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Abstract

Neighborhood systems are used to approximate graphs as finite topological structures. Throughout this article, we construct
new types of eight neighborhoods for vertices of an arbitrary graph, say, j-adhesion neighborhoods. Both notions of Allam
et al. and Yao will be extended via j-adhesion neighborhoods. We investigate new types of j-lower approximations and j-
upper approximations for any subgraph of a given graph. Then, the accuracy of these approximations will be calculated.
Moreover, a comparison between accuracy measures and boundary regions for different kinds of approximations will be
discussed. To generate j-adhesion neighborhoods and rough sets on graphs, some algorithms will be introduced. Finally, a
sample of a chemical example for Walczak will be introduced to illustrate our proposed methods.

Keywords Neighborhood system - Rough sets - Lower approximations - Upper approximations - Graphs -

J-Accuracy measure

1 Introduction

Motivated by many analyzes requiring rough sets, the
present paper aims for a new approach to the study of
rough sets from the points of view of both neighborhood
systems and graphs. Neighborhood systems on graphs
based on rough sets are a generalization of Pawlak’s rough
set model.

Rough set theory was initially developed (Pawlak 1981)
as a new mathematical methodology to deal with the
vagueness and uncertainty in information systems. Many
proposals made for generalizing and interpreting rough sets
(Orlowska and Pawlak 1984; Pomykala 1987; Skowron
and Stepaniuk 1996; Yao and Line 1996; Zirako 1994).
Some applicable examples of real-life fields of the rough
set method can be cited such as in Process Control, Eco-
nomics, Medical Diagnosis, Biochemistry, Environmental
Science, Biology, Chemistry, Psychology, Conflict
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Analysis, Pharmacology, Banking, Market Research,
Engineering, Speech Recognition, Material Science,
Information Analysis, Data Analysis, Data Mining, Control
and Linguistics and many other fields [See, (Allam et al.
2005; Benouini et al. 2020; Dong et al. 2004; Jensen and
Shen 2004; Leung et al. 2006; Pal and Mitra 2004; Yao and
Chen 2005; Zhao and Liu 2011; Zhan et al. 2019)]. In
1999, Yao (1999) introduced generalized rough sets
through a binary relation; while, these approximations are
not satisfied with Pawlak’s properties that were applied on
an equivalence relation. For this reason, Zhu (2007) studied
rough approximations that depend on general relations.
These approximations help to prove some properties that
were not easy to prove in the classical case. From this time
onwards, many types of approximations are investigated. In
2008, Abu-Donia (2008) discussed three types of lower
approximations and upper approximations with respect to
any binary relation based on the right neighborhoods. This
generalization of approximations converted into two ways
via a finite number of binary relations. In 2014, Abd El-
Monsef et al. (2015) presented the main ideas about the
concept of j-neighborhood systems and studied eight
approaches for approximating rough sets. Many research-
ers studied the j-neighborhood systems on different spaces
such as Abbas et al. (2016); Amer et al. (2017); Atef et al.
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(2020); Hosny (2018); Huang and Li (2018); Kozae et al.
(2019).

Graph theory (Chartrand et al. 2016) is an important
mathematical tool in diverse subjects. A graph G = (V,E),
is an ordered pair of different sets (V, E), where V is a
nonempty set and E is a subset of unordered pairs of V. The
vertices and edges of a graph G are the elements V = V(G)
and E = E(G), respectively. A graph G is finite (respec-
tively, infinite) if the set V(G) is finite (respectively, infi-
nite). The degree of a vertex u € V(G) is the number of
edges containing u. If there is no edge in a graph G but
contains a vertex u, then u is called an isolated point, and
so the degree of u is zero. An edge that has the same vertex
to end is called a loop, and the edge with a distinct end is
called a link. A graph is simple if it has no loop and no pair
of its links join the same pair of vertices. A graph that has
no edge is called a null graph. A directed graph is a graph
in which edges have a certain way. In addition, an undi-
rected graph is a graph in which edges have no way. Many
scholars work on the theory of graphs and applied it in
many fields, see (Akram and Zafar 2018; Atef et al. 2020;
Liu et al. 2020; Qin et al. 2018; Malik et al. 2018; Malik
and Akram 2018; Mandal and Ranadive 2019; William-
West and Singh 2018). In 2018, Nada et al. (2018) initiated
the study on topological structures via graphs based on the
right neighborhoods. Recently, the neighborhood systems,
rough sets on graphs are used to represent structures such
as self-similar fractals (El Atik and Nasef 2020) and human
heart (EI Atik and Nasef 2020) which are useful in physics
and medicine, respectively.

