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Abstract

The objective of this research effort is to develop rotorcraft flight control laws that
minimize unsteady rotor loads by acting solely through the primary flight controls
(1st harmonic swashplate control). As opposed to Higher-Harmonic Control, this
strategy does not affect stationary (periodic trim) loads, and is therefore effective
only in maneuvering flight. However, such system could be readily integrated with
existing or future Automatic Flight Control Systems (AFCS). The study considers
control designs for both conventional and compound configurations.

Starting from a non-linear simulation model of the rotorcraft developed in
FLIGHTLAB R©, which includes sufficient fidelity to simulate rotor loads and vibra-
tions, Linear Time-Periodic models (LTP) are derived via linearization. Next, the
Harmonic Decomposition methodology is used to approximate the LTP systems
with higher-order Linear Time-Invariant (LTI) systems. Reduced-order systems
are subsequently obtained by using singular perturbation theory. By retaining the
higher-harmonics of the rotor loads in the output, the reduced-order models are
shown to accurately predicted the influence of the 0th harmonics of the rigid-body
and rotor flapping states on the higher-harmonics of the rotor loads. This way, pre-
vious limitations such as the reliance on non-physics-based models and curve fits
to approximate rotor loads are lifted. Next, model following flight control laws are
developed based on the reduced-order models. Parametric studies are performed
to provide insights on how both the feed-forward and feedback paths of the model
following control laws can be used to alleviate the rotor loads. Also, the impact of
load alleviation on handling qualities is studied.

It is shown that, for a standard helicopter configuration, load alleviation comes
at the cost of a degradation in handling qualities. However, for the case of a
compound rotorcraft, allocation of the control signal to the redundant control
surfaces provides load alleviation without degradation in the handling qualities.
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The flight control laws are subsequently optimized using CONDUIT R© to meet a
comprehensive set of stability, handling qualities, and performance specifications
for specific mission task elements while minimizing the unsteady rotor loads.

Finally, since industry will not only rely on LTP systems obtained from simula-
tion models, a novel methodology is developed to identify LTP systems from flight
test data. The methodology is successfully applied to JUH-60A Black Hawk flight
test data using CIFER R©. The identified LTP systems capture the Nb/rev compo-
nent of the rotorcraft dynamics. Further, it is shown how the higher-harmonics of
the rotor states contribute to the overall rotorcraft dynamics for up to a 7%. On
the other hand, the rigid-body states contribute to the overall rotorcraft dynamics
almost entirely through their 0th harmonic.

Flight control design based on LTP systems identified from flight-test data
could benefit the Future Vertical Lift (FVL) program. FVL is a plan to develop
a new generation of military helicopters for the U.S. Army with increased capa-
bilities in speed, range, and payload, and reduced maintenance and operational
cost. Because these rotorcraft would operate at significantly higher speeds than
the current helicopters, alleviation of the higher harmonic rotor loads and flight
envelope protection are key elements to reduced maintenance cost. These rotor-
craft are also likely to employ redundant control surfaces which, in connection with
LTP-based flight control design, demonstrated outstanding effectiveness towards
the alleviation of unsteady rotor loads.
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Chapter 1

Introduction

1.1 Problem Motivation

Rotorcraft are difficult to fly due to their inherent unstable flight dynamics, high

order dynamics, and inter-axis coupling. Because of their unstable flight dynamics,

rotorcraft have no tendency to hold trim attitude at low and speeds so that the

pilot must actively regulate all four control axes, effectively acting as a feedback

control system. Further, rotocraft have a restrictive flight envelope due to complex

power and structural limits that need to be monitored by the pilot, which greatly

contributes to the pilot workload. This task is generally demanding and can be

alleviated by the use of Automatic Flight Control Systems (AFCS), as shown in

Fig. 1.1. The primary role of the flight control system is to improve the handling

qualities of the aircraft, alleviate pilot workload, and to yield to a simple and

predictable closed-loop dynamic response to a commanded output.

For a conventional single rotor helicopter pilots have four primary controls, as

shown in Fig. 1.2 and described as follows. Lateral cyclic is a left/right displace-

ment of the center stick that provides bank angle control through lateral rotor

disk tilt. Longitudinal cyclic is a fore/aft displacement of the center stick that

provides pitch control through longitudinal rotor disk tilt. Collective corresponds
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Figure 1.1: Automatic Flight Control System.

Figure 1.2: Helicopter primary controls (http://www.airliners.net).

to an up/down movement of the left hand lever that changes the main rotor thrust.

Pedals provide yaw control through tail rotor collective pitch. Forward and lateral

speed are indirectly controlled through the aircraft attitude. The same control

axes are used for other rotorcraft configurations, but with different mechanisms

to effect control (e.g. differential lateral cyclic on a tandem for yaw axis control).

The response type of a helicopter is rate command, meaning that pilot inputs are

directly proportional to angular rates response.
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Figure 1.3: Cooper-Harper handling qualities rating scale [1].

Rotorcraft handling qualities describe the ease and precision with which a pilot

can perform a rotorcraft mission. Handling qualities are evaluated both subjec-

tively and objectively. The subjective measure is provided by the pilot’s rating

when performing a Mission Task Element (MTE). The rating is assigned on a

scale from 1 (“Good”) to 10 (“Very Bad”). Guidelines for pilot ratings are given

by the Cooper-Harper handling qualities rating scale of Ref. [1], also shown in Fig.

1.3. The objective evaluation consists of a quantitative measure of the rotorcraft

characteristics and stability that define the handling qualities “Level”. The level

ranges from 1 (“Good”) to 3 (“Bad”). The handling qualities standards are defined

in the Aeronautical Design Standards 33 (ADS-33) [2].
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Figure 1.4: UH-60 Black Hawk Rotor Hub (www.artstation.com).

Previous research has shown direct correlation between commanded angular

rates/accelerations and rotor loads [3]. The rotor loads are transmitted to the

fuselage in two ways: through the main rotor shaft and through the pitch links

(Fig. 1.4). The main rotor shaft transmits the loads to the transmission and thus

to the fuselage, whereas the pitch links are the connection between the rotating

and non-rotating frame of the helicopter and transmit the loads to the fuselage

through the the control. The rotor loads, especially with increasing forward speed,

are cyclic in nature and contribute to the fatigue of rotor components. Fatigue is

directly related to the components life [3]. Reducing rotor loads, thus extending

component life, can lead to reduced maintenance costs. Put in the perspective of

a fleet of rotorcraft, this could lead to significant savings in maintenance cost.

Legacy rotorcraft use partial authority flight control systems that are mechan-

ically linked with the pilot sticks. These Stability and Control Augmentation Sys-

tems (SCAS) typically provide limited feed-forward/feedback control authority,

up to 10%. Newer rotorcraft employ full authority Fly-by-Wire (FBW) systems.

Sensors measure the pilot inceptors and aircraft state and feed them to the flight

control computer. The flight control computer then calculates the necessary com-

pensation and directly controls the actuators. This gives to engineers the freedom
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to tailor stability and control up to the limits of actuation and state observability.

For this reason, there is increasing interest in recent years to alleviate the rotor

loads by means of the flight control system. Specifically, the flight control system

is designed to act on the commanded angular rates/accelerations such that the

rotor loads are reduced. The research area that studies this problem is referred to

as Load Alleviation Control (LAC).

The benefits of load alleviation control and envelope cueing have been demon-

strated in numerous simulation studies [3–10]. The use of AFCS or active control

sticks to help the pilot observe structural constraints can extend the life of critical

dynamic components and reduce cost of operation. These technologies can also

improve handling qualities by alleviating pilot workload associated with monitor-

ing envelope limits. Load alleviating controls have been implemented on the V-22

tilt-rotor aircraft, using cyclic pitch control to reduce in-plane loads during forward

flight maneuvers [11].

Many of the critical structural limits on rotorcraft are associated with vibratory

loads and fatigue limits. These loads are strongly influenced by higher harmonic

(greater than 1/rev) dynamics in the rotor systems. These dynamics are not

modelled in the Linear Time-Invariant (LTI) dynamic models normally used for

rotorcraft primary flight control design. Past work in the design of load limiting

control laws has used proxy models of the vibratory loading. An example is the

Equivalent Retreating Indicated Tip Speed (ERITS) parameter, which has been

correlated with vibratory pitch link loads that occur with retreating blade stall

onset [6]. Vibratory load limiting has also been demonstrated using basic correla-

tions, curve fits, or neural network approximations of vibratory loads as a function

of aircraft states (angular rates, accelerations, load factor, airspeed) [3–5].

Reliance on non-physics-based models and curve fits to approximate vibratory

loads is a limitation of past work. On the other hand, Linear Time-Periodic (LTP)

models are well-suited for representing vibratory loads on rotorcraft, including the
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dominant Nb/rev vibratory forces and moments at the hub and associated dynamic

components, and they can be derived directly from the physics-based models. Re-

cently, methods have been developed for approximating LTP systems using high

order LTI models [12,13]. The harmonic decomposition method transforms higher

frequency harmonics into states of an LTI state space model. Harmonic decom-

position methods have been used to model interactions between Higher-Harmonic

Control (HHC) systems and the primary AFCS and to optimize the design of these

systems to reduce vibration and provide stability and handling qualities augmen-

tation, where the HHC is primary responsible for vibratory load reduction.

While the use of harmonic decomposition method for HHC/AFCS design has

been well-studied, the method has not yet been applied towards design of load

alleviation control and cueing methods that act solely through the primarily flight

controls (1st harmonic swashplate control) and AFCS. Previous studies have shown

that tailoring of response characteristics through limiting or modification of re-

sponse bandwidth can significantly reduce vibratory loads, and could be signifi-

cantly cheaper to implement on existing rotorcraft. The objective of this research

is to extend the harmonic decomposition methodology to enable optimization of

primary flight control laws that alleviate vibratory loads while meeting desired

handling qualities. The use of high order LTI models is used to derive correlations

of the controlled aircraft states to main rotor vibratory loads directly from the

linearized physics model. In particular, the high order LTI models are reduced

and used to design an EMF controller with LQR feedback optimized to reduce

changes in vibratory loads.

1.2 Previous Research

This section provides a comprehensive summary of published research inherent to

the topics touched by this thesis. The five main research topics include:



7

• Linear Time-Invariant Approximations of Linear Time-Periodic Systems -

The vast majority of control system design is based on LTI theory and,

although control design methodologies based on LTP systems exist, they

are of difficult implementation. LTI approximations of LTP systems retain

information on vibratory loads, as opposed to standard LTI systems normally

used for primary flight control design. The relatively recent development of

LTI approximations of LTP systems has enabled HHC design in maneuvering

flight and the study of interactions between HHC and AFCS.

• Carefree Maneuvering (CFM) - Originally researched for fixed-wing aircraft,

it was first seen in the rotorcraft community for applications to the V-22

Osprey tilt-rotor. It represents the ability of a pilot to fly throughout the

operational flight envelope without concern for exceeding structural, aerody-

namic, or control limits.

• Load Alleviation Control (LAC) - It minimize loads that reduce component

life through tailoring of response and automatic control intervention.

• Damage Mitigation Control (DMC) - Assists pilots in observing structural

load constraints through cueing or automatic control intervention. Often

times DMC is achieved through LAC.

• Compound Rotorcraft Vibration Reduction - A small amount of studies fo-

cused on the optimization of redundant control allocation to minimize vi-

bratory loads in trim. However, very little to none published research exists

on redundant control allocation to minimize vibratory loads in maneuvering

flight.
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1.2.1 Linear Time-Invariant Approximations of Linear

Time-Periodic Systems

The formulation of linear time periodic systems dates back to the late nineteenth

century and it is attributed to Floquet [14]. This enabled the reduction of real-

world systems that operate under a periodic regime with to an LTP formulation

under the assumption of small perturbations. It was not until 1990 that a frequency

response notion comparable to the classical LTI Bode gain and phase response was

developed for LTP systems at MIT. Wereley and Hall [15–17] developed a compre-

hensive open loop analysis theory for LTP systems, including a characterization

of poles, transmission zeros and their directional properties, a generalized Nyquist

criterion, and a comprehensive frequency domain interpretation. The fundamental

notion behind the development of LTI systems is that a sinusoidal input with a

given frequency is mapped by the LTI transfer function operator into a sinusoidal

output of the same frequency, but with possibly a different amplitude and phase.

In contrast, if a sinusoid is fed to an LTP system, multiple sinusoids may appear

in the output at the input frequency plus or minus multiples of the fundamental

frequency of the LTP system, each with possibly different amplitude and phase.

Further, an infinite number of sinusoids may appear in the output of an LTP system

at steady state. The transfer function for LTP systems that was developed, also

known as harmonic transfer function, maps geometrically periodic input signals to

geometrically periodic output signals when the system is at steady state. Although

this theory provides a comprehensive analysis of LTP systems, it is inconvenient

when performing controller design.

The very first effort to approximate LTP systems with LTI models in the ro-

torcraft community is dated 1969 and is attributed to Crimi and Piarulli [18, 19].

The approximation consisted in expanding the LTP states into harmonic state

coefficients and formulating the corresponding LTI model.

Successively, in the early 2000’s, Cheng, Tischler, and Celi [20] developed a



9

numerical scheme to directly obtain a LTI approximation of a nonlinear system

that captures the nonlinear system’s periodic nature. This was accomplished by

subjecting the nonlinear system to harmonic perturbations during the lineariza-

tion procedure. Although the procedure was promising, it was only applied to a

relatively simple helicopter model with rigid blades and a 3 state Pitt-Peters inflow

model.

In the late 2000’s Prasad and Olcer et al. [21–24] demonstrated how a high-

order LTI model representative of the rotor periodic nature is obtained using a

two-step procedure. First, a LTP model is extracted by linearizing the nonlinear

dynamics of the helicopter about a periodic equilibrium at incremental azimuthal

steps over one rotor revolution. Second, a harmonic decomposition is performed on

the LTP system states to obtain an approximated high-order LTI model. The finite

number of harmonics to retain in the LTI system is arbitrarily chosen. Although

this numerical scheme has shown success and has seen to improve computational

speed by an order of magnitude when compared to previous numerical schemes

from the literature, it relies on a second order formulation of the original LTP

system. This second order formulation can be problematic for degrees of freedom

not explicitly represented in second order form. In particular, difficulties arise

when applying harmonic decomposition to body and inflow states.

A more general formulation that accurately captures the higher harmonic dy-

namics relative to degrees of freedom not explicitly in second order form is proposed

by Lopez and Prasad, starting from 2013 [12, 25, 26]. This formulation relies on

a first-order representation of an LTP system. This technique has proven to ac-

curately approximate nonlinear time periodic models by including the effects of

coupling harmonic terms for body, inflow, and rotor degrees of freedom.

The origin of Higher Harmonic Control (HHC) where the swashplate is actu-

ated at higher harmonic frequencies, On-Blade Control (OBC) where HHC inputs

are fed to actuators on each blade, and Individual Blade Control (IBC) where each
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blade input is actuated independently, can be traced as far back as 1967, when

Shaw [27] first proposed different approaches to active vibration control on rotor-

craft. A comprehensive survey of the different approaches and their history can

be found in [28]. Before the formulation of LTI approximations to LTP systems,

HHC, OBC, and IBC were only studied in trim flight. High-order LTI systems

enabled to extend the different active vibration control techniques for rotorcraft

to maneuvering flight.

The first look at interactions between HHC and AFCS in maneuvering flight was

taken by Cheng and Abraham et al. [20,29]. Observations showed that significant

coupling between HHC and AFCS exists when the two are designed independently,

resulting in a performance degradation. These studies concluded that to address

the coupling between AFCS and active rotor control systems while retaining per-

formance, an integrated flight and rotor control system is needed.

This direction in research was taken by Lopez and Padthe et al. [13,30,31] who

respectively concentrated on HHC and OBC interactions with the flight control

system. The studies focused on validating reduced-order models derived from

high-order LTI systems for integrated HHC/OBC and AFCS control design. The

reduced-order models proved to capture the relevant dynamics and to be suitable

for closed-loop vibration control, as long as dynamic stall effects are not significant.

This study uses Prasad and Lopez’s formulation [12, 25, 26] to obtain reduced

order models that capture the influence of the 0th harmonic of the rigid-body, rotor

flapping states, and input on the rotor loads. These models are used to synthesize a

controller that minimizes the rotor loads by only using the primary flight controls.

In fact, this approach only considers a control input bandwidth significantly lower

than the main rotor angular speed, differently to what is done in HHC. Although

this is less powerful approach than HHC since it does not alleviate the (periodic)

trim loads, it could readily be implemented on AFCS of existing aircraft as it does

not require high bandwidth actuators. It could thus constitute a shorter term and
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less expensive alternative to HHC.

Further, all the previously mentioned techniques concentrated on extracting a

LTP systems from physics-based models via numerical schemes. However, very

few studies focused on experimentally characterizing LTP systems. In 2004, Ver-

dult, Lovera, and Verhaegen identified an LTP system of the rotor dynamics alone

from simulated experiments [32]. Surprisingly, no studies actually concentrated

on identifying an LTP systems of the coupled rotor and rigid body dynamics

from flight-test data. This is a fundamental step toward the implementation of

HHC/IBC/OBC in industry, where manufacturers design and validate their con-

trol systems using models obtained from flight-test data.

1.2.2 Carefree Maneuvering

A 1988 joint study between the British Defence Research Agnecy (DRA) and

Westland Helicopters [33] revealed that following a 70 UK military helicopter pilots

survey, 75 % estimated a large benefit on mission performance and workload if the

need to monitor torque limits could be removed. Given the result of the survey

DRA and Westland Helicopters conducted a simulation study to understand the

pilots’ preference over a possible carefree maneuvering system. Tactile warning

were found to be the most promising solution to indirect carefree maneuvering as

they were considered good ”attention getters” by the pilots. Further, the study

investigated direct carefree maneuvering in the form of a torque command response

mode. Even though this proved to protect the limits well, the potential conflict

between handling qualities performance and good limit protection required further

investigation.

Howitt continued the investigations at DRA and in 1995 he proposed a carefree

maneuvering system that acted on the heave axis [34]. An adaptive control system

mode which blends between collective blade pitch command, torque command, and

rotorspeed command as a function of collective position was implemented. The
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control law effectively enabled the pilot to command the full range of available

performance up to the maximum transient limits in a safe and predictable man-

ner. Control modes designed specifically to protect flight envelope limits proved

beneficial in reducing task time and pilot workload.

