs (s)
=

1

s2 + 2R s

L s
s + ω2

s

×
[

s

(

s +
Rs

Ls

)

+
Rr

Ls + Lm

(

s +
Rs

Ls

)

+ ωslipωs

]

(17)

vdr (s)

vqs (s)
=

1

s2 + 2R s

L s
s + ω2

s

[

ωrs +
Rr

Ls + Lm
ωs −

Rs

Ls
ωslip

]

.

(18)
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Fig. 9. Estimation of the positive sequence components of the voltage under
grid fault conditions. (a) Balanced voltage sag. (b) Unbalanced voltage sag.

Fig. 10. Elapsed time until the 10% voltage drop is detected under faulty
situations. (a) Balanced voltage sag. (b) Unbalanced voltage sag.

A. Peak Value for the q-Axis Rotor Voltage

Applying the inverse Laplace transform in (17) and consider-

ing that some coefficients resulting from this operation may be

discarded, the resulting vqr can be written as

vqr (t) = D

[

ωslip

ωs
+ e−

R s
L s

t sin ωst −
ωslip

ωs
e−

R s
L s

t cos ωst

]

(19)

where D is the magnitude of the voltage sag depth at the stator

terminals. In other words, vqs was considered to be as a step

function with a magnitude equal to D.

In order to find the maximum value of vqr , it is necessary

to differentiate (19) with respect to time and making the result

equal to zero. Operating in this manner, the following expression

will be obtained:

γ sin ωsTp + cos ωsTp = 0 (20)

where Tp is the peak time and γ is the slip of machine as defined

in the following:

γ =
ωs − ωr

ωs
. (21)

As the solution of (20) depends upon two variables, it is

possible to write Tp as a function of γ as shown in the following:

Tp =
π − tg−1 (1/γ)

ωs
. (22)

Finally, the maximum value of vqr can be written as a function

of Tp and γ, as in the following:

Vqr(max) = D
(

γ + e−
R s
L s

Tp [sin ωsTp − γ cos ωsTp ]
)

. (23)

By means of substituting (19) in (20), a simple approximation

to predict the peak value of vqr is obtained, as in the following:

Vqr(max)
∼= D (1 + γ) . (24)

B. Peak Value for the d-Axis Rotor Voltage

The time response of vdr as well requires some considera-

tions. The first one consists of a simplification of (18), since

some terms in the equation can be neglected. The second one is

based on the consideration that the voltage at the stator windings

during the fault behaves as a step jump with a magnitude equal

to D.

Once these changes have been made in (18), and after apply-

ing the inverse Laplace transform, the resulting function for vdr

can be written as

vdr (t) = D

(

ωr

ωs
e−

R s
L s

t sin ωst

)

. (25)

As in the previous case differentiating (25) with respect to

time and making the result equal to zero, the following expres-

sion is obtained:

tg (ωsTp) −
Ls

Rs
ωs = 0. (26)
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Solving (26) for Tp , the result is given by

Tp =
tg−1 ((Ls/Rs)ωs)

ωs
. (27)

The maximum value of vdr can be expressed now in function

of Tp , that is the time when the peak value is reached, yielding

finally the following equation.

Vdr(max) = D

(

ωr

ωs
e−

R s
L s

Tp sin ωsTp

)

. (28)

Using the slip definition written in (21), (28) can be reduced

to a simple approximation of Vdr(max) as a function of D and γ
as in the following:

Vdr(max)
∼= D (1 − γ) . (29)

C. Maximum Amplitude of the Rotor Voltage Vector

The peak amplitude of the estimated voltage in the rotor

when using this strategy can be finally calculated adding the

dq components found in (24) and (29). The addition of both

vectors gives rise to the following equation that evidence the

linear dependence of Vr with the fault depth and the relationship

with the slip of the machine when the sag occurs.

Vr(max)
∼=

√
2
√

1 + γ2D. (30)

Thus, the maximum value of Vr in function of the voltage

depth, considering the most critical conditions, where the slip

of the DFIG’s rotor would be maximum, γ = 0.30, could be

obtained as

Vr(max)
∼= 1.48D. (31)

As it can be concluded from the last equation, if the machine

is operating under generic conditions, the maximum amplitude

of the rotor voltage will be 48% higher than the magnitude of the

voltage sag. Nevertheless, a more detailed analysis of this peak

value could be performed, thanks to Figs. 11 and 12. In Fig. 11,

the Vr(max) is represented as a function of γ and D, yielding a

surface that can be cut by different auxiliary horizontal planes

in the z-axis that represent different boundaries for Vr(max) .

Depending on the maximum admissible voltage at the output

of the converter one or another plane would be selected. Finally,

if several planes are considered and the different intersections

with the Vr surface are castled in the γ − D plane, the diagram

shown in Fig. 12 would be obtained. This figure intends to

determine the maximum voltage depth that can be withstood

by the system without over passing a certain limit of Vr . In

this particular case, the graph shows the fault boundaries if no

more than 1.0 V (p.u.) should appear at the rotor windings.