As a continuation of the development in the use of
general relations, we construct in the present paper new
types of j-adhesion neighborhoods from adjacent vertices
of general graphs. Based on j-adhesion neighborhoods, we
define j-lower approximations and j-upper approximations
and the comparison between them and some other types of
lower approximations and upper approximations will be
discussed. In Sect. 2, we present the fundamental concepts
and properties of that used in this paper. In Sect. 3, we
introduce the new concepts of j-adhesion neighborhoods
and study their basic properties and examples. The goal of
Sect. 4 is to generalize some of Pawlak’s properties. A
comparison between the proposed method and the previous
one is shown in Sect. 5. Finally, we apply the results on a
sample that is deduced from a reduction by similarity (EI
Atik 2020) for Walczak’s example in chemistry.

2 Basic concepts and properties

In this section, some basic notions of rough sets, graph
theory, and a j-neighborhood system will be presented.

@ Springer

Definition 1 (Yao 1999) Let R be a binary relation on a
nonempty set U and A C U. Lower approximations and
upper approximations of A are defined by

R(A)={x€ U :xR C A}, and

R(A)={x € U:xRNA # ¢} ;
xR = {y € U : xRy}.

where

The following properties of lower approximations and
upper approximations for Pawlak (Pawlak 1982; Pawlak
and Skowron 1994; Pawlak 1997) will be stated.

(L)  R(X) CX.

(L2) R(¢) =¢.

(L3) R(U)=U

(L4)  R(XNY)=R(X)NR(Y).
(L5) If X C Y, then R(X) CR(Y)
(L6) R(X)UR(Y) CR(XUY)
L7)  R(X) = (R(X))"

(L8)  R(R(X)) =R(X)

L9)  R((R(X))") = (R(X))*

(Ul) X CR(X).

U2) R(¢) = ¢.

(U3) R(U)="U.

(U4) R(XUY)=R(X)UR(Y).
(U5) IfX CY, then R(X) CR(Y)
(U6) R(X)NR(Y)DR(XNY).
(U7)  R(X°) = (R(X))".

(U8) R(R(X)) = R(X).

U9 R((RX))) = (R(X))*

Definition 2 (Abu-Donia and Salama 2012) Let R be a
binary relation on U and A C U. Then, the following
properties are held.

(1) Roughly R-definable, if R(A) # ¢ and R(A) # X;

(2) Internally R-undefinable, if R(A) = ¢ and R(A) # X;

(3) Externally R-undefinable, if R(A)# ¢ and
R(A) = X;

(4) Totally R-undefinable, if R(A) = ¢ and R(A) = X.

Definition 3 (Nada et al. 2018) Let G = (V(G), E(G)) be
a graph and H be a subgraph of G. Lower approximations
and upper approximations of V(H) are defined by

2(V(H)) = {x € V(G) : xR C V(H)}, and
Z(V(H)) = {x € V(G) : xRN V(H) # ¢}.

Definition 4 (Yao 1999 and Allam et al. 2005) Let G =
(V(G), E(G)) be a graph, for each x € V(G). The j-
neighborhood systems for x, V j € {r,l, <r>,6<l>,
u,i, <u >, <i> } are defined by

(D Ni(x) ={y € V(G) : xRy}
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(2 Ni(x) ={y € V(G) : yRx}.
() Neos(x)= mxeN ())Nr(y)-
4 Na>(x)= ﬂxeN,( ) Ni(y).

(5)  Nu(x) = N (x) UN(x).