The complex limit envelopes that constrain helicopter operations called for

more sophisticated and precise limit detection systems, focusing the interest on

neural networks. The first attempt to a neural network-based limit detection sys-

tem was carried on by Menon et al. [35] and published in 1996. The limit detection

system generated rotorcraft limit avoidance data using on-board measurements and

demonstrated the feasibility of synthesizing a limit detection neural network for

rotorcraft. Even though the proposed neural network architecture proved to be

highly effective in generating the limit data, the limit variables and neural net-

work architecture needed to be further refined before being employed in manned

simulations or flight tests.

A similar approach that used a hybrid neural network/fuzzy logic system was

proposed by Mulgund et al. [36] in the same year. The fuzzy logic algorithms

characterized the rotorcraft’s flight condition with respect to the flight limits, and

provided a continuous measure of limit exceedance. This approach offered more

flexibility than a binary classification of limit exceedance, since a continuous mea-

sure of exceedance with a specific threshold can warn of impeding exceedance.

Simulation results showed that the blending logic was able to effect protection

on airspeed, load factor, and attitude limits, proving the feasibility of the hybrid

approach.

In the successive years, the late 1990’s, the use of neural networks as means

to predict flight envelope limits and achieve carefree maneuvering was extensively

studied by Horn, Calise, and Prasad at Georgia Institute of Technology [37–39].

Neural networks were used to control deflections which result in a flight envelope

limit exceedance. This information was then used to provide tactile cueing through
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variable force-feel controllers. The system was tested on XV-15 and V-22 real-time

piloted simulations. The results showed the capability of the system to handle

multiple envelope limits and enabling pilots to maneuver along limit boundaries

without exceeding the limits, effectively expanding the safe maneuvering envelope

of the aircraft.

Yavrucuk continued Horn’s research and proposed a novel technique for pre-

dicting limit parameter values and calculating the corresponding rotorcraft control

margins [40,41]. The approach used an observer-type adaptive neural network loop

for the estimation of the correct rotorcraft model. The estimated model is then

used in an adaptive neural network loop to predict the quasi-steady response of

the limit parameters and the respective control margins. Advantages associated

with this method lie in not having to train the neural network and only needing

standard sensor measurements for the adaptation.

A 2002 cooperative project between Sikorsky Aircraft Corporation and Penn-

sylvania State University [42] resulted in the development of a collective axis cueing

system that cued the pilot with a variety of envelope limits associated with the

engine and drive systems. The collective cueing system led to a significant reduc-

tion in pilot workload, a decrease in time required to conduct a specific task, and

improved task accuracy for aggressive maneuvers.

Sahani and Horn’s continued research on rotorcraft limit detection and avoid-

ance at Pennsylvania State University resulted in multiple publications over the

2000’s [6, 7, 9]. An envelope protection system for rotorcraft was integrated with

full-envelope guidance and control using an inner loop / outer loop architecture.

This approach eliminated the problems associated with saturation limits in the

feedback path.

The entirety of these past methods were based on proxy models, which are sim-

plistic and not always accurate, or stochastic methods (neural networks, fuzzy logic

systems), which are generally not accepted in the aircraft certification process. This
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study shows how LTP systems constitute a viable and computationally-effective

way to predict rotor loads, and thus structural limits. Linear Time-Periodic sys-

tems, unlike neural networks or fuzzy logic systems, benefit from a deterministic

nature that makes them more suitable for an aircraft certification process. Further,

this research shows how LTP systems can be readily derived from physics-based

models via linearization schemes or identified from flight test data. This way, pre-

vious work limitations such as the reliance on non-physics-based models and curve

fits to approximate rotor loads are lifted.

1.2.3 Load Alleviation Control

The late 1980’s saw the first applications of load alleviation control toward rotor-

craft, with Miller et al. [11,43] proposing a structural load limiting control law for

a V-22 Osprey. A weighted least-squares eigenstructure assignment technique and

a balanced singular value Linear Quadratic Gaussian with Loop Transfer Recov-

ery (LQG/LTR) technique were applied to alleviate rotor yoke chord loads. Load

alleviation was effectively achieved by reducing the precession generated rotor aero-

dynamic moments while allowing the pilot exploit the maneuverability and agility

of the tiltrotor configuration. The study concluded that load alleviation consid-

erations impose additional criteria on the control system design process to the

traditional handling qualities requirements.

The load limiting control law development for the V-22 tiltrotor was contin-

ued by King et al. [44] in the successive years. Control laws were extended to

limit trim rotor flapping, transient flapping in helicopter mode, transient drive-

shaft torques, and nacelle conversion actuator and vertical downstop loads, while

maintaining Level 1 handling qualities. It was shown that for a rotorcraft with

isolated structural loads such as the V-22, load limiting control laws represented a

feasible approach to providing full structural load protection.

In 2002 Horn first developed a rotor state feedback (RSF) to achieve structural
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load limiting [45]. The RSF controller was found to be effective for constraining

hub moments to ensure structural load limits are not violated when using high

bandwidth control. Further, the RSF controller provided an improved tracking

performance when compared to the baseline controller, contrary to other high

bandwidth control techniques.

Ultimately, load alleviation control is used not only to ensure the rotorcraft and

its components operate within their structural limits, but also to achieve damage

mitigation and extend component life.

Although successful, the above techniques achieved load alleviation by means

of standard linear system theory that does not account for the higher-harmonic

content of the structural loads in the control design. This study extends the har-

monic decomposition methodology to enable optimization of primary flight control

laws based on high-order LTI systems representative of the higher-harmonics of the

rotor loads. The use of high-order LTI models is used to derive correlations of the

controlled aircraft states to main rotor vibratory loads directly from the linearized

physics-based model.

1.2.4 Damage Mitigation Control

The birth of damage mitigation control is motivated by the need of an interdisci-

plinary research that considers the handling qualities performance of the rotorcraft

as well as the life of its structural components.

In the early 1990’s Rozak [46] takes a first step towards the development of a

damage mitigation system that extends service life of critical components resulting

in the reduction of overall maintenance and operational costs. Specifically, different

robust control system structures were implemented and tested in simulations to

understand which would provide the best handling qualities. The flexible blade

model used in the simulations was then coupled with a continuous-time damage

model to measure the changes in critical rotor component fatigue life as a function
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of achievable control system bandwidth.

A decade later Bridges et al. [8,47] developed a DMC controller that regulates

rotor speed, vertical speed, and pitch attitude on a military helicopter while min-

imizing damage to the main rotor transmission and maintaining Level 1 handling

qualities. The controller effectively achieved damage mitigation by scheduling the

LQR gains and command model of the longitudinal and vertical axes with a dam-

age reduction parameter. The damage reduction parameter was represented by

the length of a crack in the main bevel pinion of the helicopter transmission. The

study showed that the handling qualities deteriorated with increasing damage mit-

igation. Although proving success in reducing crack growth rate when compared

to the baseline controller, the damage mitigation controller showed a trade-off

between damage mitigation and performance.

The advancements in probabilistic robust control of rotorcraft carried on by

Horn and Tolani et al. [48,49] paved the way to a more sophisticated approach to

DMC that used hierarchical control [50]. The control system that was proposed

consisted of a two-tier hierarchical architecture. The upper-tier monitored the

system for any anomalous behavior. The lower tier was designed using a combina-

tion of probabilistic robust control and damage mitigating control methodologies.

By allowing different levels of risk under different flight conditions, the proba-

bilistic robust control achieved the desired trade-off between stability, robustness,

and nominal performance. Minimization of damage rate was achieved via DMC,

improving health management and durability. Nonlinear simulations have demon-

strated the benefit of the approach.

An in-the-loop structural model that provides feedback of component damage

to the control system for gain adjustment was first proposed by Thaiss et al. [5].

The control system consisted of a dynamic inversion architecture coupled with an

artificial neural network based damage model. Load limiting was accomplished

by limiting the response of key parameters in the command model. Specifically,
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constraints were imposed on the commanded values of parameters such as angular

accelerations, angular rates, vertical acceleration, and vertical speed. All of these

parameters were correlated with critical loads and damage rate. The method

proved successful as the lifespan of specific rotor head structural components were

substantially increased with minimal impact on the handling qualities.

A similar, quite simple, but nonetheless effective method was investigated by

Caudle et al. [3, 51]. Using a dynamic inversion control architecture, damage re-

duction to certain main rotor components was achieved through state response

limiting in the command filter. Limiters were implemented both in the roll and

pitch axes command filters. Upper and lower bounds for the limiters were chosen

by correlating the component loads and the state variables. The method proved to

be of simple implementation and successful in extending the life of main rotor com-

ponents. Here damage reduction was effectively achieved through load alleviation,

limiting the load factor experienced by the rotorcraft.

The above techniques proved to mitigate structural loads but at the cost of a

reduction in handling qualities. Further, the handling qualities that were consid-

ered were a small subset of the comprehensive set of handling qualities an aircraft

needs to meet during the certification process. This study concentrates on reducing

structural loads while guaranteeing that Level 1 handling qualities are preserved.

A thorough analysis is conducted to better understand how both feed-forward and

feedback compensation affect load alleviation and handling qualities.

1.2.5 Compound Rotorcraft Vibration Reduction

During initial flight test of the Lockheed AH-56A helicopter vibration level at high

speeds were found to be totally unacceptable. Analytic and experimental efforts

were undertaken to reduce vibration level to acceptable values. The methods

incorporated to reduce such levels are published in [52] and constitute the first

effort to alleviate vibratory loads on a compound helicopter. The study concluded
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that control of vibrations around the pitch axis can be achieved by means of

stabilizer settings. Further, test results showed an optimum collective blade angle

for reduced vibrations. The blade angle was found to be relatively invariant at

forward speed, making it possible for the plot to fly at one given collective angle.

Finally, and most importantly, flight test showed that vibration levels changed

with different trim settings.

Sekula et al. [53] analyzed how the introduction of auxiliary lift surfaces and and

propulsion, individually, as well as in combination, affected the vibration levels in

trim. The research effort showed that auxiliary lift alone produces relatively small

reductions in vibrations; however, significant vibration reduction was achieved

through auxiliary propulsion alone. It was concluded that a combination of lift

and propulsion was most efficient and reduced vibration levels by over 90 %.

A study by Gandhi et al. [54] concentrated on reduction in helicopter rotor

hub vibratory loads in trim by the introduction of auxiliary pitching and rolling

moments in the fixed system. The auxiliary moments were generated by variation

in pitch of the right and left halves of the horizontal stabilizer, allowing changes in

vehicle attitude and rotor pitch control inputs, such that vibrations be minimized.

Simulation studies that used a BO-105 type helicopter concluded that a nose-down

auxiliary pitching moment and a roll-left auxiliary rolling moment reduced the in-

plane vibratory hub loads by 20-30 % when used individually and by up to 90 %

when combined.

Geiger was the first to consider the problem of flight control optimization on

a compound rotorcraft with redundant control effectors both in trim and maneu-

vering flight [4]. A number of trim cases for all permutations of a discrete set of

auxiliary controls were calculated and the optimal control selection that minimized

vibratory loads and total power required was selected. The optimal trim schedule

was then used in a full authority fly-by-wire flight controller. The compound rotor-

craft flying with the optimal schedule showed reduced vibration and power levels
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when compared to the baseline aircraft with no control redundancy. In particular,

structural loads were reduced when pitch control is transferred from longitudinal

cyclic to the moving horizontal stabilizer.

The above studies focused on the optimization of redundant control allocation

to minimize vibratory loads in trim. However, very little to none published research

exists on redundant control allocation to minimize vibratory loads in maneuvering

flight. This study concentrates on exploiting the use of redundant control surfaces

to actively reduce unsteady rotor loads. Further, the impact of redundant control

allocation on handling qualities is assessed.

1.3 Contributions

The contributions of this study are summarized as follows:

1. This study uses Harmonic Decomposition to obtain reduced order models

that capture the influence of the 0th harmonic of the rigid-body, rotor flapping

states, and input on the rotor loads. These models are used to synthesize

a controller that minimizes the rotor loads by only using the primary flight

controls. In fact, this approach only considers a control input bandwidth

significantly lower than the main rotor angular speed, differently to what is

done in HHC. Although this is less powerful approach than HHC since it does

not alleviate the (periodic) trim loads, it could readily be implemented on

AFCS of existing aircraft as it does not require high bandwidth actuators. It

could thus constitute a shorter term and less expensive alternative to HHC.

2. Previous studies almost exclusively concentrated on extracting a LTP sys-

tems from physics-based models via numerical schemes. Very few studies

focused on experimentally characterizing LTP systems representative of the

rotor dynamics alone from simulated experiments. No studies actually con-

centrated on identifying an LTP systems of the coupled rotor and rigid body
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dynamics from flight-test data. The identification of LTP systems represen-

tative of the coupled rotor and rigid body dynamics from flight-test data is a

fundamental step toward the implementation of HHC/IBC/OBC in industry,

where manufacturers design and validate their control systems using models

obtained from flight-test data.

3. Past methods for Carefree Maneuvering were based on either proxy models

or stochastic methods. This study shows how LTP systems constitute a

viable and computationally-effective way to predict rotor loads, and thus

structural limits. Linear Time-Periodic systems, unlike neural networks or

fuzzy logic systems, benefit from a deterministic nature that makes them

more suitable for an aircraft certification process. Further, this research

shows how LTP systems can be readily derived from physics-based models via

linearization schemes or identified from flight test data. This way, previous

work limitations such as the reliance on non-physics-based models and curve

fits to approximate rotor loads are lifted.

4. Load alleviation have historically been achieved by means of standard lin-

ear system theory that does not account for the higher-harmonic content of

the structural loads in the control design. This study extends the harmonic

decomposition methodology to enable optimization of primary flight control

laws based on high-order LTI systems representative of the higher-harmonics

of the rotor loads. The use of high-order LTI models is used to derive corre-

lations of the controlled aircraft states to main rotor vibratory loads directly

from the linearized physics-based model.

5. Previous damage mitigation control laws proved to mitigate structural loads

but at the cost of a reduction in handling qualities. Further, the handling

qualities that were considered were a small subset of the comprehensive set of

handling qualities an aircraft needs to meet during the certification process.
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This study concentrates on reducing structural loads while guaranteeing that

Level 1 handling qualities are preserved. A thorough analysis is conducted to

better understand how both feed-forward and feedback compensation affect

load alleviation and handling qualities.

6. Past research on compound rotorcraft focused on the optimization of redun-

dant control allocation to minimize vibratory loads in trim. However, very

little to none published research exists on redundant control allocation to

minimize vibratory loads in maneuvering flight. This study concentrates on

exploiting the use of redundant control surfaces to actively reduce unsteady

rotor loads. Further, the impact of redundant control allocation on handling

qualities is assessed.

1.4 Objectives

The objective of this research is to extend the harmonic decomposition method-

ology to the design of load alleviation control laws that operate solely through

primary flight control actuation while having no negative impact on the handling

qualities. The methods will be applied to both conventional and compound ro-

torcraft. Further, since linear time-periodic systems were historically obtained

from simulations through linearization schemes, their applications is confined to

research studies. For this reason, linear time-periodic system derivation from flight

test data is a fundamental step towards their application towards flight control sys-

tem design in real-world applications. This adds to the objectives of the study.

The expected results are summarized as follows:

1. Use the harmonic decomposition methodology to derive reduced-order mod-

els that accurately predict the higher-harmonics of the rotor loads and can

be used towards control system design.
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2. Use the reduced-order models that predict the higher-harmonics of the rotor

loads to optimize flight control laws that operate solely through the primary

flight, minimize rotor loads, and concurrently meet a comprehensive set of

desired handling qualities.

3. In the context of a model-following control law, assess the impact that both

the feed-forward and feedback paths have on load alleviation and handling

qualities.

4. Analyze the use of redundant control surfaces for the case of a compound

rotorcraft. Specifically, study how redundant control allocation techniques

affect load alleviation and handling qualities.

5. Demonstrate the effectiveness of the load alleviation control strategies that

are developed in simulation studies.

6. Develop a methodology to identify Linear Time-Periodic systems represen-

tative of the coupled rigid body / rotor dynamics of a rotorcraft from flight

test data.



Chapter 2

Linear Models Extraction and

Validation

2.1 Linear Models Extraction

2.1.1 FLIGHTLAB R© Software

FLIGHTLAB R© is an aircraft development and analysis program developed by

Advance Rotorcraft Technologies, Inc. (ART) that allows users to produce highly

detailed aircraft models from a library of modeling components using a graphical

user interface [55]. Once the model is created, it can be analyzed using the built

in Scope language. Analysis and simulation can be accomplished with predefined

script files that are called through a point-and-click interface. FLIGHTLAB R©

has complex modeling capabilities for rotorcraft, making it particularly useful for

rotorcraft analysis applications. The Control System Graphical Editor (CSGE),

another package within FLIGHTLAB R©, allows the user to create a block diagram

controller for use with an aircraft model.
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Figure 2.1: UH-60 Black Hawk (www.lockheedmartin.com).

2.1.2 Nonlinear Models

This investigation uses a FLIGHTLAB R© model of a notional conventional heli-

copter representative of a UH-60, as shown in Fig. 2.1. To accurately model the

rotor loads, the model includes flexible blades with representative in-plane, out-

of-plane, and torsional bending modes, in addition to the rigid blade flap and lag

dynamics. Complete nonlinear aerodynamic look-up tables are used for airframe

and rotor blade aerodynamic coefficients. The inflow dynamics are described by

a six-state Peters-He inflow model. Further details on the helicopter model are

found in [3].

The second model is a notional compound rotorcraft representative of an H-60

with the addition of a wing with flaperons, and a moving horizontal tail (stabilator).

The wing is similar to the X-49A wing shown in Fig. 2.2. The flaperons and

stabilator are used as redundant control surfaces. The model is based on the

notional conventional helicopter model.

One limitation of the FLIGHTLAB R© models is the inability to predict dynamic

stall and thus the typically strong vibratory loads associated to it. The onset of

dynamic stall, however, occurs at very high speeds. TFor this reason, this research



25

Figure 2.2: X-49A Speed Hawk (www.airworld.tistory.com).

concentrates on moderately high speeds - 120 kts - where the Nb/rev component

of the rotor loads is significant but the rotor loads induced by dynamic stall are

negligible.