The shadowed area that encloses the permissible γ − D margin

can be considered as the feasible region for voltage rotor peaks

under 1.0 (p.u.).

In the following section, the accuracy of this estimation would

be tested, as well as the performance of the proposed algo-

rithm regarding the current control at the rotor side by means of

PSCAD/EMTDC simulations.

Fig. 11. Surface of Vr(m ax) in function of the slip (γ) and the fault depth D.

Fig. 12. Feasible regions depending on the maximum admissible Vr . The
shadowed area show the fault boundaries for a Vr(m ax) ≤ 1.0 (p.u.).

V. SIMULATION RESULTS

The performances of the discussed strategy have been tested

considering a three-phase balanced voltage sag, produced by

a three-phase short circuit in the distribution grid. The voltage

waveforms during the sag are depicted in Fig. 13(a).

As it can be noticed in Fig. 13(b), the proposed control strat-

egy permits to reduce the currents in the generator’s windings

during the fault. The soft damping of the oscillations in the

currents, which can be noticed in the figure, are due to the
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Fig. 13. Behavior of the rotor voltage and currents when a balanced sag is
applied at t = 5 s and cleared after 200 ms. (a) Voltage at the PCC during
the balanced sag produced in t = 5 s and cleared after 200 ms. (b) Rotor and
stator currents performance under balanced sag conditions. (c) Behavior of the
electromagnetic torque during balanced sag. (d) Dynamic behavior of the rotor
and stator voltage during voltage sag.

relationship between the stator resistance and the magnetizing

inductance that yields a low damping factor. These results match

the response predicted by the models presented in (15) and (16).

Besides, in this part, it is worth to point out that in this particular

case the natural oscillation of the system has the same frequency

of the grid ωs . This occurs because the voltage sag is balanced,

and hence it contains a single positive sequence component. In

Fig. 14. (a) Rotor voltage behavior during a balanced voltage sag. (b) Zoomed
area, ∆t, that show the initial ms of the fault.

Fig. 13(c), the dynamics of the torque is displayed, showing that

this strategy does not produce a high ripple of this magnitude,

something that would be harmful from the mechanical point of

view. Finally, the response of the filtered rotor voltage during

the fault has been displayed in Fig. 13(d). As it can be noticed,

the voltage in the rotor windings does not overpass the esti-

mated maximum that has been calculated, thanks to (30), which

appears in the plot as a dashed horizontal line.

In order to make sure that the analytical equations match

the simulation results, another simulation of a balanced sag has

been performed. In this case, only the rotor and stator voltage

behavior has been collected, as it is shown in Fig. 14. As a

difference with the previous simulation, the phase angle of the

fault has been changed. As it can be noticed in Fig. 14(a) and

even with a higher clarity in the zoom available in Fig. 14(b),

the theoretical peak of the rotor’s voltage is predicted correctly

as well.

VI. EXPERIMENTAL RESULTS

The performance of the presented strategy has been tested

in a scaled experimental setup, where not only the capability

for reducing the rotor currents under fault conditions with the

proposed strategy has been tested but also the evolution of the

rotor voltage has been monitored.

The layout of the experimental workbench is depicted in

Fig. 15. In this study case, a 7.5 kW DFIG has been used, whose

parameters are summarized in Table II. As it can be noticed from

the figure, the input mechanical torque has been controlled by

means of a DC motor that emulates the behavior of the WT

blades, which are directly linked to the shaft of the generator.

The stator of the machine is connected to the grid by means of a

delta–wye transformer, while the rotor windings are connected

to a 5.5 kW power converter. The same kind of inverter was used

also as front-end converter for controlling the dc-bus voltage.

As it is shown in the diagram, in order to produce voltage sag at
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Fig. 15. Block diagram of the experimental setup.

Fig. 16. Voltage and currents at the stator of the DFIG when a balanced 63%
voltage drop occurs due to the SCIM connection. The initial slip of the DFIG is
20%. (a) Stator voltage 50 V/div. (b) Stator current 2 A/div.

Fig. 17. Voltage and currents at the rotor of the DFIG when a 63% balanced
voltage drop occurs due to the SCIM connection. The initial slip of the DFIG is
20%. (a) Rotor voltage 40 V/div. (b) Rotor current 2 A/div.

the point of coupling of the generator, a squirrel cage induction

machine (SCIM) was directly connected to the stator windings.

The high inrush currents drained by the SCIM produce a voltage

drop in the grid, due to the impedance of the network, permitting

thus to evaluate the performance of the proposed strategy under

such conditions.

In the first test, the SCIM was powered up while the DFIG

was injecting 0.5 kW to the grid rotating at 1200 rpm (20% of

slip). In Fig. 16(a), the voltages at the stator windings are shown,

where it can be clearly noticed how the connection of the SCIM

makes the voltage drop from 225 V to 83 V, producing thus a

balanced 63% sag. In Fig. 16(b), the overcurrents that appear at

the stator of the DFIG, as a consequence of the demagnetization

of the machine, are shown as well.