©6) Ni(x) = N, (x) NNy (x).

@) N<u>(x):N<r>(x)UN<l>(x)-
) N<i>(x):N<r>(x)mN<l>(x)~

3 Rough approximation model via graphs
using j-neighborhood systems

In this section, we extent Definition 1 of Yao in terms of j-
neighborhood systems which are defined in Definition 4.
We first give an example to illustrate j-neighborhood sys-
tems from a simple graph.

Example 1 Let G be a simple graph as shown in Fig. 1. j-
neighborhood systems are defined as follows:

Take i=A{r} and je{l, <r>,
<l>,u,i, <u>,<i>}, we have

@ I j={r,Lui}, then Nj(a)= {b,e}, N;(b)=

{aac7d}7 N/(C) = {bvd} 7Nj(d) = {bvc’e}v

Ni(e) = {a,d}.

) I j={<r>,<l>, <u>,<i>}, then
Nj(a) = {a,d}, N;(b) = {b},Nj(c) = {c}, Nj(d) =
{d}, Nj(e) = {b,e}.

Definition 5 Let G = (V(G), E(G)) be a graph and H be a
subgraph of G. Define a first type of lower approximations
and upper approximations of H which are denoted by
N;(V(H)) and N;(V(H)), respectively.

Ni(V(H)) = {x € V(G) : Ny(x) € V(H)}, and
Ni(V(H)) = V(H) U{x € V(G) : N,(x) N V(H) # $}.

Remark 1 1f j = r in Definition 5, then we have approxi-
mations in Definition 1.

Definition 6 Let G= (V(G), E(G)) be a graph and H be a
subgraph of G. Define the j-boundary, j-positive, j-negative
regions and j-accuracy measure of H in terms of j-adhesion

a b

e d

Fig. 1 A simple graph G

neighborhood which will be denoted by BNDp,, POSp,
NEGp, and ay;, respectively.

(1)  BNDw,(V(H)) = Nj(V(H)) — N;(V(H)).
(2) POSy,(V(H)) =N;(V(H)).
(3) NEGy,(V(H)) = V(G) — N;(V(H)).

@ a(V(H) =

N;i(V(H))| # 0.
Example 2 (Contine from Example 1). Take j=r, If
V(H) = {b,d, e}, we have

() N, (V(H)) = V(G) and N, (V(H)) = {a,c}.

(i) BNDy, (V(H))= {b,d,e}, POSy (V(H))=
{a,c}, NEGNr (V(H)) = {bvdv 6} and 0N
(VH)=%Forj=1, <r>,<l>, ui,<u>,

<i >, the results are also by the same manner.

Theorem 1 Let G = (V(G), E(G)) be a graph and H and
K be subgraphs of G. Then, the following properties are
held.

1) N(V(G)) = V(G).

(2) If V(H) C V(K), then N;(V(H)) C N;(V(K))

(3)  N(V(H)NV(K)) = N;(V(H)) N N;(V(K)).

) N;(V(H)) UN;(V(K)) € N;(V(H) U V(K)).

5)  Ni(V(H)) = (N;(V(H)))

6) Ni(¢) = 9.

(7) If V(H) C V(K), then N;(V(H)) C N;(V(K))

®)  Ni(V(H)UV(K)) = P;(V(H)) UP;(V(K)).

©)  N;(V(H)NV(K)) € Ni(V(H)) NN (V(K)).
(10)  Ni(V(H)) = (N;(V(H)))*

Proof 1t is sufficient to prove (1), (2), (3), (4), and (5) and
the other proofs are obvious.

(1) Follows from Definition 5.

(2) If V(H) C V(K), then we have N;(V(H)) = {ve
VG) N SVIHY S {veV(G): N C
V(K)} = N;(V(K)).