2.1.3 Linear Time-Periodic Model

The following procedure is similar to the one in Ref. [21] but focuses on a first

order formulation of a Linear Time-Periodic (LTP) system. Consider a nonlinear

system:

ẋ = f (x, ẋ,u) (2.1a)

y = g (x, ẋ,u) (2.1b)

where:

x is the state vector of dimension n,

u is the control vector of dimension m, and

y is the output vector of dimension l.

The unusual form of the nonlinear system is justified by the fact that the rotor

state derivatives are dependent on the fuselage state derivatives. This causes f to

be function not only of state and control vectors, but also of the state derivative
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vector. Considering the case of small disturbances:

x = xe(ψ) +∆x (2.2a)

u = ue(ψ) +∆u (2.2b)

y = ye(ψ) +∆y (2.2c)

where ψ is the azimuth angle of a reference main rotor blade, and xe(ψ), ye(ψ),

and ue(ψ) define a periodic equilibrium condition:

ẋe = f (xe, ẋe,ue) (2.3a)

ye = g (xe, ẋe,ue) (2.3b)

A Taylor series expansion is performed on the state vector time derivative.

After neglecting the terms of second order and higher, the following equation is

derived:

f (xe +∆x, ẋe +∆ẋ,ue +∆u) = f (xe, ẋe,ue)

+ F(ψ)∆x+K(ψ)∆ẋ+G(ψ)∆u (2.4)

where

F(ψ) =
∂f (x, ẋ,u)

∂u

∣

∣

∣

xe,ẋe,ue

(2.5a)

K(ψ) =
∂f (x, ẋ,u)

∂ẋ

∣

∣

∣

xe,ẋe,ue

(2.5b)

G(ψ) =
∂f (x, ẋ,u)

∂u

∣

∣

∣

xe,ẋe,ue

(2.5c)

With a few steps of algebraic manipulation, a differential equation for the state
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perturbation from the periodic equilibrium is derived:

∆ẋ = F̂(ψ)∆x+ Ĝ(ψ)∆u (2.6)

where:

F̂(ψ) = (I−K)−1
F (2.7a)

Ĝ(ψ) = (I−K)−1
G (2.7b)

Similarly, a Taylor series expansion is performed on the output equation. After

neglecting the terms of second order and higher, the following equation is derived:

g (xe +∆x, ẋe +∆ẋ,ue +∆u) = g (xe, ẋe,ue)

+P(ψ)∆x+Q(ψ)∆ẋ+R(ψ)∆u (2.8)

where

P(ψ) =
∂g (x, ẋ,u)

∂u

∣

∣

∣

xe,ẋe,ue

(2.9a)

Q(ψ) =
∂g (x, ẋ,u)

∂ẋ

∣

∣

∣

xe,ẋe,ue

(2.9b)

R(ψ) =
∂g (x, ẋ,u)

∂u

∣

∣

∣

xe,ẋe,ue

(2.9c)

After substituting Eq. 2.6 in Eq. 2.8 and carrying on the calculations, an equation

for the output perturbation from the periodic equilibrium is derived:

∆y = P̂(ψ)∆x+ R̂(ψ)∆u (2.10)

where

P̂(ψ) = P+QF̂ (2.11a)
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R̂(ψ) = R+QĜ (2.11b)

Equations 2.6 and 2.10 constitute a first-order formulation of an LTP system rep-

resentative of the periodic rotorcraft dynamics.

In practice, the nonlinear FLIGHTLAB R© models are first trimmed at a desired

flight condition (120 kts level flight). Then a nonlinear simulation is run until

the azimuthal position of a reference blade reaches ψ = 0◦. Finally, the model is

linearized at incremental azimuth positions over one rotor revolution. The flight

condition is 120 kts level flight and the time step is ∆ψ = 0.5◦, which gives a total

of 720 azimuthal positions.

From now on, the notation is simplified by dropping the ∆ in front of the

linearized variables. The reader should remember, however, that the linear systems

describe perturbations from a periodic equilibrium. The state and output vectors

of the LTP system are:

xT =
[

xTRB xTR

]

(2.12a)

yT =
[

xTRB PLL
]

(2.12b)

where:

xRB are the rigid-body states,

xR are the higher-order rotor states, and

PLL is the longitudinal load of a reference pitch link.

The rigid-body state vector is given by, in order, the body velocities u, v, w,

the body angular rates p, q, r, and the Euler angles φ, θ, ψ (note that ψ here

is the yaw attitude and not the main rotor azimuth). The rotor states include

inflow, rigid flap, lag and torsion in multi-blade coordinates (MBC), the slowest 11

bending modes also in MBC, and the time derivatives of all the variables in MBC.
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The input vector for the conventional helicopter model is:

uT =
[

δlat δlon δped

]

(2.13)

where:

δlat is the lateral stick,

δlon is the longitudinal stick, and

δped is the pedal.

The collective stick is omitted as it is not used for the subsequent control design.

For the conventional helicopter the system has a total of n = 116 states, m = 10

outputs, and l = 3 inputs. The input vector for the compound rotorcraft model is:

uT =
[

δlat δlon δped δsym δdif δstb

]

(2.14)

where:

δsym is the symmetric motion of the flaperons,

δdif is the differential motion of the flaperons, and

δstb is the motion of the stabilator.

For the compound rotorcraft the system has a total of n = 120 states, m = 10

outputs, and l = 6 inputs.

2.1.4 Linear Time-Invariant Model

Consider a general first-order formulation of an LTP system:

ẋ = F(ψ)x+G(ψ)u (2.15a)

y = P(ψ)x+R(ψ)u (2.15b)
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It is convenient to note that ψ is equivalent to non-dimensional time, which can be

related to dimensional time via the following relation: ψ = Ωt, where Ω the main

rotor angular speed in rad/s, and t is the dimensional time in seconds. Each coeffi-

cient matrix is periodic with a fundamental period of T seconds, which corresponds

to 2π radians or one rotor revolution:

F(ψ) = F(ψ + ΩfT ) (2.16a)

G(ψ) = G(ψ + ΩfT ) (2.16b)

P(ψ) = P(ψ + ΩfT ) (2.16c)

R(ψ) = R(ψ + ΩfT ) (2.16d)

for all ψ. For rotorcraft, the fundamental frequency can be the main rotor angular

speed Ωf = Ω (corresponds to 1/rev), or it can be any multiple of the number of

blades times the rotor speed Ωf = kNbΩ, k = 1, 2, 3, ... (corresponds to multiples

of Nb/rev).

When the fundamental frequency of oscillation Ωf is known, the state, input,

and output of the LTP system can be decomposed into a finite number of harmonics

via Fourier analysis:

x = x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

(2.17a)

u = u0 (2.17b)

y = y0 +
L
∑

l=1

(

ylc cos lψ + yls sin lψ
)

(2.17c)

Note that only the 0th harmonic of the input vector is retained. This is because the

present study considers solely primary flight control actuation, thus disregarding

any sort of higher-harmonic control. In fact, the desired bandwidth of the control
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signal is significantly less than the main rotor angular speed.

Differentiating the state equation with respect to dimensional time leads to:

ẋ = ẋ0 +
N
∑

n=1

(

x′
nc cosnψ + x′

ns sinnψ
)

(2.18)

where:

x′
nc = ẋnc + nΩxns (2.19a)

x′
ns = ẋns − nΩxnc (2.19b)

By substituting Eqs. 2.50 and 2.18 into Eq. 2.6 results in:

ẋ0 +
N
∑

n=1

x′
nc cosnψ + x′

ns sinnψ =

F(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+G(ψ)u0 (2.20)

Equations for the individual harmonic components of x are found by multiplying

Eq. 2.20 by cos iψ or sin iψ and by integrating over one rotor revolution:

ẋ0 =
1

2π

∫ 2π

0

{

F(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+G(ψ)u0

}

dψ (2.21)

x′
ic =

1

π

∫ 2π

0

{

F(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+G(ψ)u0

}

cos iψdψ (2.22)
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x′
is =

1

π

∫ 2π

0

{

F(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+G(ψ)u0

}

sin iψdψ (2.23)

By introducing the following notation:

Fnc(ψ) = F(ψ) cosnψ (2.24a)

Fns(ψ) = F(ψ) sinnψ (2.24b)

and by substituting in Eqs. 2.21, 2.22, 2.23, yields:

ẋ0 =
1

2π

∫ 2π

0

{[

F(ψ)x0 +
N
∑

n=1

(

Fnc(ψ)xnc + Fns(ψ)xns

)

]

+G(ψ)u0

}

dψ (2.25)

ẋic = −iΩx1s
1

π

∫ 2π

0

{[

F(ψ)x0 +
N
∑

n=1

(

Fnc(ψ)xnc + Fns(ψ)xns

)

]

+G(ψ)u0

}

cos iψdψ (2.26)

ẋis = iΩx1c
1

π

∫ 2π

0

{[

F(ψ)x0 +
N
∑

n=1

(

Fnc(ψ)xnc

+ Fns(ψ)xns

)

]

+G(ψ)u0

}

sin iψdψ (2.27)

By defining the following operators:

H0M =
1

2π

∫ 2π

0

M(ψ)dψ (2.28a)

HicM =
1

π

∫ 2π

0

M(ψ) cos iψdψ (2.28b)
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HisM =
1

π

∫ 2π

0

M(ψ) sin iψdψ (2.28c)

(2.28d)

one can re-write Eqs. 2.25, 2.26 and 2.27 as:

ẋ0 = H0Fx0 +
N
∑

n=1

(

H0Fncxnc +H0Fnsxns

)

+H0Gu0 (2.29)

ẋic = HicFx0 +
N
∑

n=1

(

HicFncxnc +HicFnsxns

)

+HicGu0 − iΩxis (2.30)

ẋis = HisFx0 +
N
∑

n=1

(

HisFncxnc +HisFnsxns

)

+HisGu0 + iΩxic (2.31)

By substituting Eq. 2.50 into the output equation (Eq. 2.10) one obtains:

y0 +
L
∑

l=1

(

ylc cos lψ + yls sin lψ
)

=

P(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+R(ψ)u0 (2.32)

Equation 2.32 is multiplied by cos jψ or sin jψ and integrated over one rotor rev-

olution, resulting in the following relations:

y0 =
1

2π

∫ 2π

0

{

P(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+R(ψ)u0

}

dψ (2.33)

ylc =
1

π

∫ 2π

0

{

P(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+R(ψ)u0

}

cos lψdψ (2.34)
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yls =
1

π

∫ 2π

0

{

P(ψ)

[

x0 +
N
∑

n=1

(

xnc cosnψ + xns sinnψ
)

]

+G(ψ)u0

}

sin lψdψ (2.35)

By using a similar notation as before and the H operator, one obtains:

y0 = H0Px0 +
N
∑

n=1

(

H0Pncxnc +H0Pnsxns

)

+H0Ru0 (2.36)

ylc = HlcPx0 +
N
∑

n=1

(

HlcPncxnc +HlcPnsxns

)

+HlcRu0 (2.37)

yis = HlsPx0 +
N
∑

n=1

(

HlsPncxnc +HlsPnsxns

)

+HlsRu0 (2.38)

Similarly to Ref. [25], the LTP system is transformed into an approximate

higher-order Linear Time Invariant (LTI) system:

X = AX+BU (2.39a)

Y = CX+DU (2.39b)

where:

XT =
[

xT0 xT1c x
T
1s . . .x

T
Nc x

T
Ns

]

(2.40a)

U = u0 (2.40b)

YT =
[

yT0 yT1c y
T
1s . . .y

T
Lc y

T
Ls

]

(2.40c)

are respectively the augmented state, control, and output vectors. The augmented
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coefficient matrices are:

A =





























H0F H0F 1c H0F 1s · · · H0FNc H0FNs

H1cF H1cF 1s −Ω +H1cF 1s · · · H1cFNc H1cFNs

H1sF Ω +H1sF 1s H1sF 1s · · · H1sFNc H1sFNs

...
...

...
. . .

...
...

HNcF HNcF 1s HNcF 1s · · · HNcFNc −NΩ +HNcFNs

HNsF HNsF 1s HNsF 1s · · · NΩ +HNsFNc HNsFNs





























(2.41)

B =





























H0G

H1cG

H1sG

...

HNcG

HNsG





























(2.42)

C =





























H0P H0P 1c H0P 1s · · · H0FNc H0FNs

H1cP H1cP 1c H1cP 1s · · · H1cPNc H1cPNs

H1sP H1sP 1c H1sP 1s · · · H1sPNc H1sPNs

...
...

...
. . .

...
...

HLcP HLcF 1c HLcF 1s · · · HLcFNc HLcFNs

HLsP HLsF 1c HLsF 1s · · · HLsFNc HLsFNs





























(2.43)

D =





























H0R

H1cR

H1sR

...

HLcR

HLsR





























(2.44)

the state space matrices. The higher-order LTI model has n(2N + 1) states and
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l(2L+ 1) outputs.

2.1.5 Minimum Number of Harmonics to Retain

Consider an LTP system representative of the rotor flapping dynamics:

ẋ = F(ψ)x (2.45)

where the state matrix is periodic with respect to the main rotor azimuth angle ψ:

F(ψ) = F(ψ + 2π) (2.46)

The state vector is composed by the Multi-Blade Coordinates (MBC) of a 4-bladed

rotor:

xT =
[

β0 β0d β1c β1s

]

(2.47)

where:

β0 is the coning angle,

β0d is differential coning,

β1c is longitudinal cyclic flapping, and

β1c is lateral cyclic flapping.

The corresponding Individual Blade Coordinates (IBC) are obtained using the

following relation:

β(m) = β0 + β0d(−1)m + β1c cosψm + β1s sinψm (2.48)

where:

ψm = ψ − (m− 1)
π

2
, m = 1, 2, 3, 4 (2.49)

and m identifies the blade number. The LTP system can be approximated by a

higher-order LTI system by the means of Harmonic Decomposition [25]. In order to
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extract an approximate LTI model, each state is decomposed into a finite number

of harmonics:

x = x0 +
N
∑

n=1

[

xnc cosnψ + xns sinnψ
]

(2.50)

The resulting approximate LTI system is given by:

Ẋ = AX (2.51)

where the augmented state vector is:

XT =
[

x0 x1c x1s · · · xNc xNs

]

(2.52)

By substituting the harmonic decomposition of each state from Eq. 2.50 into

Eq. 2.48, and by collecting the coefficients contributing to each harmonic for each

blade, one obtains the following equations relating the harmonics of the IBC states

with the MBC states:

β
(m)
0 = β00 + β0d0(−1)m +

1

2
[f1 (β1c1c + β1s1s) + f2 (β1c1s − β1s1c)] (2.53a)

β
(m)
1c = β01c+β0d1c(−1)m+

1

2
{f1 [2β1c0 + β1c2c + β1s2s ] + f2 [−2β1s0 + β1c2s − β1s2c ]}

(2.53b)

β
(m)
1s = β01s + β0D1s(−1)m +

1

2
{f1 [2β1s0 + β1c2s − β1s2c ] + f2 [2β1c0 − β1c2c − β1s2s ]}

(2.53c)

β(m)
nc = β0nc

+ β0Dnc
(−1)m +

1

2

{

f1

[

β1c(n−1)c
− β1s(n−1)s

+ β1c(n+1)c
+ β1s(n+1)s

]

+

f2

[

−β1c(n−1)s
− β1s(n−1)c

+ β1c(n+1)s
− β1s(n+1)c

]

, n ≥ 2 (2.53d)

β(m)
ns = β0ns

+ β0Dns
(−1)m +

1

2

{

f1

[

β1c(n−1)s
+ β1s(n−1)c

+ β1c(n+1)s
− β1s(n+1)c

]

+
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f2

[

β1c(n−1)s
− β1s(n−1)c

− β1c(n+1)s
− β1s(n+1)c

]

, n ≥ 2 (2.53e)

where:

f1 =



























1 m = 1

0 m = 2, 4

−1 m = 3

(2.54a)

f2 =



























0 m = 1, 3

1 m = 2

−1 m = 4

(2.54b)

It appears that each harmonic of the IBC states is influenced by the same, and a

lower and a higher harmonic of the MBC states. This means that for high-order

LTI systems to capture the behavior of IBC states up to the N th harmonic, one has

to retain up to the (N +1) th harmonic when performing harmonic decomposition

on LTP systems with MBC states. Vice versa, if one retains up to theN th harmonic

when performing harmonic decomposition on LTP systems with MBC states, the

IBC states will be reconstructed accurately only up to the (N − 1) th harmonic.

In light of these results, the number of harmonics retained for the state and

the output are N = 5 and L = 4, respectively. The resulting number of states for

the high-order LTI model relative to the conventional helicopter and compound

rotorcraft is 1276 and 1320, respectively. The high-order LTI model has 90 outputs

for both aircraft. This way the approximate LTI model captures harmonics up to

4/rev.

2.1.6 Singular Perturbation Theory Overview

The measurement or estimation of states associated with the higher-order flap,

lead-lag, torsion and inflow dynamics is impractical in real applications. For this
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reasons, reduced-order models are derived from the high-order LTI model. To do

so, singular perturbation theory is used. Consider a set of differential equations:

ẋ = f(x, z,u, t, µ) (2.55a)

µż = g(x, z,u, t, µ) (2.55b)

where:

µ > 0 is a scalar,

x is a subset of the state vector of dimension n,

z is a subset of the state vector of dimension m, and

u is the input vector of dimension r.

For 0 < µ ≪ 1 the dynamics of the second set of differential equations is sub-

stantially faster than the first set. Under this condition, one can assume that the

dynamics of the second set of differential equations reach steady-state more quickly

than the first set. Formally:

0 = g(x̄, z̄, ū, t, 0) (2.56)

The substitution of a root of Eq. 2.56:

z̄ = φ(x̄, z̄, t) (2.57)

into Eq. 2.55a yields to a reduced-order model of order n:

x̄ = f [x̄, φ(x̄, z̄, t), ū, t, µ] ≡ f̄(x̄, ū, t) (2.58)

The reduced-order model represents slow and neglects fast phenomena of the sys-

tem in Eq. 2.55. A more detailed derivation is found in Ref. [56].