In Fig. 17(a) and (b), the behavior of the voltage and the

currents at the RSC are shown. The good performance of the

proposed control system can be appreciated in Fig. 17(b), where

it is clear how the currents at the rotor winding are reduced,

avoiding the tripping of the RSC. In addition, the monitoring of

the peak value in the rotor voltage, around 144 V as shown in

Fig. 17(a), permits also to prove that this peak can be predicted,

thanks to (30).

Fig. 18. Voltage and currents at the rotor of the DFIG when a 63% balanced
voltage drop occurs due to the SCIM connection. The initial slip of the DFIG is
20%. (a) Stator voltage. (b) Rotor voltage.

Fig. 19. Voltage and currents at the stator of the DFIG when a 67% balanced
voltage drop occurs due to the SCIM connection. The initial slip of the DFIG is
20%. (a) Stator voltage 50 V/div. (b) Stator current 5 A/div.

Fig. 20. Voltage and currents at the rotor of the DFIG when a 67% balanced
voltage drop occurs due to the SCIM connection. The initial slip of the DFIG is
20%. (a) Rotor voltage 40 V/div. (b) Rotor current 2 A/div.

The same results were collected, thanks to a voltage acquisi-

tion board, which was directly connected to the control setup. In

Fig. 18(a), the magnitude of the stator voltage is shown, and in

Fig. 18(b), a comparison between the real value of the voltage

and the estimated peak value has been displayed. As it can be

realized, the estimation matches very well with the real value.

In order to test the feasibility of the rotor voltage peak calcula-

tion, another experimental test has been performed considering

a 20% of slip in the DFIG, but with a sag depth equal to 67%,

when connecting the SCIM. This second experiment was per-

formed delivering more active power before the fault than in

the previous case. In addition, reactive power has been injected

through the stator after the rotor currents are under control. The

experimental results collected in this case at the stator side are

displayed in Fig. 19.

In this case, the depth of the voltage dip is 67%, as shown

in Fig. 19(a), producing the same effect on the stator currents,

available in Fig. 19(b).

The behavior of the rotor voltage in the transient is shown

in Figs. 20(a) and 21(b). In this case, considering the depth
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Fig. 21. Voltage and currents at the rotor of the DFIG when a 67% balanced
voltage drop occurs due to the SCIM connection. The initial slip of the DFIG is
20%. (a) Stator voltage. (b) Rotor voltage.

of the voltage sag as well as the slip of the generator, it can

be proven that the voltage peak in the rotor, that is equal to

157 V, coincides with the foreseen value that can be found,

thanks to the expression deducted in Section IV. The theoretical

value was equal to 157 V, while the real value reached 154 V

[see Fig. 21(b)], which represents an error less then 2%. These

results show that the maximum value for the rotor voltage can

be determined using (30).

In Fig. 20(b), it can be observed how the currents in the rotor

can be controlled after few milliseconds, thanks to the proposed

control strategy. Once the overcurrents are avoided, the injection

of reactive power is enabled, as it can be noticed in Fig. 20(b)

where the current increases rapidly after 60 ms giving rise to

reactive power injection into the network.

As in the previous case, the behavior of the stator and rotor

voltage are shown in Fig. 21(a) and (b) in order to show how

the magnitude of the voltage reaches the estimated peak value.

VII. CONCLUSION

In this paper, the modeling of a DFIG, considering the behav-

ior of the generator when transients in the stator voltage occur,

was developed. Thanks to this model that permits to predict the

performance of a DFIG under fault scenarios, a novel control

strategy for the rotor-side controllers, oriented to enhance its

response during severe voltage sags, was proposed.

This strategy is based on using the measured stator current

values as the set point for the rotor current controller during the

fault. As it has been demonstrated, in this way, it is possible to

synthesize a current in the stator in opposition to the currents

generated during the fault, preventing thus the stator/rotor wind-

ings from suffering overcurrents, with no need of using crowbar

circuits.

A theoretical analysis of the dynamical behavior of the ro-

tor voltage during a fault when applying the proposed control

strategy was performed as well in order to study the feasibility

of this proposal. Equations developed in this analysis leads to

conclude that amplitude values achieved by rotor voltage vector

stay under safe limits.

Therefore, the results presented in this paper show that it is

possible to control the stability of a DFIG during severe con-

tingencies in the power network, without the need of external

auxiliary circuits. This issue enables the rotor-side power con-

verter to remain connected to the grid in faulty scenarios without

getting damaged, something that, as a difference with applica-

tions based on crowbar circuits, permits to implement specific

strategies in order to boost the voltage at the PCC during the

fault as the new GCs demand.

APPENDIX

Tables I and II gather the parameters of the DFIG used in the

simulation and experimental tests of this paper.

TABLE I
SPECIFICATION OF THE SIMULATED SYSTEMS

TABLE II
SPECIFICATION OF THE EXPERIMENTAL SETUP
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