B) N(VHNK))= {veV(G):Pi(v)C V(HNK)}.
Since V(HNK)C V(H) and V(HNK) C V(K),
then N;(v) C V(H) and N;(v) C V(K). Thus, we
have N;(V(HNK))C N;j(V(H)) and N;(V(HN
K)<c  N(V(K)). N;(V(H)) N
Ni(V(K)) = {ve V(G):

Therefore,

Ni(v) C V(H)}

@ Springer
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||
E
=
D)
5

(4) The proof is similar to (3).
(5) If veN;(V(H)) for every v € V(H), there exists

N;(v) CV(H). Then, for every
v € V(G) — [V(G) — V(H)], there exists N;(v) such
that N;(v)N[V(G) — V(H)] = ¢. So,
v & Nj[V(G) — V(H)],

v e V(G) — [N;(V(G) — V(H))] Therefore,
Ni(V(H)) = V(G) = [N;(V(G) = V(H))] =
(N;(V(H))")".

O

Example 3 (Continue for Example 1). Take j = / (and also
je{r,<r>,<l> ui, <u>,<i>} are similar).

() If V(H)= {c,d}, then Ny(V(H)) = {b,c,d,e} and
Ni(V(H)) =
2 If V(H) = {a} and V(K) = {a,d}, V(H) C V(K),
then N;(V(H)) = {b, e}, Ni(V(K)) = {b,c,e}.
G) ¥  V(H) ={ab} and V(K)={ab,d},
-

V(H) CV(K), then N(V(H)) =g, N(V(K)) =
{c,e}.

4) If V(H) = {b} and V(K) = {a,d}, then N/(V(HN
K))= ¢. Hence, N)(V(H))= {b,c,e} and
N(V(K) = {ab, cde}. So, P(V(H)N
Pi(V(K)) = {b,c,e}. Also, P,(V(HUK)) = {c,e}.
Thus, P;(V(H)) = ¢ and P;(V(K)) = {e}. There-

fore, Pi(V(H))U P(V(K)) = {e}.

Remark 2 According to Nicoletti et al. (2001); Zafar and
Akram (2018), we can construct new types of rough sets,
say, j-rough graph. So, we can also establish new j-ap-
proximation graphs which will be denoted by (V(G), N;), V
je{rl,<r>,<l>, ui, <u>,<i>}. Al proper-
ties of Pawlak rough approximation can also be satisfied by
the same manner.

4 Generalized rough approximations
via graphs using j-adhesion
neighborhoods

In this section, j-adhesion neighborhoods on graphs are

introduced. Also, new types of j-lower (respectively, j-
upper) approximations will be presented and studied.

@ Springer

Definition 7 Let G = (V(G), E(G)) be a graph. For each
x € V(G), j-adhesion neighborhoods are defined V j €
{r,l, <r>, <l>,ui,<u>,<i>} as follows:

(1) P, (x)={y € V(G): xR = yR}.
(2)  Pi(x) ={y € V(G) : Rx = Ry}.
(3) Pors(x)={yeV(G): mxeyR YR = ﬂ}em xR}.
4 P> ( ) = {y € V(G) : mxeRyRy = ﬂ eRxRx}
5) Pu(x): ( )UPI( )
(6)  Pi(x) = Py(x) N Py(x).
@) P<u>() P<r>()UP<l>(x)~
B8) Poi=(x)=P-r>(x)NP= (x).
To illustrative Definition 7, we introduce Examples 4

and 5.

Example 4 (Continue for Example 1) Take j=
{r,l, <r>,<l>,u,i,<u>,<i>}, wehave Pj(a) =

{a},Pj(b) = {b},Pj(C) = {C},P,(d) = {d}vpr(e) = {e}

Example 5 Let G be a directed graph as shown in Fig. 2.
Then, the j-adhesion neighborhoods are

i If je{r}, then Pja)= {a,d},Pib)=
{b}, Pj(c) = {c}, Pj(d) = {a,d}.
g I je{l,<r>,<i>}, then Pj(a) =

{a}vpj(b) - {b,C},Pj(C) - {b,C}, Pj(d> = {d}
(iii) If j € {i}, then Pj(a) = {a}, Pj(b) = {b},Pj(c) =
{c}, Pi(d) = {d}.
G(v) If je{u, <l>,<u>}, then Pj(a) = {a,d},
Pi(b) = {b,c}, Pi(c) = {b,c}, Pj(d) = {a,d}.