In light of this result, the state of the high-order LTI system is divided in slow
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and fast components:

X =





Xs

Xf



 (2.59a)

The high-order LTI system is re-written as:





Ẋs

Ẋf



 =





As Asf

Afs Af









Xs

Xf



+





Bs

Bf



U (2.59b)

Y =
[

Cs Cf

]





Xs

Xf



+Du (2.59c)

Similarly to before, because the fast and stable states reach steady state more

quickly than the slow states, the algebraic constraint ẋf = 0 is imposed. It follows

that:

AfsXs +AfsXf +BfU = 0 (2.60)

Solving for the fast states leads to:

Xf = Af
−1(−AfsXs −BfU) (2.61)

By substituting the Eq. 2.61 result into Eq. 2.59b, the state equation for the

reduced-order model is obtained:

Ẋs = ÂXs + B̂U (2.62)

where:

Â = As −AsfAf
−1Afs (2.63a)

B̂ = Bs −AsfAf
−1Bf (2.63b)

By substituting Eq. 2.61 into Eq. 2.59c, the output equation for the reduced-order
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model is obtained:

Ys = ĈXs + D̂U (2.64)

where:

Ĉ = Cs −CfAf
−1Afs (2.65a)

D̂ = D−CfAf
−1Bf (2.65b)

2.1.7 9-State Model

Singular perturbation theory is used to derive a 9-state model that is meant to be

used for control system design. The 9-state model retains the 0th harmonic of the

rigid-body dynamics but neglects the higher-order dynamics. The state vector of

the high-order LTI system is divided as follows:

Xs =
[

xRB0

]

(2.66)

XT
f =

[

xTR0
xTRB1c

xTR1c
· · · xTRBNs

xTRNs

]

(2.67)

The higher-harmonics of the rigid-body states are truncated from the output be-

cause they are impractical to observe and of negligible amplitude when compared

to their respective 0th harmonic. The output reduces to:

YT
s =

[

xTRB0
PLL0 PLL1c PLL1s · · · PLLLc PLLLs

]

(2.68)

Note that all of the higher harmonics of the pitch link loads are kept in the output to

capture the influence of the rigid body states and controls on the rotor loads. Since

state vector of the reduced-order model is constituted only by the 0th harmonic

of the rigid-body states, a controller that uses full-state feedback will only need

the rigid-body states as feedback. This is generally the case for Automatic Flight

Control Systems (AFCS) on contemporary rotorcraft.
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2.1.8 15-State Model

Singular perturbation theory is used to derive a second reduced-order model that

includes the 0th harmonic of both rigid-body states and rotor flapping in the state

vector. Specifically, the longitudinal and lateral flapping states are retained to

model the regressive flap mode, the slowest rotor flapping mode (as compared to

the progressive flapping mode). This is done to increase the spectrum of frequencies

that the reduced-order model is a valid approximation for. The state vector of the

high-order LTI system is divided as follows:

XT
s =

[

xTRB0
β1c0 β1s0 β01c β0d1c β01s β0d1s

]

(2.69a)

XT
f =

[

x̂R
T
0 xTRB1c

x̂R
T
1c · · · xTRBNs

xTRNs

]

(2.69b)

where (̂.) denotes the 0th and 1st harmonic rotor states deprived of the longitudinal

and lateral flapping states. Note that β01c , β0d1c , β01s and β0d1s are retained in the

slow component of the state as they are redundant states arising from harmonic

decomposition; failure to retain them all may cause problems in the application of

singular perturbation theory. Although the redundancy of the flapping states is

not immediately apparent, it is illustrated in the Section 2.2.

The higher-harmonics of the rigid-body states and rotor flapping are truncated

from the output because they are impractical to observe and of negligible amplitude

when compared to their respective 0th harmonic. The output reduces to:

YT
s =

[

xTRB0
β1c0 β1s0 β01c β0d1c β01s β0d1s PLL0 PLL1c PLL1s · · · PLLLc PLLLs

]

(2.70)

Note that all of the higher harmonics of the pitch link loads are kept in the output

to capture the influence of the rigid body, rotor flapping states, and controls on

the rotor loads. Since state vector of the reduced-order model is constituted by

the 0th harmonic of the rigid-body states and rotor flapping, a controller that uses
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full-state feedback will need both rigid-body states and rotor flapping states as

feedback.

2.1.9 Algebraic Constraints Removal

Consider the full state-space representation of an LTI system, exemplifying a har-

monic decomposition model:

Ẋ = AX+BU (2.71a)

Y = CX+DU (2.71b)

where X ∈ ℜL, U ∈ ℜM , and Y ∈ ℜP . Consider the state vector:

XT =
[

X1 . . . Xi . . . Xj . . . XL

]

(2.72)

Suppose that two states are linearly dependent:

Xj = kXi (2.73)

Then, a reduced-order state-space system can be defined:

˙̂
X = ÂX̂+ B̂U (2.74a)

Y = ĈX̂+DU (2.74b)

where X̂ ∈ ℜL−1 since the state Xj is removed from the new state vector. The

reduced-order model state and output matrices are:

Â =











a1,1 . . . a1,i + ka1,j . . . a1,L−1

...
. . .

...
. . .

...

aL−1,1 . . . aL−1,i + kaL−1,j . . . aL−1,L−1











(2.75a)
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Ĉ =











c1,1 . . . c1,i + kc1,j . . . c1,L−1

...
. . .

...
. . .

...

cP,1 . . . cP,i + kcP,j . . . cP,L−1











(2.75b)

The input matrix B̂ is obtained by removing the Lth row fromB. This methodology

can be used towards the removal on redundant states in harmonic decomposition

models.

2.1.10 11-State Model

Consider the following relations between the flapping states:

β1c0 = β01c = −β0d1c (2.76a)

β1s0 = β01s = −β0d1s (2.76b)

An 11-state model is derived from the 15-state model by applying algebraic con-

straint removal. The state vector of the 11-state is:

X̂T
s =

[

xTB0
β1c0 β1s0

]

(2.77)

The output reduces to:

YT
s =

[

xTRB0
β1c0 β1s0 PLL0 PLL1c PLL1s · · · PLL4s

]

(2.78)

2.2 Linear Models Validation

2.2.1 Conventional Helicopter

The first step of the validation is to compare the high-order linear system with

flight test data. Specifically, the high-order LTI model for the conventional heli-
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copter is compared to JUH-60A Black Hawk flight test data at a 80 kts level flight.

The comparison is done at 80 kts since flight test data is available only at such

condition for forward flight. The flight test data was originally collected for the

Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RAS-

CAL) program. This is done to ensure that the simulation model is representative

of an H-60 aircraft. Figure 2.3 shows a comparison between the on-axis frequency

responses obtained from flight test data and from the high-order LTI model. For

high coherence values (greater than 0.6) the frequency responses generally match

fairly well. However, lateral and longitudinal flapping responses for the high-order

LTI model show slightly decreased magnitude when compared to the flight test

data.

For frequencies corresponding to high coherence values, the magnitude and

phase relative errors for each on-axis frequency response are plotted to provide

further insight on the similarities/discrepancies between the linearized simulation

model and the model identified from JUH-60A flight test data (Fig. 2.4). The

plot also includes the mismatch boundaries defined in MIL-STD-1797 [57]. These

boundaries represent the Maximum Unnoticeable Added Dynamics (MUAD) lim-

its. When these limits are exceeded, a pilot can typically detect discrepancies

between two aircraft modes being compared [58]. The roll rate response to the

lateral stick, the yaw rate response to the pedals, and the collective flap angle due

to the collective stick are well between the MUAD boundaries for the frequencies

in consideration. The pitch rate response to longitudinal cyclic is inaccurate in

the phase especially at low frequencies. Both the lateral flapping response to the

lateral stick and the longitudinal flapping response to a longitudinal stick show

a mismatch in the magnitude, whereas the phase error is well within the MUAD

boundaries. This may be because for the high-order LTI system what is actually

calculated is the frequency response from the lateral and longitudinal sticks to the

0th harmonics of the lateral and longitudinal flapping angles, respectively. The



46

(a) (b)

(c) (d)

(e) (f)

Figure 2.3: On-axis frequency response: flight data vs. high-order LTI system.
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higher-harmonics of lateral and longitudinal flapping could contribute to the over-

all flapping response to the pilot inputs significantly and could compensate for the

reduced magnitude in the 0th harmonic response.

Consider a cost function that quantifies the error between two frequency re-

sponses [58]:

J =
20

nω

ωnω
∑

ω1

Wγ[Wg(|T1| − |T2|)2 +Wp(∠T1 − ∠T2)
2] (2.79)

where:

nω is the number of frequency points,

ω1 and ωnω
are the upper and lower frequencies of fit,

T1 and T2 are the two frequency responses, and

Wγ, Wg, and Wp are weighting functions.

Specifically, Wγ is a weighting function dependent on the value of the coherence

function at each frequency point ω1, ω2, ..., ωnω
and for each frequency response

pair Tl:

Wγ(ω) =
[

1.58
(

1− e−γ
2
xy

)]2

(2.80)

where γ2xy is the coherence function, thereby emphasizing the most reliable data.

Wg and Wp are the relative weights for magnitude and phase squared errors:

Wg = 1.0 (2.81a)

Wp = 0.01745 (2.81b)

This cost function is used to quantify the relative error between each on-axis fre-

quency response of the two models in consideration. An average cost function

across all cost functions for each individual frequency response of J ≤ 100 gener-

ally reflects an acceptable level of accuracy for flight dynamics modeling, whereas

a cost function of J ≤ 50 can be expected to produce a model that is nearly indis-
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Table 2.1: On-axis frequency responses individual cost functions.

Frequency Response Frequency Range [rad/s] Cost
p/δlat 0.3-10 61.93
q/δlon 0.4-10 342.27
r/δped 2-20 61.73
β1s/δlat 1-20 482.09
β1c/δlon 0.7-20 434.51
β0/δcol 1-20 24.78

tinguishable from the original in the frequency and time domain. However, some

of the individual cost functions can reach J ≤ 200 without resulting in a noticeable

loss of overall predictive accuracy [58]. The individual cost functions are reported

in Table 2.1 and substantiate the previous observations. It is concluded that the

simulation model for the conventional helicopter is generally a good representation

of an H-60 aircraft. It should be noted that the FLIGHTLAB R© model is reflective

of a general H-60 helicopter and was not tuned to be representative of a JUH-60A

configuration.

Once the fidelity of the high-order LTI model is established, the validity of

the reduced-order models is assessed. The on-axis frequency responses of the of

the reduced-order models are compared to the high-order LTI system, as shown

in Fig. 2.5. The frequency responses of the reduced-order models match closely

the high-order LTI model in the low frequency range. The 9-state model shows

good accuracy up to about 4 rad/s. The 11-state model shows good accuracy up to

about 10 rad/s. This is because the 11-state model incorporates the flapping states

and therefore is able to predict the dynamics of the regressive flap mode. Both

reduced-order models have reduced phase delay when compare to the high-order

LTI model. This is due to the absence of the actuator states in the reduced order

models. Further, the 9-state model has reduced phase delay when compared to the

11-state model. This is because the 9-state model lacks the rotor dynamics and

is unable to predict the delay in the response caused by rotor flapping. Further
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Table 2.2: On-axis frequency responses individual cost functions for a frequency
range of 0.3 to 4 rad/s and coherence equal to 1.

Frequency Response Cost (LTI - LTI 9) Cost (LTI - LTI 11)
p/δlat 13.43 6.43
q/δlon 42.85 21.32
r/δped 24.34 31.80

Table 2.3: On-axis frequency responses individual cost functions for a frequency
range of 0.3 to 10 rad/s and coherence equal to 1.

Frequency Response Cost (LTI - LTI 9) Cost (LTI - LTI 11)
p/δlat 82.14 9.01
q/δlon 164.02 19.30
r/δped 28.92 36.78

validation is conducted by computing the relative error between the frequency

responses of the high order LTI model and the 9-state model, and between the

high-order LTI model and the 11-state model, as shown in Fig. 2.6. It is clear that

for both the roll rate response to the lateral stick and for the pitch rate response

to the longitudinal stick the frequency response of the error between the high-

order LTI and the 9-state model exceeds the MUAD boundaries starting at about

4 rad/s. For the same on-axis responses, the error between the high-order LTI

and the 11-state model exceeds the MUAD boundaries for frequencies in excess

of 10 rad/s. This substantiates the previous observations. The relative errors of

the yaw rate response to the pedal never exceed the MUAD boundaries for the

frequencies in consideration. Tables 2.2 and 2.3 shows the cost function for the

relative error between high-order LTI and the reduced-order models for different

frequency ranges. It is apparent that the 9-state model is nearly indistinguishable

from the high-order LTI for frequencies up to 4 rad/s, whereas the 11-state model

is nearly indistinguishable from the high-order LTI for frequencies up to 10 rad/s.

The fidelity of the reduced-order models is also assessed by comparing their
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eigenvalues to the eigenvalues of the high-order LTI system. Figure 2.7 shows

an enlarged eigenvalue plot. It is apparent that the high-order LTI system has

many high frequency eigenvalues, a large number of which are very lightly damped.

Figure 2.8 shows how the rigid-body eigenvalues of the reduced-order models match

closely to the eigenvalues of the high-order LTI system. Further, the eigenvalues

associated to the regressive flap mode of the 11-state model are close to the ones

of the high-order LTI model. Finally, Fig. 2.9 shows the existence of unstable

eigenvalues at very low frequencies (< 0.1 rad/s). These low frequency eigenvalues

match closely between the high-order LTI model and the reduced-order model. It

is concluded that that the model order reduction that is performed is robust and

does not cause the migration of low-frequency eigenvalues to the right-half plane.

The ability of the reduced-order models to predict the pitch link loads is as-

sessed. Figure 2.10 shows the frequency response of different harmonics of the

pitch link loads to a lateral stick input. As for the rigid-body states, the 9-state

model matches the high-order model up to about 4 rad/s, whereas the 11-state

model up to about 10 rad/s. This is further substantiated by Fig. 2.11, where

the error between the high-order LTI and reduced-order models is shown along the

MUAD boundaries.

Further validation is conducted in the time domain. The open-loop response to

a moderate lateral stick doublet is shown for the nonlinear FLIGHTLAB R© model

and the reduced-order models in Fig. 2.12. Both on-axis and off-axis responses for

the reduced-order models match closely the nonlinear model response. Also the

pitch link loads seem to be captured fairly accurately by the reduced-order models.

The open-loop response to a more aggressive lateral stick doublet is shown in Fig.

2.13. While the angular rate response of the linear models is very similar to the

one of the nonlinear model, some differences arise in the pitch link loads. This

is justified by the fact that under such an aggressive maneuver, the helicopter

may diverge from the trim condition at which the linear models were obtained.
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Further, nonlinearities may become significant in the response. It is concluded

that the reduced-order models are a close representation of the overall rotorcraft

dynamics in low and medium frequency ranges. Further, the reduced-order models,

by retaining the pitch link load higher-harmonics in the output, are able to predict

the higher-harmonic component of the rotor loads.

2.2.2 Compound Rotorcraft

The on-axis frequency responses of the of the reduced-order models are compared

to the high-order LTI system, as shown in Fig. 2.14. Most notably, the on-axis

frequency responses to the redundant control surfaces are generally accurate up to

up to about 10 rad/s for both 9-state and 11-state models. This is because the

redundant control surfaces are aerodynamic devices without higher-order dynamics

associated to them. Conversely, the primary flight controls act on the rotor which

has plenty higher-order dynamics associated to it (i.e. flap, lead-lag, torsion, etc.).

The fidelity of the reduced-order model is also assessed by comparing its eigen-

values to the eigenvalues of the high-order LTI system, as shown in Fig. 2.15. As

expected, the rigid-body eigenvalues of the reduced-order models match closely to

the eigenvalues of the high-order LTI system. Further, the eigenvalues associated

to the regressive flap mode of the 11-state model are fairly close to the ones of the

high-order LTI model.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: On-axis frequency response: error between flight data and high-order
LTI system.
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(a) (b)

(c)

Figure 2.5: On-axis frequency responses: high-order LTI model vs. reduced-order
models.
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(a) (b)

(c)

Figure 2.6: On-axis frequency responses: error between high-order LTI model and
reduced-order models.
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(a)

(b) (c)

(d) (e)

Figure 2.10: Pitch link load frequency response to a lateral stick input.
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(a)

(b) (c)

(d) (e)

Figure 2.11: Pitch link load frequency response to a lateral stick input: relative
error between high-order LTI and reduced-order models.
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(a)

(b)

Figure 2.12: Open-loop time response to a moderate lateral stick doublet.
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(a)

(b)

Figure 2.13: Open-loop time response to an aggressive lateral stick doublet.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: On-axis frequency response: flight data vs. high-order LTI system.
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Chapter 3

Flight Control Design

3.1 Model Following Architecture

The chosen control strategy is Explicit Model Following (EMF). This choice is mo-

tivated by the fact that EMF is a largely adopted across aerospace manufacturers,

and possibly the most common control architecture in the helicopter community.

EMF naturally partitions the controller in a feed-forward and a feedback part.

This allows the designer to easily tailor feed-forward compensation and have flex-

ibility in the implementation of different feedback control strategies. A general

Explicit Model Following scheme for a SISO system is shown in Fig. 3.1. The

command model sets the desired dynamics of the closed-loop system. The inverse

plant generates the feed-forward actuator inputs which command the aircraft to

approximately follow the command-model responses. Feedback compensation is

used to minimize the error between the commanded response and actual aircraft

response. Equivalent command delays are used to synchronize the commanded

and measured responses in time.
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Figure 3.1: Explicit model following block diagram.

3.2 Conventional Helicopter Controller

The controller is designed to achieve stability and desired rate-command/attitude-

hold (RCAH) response around the roll, pitch and yaw axes. The controller acts

solely through primary flight controls. This restricts the maximum desired band-

width of the input to be considerably less than the main rotor angular speed. This

way, higher-harmonic control is excluded. Note that the collective stick is left

open-loop. This is because in high-speed forward flight the pilot regulates altitude

by using the cyclic stick rather than the collective stick.

3.2.1 Feed-forward Compensation

The command models (or filters) for the roll, pitch, and yaw axes are 1st order

linear models:

pcmd

δlat
(s) =

kδlat
τps+ 1

(3.1a)

qcmd

δlon
(s) =

kδlon
τqs+ 1

(3.1b)

rcmd

δped
(s) =

kδped
τrs+ 1

(3.1c)

(3.1d)
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where kδlat , kδlon , and kδped are the conversion constants from pilot commands to

commanded angular rates, and τp, τq, and τr are the command filter time constants.

To each command filter time constant corresponds a break frequency that is the

inverse of the time constant. This means that ωp = 1/τp, ωq = 1/τq, and ωr = 1/τr.

The parameters of the command filters are tuned to the pilot response criteria, such

as piloted bandwidth, phase delay, and sensitivity requirements. Generally, these

parameters can be optimized as design parameters.

The inverse plant dynamics is based on approximate on-axis bare-airframe re-

sponses in the frequency range around crossover [59]. For this specific case, the

inverse plant is based on the inverses of the following set of decoupled 1st order

transfer functions:

pcmd

δlatff
(s) =

Lδlat
s− Lp

(3.2a)

qcmd

δlonff
(s) =

Mδlon

s−Mq

(3.2b)

rcmd

δpedff
(s) =

Nδped

s−Nr

(3.2c)

where the stability and control derivatives are pulled from the 9-state model. The

commanded responses in each axis are delayed by τφ, τθ, and τψ, respectively,

for synchronization with the (higher-order) measured responses. These higher-

order dynamics include the computational delays, actuators, rotor flapping lag, and

sensors which cannot be included in the inverse model without causing actuator

saturation. The time delays are calculated following the methods of Ref. [59]. The

stability and control derivatives used for the inverse plants are found in Table 3.1.

The equivalent delays are shown in Table 3.2.

In forward flight, the centrifugal forces arising from turns are compensated by

banking the helicopter - and thus the thrust vector - towards the center of the turn.

This is effectively achieved by relating the commanded yaw rate to the absolute
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Table 3.1: Stability and control derivatives.

Parameter Units Value
Lp 1/s -2.9560
Mq 1/s -1.3061
Nr 1/s -0.3855
Lδlat rad/(s2-%) 0.0976
Mδlon rad/(s2-%) 0.0242
Nδped rad/(s2-%) -0.1526

Table 3.2: Equivalent delays.

Parameter Units Value
τφ s 0.055
τθ s 0.136
τψ s 0.025

speed and bank angle of the rotorcraft. The turn coordination law is:

r′cmd =
g

V
sinψ + rcmd (3.3)

and is implemented in the feed-forward path of the controller. Since the heave axis

is left open loop, feedback compensation does not provide adjustments to potential

losses in altitude during turns causes by rotating the thrust vector around the roll

axis. This is why turn compensation is added to the feed-forward path of the

controller. The turn compensation law relates the pitch rate with yaw rate and

bank angle of the rotorcraf, and is given by:

q′cmd = r sinφ+ qcmd (3.4)

More information on the derivation of turn compensation and turn coordination

are found in Ref. [60].
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3.2.2 Feedback Compensation

Figure 3.2: Explicit model following block diagram.

Since the loop on the right hand side of Fig. 3.1 is independent from the the

feed-forward part of the controller, as shown in Fig. 3.2, feedback compensation

can be obtained with standard techniques. The chosen strategy for feedback com-

pensation is a linear Quadratic Regulator (LQR). The LQR gains are determined

by using the reduced-order models previously derived. The cost function that is

minimized is:

J =

∫ t

0

[

XT
sQXs +UTRU

]

dτ (3.5)

The state weighting matrix Q and control weighting matrix R are obtained by

directly constraining the output through the following relations:

Q = ĈT Q̂Ĉ (3.6a)

R = R̂+ D̂T Q̂D̂ (3.6b)

where Q̂ and R̂ are diagonal matrices. The diagonal elements of Q̂ and R̂ are

formed by the penalties on the outputs and inputs, respectively:

Q̂ = diag
(

wT
RB wT

PLL

)

(3.7a)

R̂ = diag (wU) (3.7b)
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Figure 3.3: Block diagram for the rigid-body feedback controller (conventional
helicopter).

where:

wRB is the penalty vector on the rigid-body stetes,

wPLL is the penalty vector on the pitch link load harmonics, and

wU is the penalty vector on the controls.

Two feedback methods are used: rigid-body feedback and rotor state feedback.

The rigid-body feedback employs the 9-state reduced-order model to derive the

LQR gains. The LQR gains are, in this case, a 3-by-9 matrix. The method

described allows to transfer the constraints on each harmonic of the pitch link

load response to the rigid-body, effectively providing a load limiting control action

based on the feedback of the 0th harmonic rigid-body states. The block diagram

for the rigid-body feedback controller is shown in Fig. 3.3.

The rotor state feedback employs the 11-state reduced-order model to derive

the LQR gains. The LQR gains, in this case, are a 3-by-11 matrix. This method

allows to transfer the constraints on each harmonic of the pitch link load response
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Figure 3.4: Block diagram for the rotor state feedback controller (conventional
helicopter).

to the rigid-body and rotor states, effectively providing a load limiting control

action based on the feedback of the 0th harmonic rigid-body states and the longi-

tudinal and lateral flapping states. The block diagram for the rotor state feedback

controller is shown in Fig. 3.4.

Most notably, the controller minimizes rotor loads perturbations from their

periodic equilibrium. It follows that this methodology is well suited for alleviating

unsteady loads. However, it does not affect stationary (trim) loads.

3.2.3 Baseline Controller

3.2.4 CONDUIT R© Overview

Given the multi-objective trade-offs associated with the handling qualities/flight

control design specifications and performance metrics, flight control optimization

can be very complex. Specifically, flight control design presents a highly non-
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orthogonal and non-convex problem in numerical optimization. For this reason,

automated optimization tools can play an important role. The Control Designer’s

Unified Interface (CONDUIT R©) [59] was developed to provide a comprehensive

analysis and optimization environment tool for flight control design and is built on

top on the highly flexible MATLAB R©/Simulink R© system modeling and analysis

environment [61]. It is jointly developed and supported by the U.S. Army Avia-

tion Development Directorate (ADD) and Universities Space Research Association

(USRA), both at Moffett Field, CA.

CONDUIT R© uses feasible sequential programming (FSQP) to solve a min-

max optimization of the vector of multiple objective functions (specifications).

The FSQP algorithm is achieved by dividing the problem into three phases of

optimization:

Phase 1 - Satisfying the hard constraints.

Phase 2 - Satisfying the soft constraints while not violating any hard con-

straints.

Phase 3 - Selecting the best solution from among the feasible sets that satisfy

all of the hard and soft constraints.

The converged solution, at the completion of Phase 3, is the pareto optimum

design that meets all the requirements with minimum control usage. The central

requirement for automated design optimization is a capability to return numerical

scores of system performance for a given set of design parameter values. The

handling qualities/flight control specification boundaries that separate the Level 1

handling qualities region from the Level 2 handling qualities region, and the Level

2 handling qualities region from the Level 3 handling qualities region provide for

a natural scoring system. With this scoring approach, there is no need for user-

defined scaling beyond what is already provided by the Level 1/ Level 2 and Level

2/ Level 3 boundaries of the handling qualities criteria.
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3.2.4.1 Rigid-Body Feedback

The LQR weights are optimized using the Control Designer’s Unified Interface

(CONDUIT R©) and design methods of Ref. [59] to meet a comprehensive set of sta-

bility, handling qualities, and performance specifications. The specifications are

drawn mostly from ADS-33E [2] handling qualities requirements for military rotor-

craft, SAE-AS94900 [62] flight control system requirements for military aircraft,

a set of other requirements developed at the U.S. Army Aviation Development

Directorate (ADD) [59], and from some general well known control law require-

ments and logical objective functions. The various specifications that are used as

constraints in the flight control optimization, and their origin, are listed below.

• Eigenvalues (generic) - Ensures that all closed-loop eigenvalues are in the left-

hand side of the complex plane. For piloted rotorcraft, very low frequency

poles in the right-hand side of the plane are allowed within a specified tol-

erance because the pilot can easily correct slow instabilities. The phugoid

mode is typically associated with low-frequency unstable eigenvalues.

• Damping Ratio (ADS-33E) - Based on time response evaluation of damping

characteristic for a pilot input in the roll, pitch, and yaw axes.

• Model Following Accuracy (ADD) - Mismatch cost function based on com-

parison of frequency responses for the command model and rotorcraft to

ensure that satisfying model following is achieved.

• Stability Robustness (Ref. [63]) - Off-nominal conditions must maintain a

stability margin in terms of Nichols margin exclusion zone.

• Stability Margins (SAE-AS94900) - Gain and phase margin requirements are

imposed on the broken-loop frequency response.

• Bandwidth and Phase Delay (ADS-33E) - Short-term small-amplitude cri-

terion that addresses the initial delay and the speed of the on-axis attitude
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response to pilot stick inputs.

• Disturbance Rejection Bandwidth and Peak (ADD) - The disturbance rejec-

tion bandwidth (DRB) is analogous to the bandwidth of the controller but

for a disturbance input in the attitude of the aircraft. The disturbance re-

jection peak (DRP) measures the maximum amplification of a disturbance

input in the attitude of the aircraft.

• Minimum Crossover Frequency (generic) - Sets the minimum crossover fre-

quency for the broken-loop response. It is desirable to minimize this quantity

to reduce actuator activity. However, a lower boundary is set to guarantee

satisfactory feedback system bandwidth.

• Actuator Root Mean Square (ADD) - The actuator Root Mean Square (RMS)

for the closed-loop system is minimized for both pilot and disturbance inputs

to the actuators.

The weights on the rigid-body states and controls are optimized whereas the

weights on the pitch link load harmonics are set to zero and frozen during the

optimization. The linear model used as the plant model for the optimization is the

high-order LTI model previously derived. The controller thus obtained is referred

to as the “Baseline Rigid-Body Feedback” controller, or “Baseline RBFB”. The

command filters properties for the baseline controller are found in Tables 3.3 and

3.4. The state and control penalties are reported in Tables 4.1 and 3.7, respec-

tively. The comprehensive set of stability, handling qualities, and performance

specifications for the baseline controller is shown in Fig. 3.5, along with its legend

in Fig. 3.6. A definition of all specifications is provided in Table 3.5

3.2.4.2 Rotor State Feedback

Similarly to rigid-body feedback case, an optimization is run so that the controller

with rotor state feedback meets the comprehensive set of stability, handling qual-
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Figure 3.5: Set of stability, handling qualities, and performance specifications for
the conventional helicopter employing the baseline RBFB controller.
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Table 3.3: Command filter gains.

Parameter Units Value
kδlat deg/(s-%) 0.90
kδlon deg/(s-%) 0.45
kδped deg/(s-%) 36.9

Table 3.4: Baseline controller command filters break frequencies.

Parameter Units Value
ωp rad/s 3
ωq rad/s 4.5
ωr rad/s 2

ities, and performance specifications. The weights on the rigid-body states, rotor

states, and controls are optimized, whereas the weights on the pitch link load har-

monics are set to zero and frozen during the optimization. The linear model used

as the plant model for the optimization is the high-order LTI model previously

derived. The controller thus obtained is referred to as the “Baseline Rotor State

Feedback” controller, or “Baseline RSFB”. The command filters are the same as

for the rigid-body state controller. The state and control penalties are reported

in Tables 4.1 and 3.7, respectively. The comprehensive set of stability, handling

qualities, and performance specifications for the baseline RSFB controller is shown

in Fig. 3.7.

3.3 Compound Rotorcraft Controller

3.3.1 Feed-Forward Compensation

The controller for the compound rotorcraft is designed to achieve stability and

desired rate-command/attitude-hold (RCAH) response around the roll, pitch and

yaw axes. The heave axis is left open-loop. Since the axes that are being con-
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Table 3.5: Control system optimization specifications.

Spec
Name

Description Axis Source

Hard Constraints (Stability Requirements)
EigLcG1 Eigenvalues in left half-plane (L.H.P.) All Generic
StbMgG1 Gain Phase Margin broken at actuator All AS94900
NicMgG1 Nichols Margins broken at actuator All GARTEUR

Soft Constraints (Handling Qualities Requirements)
BnwRoF1 Roll attitude bandwidth and phase delay Roll ADS-33E
BnwPiF1 Pitch attitude bandwidth and phase

delay
Pitch ADS-33E

BnwYaF1 Yaw attitude bandwidth and phase delay Yaw ADS-33E
DrbRoH1 Roll attitude disturbance rejection

bandwidth
Roll ADD

DrbPiH1 Pitch attitude disturbance rejection
bandwidth

Pitch ADD

DrbYaH1 Yaw attitude disturbance rejection
bandwidth

Yaw ADD

BrpAvH1 Roll/Pitch/Yaw attitude disturbance
rejection peak

All ADD

EigDpG1 Eigenvalue damping (0.1 < ω < 0.5
rad/s)

All Generic

EigDpG1 Eigenvalue damping (ω > 0.5 rad/s) All Generic
OlpOpG1 Open loop onset point, pilot input All DLR
OlpOpG1 Open loop onset point, disturbance input All DLR
MnxRoH1 Minimum crossover frequency of roll

broken loop response
Roll ADD

MnxPiH1 Minimum crossover frequency of pitch
broken loop response

Pitch ADD

MnxYaH1 Minimum crossover frequency of yaw
broken loop response

Yaw ADD

Summed Objectives (Performance Requirements)
CrsLnG1 Crossover frequency All Generic
RmsAcG1 Actuator root mean square (RMS) All Generic

Check Only
ModFoG2 Command model following cost All Generic
ErrFqG1 3σ tracking error of pitch link load, roll

rate disturbance input
Roll Generic

ErrFqG1 3σ tracking error of pitch link load, pitch
rate disturbance input

Pitch Generic
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Figure 3.6: Legend for the set of stability, handling qualities, and performance
specifications (arrows indicate points that are off the scale of the chart).

trolled are three but the total control effectors are six, the system is over-actuated.

Consider the compound model input vector:

U =
[

δlat δlon δped δsym δdif δstb

]

(3.8)

Allocation of the feed-forward control action to the redundant control effectors is

obtained by a pseudo-inverse strategy, as described in [64]. The state equation is
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Figure 3.7: Set of stability, handling qualities, and performance specifications for
the conventional helicopter employing the baseline RSFB controller.
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Table 3.6: Conventional helicopter baseline controller weights on the diagonal
elements of Q̂.

Parameter Units RBFB RSFB
u ft/s 0 0
v ft/s 0 0
w ft/s 0 0
p rad/s 1.0828e+2 7.2244e+1
q rad/s 3.8252e+2 3.8028e+2
r rad/s 2.0207e+1 4.6778e+1
φ rad 6.2138e+2 6.3637e+2
θ rad 1.9255e+2 1.9195e+2
ψ rad 2.9349e+2 3.0897e+2
β1c rad - 1.2958e−4
β1s rad - 1.2823e−4

PLL0 lbs 0 0
PLL1c lbs 0 0
PLL1s lbs 0 0
PLL2c lbs 0 0
PLL2c lbs 0 0
PLL3c lbs 0 0
PLL3s lbs 0 0
PLL4c lbs 0 0
PLL4s lbs 0 0

Table 3.7: Conventional helicopter baseline controller weights on the diagonal
elements of R̂.

Parameter Units RBFB RSFB
δlat % 7.6736e−2 7.4672e−2
δlon % 3.7561e−2 3.7876e−2
δped % 3.0299e−1 3.0314e−1

re-written as:
˙̂
Xs = ÂX̂s + B̂U

= ÂX̂s + B̂Gd

= ÂX̂s + B̃d

(3.9)
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where d is the pseudo control vector, with one control per controlled axis, and G

is the ganging matrix. The pseudo control vector is:

dT =
[

δlat δlon δped

]

(3.10)

The ganging matrix a 6-by-3 matrix and is defined by:

G = W−1BT
r (BrW

−1BT
r )

−1 (3.11)

where Br is a 3-by-6 matrix of which the rows corresponding to the axes that are

being controlled, ṗ, q̇, and ṙ, are pulled from B̂, and W is a weighting matrix used

to place different cost weightings on certain effectors. Note that W is a diagonal

a 6-by-6 identity matrix. In case all the control effectors are expressed using the

same units, and all the control effectors are given the same importance, the gangin

matrix will be an identity matrix. Further, the feed-forward is now designed pulling

the control derivatives from B̃, rather than from B̂. For this reason, the inverse

plant changes and is approximated by the following set of decoupled 1st order

transfer functions:

pcmd

δlatff
(s) =

1

s− Lp
(3.12a)

qcmd

δlonff
(s) =

1

s−Mq

(3.12b)

rcmd

δpedff
(s) =

1

s−Nr

(3.12c)

3.3.2 Feedback Compensation

The linear quadratic regulator is used to re-allocate the control signal to the redun-

dant control effectors in the feedback path. Similarly to the conventional helicopter
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Figure 3.8: Block diagram for the rigid-body feedback controller (compound ro-
torcraft).

case, the cost function that is minimized is:

J =

∫ t

0

[

XT
sQXs +UTRU

]

dτ (3.13)

but the control vector utilized is:

U =
[

δlat δlon δped δsym δdif δstb

]

(3.14)

The LQR gains are a 6-by-9 matrix for the rigid-body feedback case, and a 6-by-

11 matrix for the rotor state feedback case. The block diagram for the rigid-body

feedback controller is shown in Fig. 3.8. The block diagram for the rotor state

feedback controller is shown in Fig. 3.9.
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Figure 3.9: Block diagram for the rotor state feedback controller (compound ro-
torcraft).

3.3.3 Baseline Controller

3.3.3.1 Rigid-Body Feedback

An optimization is run so that the controller with rigid-body feedback meets

the comprehensive set of stability, handling qualities, and performance specifica-

tions. The weights on the rigid-body states and redundant controls are optimized,

whereas the weights on the pitch link load harmonics are set to zero and frozen

during the optimization. The linear model used as the plant model for the op-

timization is the high-order LTI model previously derived. The controller thus

obtained is referred to as the “Baseline Compound Rigid-Body Feedback” con-

troller, or “Baseline Compound RBFB”. The command filters are the same as

for the conventional helicopter. The state and control penalties are reported in

Tables 3.8 and 3.9, respectively. The comprehensive set of stability, handling qual-

ities, and performance specifications for the baseline compound RBFB controller

is shown in Fig. 3.11.
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Figure 3.10: Set of stability, handling qualities, and performance specifications for
the compound rotorcraft employing the baseline RBFB controller.
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3.3.3.2 Rotor State Feedback

An optimization is run so that the controller with rotor state feedback meets the

comprehensive set of stability, handling qualities, and performance specifications.