Definition 8 Let G = (V(G), E(G)) be a graph and H be a
subgraph of G. The second type of lower approximations
and upper approximations of H which will be denoted by
P;(V(H)) and P;(V(H)), respectively, is defined by

P,(V(H)) = {x € V(G) : P,(x) C V(H)}, and
P,(V(H)) = V(H) Ufx € V(G) : P,(x) N V(H) # ¢}

Definition 9 Let G= (V(G), E(G)) be a graph and H be a
subgraph of G. The j-boundary, j-positive, j-negative
regions and j-accuracy measure of H in terms of j-adhesion

Fig. 2 A directed graph G a b
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neighborhood which will be denoted by BNDp,
NEGpj and op;, respectively, are defined by

POSy,,

(i) BNDp(V(H)) = P;j(V(H))
(i) POSp(V(H)) = P;
(i) NEGp(V(H)) =V

(v)  op(V(H)) = F(wm)r' Pi(V(H))| # 0.

— P(V(H)).

.

Example 6 (Continue from Example 5). Take j=r. If
V(H) = {a,c}, then we have

(i) P.(V(H))={a,c,d} and P.(V(H)) = {c}.
(i) BNDp, (V(H))= {a,d}, POSp, (V(H)) {c},
NEGp, (V(H)) = {b} and ap; (V(H)) =
Forj=1<r>,<l>, ui <u>, <l>,We
have the results by similarity.

Theorem 2 Let G = (V(G), E(G)) be a graph and H and
K be subgraphs of G. Then, the following properties are
held.

(1) Pi¢) = ¢.
@ P(V(G)) = V(G).

(3)  P(V(H)) C V(H).

4) I V(H) C V(K), then P,(V(H)) C P,(V(K))
5)  Pi(Pi(V(H)))=P;(V(H))

©)  P(V(H) N V(K))=P;(V(H)) N P;(V(K))

(M Pi(V(H)) UPF;(V(K)) € P;(V(H) UV(K))
®)  Pi(V(H)) = (Pi(V(H)))".

©)  Pi(¢) = ¢.

(10)  P;(V(G)) = V(G)

(1) V(H) C Pi(V(H)

(12) If V(H) C V(K), then P;(V(H)) C P;(V(K))
(13)  P(P{(V(H)) = Pi(V(H).

(14)  P(V(H) UV(K)) = P;(V(H))U P;(V(K))
(15 Pi(V(H)NV(K)) C Pi(V(H)) N P(V(K))
(16)  P;(V(H)) = (P{(V(H)))".

Proof 1t is sufficient to prove properties (1), (2), (3), (4),
(5), (6), (7), and (8) and other proofs are obvious.

() Pi(¢) ={veV(G): P;(v) C ¢} = ¢.

(2) Follows from property (1) and Definition 8.

(3) Follows from Definition 8.

4) If V(H) C V(K), then we have P; (V(H)) = {v
V(G): Pi(v) € VH)} C {veV(G): Piv)
V(K)} = Bi(V(K)).

(5) Follows from property (3) and Definition 8.

6) P(VHNK))= {veV(G):P(v) C V(HNK)}.
Since V(HNK) C V(H) and V(HNK) C V(K),
then P;j(v) C V(H) and P;(v) C V(K). Thus, by
property (4), we have P;(V(H NK)) C P; (V(H)) and
Pi(V(HNK)) C Pi(V(K)). Therefore_P Pi(V(H)) N

P(V(K) = {veV(G):Pv) CVH)} n{ve
V(G) :P(v) CV(K)} —{VGV(G) Pi(v) <
(VH)NV(K)} ={veV(G): ) S (V(H

Pi(v)c (V
K))} = P; (V(HNK)) = P;(V(H)) NP(V(K)).
(7) The proof is similar to property (6).
(8) If ve P; (V(H)) for every v € V(H), there exists
Pi(v) T C V(H). Then, for every
v e V(G) — [V(G) — V(H)], there exists P;(v) such
that P;(v) N[V(G)—V(H)|= ¢. So, v gZ P;
[V(G) = V(H)], € V(G) = [P(V(G) = V(H))].