The weights on the rigid-body states, rotor states, and redundant controls are

optimized, whereas the weights on the pitch link load harmonics are set to zero

and frozen during the optimization. The linear model used as the plant model for

the optimization is the high-order LTI model previously derived. The controller

thus obtained is referred to as the “Baseline Compound Rotor State Feedback”

controller, or “Baseline Compound RSFB”. The command filters are the same as

for the conventional helicopter. The state and control penalties are reported in

Tables 3.8 and 3.9, respectively. The comprehensive set of stability, handling qual-

ities, and performance specifications for the baseline compound RSFB controller

is shown in Fig. 3.11.
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Table 3.8: Compound rotorcraft baseline controller weights on the diagonal ele-
ments of Q̂.

Parameter Units RBFB RSFB
u ft/s 0 0
v ft/s 0 0
w ft/s 0 0
p rad/s 3.9309e+2 3.1491e+2
q rad/s 5.0699e+2 5.2283e+2
r rad/s 7.4052e+1 2.6814e+1
φ rad 1.1361e+3 1.1628e+3
θ rad 5.1839e+2 5.2619e+2
ψ rad 2.7528e+2 2.6349e+2
β1c rad - 0
β1s rad - 0

PLL0 lbs 0 0
PLL1c lbs 0 0
PLL1s lbs 0 0
PLL2c lbs 0 0
PLL2c lbs 0 0
PLL3c lbs 0 0
PLL3s lbs 0 0
PLL4c lbs 0 0
PLL4s lbs 0 0

Table 3.9: Compound rotorcraft baseline controller weights on the diagonal ele-
ments of R̂.

Parameter Units RBFB RSFB
δlat % 2.4624e−2 2.8239e−2
δlon % 2.1000e−2 1.7117e−2
δped % 3.0161e−1 3.0182e−1
δsym % 1.0001e+2 1.0001e+2
δdif % 1.1309e+2 1.1233e+2
δstb % 1.0064e+2 1.0068e+1
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Figure 3.11: Set of stability, handling qualities, and performance specifications for
the compound rotorcraft employing the baseline RSFB controller.



Chapter 4

Alleviation of Unsteady Rotor Loads

4.1 Parametric Study

This section analyzes how the feed-forward and feedback paths of the controller

can be used towards load alleviation. Specifically, command model tailoring is

examined for the feed-forward path, whereas tailoring of the LQR weights on the

pitch link load harmonics is explored for the feedback path. The impact of these

two strategies on the handling qualities is also studied.

Next, the closed-loop frequency responses of the pitch link load to the com-

manded angular rates are computed, as shown in Fig. 4.1. This is done to under-

stand the sensitivity of the rotor loads to pilot commands. Commanded angular

rates are chosen in favor of pilot stick commands as they share common units

(rad/s). Results are presented to cover the typical frequency range of operation

for flight control systems (1-60 rad/s). It appears that the rotor loads are mostly

affected by the pitch rate command in this particular flight condition (dashed blue

line in Fig. 4.1). Commanded roll rate is shown to impact the rotor loads more

than the commanded yaw rate, especially at frequencies higher than 10 rad/s. The

parametric study that follows will therefore concentrate on the roll and pitch axes.
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Figure 4.1: Closed-loop frequency response of the the pitch link load to the com-
manded angular rates.

4.1.1 Command Model Tailoring

Command filter break frequencies of the baseline controller are varied separately

for the roll and pitch axes. Figure 4.2 shows the closed-loop pitch rate and pitch

attitude responses to a longitudinal stick doublet for varying command filter break

frequencies. Decreasing command filter break frequencies correspond to decreasing

pitch accelerations. Decreasing pitch accelerations result in decreasing peak-to-

peak pitch link loads, as shown in Fig. 4.3. A running mean is obtained by taking

the sum of each pair of maximum and minimum peaks for each cycle (revolution)

and dividing by two. The curves that are plotted are the maximum and minimum

peaks minus the median. It is concluded that command model tailoring effectively

provides load alleviation by limiting the commanded angular acceleration.

Figure 4.4 shows the bandwidth and phase delay for varying command filter

break frequencies. The bandwidth and phase delay specifications for forward flight
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Figure 4.2: Closed-loop pitch rate and pitch attitude responses to a longitudinal
stick doublet for varying command filter break frequencies.

(target acquisition and tracking) are also reported on the plot [2]. For the roll

axis, decreasing command filter break frequencies result in decreasing bandwidth.

For the pitch axis, decreasing command filter break frequencies result in decreasing

bandwidth and increasing phase delay. In general, decreasing command filter break

frequencies appear to negatively impact the handling qualities. It is concluded

that load alleviation through feed-forward compensation is effective in providing

alleviation of the rotor loads. However, it comes at the cost of a degradation in

the handling qualities.

4.1.2 LQR Weighting Tailoring

4.1.2.1 Rigid-Body Feedback

Starting from the Baseline RBFB controller, the LQR weights on the rigid-body

states and controls are frozen while the weights on the pitch link load harmonics
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Figure 4.3: Closed-loop peak-to-peak pitch link load response to a longitudinal
stick doublet for varying command filter break frequencies.

Figure 4.4: Bandwidth and phase delay specifications for varying command filter
break frequencies.
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are varied to generate a set of LQR feedback gain matrices. Figure 4.5 provides

an insight on how the weights on the pitch link load harmonics wPLL affect the

rigid-body weights in the state penalty matrix Q. Only the diagonal terms of

the state penalty matrix are shown. It is evident that constraining the pitch link

load harmonics leads to increased constraints on the roll and pitch rates. The

pitch rate is most affected by the 1st and 2nd cosine harmonics. The roll rate is

most affected by the 1st, 2nd, and 4th sine harmonics. In general, the pitch rate

is affected more severely than the roll rate. This is expected and is due to the

increased sensitivity of pitch link load to pitch rate, as compared to pitch link load

to roll rate (Fig. 4.1). Both weights on the body velocities and the Euler angles

are unaffected. Figure 4.6 provides an insight on how the weights on the pitch

link load harmonics in the output penalty matrix wPLL affect the weights on the

controls in the controls penalty matrix R. Only the diagonal terms of the controls

penalty matrix are shown. Constraining the pitch link load harmonics leads to

increased penalties mostly on the longitudinal stick. The 0th and 1st harmonics

are the major contributors.

Figure 4.7 provides insight on how the weights on the pitch link load harmonics

in the output penalty matrix wPLL affect the LQR feedback gains. Only the on-

axis gains are shown. Increasing penalties on the pitch link load harmonics leads to

decreasing LQR on-axis gains. This is particularly evident for the gains relating the

longitudinal stick with pitch attitude and pitch rate. Although not shown in the

plot, the gains relating the body velocities with the controls are largely unaffected.

These findings indicate that increasing load alleviation leads to decreasing pitch

axis performance.

Controllers with increasing weights on the pitch link load harmonics are com-

pared to assess the impact on handling qualities and controller performance. Figure

4.8 shows the gain and phase margins of the broken-loop response for increasing

LQR weights on the pitch link load harmonics. The stability margin requirements
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Figure 4.5: Gradient of the diagonal terms of the states penalty matrix with respect
to the weights on the pitch link load harmonics.

Figure 4.6: Gradient of the diagonal terms of the of the controls penalty matrix
with respect to the weights on the pitch link load harmonics.
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Figure 4.7: Gradient of the on-axis LQR gains with respect to the weights on the
pitch link load harmonics.

defined in SAE-AS94900 are reproduced in the plot [62]. Most notably, the roll

axis gain and phase margins appear nearly unaffected; however, the pitch axis gain

margin increases with increasing weights. This is better explained by looking at the

crossover frequency, shown in Fig. 4.9. The pitch axis crossover frequency rapidly

decreases with increasing weights. Although this leads to a higher gain margin, it

effectively results in an unsatisfactory minimum crossover frequency [59]. The high

sensitivity of the crossover frequency to increasing LQR weights on the pitch link

load harmonics constitutes a severe limitation in the achievable load alleviation.

Next, bandwidth and phase delay for increasing weights on the pitch link load

harmonics are shown in Fig. 4.10. The bandwidth and phase delay specifications

for forward flight (target acquisition and tracking) are also reported on the plot [2].

The roll axis bandwidth and phase delay do not appear to be particularly affected.

However, the pitch axis phase delay decreases with increasing weights.

Figure 4.11 show the disturbance rejection bandwidth (DRB) and peak (DRP)
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Figure 4.8: Stability margins for varying LQR weights on the pitch link load
harmonics.

Figure 4.9: Crossover frequencies for varying LQR weights on the pitch link load
harmonics.

for increasing LQR weights on the pitch link load harmonics. Similarly to the trend

seen for crossover frequency, the DRB and DRP specifications are taken from [65]

and reproduced on the plot. The DRB appears to decreases with increasing weights

on both roll and pitch axes. This leads to a degradation of handling qualities in

the pitch axis for low weights. This poses another possible limitation in achievable

load alleviation.
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Figure 4.10: Bandwidth and phase delay specifications for varying LQR weights
on the pitch link load harmonics.

Figure 4.11: Disturbance rejection bandwidth (DRB) and peak (DRP) for varying
LQR weights on the pitch link load harmonics.

The observations made for the handling qualities specifications in the frequency

domain are reflected in time-domain simulations. The closed-loop response to a

longitudinal stick doublet input is obtained for the different controllers, as shown in

Fig. 4.12. It is apparent that increasing LQR weights on the pitch link harmonics

effectively limits the pitch rate response, which substantiates the findings in [66].

Figure 4.13 shows the resulting load alleviation in terms of peak-to-peak pitch

link load. Since satisfactory minimum crossover frequency and DRB for the pitch
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Figure 4.12: Closed-loop angular response to a longitudinal stick doublet.

axis are obtained for minimum LQR weights on the pitch link load harmonics

(wPLL = 1e−4), the maximum achievable load alleviation for the utility helicopter

configuration is very modest, at least for the baseline controller that was derived.

This finding is further substantiated by the frequency response from a distur-

bance in the pitch rate to the pitch link load, as shown in Fig. 4.14. This particular

response is chosen because, as opposed to the response from longitudinal stick to

pitch link load, it is more representative of the feedback action only of the con-

troller. Since flight control systems generally operate in a frequency range of about

1-60 rad/s, considerations are made based on that window. Indeed, the magni-

tude of the response decreases for increasing LQR weights on the pitch link load

harmonics. However, weights of wPLL = 1e−4 lead to a very modest reduction.

Considering the frequency response from a disturbance in roll rate to the pitch

link load, it is also observed that increasing LQR weights on the pitch link load

harmonics do not result in any load alleviation.
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Figure 4.13: Closed-loop peak-to-peak pitch link load response to a longitudinal
stick doublet.

Figure 4.14: Response from angular rates disturbances to pitch link load.
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In conclusion, it appears that load alleviation through feedback compensation

comes at the cost of a degradation in the handling qualities, particularly in the

pitch axis. In order to achieve significant load alleviation while still meeting the

handling qualities requirements, a design margin optimization of the pitch axis

DRB and minimum crossover frequency should be run on the baseline controller.

4.1.2.2 Rotor State Feedback

Starting from the Baseline RSFB controller, the LQR weights on the rigid-body

states, rotor states, and controls are frozen while the weights on the pitch link load

harmonics are varied to generate a set of LQR feedback gain matrices. Figure 4.15

provides an insight on how the weights on the pitch link load harmonicswPLL affect

the rigid-body and rotor weights in the state penalty matrix Q. Only the diagonal

terms of the state penalty matrix are shown. It is evident that constraining the

pitch link load harmonics leads to increased constraints on the longitudinal and

lateral flapping states.

Figure 4.16 provides insight on how the weights on the pitch link load harmonics

in the output penalty matrix wPLL affect the LQR feedback gains. Only the on-

axis gains are shown. Increasing penalties on the pitch link load harmonics leads

to decreasing LQR on-axis gains. This particularly true for the gains relating the

longitudinal stick to the longitudinal flapping angle. These findings indicate that

increasing load alleviation leads to decreasing pitch axis performance, as it was

concluded for the RBFB controller.

4.1.3 Pseudo-Inverse Weighting Tailoring

Starting from the Baseline Compound RBFB controller, the pseudo-inverse weights

in the feed-forward path are varied to understand how different redundant control

allocations affect the rotor loads. Consider the pseudo-inverse weighting matrix:
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Figure 4.15: Gradient of the diagonal terms of the states penalty matrix with
respect to the weights on the pitch link load harmonics.

Figure 4.16: Gradient of the on-axis LQR gains with respect to the weights on the
pitch link load harmonics.
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Figure 4.17: Closed-loop peak-to-peak pitch link load response to a longitudinal
stick doublet.

W = diag
(

Wδlat Wδlon Wδped Wδsym Wδdif Wδstb

)

(4.1)

For the longitudinal axis, the ratio of the weights on the longitudinal cyclic and

stabilator sticks are varied to provide more or less feed-forward control actuation

to each effector. The sum of the weights that are varied is kept constant, and is

equal to 2. The set of controllers obtained this way is tested in batch simulations.

Figure 4.17 shows how the rotor loads decrease with increasing control actuation

of the stabilator. Figure 4.18 shows how the control signal is re-allocated from

longitudinal cyclic to the stabilator.

The set of controllers obtained is analyzed in the frequency domain. Figure 4.19

shows the closed-loop frequency response of the pitch link load to the commanded

pitch rate for varying pseudo-inverse weights. The rotor loads appear to decrease

with increasing weighting on the stabilator for the typical flight control system’s
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Figure 4.18: Closed-loop controls response to a longitudinal stick doublet.

frequency range.

For the lateral axis, the ratio of the weights on the lateral cyclic and differential

flaperon sticks are varied to provide more or less feed-forward control actuation

to each effector. The sum of the weights that are varied is kept constant, and is

equal to 2. The set of controllers obtained this way is tested in batch simulations.

Figure 4.20 shows how the rotor loads decrease with increasing control actuation of

the differential flaperons. Figure 4.21 shows how the control signal is re-allocated

from lateral cyclic to the differential flaperons.

The set of controllers obtained is analyzed in the frequency domain. Figure 4.22

shows the closed-loop frequency response of the pitch link load to the commanded

pitch rate for varying pseudo-inverse weights. The rotor loads appear to decrease

with increasing weighting on the differential flaperons for the typical flight control

system’s frequency range.

Since the pseudo-inverse control strategy is used solely in the feed-forward path,
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Figure 4.19: Closed-loop frequency response of the pitch link load to the com-
manded pitch rate for varying pseudo-inverse weights.

the only handling qualities affected by varying the pseudo-inverse weights are the

bandwidth and phase delay. Figure 4.23 shows the bandwidth and phase delay

with varying pseudo-inverse weighting. In general, the phase delay decreases with

increasing allocation to the redundant aerodynamic surfaces. This is expected as

the aerodynamic surfaces have much faster dynamics when compared to the rotor.

Pitch bandwidth appears to increases with increasing pseudo-inverse weights on

the stabilator. It is concluded that compounding the rotorcraft is an effective

way of both decreasing rotor loads and improving handling qualities. Virtually,

in forward flight at speeds where aerodynamic effects are significant, the control

signal can be increasingly allocated to the redundant aerodynamic surfaces up to

the point where the aerodynamic surfaces reach saturation for the most aggressive

maneuvers.
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Figure 4.20: Closed-loop peak-to-peak pitch link load response to a longitudinal
stick doublet.

Figure 4.21: Closed-loop controls response to a lateral stick doublet.
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Figure 4.22: Closed-loop frequency response of the pitch link load to the com-
manded roll rate for varying pseudo-inverse weights.

Figure 4.23: Bandwidth and phase delay with varying pseudo-inverse weighting.
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4.2 Controller Optimization

4.2.1 Conventional Helicopter

An optimization of the feedback path is run in CONDUIT R© for the conventional

helicopter. The LQR weights on the pitch link load harmonics are optimized to

meet ADS-33E-PRF specifications while minimizing the area under the PLL/qdist

frequency response. The weights on the rigid-body states and controls for the

rigid-body feedback case, and the weights on the rigid-body states, rotor states,

and controls for the rotor state feedback case, are frozen and the LQR weights on

the pitch link load harmonics are set as separate optimization variables.

Figure 4.24 shows how the area under the PLL/qdist response is minimized for

the optimized LAC controllers. This directly translates to an alleviation in rotor

loads, as shown for a pitch rate doublet in Fig. 4.25. The handling qualities are all

met for the optimization controller, as shown in Figs. 4.26 and 4.27, respectively,

for the rigid-body and rotor state feedback cases. Model following requirements

in the pitch axis are not Level 1 as the response of the rotorcraft is actually best

modelled by a 2nd order model in high-speed forward flight. The penalties on

the pitch link load harmonics for the optimized controller are reported in Table

4.1. It is concluded that constraining the the rotor load harmonics in LQR design

successfully leads to load alleviation while still meeting desired handling qualities.

The peak-to-peak rotor loads are reduced up to a 10% when Level 1 handling

qualities for target acquisition and tracking are met. However, target acquisition

and tracking is the most stringent mission task element (MTE) in ADS-33 spec-

ifications and may not be necessary for missions where load alleviation is active.

Optimizing the gains for less stringent MTEs can lead to higher load reduction.

A relaxation of the handling qualities requirements can lead to increased load re-

duction as well. Further, as shown in Section 4.1.3, employing redundant control

surfaces can further increase load alleviation.
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Figure 4.24: Minimization of the angular rates disturbances to pitch link load
response.

Figure 4.25: Closed-loop peak-to-peak pitch link load response to a longitudinal
stick doublet.
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Figure 4.26: Handling qualities for RBFB LAC controller.
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Figure 4.27: Handling qualities for RSFB LAC controller.
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Table 4.1: Weights on the diagonal elements of Q̂.

Parameter Units RBFB RSFB
u ft/s 0 0
v ft/s 0 0
w ft/s 0 0
p rad/s 1.0828e+2 7.2244e+1
q rad/s 3.8252e+2 3.8028e+1
r rad/s 2.0207e+1 4.6778e+1
φ rad 6.2138e+2 6.3637e+2
θ rad 1.9255e+2 1.9195e−2
ψ rad 2.9349e+2 3.0897e+2
β1c rad - 1.2958e−4
β1s rad - 1.2823e−4

PLL0 lbs 1.1040e−3 1.4387e−3
PLL1c lbs 2.6080e−3 2.7130e−3
PLL1s lbs 2.3360e−3 2.3876e−3
PLL2c lbs 2.2328e−3 2.4231e−3
PLL2c lbs 2.6670e−3 2.6878e−3
PLL3c lbs 1.7931e−2 1.8462e−2
PLL3s lbs 7.0606e−2 7.5601e−2
PLL4c lbs 2.3700e−4 2.1485e−4
PLL4s lbs 6.5220e−3 6.0963e−3



Chapter 5

Identification of Linear

Time-Periodic Systems from Flight

Test Data

5.1 Introduction

The formulation of Linear Time-Periodic (LTP) systems dates back to the late

nineteenth century and it is attributed to Floquet [14]. This enabled the reduction

of real-world systems that operate under a periodic regime to an LTP formula-

tion under the assumption of small perturbations. While LTP systems exist in

many fields (communication systems, space systems, industrial processes, etc.),

the work presented herein focuses on the application to rotorcraft. In rotorcraft,

LTP systems are relevant to the analysis and design of active rotor control sys-

tems such as Higher Harmonic Control (HHC) where the swashplate is actuated

at higher harmonic frequencies, On-Blade Control (OBC) where HHC inputs are

fed to actuators on each blade, and Individual Blade Control (IBC) where each

blade input is actuated independently. A comprehensive survey of the different

approaches and their history is found in a study by Friedmann and Millot [28]. In
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recent years, Saetti and Horn studied the use of LTP systems towards the design

of Load Alleviation Control (LAC) [66,67].

Ever since the early 2000s, various techniques were developed to extract LTP

systems from physics-based models via linearization schemes, and to subsequently

approximate these LTP systems with a higher order Linear Time Invariant (LTI)

systems that can be used in control design. Cheng, Tischler, and Celi [20] devel-

oped a numerical scheme to directly obtain an LTI approximation of a nonlinear

simulation to capture the nonlinear system’s periodic nature. This was accom-

plished by subjecting the nonlinear system to harmonic perturbations during the

linearization procedure. The methodology was demonstrated using a blade-element

helicopter simulation with rigid blades and a 3 state Pitt-Peters inflow model.

In the late 2000s Prasad, Olcer, Sankar, and He [21–24] demonstrated how

a high-order LTI model representative of the rotor periodic nature is obtained

using a two-step procedure. First, an LTP model is extracted by linearizing the

nonlinear dynamics of the helicopter about a periodic equilibrium at incremental

azimuthal steps over one rotor revolution. Second, Harmonic Decomposition [25]

is performed on the LTP system states to obtain an approximated high-order LTI

model. Although this numerical scheme has shown success, it relies on a second-

order formulation of the original LTP system that can be problematic for degrees

of freedom not explicitly represented in second-order form.

A more general formulation that accurately captures the higher harmonic dy-

namics relative to degrees of freedom not explicitly in second order form is proposed

by Lopez and Prasad, starting from 2013 [12, 25, 26]. This formulation relies on

a first-order representation of an LTP system. This technique has proven to ac-

curately approximate nonlinear time periodic models by including the effects of

coupling harmonic terms for body, inflow, and rotor degrees of freedom.

All the previously mentioned techniques concentrated on extracting a LTP sys-

tems from physics-based models via numerical schemes. However, very few studies
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focused on experimentally characterizing LTP systems. In 2004, Verdult, Lovera,

and Verhaegen identified an LTP system of the rotor dynamics alone from simu-

lated experiments [32]. Surprisingly, no studies actually concentrated on identify-

ing an LTP systems of the coupled rotor and rigid body dynamics from flight-test

data.

The objective of this paper is to identify an LTP system representative of the

coupled rigid body / rotor dynamics of a rotorcraft from flight-test data. This

is a fundamental step toward the implementation of HHC/IBC/OBC in industry,

where manufacturers design and validate their control systems using models ob-

tained from flight-test data. Further, the LTP thus obtained could also be used

towards LAC and limit envelope avoidance.

5.2 Methodology

5.2.1 CIFER R© Overview

This research uses the Comprehensive Identification from Frequency Responses

(CIFER R©) software package developed by the U.S. Army Aeroflightdynamics Di-

rectorate (AFDD) at the NASA Ames Research Center [58]. CIFER R© embodies

frequency-response methods for system identification of both aircraft and rotor-

craft. CIFER R© is used to identify a completely generic state-space model structure

of the form:

Mẋ = Fx+Gu(t− τ) (5.1)

that best fits MIMO frequency-response data. The matrices M, F, G, and the

vector τ contain the model parameters to be identified. A measurement (or output)

vector y is introduced because the states x might not be directly measurable or
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only a subset might be measurable:

y = H0x+H1ẋ (5.2)

where the matrices H0 and H1 are composed of known constants. Once the iden-

tification parameters are determined, the model equations can be expressed in

conventional state-space form:

ẋ = Ax+Bu(t− τ) (5.3a)

y = Cx+Du(t− τ) (5.3b)

where:

A = M−1F (5.4a)

B = M−1G (5.4b)

C = H0 +H1M
−1F (5.4c)

D = H1M
−1G (5.4d)

The frequency-response matrix of the identification model T(s) relates the

Laplace transform of the measured data (or output) vector y to the Laplace trans-

form of the input vector u:

Y(s) = T(s)U(s) (5.5)

The frequency-response matrix of the model to be identified T(s) is expressed as

a function of the state-space identification model matrices M, F, G, H0, H1, and

the time delays τ by taking the Laplace transform of Eq. 5.2 and performing some

algebraic manipulations:

T(s) = [H0 + sH1][(sI−M−1F)−1M−1G] ◦ τ(s) (5.6)
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where a common time delay is included for all output responses to a particular

control. The cost function to be minimized is:

J =

nTF
∑

l=1

{

20

nω

ωnω
∑

ω1

Wγ[Wg(|T̂c| − |T |)2 +Wp(∠T̂c − ∠T )2]

}

l

(5.7)

where:

nω is the number of frequency points,

ω1 and ωnω
are the starting and ending frequencies of fit,

nTF is the number of transfer functions to be fit,

T̂c is the frequency response obtained from flight data, and

Wγ, Wg, and Wp are weighting functions.

Specifically, Wγ is a weighting function dependent on the value of the coherence

function at each frequency point ω1, ω2, ..., ωnω
and for each frequency response

pair Tl:

Wγ(ω) =
[

1.58
(

1− e−γ
2
xy

)]2

(5.8)

where γ2xy is the coherence function, thereby emphasizing the most reliable data.

The distribution of points is automatically adjusted to avoid data that shows a

local drop in coherence below a cutoff frequency parameter of (γ2xy)cut = 0.4. Wg

and Wp are the relative weights for magnitude and phase squared errors:

Wg = 1.0 (5.9a)

Wp = 0.01745 (5.9b)

The accuracy of the model is best characterized by the average overall cost function:

Jave =
J

nTF

(5.10)

The np parameters to be identified in the model matrices are collected into an
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identification vector:

Θ =
[

θ1 θ2 ... θnp

]

(5.11)

An optimization algorithm varies the identification parameters Θ until a minimum

value of the average cost Jave(Θ) is obtained. The algorithm uses a pattern search

method. An overall average cost function that achieves Jave ≤ 100 is generally

considered as reflecting an acceptable level of accuracy for flight dynamics modeling

and is typical of helicopters.

The coherence function estimate is defined at each frequency f by:

γ̂2xy(f) =
|Ĝxy|2

|Ĝxx||Ĝyy|
(5.12)

where:

Ĝxx is the input autospectrum,

Ĝxx is the output autospectrum, and

Ĝxy is the cross-spectrum.

The values of the coherence function vary between 0 and 1. For a perfectly lin-

ear system where all of the output spectrum were attributable to all the input

spectrum, the coherence would have an ideal value of 1. However, in practical

applications the coherence will always be less than 1 due to noise contamination

in the measured output signal, to nonlinearities in the input-output system, and

to process noise associated with unknown or unmeasured inputs.

A measure of the accuracy of the identified model is provided by the Cramér-

Rao (CR) bounds. The Cramér-Rao bounds defined as the minimum expected

standard deviation σi in the parameter estimate θi that would be obtained from

many repeated maneuvers:

σi ≤ CRi (5.13)

Cramér-Rao bounds for individual parameters indicate poor identifiability and

suggest that these parameters be eliminated (or fixed) in the model structure. The
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Cramér-Rao bound of the ith identified parameter of the converged solution Θ0

is determined from the associated diagonal elements of the inverse of the Hessian

matrix H:

H =
∂2J

∂Θ∂ΘT
(5.14)

in the following way:

CRi = 2

√

(H−1)ii (5.15)

The Cramér-Rao bounds are best expressed as a percentage of the converged iden-

tification values:

CRi =

∣

∣

∣

∣

CRi

θi

∣

∣

∣

∣

× 100% (5.16)

A reasonable guideline is to achieve CRi ≤ 20%. Several of the largest Cramér-

Rao bounds may be in the range 20-40% without loss of reliability or cause for

concern [58].

A Cramér-Rao bound that significantly exceeds the guidelines reflects one or

both of the following problems: insensitivity or correlation. High insensitivity oc-

curs when changes in a single parameter θi have little or no effect on the converged

cost function J(Θ0), indicating that the parameter is not important in the selected

model structure. Parameter insensitivity is determined from the diagonal elements

of the Hessian matrix:

Ii =
1√
Hii

(5.17)

The parameter insensitivities are best presented as normalized percentages of the

converged parameter values:

Īi =

∣

∣

∣

∣

Ii
θi

∣

∣

∣

∣

× 100% (5.18)

A reasonable goal for insensitivities is to obtain Īi ≤ 10%. However, several of the

largest insensitivities are typically in the range of 10-20% without loss of reliability

of cause for concern [58].
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High correlation occurs when two or more parameters can be simultaneously

varied in a linear relationship while not having an offsetting effect on the cost

function. In such situation, the parameters cannot be independently determined.

For two identification parameters θi and θj the correlation coefficient is:

ρij =
(H−1)ij

√

(H−1)ii(H−1)jj
(5.19)

where:

−1 ≤ ρij ≤ 1 (5.20)

An absolute value of the correlation coefficient close to 1 indicates high parameter

correlation and can compromise greatly the accuracy of the results, as reflected by

high Cramér-Rao bounds.

5.2.2 Frequency Response

This investigation aims at identifying an LTP system that is able to capture the

coupled rigid-body / rotor dynamics and predict the vibratory loads of a helicopter.

A general first-order formulation of an LTP system is given by:

ẋ = F(ψ)x+G(ψ)u (5.21a)

y = P(ψ)x+R(ψ)u (5.21b)

where case ψ is the main rotor azimuth angle in radians. It is convenient to note

that ψ is equivalent to non-dimensional time, which can be related to dimensional

time via the following relation: ψ = Ωt, where Ω the main rotor angular speed in

rad/s, and t is the dimensional time in seconds. Each coefficient matrix is periodic

with a fundamental period of T seconds, which corresponds to 2π radians or one

rotor revolution:
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F(ψ) = F(ψ + ΩfT ) (5.22a)

G(ψ) = G(ψ + ΩfT ) (5.22b)

P(ψ) = P(ψ + ΩfT ) (5.22c)

R(ψ) = R(ψ + ΩfT ) (5.22d)

for all ψ. For rotorcraft, the fundamental frequency can be the main rotor angular

speed Ωf = Ω (corresponds to 1/rev), or it can be any multiple of the number of

blades times the rotor speed Ωf = kNbΩ, k = 1, 2, 3, ... (corresponds to multiples

of Nb/rev).

The LTP identification approach used in this paper is similar to the one pro-

posed by Allen [68], where frequency-domain identification of LTP systems is per-

formed by means of LTI techniques. When the fundamental frequency of oscillation

Ωf is known, a lifting scheme can be used to transform measurements into a set of

responses that each can be described by an LTI system. The lifting scheme is done

by sampling the response of the nonlinear system at non-dimensional instants:

ψn = ψ0 + nΩfT for n = 0, ..., nt − 1, (5.23)

The periodicity of the response effectively vanishes if one samples at the same

non-dimensional time within the fundamental period. One important difference

between identification of the lifted LTP system and standard LTI identification

is the bandwidth of the response. In an ideal case, the bandwidth of response is

limited to half of the sampling frequency, according to the Nyquist Theorem. In

practical applications however, the bandwidth of the response is limited to less than

half on the sampling frequency [58]. So the upper limit of the bandwidth of the

lifted responses used to identify the LTP system is Ωf/2, whereas the upper limit

of the responses used to identify the standard LTI system is pΩ/2, whre p is the
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number of samples per rotor revolution of the flight-test data. The lifted responses

are converted to frequency responses and subsequently identified separately to

obtain a set of parametric LTI models. This set of LTI models constitutes an LTP

system.

5.2.3 Parametric Identification

The linear model structure used to demonstrate the concept is chosen to be rel-

atively simple and able to capture the coupled rigid-body / rotor dynamics and

the vibratory loads. The following system describes the decoupled longitudinal /

heave dynamics of the rotorcraft:

















ẇ

q̇

θ̇

β̇1c

















=

















Zw Zq −g sin θ0 Zβ1c

Mw Mq 0 Mβ1c

0 1 0 0

0 1 0 Mfβ1c

































w

q

θ

β1c

















+

















Zδlon

0

0

Mfδlon

















δlon (5.24a)

















az

q

θ

β1c

















=

















Zw 0 g sin θ0 Zβ1c

0 1 0 0

0 0 1 0

0 0 0 1

































w

q

θ

β1c

















+

















Zδlon

0

0

0

















δlon (5.24b)

The same model structure is used for the parametric identification of both LTI

and LTP systems. However, the stability and control derivatives (parameters) are

time-invariant for the LTI model but are assumed to be time-periodic in the LTP

system through the rotor azimuth angle ψ.
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Figure 5.1: Piloted frequency sweep.

5.3 Identification from Flight Test Data

5.3.1 Frequency Response

The methodology is applied here to JUH-60 flight-test data collected at a flight

condition of 80 kts in straight and level flight. A set of three frequency sweeps was

performed in the longitudinal axis using longitudinal stick inputs. The measured

outputs consists of the vertical acceleration in body axes az, the pitch rate q,

and the longitudinal flapping angle in Multi-Blades Coordinates (MBC) β1c. In

addition, the time derivative of the vertical speed in body axes ẇ was reconstructed

in the time domain [58] and used in the identification. Although the input to the

linear system is solely the longitudinal cyclic stick δlon, all of the pilot control

inputs were measured. This is because when computing the frequency responses,

the other pilot inputs are used to calculate and remove cross-correlation between

axes [58]. Figure 5.1 shows one of the three piloted frequency sweeps. The Power
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Figure 5.2: Power spectral density of az(t).

Spectral Density is computed for the vertical acceleration measured from one of

the frequency sweeps,as shown in Fig. 5.2. This is done to assess the harmonic

content of the response. It is clear that the measured az signal has a dominant

4/rev content. This is typical of the dynamics of helicopters in forward flight,

which exhibit a Nb/rev periodic behavior [69]. In light of this, the fundamental

frequency is chosen to be Ωf = NbΩ. Since the UH-60 has four blades and its main

rotor speed is Ω = 27 rad/s, the fundamental frequency is Ωf = 108 rad/s (4/rev),

with a period of T = 2π/108 seconds (corresponds to 1/4 of a revolution). The

frequency sweep data is sampled at the fundamental frequency (four times per rotor

revolution) for each azimuthal position that is less or equal than 90 deg. Since the

original flight-test data was sampled p = 60 times per rotor revolution, sampling

at 4/rev for each azimuthal position less or equal than 90 deg leads to fifteen sets

of frequency responses, one for each azimuthal position ψ = 0, 6, 12, ..., 84 deg.

In the case of LTI estimation, the frequency sweep data is used as is. Figure 5.3

shows both the standard (in black) and the lifted (in colors) frequency responses
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(a) (b)

(c) (d)

Figure 5.3: Frequency response of longitudinal stick to (a) vertical acceleration,
(b) pitch rate, (c) longitudinal flap angle, and (d) vertical speed time derivative.
Standard (LTI) response in black, lifted responses in colors.

computed with CIFER R© [58].

5.3.2 Parametric Identification

Parametric identification is performed on each frequency response set, leading to

fifteen LTI systems. Since the parameters of the LTP system are assumed to be

4/rev periodic, the fifteen LTI systems are repeated four times to constitute an
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LTP system with sixty entries. An LTI system is also computed from the standard

frequency response. The frequency range is chosen to be the same for both LTI

and LTP parametric identification and such that the coherence of both standard

and lifted responses is sufficiently high (i.e. greater than 0.6). The lower ΩL and

upper ΩU frequency limits for each frequency response are reported visually in

Fig. 5.3 and quantitatively in Table 5.1. The values of the identified stability and

control derivatives for both LTI and LTP systems are shown in Fig. 5.4. A few

observations can be made:

1. The identified LTP system parameters appear to be 4/rev and 8/rev periodic.

2. The mean of each of the identified LTP system parameters is very close to

value of their respective LTI system parameter. This is to be expected as

the LTI system constitutes the zeroth harmonic (mean) of an LTP system,

and this is reflected in the stability and control derivatives as well.

A comparison between the identified LTI system and flight test data in the

frequency domain is shown in Fig. 5.5. The identified LTI parameters, along

with their Cramér-Rao bounds and insensitivities are reported in Table 5.2. The

CR bounds provide a reliable measure of parameter accuracy for the frequency-

response identification and indicate the level of correlation among the identification

parameters [58]. Large relative CR bounds for individual parameters indicate poor

identifiability and suggest that these parameters should be fixed in the model struc-

ture. The CR bounds for the identified LTI parameters are generally low (i.e. less

than 20%). The parameters that show relatively high CR bounds have low insen-

sitivity and are therefore retained as identification parameters. The average cost

function associated with the identification is J = 18. The average cost functions

for LTP identified models is J = 20. A cost function less than J = 50 indicates

excellent match of the model to the frequency responses [58].

The eigenvalues of the identified LTI and LTP systems are reported in Table
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Table 5.1: Parametric identification frequency range.

Frequency
Response

ωL [rad/s] ωU [rad/s]

az/δlon 0.4 16
q/δlon 0.4 7
β1c/δlon 0.6 18
ẇ/δlon 0.6 10

Figure 5.4: Identified parameters.
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(a) (b)

(c) (d)

Figure 5.5: Frequency responses of the identified LTI system: longitudinal stick to
(a) vertical acceleration, (b) pitch rate, (c) longitudinal flap angle, and (d) vertical
speed time derivative.
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Table 5.2: LTI parametric identification results.