Therefore, P; (V( )) = V(G) — [P;(V(G) — V(H))]
= (Pi(V(H))")".

O
Example 7 (Continuing from Example 5) Take j = /. Then

(i) If V(H) = {c,d}, then P, (V(H)) = {b, ¢,d} and
P (V(H)) = {d}.

(i) IfV(H)={a}and V(K) ={a,b}, V(H) C V(K),
then P; (V(H)) = {a}, P(V(K)) = {a,b,c}.

i) If V(H)= {a,b} and V(K)= {a,b,d},
V(H) CV(K), then P (V(H))= {a}, P
(V(K)) = {a,d}.

(iv) IfV(H)={b}and V(K)={a,c}, then P, (V(HN
K)) = ¢. Hence, P(V(H))= {b,c} and P,
(V(K)) = {a,b,c}. So, P (V(H))N Py (V(K)) =
{b,c}. Also, P, (V(HUK)) = {a,b,c}. Thus, P;
(V(H)) = ¢ and P)(V(K)) = {a}. Therefore,
Pi(V(H)U Py (V(K)) = {a}.

For j=L<r>,<l> u i, <u>,<i>,
we have the results by similarity .

Theorem 3 Let G=(V(G),E(G)) be a graph and
H,K C G. Then, the following properties are held.

P; (V(H) NP; (V(G) — V(H)).

(2)  BNDp, (V(H)) = BNDp, (V(G) — V(H)).

3) E(V(H))= V(H) U BNDp, (V(H)).

4)  P; (V(H)) = V(H) — BNDp, (V(H)).

5) muwwm> Pi(V(H)) = ¢.

(6) BNDp, (V(H)U V(K)) C BNDp, (V(H)) U BNDp,
(V(K)).

(7)  BNDp, (V(H)NV(K)) € BNDp,(V(H)) U BNDp,
(V(K)).

(8)  BNDp, (

(1) BNDp(V(H)) =

P; (V(H))) € BNDp,(V(H).

@ Springer
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C))
(10)

Proof

ey

@)

3

“

&)
(6)

N

BNDp, (P,(V(H))) € BNDp, (V(H).
BNDp, (BNDp,(V(H))) © BNDp, (V(H)).

(V(G) — V(H))

BNDp,(V(H)) = P;(V(H)) N P; (V(G) — V(H)) =
P; (V(G) = (V(G) = V(H))) N P; (V(G) — V(H))
— BNDj, (V(G) — V(H)).

V(H) UBNDp, (V(H)) = V(H)U (P; (V(H)) NP;
(V(G) = V(H))) = [V(H)U Pi(V(H))] N[V (H) UP;
(V(G)—-V(H))] =P, (V(H) N[V(H) UP

(V(H)))] = P; (V(H) NV(G) = P; (V(H)).

) = V(H) — [P; (V(H)) NP;
= V(H)N [P; (V(H)) NP; (V(G) —

(
V(H))|" = [V(H)N P; (V(G) — V(H))] U[V(H) N
P; (VH)] = ¢ UP; (V(H)) = P; (V(H).
Follows from Definitions 8 and 9.
BNDy, (V(H)U V(K)) = P; (V(H) UV(K)) NP,
)

(V(6) = V() UY(K0) € PIV(#1) UP, (V)

N[P; (V(G) - V(H)) NP; (V(G) - V(K)) = [P,
(VH)U Pi(V(K)) 0P (V(G)=V(H))] N[P;
(V(G) = V(K))] *[(Pj Vi) NP (V(G) -
V(H))) UP; (V(K) NP; (V(G)—V(K)))] NP;
(V(G)-V(H)) =[P (VH)N P; (V(G)—
V(H))) nP; (V(G ) V(K)U [(P; (V(K)N P;
V(G) —V(K))) N P; (V(G) —V(K))] = [BNDp,
(V(H)) MP; (V(G) = V(K))JU [BNDp, (V(K)) NP;
(V(G) —V(K))] € BNDy, (V(H)) U BND;, (V(K)).