Parameter Value Cramér-Rao Bound [%] Insensitivity [%]
Zw -0.985 [1/s] 8.026 1.200
Zq 134.1 [ft/(rad s2)] 0.568 0.568
Zβ1c -551.6 [ft/(rad s2)] 59.41 0.555
Mw 0.020 [rad/ft] 11.80 1.532
Mq -1.502 [1/s] 11.74 2.041
Mβ1c -16.13 [1/s] 6.428 0.929
Mfβ1c

-31.83 [1/s] 46.55 0.384

Zδlon -21.37 [ft/(s2in)] 41.21 0.393
Mfδlon

-0.896 [rad/(s2in)] 44.85 0.377

τ 0.072 [s] 16.73 2.673

Table 5.3: Eigenvalues.

System λ1 λ2 λ3 λ4
LTI -31.63 -3.001 0.302 0.019

LTP (mean) -31.63 -3.004 0.299 0.019

5.3. The eigenvectors of the identified LTI system are reported in Table 5.4. The

fastest eigenvalue λ1 ≈ −31.6 is stable and is associated with the rotor flapping

mode. The second-fastest eigenvalue λ2 ≈ −3.0 is stable and is associated with

short period mode. The third-fastest eigenvalue λ3 ≈ 0.3 is unstable and is

associated with the short period mode as well. In this case, the short period mode,

which is typically represented by a pair of complex conjugate poles, becomes two

different modes represented by two real eigenvalues [70]. The slowest eigenvalue

λ4 ≈ −0.019 is unstable and is associated to the pitch attitude integrator mode.

All the eigenvalues and eigenvectors appear to be real. This can be imputed to

the absence of the forward speed u in the model. The mean eigenvalues of the

identified LTP system match closely the eigenvalues of the identified LTI system.
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Table 5.4: Eigenvectors.

States v1 v2 v3 v4

w -0.274 1.000 -0.512 -0.027
q -0.525 -0.907 -0.302 -0.019
θ 0.017 0.302 -1.000 -1.000
β1c -1.000 -0.017 -0.003 -0.000

5.3.3 Time Domain Validation

In order to validate the identified models, time history simulations from the LTI

and LTP systems were compared to flight-test data, as shown in Fig. 5.6. The

verification flight data that is used consists of a longitudinal cyclic doublet at 80

kts level flight. The time step used for the simulations is ∆t = 2π/pΩ. Residual

errors in the trim estimate are modelled as a bias vector ẋb, which also provides

a first-order correction for the effects of process noise in the estimate such as

turbulence and unmeasured secondary controls. Similarly, residual errors in the

output estimates are incorporated in the output equation as a periodic reference-

shift vector yref. The LTP system that is simulated is:

ẋ = F(ψ)x+G(ψ)u+ ẋb (5.25a)

y = P(ψ)x+R(ψ)u+ yref (5.25b)

If the mean of the identified LTP coefficients is close to the value of the identified

LTI coefficients, one can use constant bias and reference shift vectors that are

estimated from the identified LTI, as done is [58]. Several observations can be

made:

1. The responses of the LTI and LTP systems are similar, and are both close

to the flight data.

2. The LTI response constitutes the zeroth harmonic (mean) of the LTP re-

sponse.
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3. The LTP response well predicts the higher-harmonic content of the flight

data. This is immediately apparent by looking at the vertical acceleration

plot, presented in Fig. 5.7. Note that the vertical acceleration is predicted

well up to about the tenth second of simulation, when the pitch attitude

starts diverging. The pitch attitude diverges because the identified model

has an unstable pitch subsidence mode.

4. Note that a periodic equilibrium is added to the LTP system response. An

indication of the goodness of the identified LTP system is provided by how

well its peak-to-peak response relates to the verification data. The peak-to-

peak response of the vertical acceleration is shown in 5.8. For each 90 deg

cycle the maximum and minimum peaks of the response are calculated. A

running mean (or median) is obtained by taking the sum of the maximum

and minimum peaks for each cycle and dividing by two. The curves that

are plotted are the maximum and minimum peaks minus the median. The

peak-to-peak response of the LTP system generally well tracks the one from

the verification data.

5. Discrepancies in the predicted amplitude of az may be due to the simplicity

of the structure of the identified LTP system. Specifically, the absence of the

forward speed u and the fact that the model is decoupled from the lateral

dynamics may be limiting factors.
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Figure 5.6: Rigid body and rotor response to a longitudinal stick doublet.

Figure 5.7: Vertical acceleration response to a longitudinal stick doublet.



130

Figure 5.8: Peak-to-peak vertical acceleration responses to a longitudinal stick
doublet.

5.4 Contribution of the Higher Harmonics to the

Helicopter Dynamics

5.4.1 Modal Participation Factors

Modal participation factors are computed to quantify the influence of the higher

harmonics on the dynamics of the helicopter. In particular, modal participation

factors describe the modal participation of each state to each mode through the

relative magnitude of the harmonic components of each state. The modal partici-

pation factors are calculated by harmonic decomposition means, as demonstrated

by Lopez and Prasad [13]. Consider an LTP system:

ẋ = F(ψ)x (5.26)
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Using a first-order formulation introduced by Lopez and Prasdad [25], the state of

the LTP system is decomposed in a finite number of harmonics via Fourier analysis:

x = x0 +
N
∑

i=1

xic cos iψ + xis sin iψ (5.27)

An approximate high-order LTI can be represented in matrix form by defining the

augmented state vector:

XT =
[

xT0 x
T
1sx

T
1c . . .x

T
Ncx

T
Nc

]

(5.28)

where x0 is the zeroth harmonic component and xic and xis are the ith harmonic

cosine and sine components of the state. The state equation of the resulting LTI

model is:

Ẋ = AX (5.29)

Once the LTI system matrix is calculated, it can be used to compute the modal

participation factors using the following procedure:

1. Solve for the eigenvalues of the high-order LTI system of Eq. 5.29.

2. Convert the harmonic states of the eigenvector from real-trigonometric

Fourier coefficients to complex-exponential Fourier coefficients.

3. Compute modal participation factors by normalizing the modal participation

with respect to the sum of the magnitudes of all harmonic components for

each particular state and mode.

The above methodology is implemented and applied to the identified LTP system

to assess how the harmonic components of each state contribute to each particular

mode. The high-order LTI considered for this study retains up to the eighth

harmonic. Figure 5.9 shows the modal participation factors of each state to each

mode. Figure 5.9(a) shows the modal participation of the vertical speed to each
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mode. Ninety-three percent of the contribution to the rotor mode comes from the

zeroth harmonic, whereas the fourth and eighth harmonics contribute for up to 6%

and 1%, respectively. The contribution of the vertical speed to all the other modes

comes almost exclusively through the zeroth harmonic. Figures 5.9(b-c) show

the modal participation factors of the pitch rate and pitch attitude, respectively,

to each mode. Ninety-nine percent of the contribution to all modes comes from

the zeroth harmonic, whereas the fourth harmonic contributes for up to a 1%.

Figure 5.9(c) shows the modal participation factors of the longitudinal flapping

angle β1c to each mode. Ninety-three percent of the contribution to all modes

comes from the zeroth harmonic of the longitudinal flapping angle, whereas the

fourth and eighth harmonics contribute for up to 6% and 1%, respectively. It is

concluded that the higher harmonics of the rotor states contribute to up to a 7%

of the longitudinal helicopter dynamics, 4/rev being the most dominant higher

harmonic. The zeroth-harmonic of the rotor states contributes to the remaining

93% of the longitudinal helicopter dynamics. The rigid-body states contribute

to the helicopter flight dynamics almost exclusively through the zeroth harmonic.

This validates the use of the LTI model for flight dynamics applications [69].

5.4.2 Time Vectors

The time vector diagram introduced by McRuer, Ashkenas, and Graham [71] pro-

vides a useful illustration of relative phasing and contribution of each term in the

equations of motion for a selected response, and can be especially useful in inter-

preting the system ID model response [13]. For example, the unforced pitch rate

response (i.e., controls fixed) is obtained as follows:

q̇ =Mww +Mqq +Mβ1cβ1c (5.30)
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(a) (b)

(c) (d)

Figure 5.9: Modal participation factors of the various harmonics of (a) the vertical
speed, (b) pitch rate, (c) pitch attitude, and (d) longitudinal flap angle.

If one takes the Laplace transform and assumes zero initial conditions (trim),

obtains:

sq −Mww −Mqq −Mβ1cβ1c = 0 (5.31)

The time vector associated with a particular mode is calculated by substituting the

eigenvalue (s = λi) relative to that particular mode, the associated eigenvector,

and the identified values of the stability derivatives in Eq. 5.31. This was done both

for the identified LTI and LTP systems. Note that the eigenvalues, eigenvectors,
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and identified parameters of the LTP systems are dependent on the azimuth angle

ψ. Generally, the plot of the time vector is a closed polygon that illustrates the

balance of inertial moments sq with with the relative importance and phasing of

each aerodynamic term in the unforced equation of motion. Since all eigenvalues

and eigenvectors are real in this particular case, the components of the time vector

are real as well. Figure 5.10 illustrate the time vectors for both LTP and LTI

systems relative to the pitch rate equation and the heave subsidence mode. A few

observation can be made:

1. The inertial term has opposite phase with respect to the aerodynamics terms.

2. The LTP system time vector is periodic with 4/rev and 8/rev components

and its mean coincides with the LTI time vector.

3. The summation of the aerodynamic and inertial terms gives zero, which is

expected since the time vector is a closed polygon.

4. Considering the LTP system time vector, the amplitude of oscillation of each

term, when compared to the magnitude of the mean of each term (zeroth har-

monic), gives an indication of the relative importance of the higher-harmonic

content to the zeroth harmonic for each term for a particular state and mode.
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Figure 5.10: Time vector relative to the pitch rate equation of motion and the
heave subsidence mode.



Chapter 6

Concluding Remarks and

Recommendations for Future Work

6.1 Concluding Remarks

6.1.1 Alleviation of Unsteady Rotor Loads

Two nonlinear simulation models were developed with FLIGHTLAB R©. The first

model is representative of a notional conventional helicopter similar to a UH-60.

The second model is representative of compound rotorcraft similar to a UH-60

with the addition of a wing with flaperons, and a moving horizontal tail (stabila-

tor). Both models accurately model the rotor loads by including flexible blades,

dynamic inflow models, and nonlinear aerodynamics. Linear Time-Periodic (LTP)

systems were obtained from the nonlinear models via linearization schemes using a

two-step procedure. First, the nonlinear FLIGHTLAB R© models were trimmed at

at 120 kts forward and level flight. Next, the models were linearized at incremen-

tal azimuth positions over one rotor revolution. High-order Linear Time-Invariant

(LTI) approximations of the LTP systems were obtained using harmonic decompo-

sition. Harmonic decomposition decomposes the state, input, and output vectors
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into a finite number of harmonics. Reduced-order models were derived from the

high-order LTI systems to make control design tractable. By retaining the higher-

harmonics of the rotor loads in the output, the reduced order models accurately

predicted the rotor loads.

Flight control laws based on a model following control strategy were developed

to provide stability and rate command / attitude hold response in the roll, pitch

and yaw axes for both the conventional helicopter and the compound rotorcraft.

The flight control laws were first optimized to meet a comprehensive set of set of

stability, handling qualities, and performance specifications. Next, an assessment

was made on how the feed-forward and feedback paths of the controller affect the

rotor loads. Finally, the controllers were optimized to minimize the unsteady rotor

loads while still meeting the desired handling qualities.

Based on this work, the following conclusions are drawn.

1. Each harmonic of the Individual Blade Coordinates (IBC) states is influenced

by the same, and a lower and a higher harmonic of the Multi-Blade Coor-

dinates (MBC) states. For high-order LTI systems to capture the behavior

of IBC states up to the N th harmonic, it was retained up to the (N + 1)

th harmonic when performing harmonic decomposition on LTP systems with

MBC states.

2. By retaining the higher-harmonics of the rotor loads in the output, the 9-state

reduced-order model accurately predicted the influence of the 0th harmonics

of the rigid-body states on the higher-harmonics of the rotor loads. By also

retaining the longitudinal and lateral flapping angles as states, the 11-state

model predicted the influence of the 0th harmonics of the rigid-body states

and flapping states on the higher-harmonics of the rotor loads.

3. Previous work limitations, such as the reliance on non-physics-based models

and curve fits to approximate rotor loads, were lifted.
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4. Rotor loads in high-speed forward flight were particularly sensitive to pitch

rate commands. Roll rate commands also affect the rotor loads, but in a

minor way. Rotor loads were relatively insensitive to yaw rate commands.

5. Load alleviation through feed-forward compensation (command model tai-

loring) was effective in providing alleviation of the rotor loads. However, it

came at the cost of a degradation in bandwidth and phase delay.

6. Load alleviation through feedback compensation came at the cost of a degra-

dation in the handling qualities, particularly in the pitch axis. The pitch axis

disturbance rejection bandwidth (DRB) and minimum crossover frequency

posed potential limitations in achievable load alleviation.

7. Redundant control allocation was very effective towards load alleviation and

did not degrade the handling qualities. Since the redundant control surfaces

considered have much faster dynamics than the main rotor, their employment

improved the handling qualities, especially bandwidth and phase delay.

8. The controller minimizes rotor loads perturbations from their periodic equi-

librium. It follows that this methodology is well suited for alleviating un-

steady loads. However, it does not affect stationary (trim) loads.

9. The optimized load alleviation controllers provided load alleviation while still

meeting a comprehensive set of stability, handling qualities, and performance

requirements. Rotor loads are abated by up to a 10% for the conventional

helicopter when Level 1 handling qualities for target acquisition and track-

ing are met. Optimizing the gains for less stringent mission task elements

(MTEs) can lead to higher load reduction. Employing redundant control

surfaces can further increase load alleviation.

10. Since the load alleviation controllers act solely through 1st harmonic swash-

plate controls, it can readily be integrated with existing or future Automatic
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Flight Control Systems (AFCS) on civil or military rotorcraft.

6.1.2 Identification of Linear-Time Periodic Systems from

Flight Test Data

A methodology to identify Linear Time Periodic (LTP) systems from flight test

data was developed. Frequency sweeps were sampled at different rotor azimuth

angles with a frequency of 4/rev. A set of frequency responses were obtained from

the lifted time response using CIFER R©. Subsequently, parametric identification

was performed for each set of frequency responses. The resulting set of Linear Time

Invariant (LTI) systems constitute an LTP system. The technique was applied to

UH-60 flight test data. The LTP system obtained is representative of the coupled

rigid body / rotor dynamics and accounts the higher harmonic content of the

rotorcraft dynamics. The LTP system was validated both in the frequency and

time domains. Modal participation factors and time vectors were computed to

assess the contribution of the higher harmonics to the rotocraft dynamics. Based

on this work, the following conclusions can be reached.

1. Linear Time-Periodic systems representative of the rotor dynamics and vibra-

tory loads cannot only be derived from physics-based models via linearization

schemes, but can also be identified from flight test data.

2. The identified LTP system is able to predict the higher-harmonic content of

the rotorcraft dynamics. An indication of the goodness of the identified LTP

system is provided by how well the contraction/expansion of the periodic

equilibrium of the vibratory loads relates to the flight test data.

3. Discrepancies in the predicted amplitude of the vibratory loads may be due

to the simplicity of the structure of the identified LTP system. Specifically,

the absence of the forward speed u and the fact that the model is decoupled

from the lateral dynamics may be limiting factors.
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4. The higher harmonics of the rotor states contribute to up to a 7% of the of the

helicopter flight dynamics, 4/rev being the most dominant higher harmonic.

The rigid body states contribute to the helicopter flight dynamics almost

exclusively through the zeroth harmonic.

5. Although this study concentrates on the vertical acceleration as vibratory

load, other rotor loads could readily be included as outputs of the identified

LTP system. Once the LTP system is identified, it can be used to obtain an

approximate high-order LTI system that provides a convenient framework

for dynamic analysis and controller synthesis.

6. Since manufacturers rely on dynamic models obtained from flight data, the

use of high-order LTI models derived from identified LTP systems could

lead to the extension of Higher Harmonic Control (HHC), Individual Blade

Control (IBC), On-Blade Control (OBC), Load Alleviation Control (LAC),

and flight envelope limit detection and avoidance to production rotorctaft.

6.2 Recommendations for Future Work

Since identified LTP systems have been shown to accurately predict rotorcraft

vibratory loads, they constitute a viable and computationally-effective way to pre-

dict flight envelope limits. In this sense, LTP systems could be used towards flight

envelope limit detection and protection. In previous studies [35–41], the limit de-

tection problem was tackled with the use of stochastic methods such as neural

networks and fuzzy-logic systems. LTP systems, unlike neural networks, are de-

terministic and could be readily identified across the entire flight envelope through

a model stitching strategy [58,72].

Although this study concentrates on the vertical acceleration as vibratory load,

other rotor loads could readily be included as outputs of the identified LTP system.

For instance, the pitch link loads could be taken into consideration. Once the
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LTP system is identified, it can be used to obtain an approximate high-order LTI

system that provides a convenient framework for dynamic analysis and controller

synthesis. The use of high-order dynamics models towards HHC and LAC was

recently demonstrated by Lopez and Prasad [12, 25, 26], and Saetti and Horn [66,

67]. Although these studies used high-order systems obtained from physics-based

models, the approaches proved successful. Since manufacturers rely on dynamic

models obtained from flight data, the use of high-order LTI models derived from

identified LTP systems could lead to the extension of HHC and LAC to production

rotorctaft.

In general, LTI models are sufficient for standard control design since the rigid-

body states contribute to the helicopter flight dynamics almost exclusively through

the zeroth harmonic. For primary flight control, where the objective is to control

the zeroth harmonic (average) of the rigid-body motion, the difference in using

LTI models rather than LTP systems is negligible. Certainly, LTI systems provide

a more convenient and simpler framework. However, if one aims at predicting or

controlling the higher harmonics of the rigid-body and rotor motion, LTP systems

are necessary.

Flight control design based on LTP systems identified from flight-test data

could benefit the Future Vertical Lift (FVL) program. FVL is a plan to develop

a new generation of military helicopters for the U.S. Army with increased capa-

bilities in speed, range, and payload, and reduced maintenance and operational

cost. Because these rotorcraft would operate at significantly higher speeds than

the current helicopters, alleviation of the higher harmonic rotor loads and flight

envelope protection are key elements to reduced maintenance cost. These rotor-

craft are also likely to employ redundant control surfaces which, in connection with

LTP-based flight control design, demonstrated outstanding effectiveness towards

the alleviation of unsteady rotor loads [66].
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