Therefore, BNDp, (V(H) U V(K)) C BNDp, (V(H)) U
BNDp, (V(K)).
BNDp, (V(H)N V P;

K)) V(H)N VK) (P

( = ](
(V(G) —(V(H) NV(K))) C [P; (V(H)) N P; (V(K))]
NP (V(G) = V(H)) U P; (V(G) = V(K))] =[P;
(VH)N P (V(K)N P; (V(G) = V(H))] U[P

@ Springer

®)

€))

(10)

O

Pp; (V(K)) NP, (V(G) - V(K))] =
)N P; (V(K))JU [BNDp, (V(K)) NP;
NDp, (V(H))U BNDp, (V(K)).
BNDP (P; (V(H 1) - P (F (V(H))) NP; (V(G)
(()))=PJ(()) P; (V(G) — P; V(H))
QP( (H))n P; (V(G) = V(H )) BNDp, (V(H).
Since V(H) QP (V(H)), then (P; (V(H)))‘ C
(V(H))“ and hence P; (V(G)—P; (V(H))) C P;
(V(G) — V(H)). Thus, BNDp, (P; (V(H)))C
BNDp, (V(H).
BNDp, (P; (V(H))) = P; (P; (V(H))) NP; (V(G)
—P; (V(H)) C P; (V(H))N P; (V(G) — P; (V(H)))
C P; (V(H) NP; (V(G) — V(H)) = BNDp, (V(H)).
Since P; (V(H)) C V(H), then P; (P; (V(H))) C P;
(V(H)). So, BNDp, (P; (V(H))) € BNDp, (V(H).
BNDp (BNDp, (V(H))) = BNDpj (P; (V(H)) NP;
(V(G) — P; (V(H)))) = P; [P; (V(H)) N P; (V(G)
—P; (V)] NP; [V(G) — (P (V(H)) N P; (V(G)
—P; (VIH))] C P; [Vi [ V(H) N ( (G) = V(H))] N

(V(H))N
[BND, (V(H
(V(H)) € B

P[P (VH) NP (V(G) =P (V(H)U P;
(V(G)) NPy (V(G )—V(H)))] P [P (V(H)) NP
V(G) =V(H))| N [P; (P; (V(G) = V(H) U P; (P;
V)] =P; (V(H)N P; (V(G) = V(H)) =

BND, (V(H).

Remark 3 According to Nicoletti and Zafar results in
(Nicoletti et al. 2001; Zafar and Akram 2018), new types
of rough sets ,say, j-rough graphs and new j-approximation

graphs,

say, (V(G)vpj)’ v je {V,l, <r>,

<l>,u,i,<u>,<i>} can be constructed. Also, all
Pawlak’s rough approximation properties can be studied by
the same manner.

In algorithm 1, we establish the system of j-adhesion
neighborhoods from any graphs in terms of adjacent ver-
tices and their adjacent matrix. Moreover, two vertices are
neighbors if they are adjacent.
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Algorithm1. An algorithm for the j-adhesion neighborhoods

Input: A graph G = (V, E).
Output: j-adhesion neighborhoods of V' (G).

1:for (i € |V(G)])

2 Enter V(G).

3: endfor

4:for (i € |V(G)|)

5: for (j € [V(G)])

6: Enter Adjacency Matrix of V(G).

7 endfor

8: endfor

9:for (i € |V(G)])

10: for (j € |[V(G)]).

11: if(A[i, j]! = 0)

12: Classli, ]—xj

13: if (Neighbor ==r)

14: Pr(zi)={v e V(G) : xj = v;}.
15: if(v; == z;)

16: PT(Ii)ZUi.

17: endif

18: endif

19: else if (Neighbor == 1)

20: P(z;)={v e V(G) : z; = v;}.
21: if(v;, == ;)

22: H(l’j)=1}j

23: endif

25: else if (Neighbor == u)

2%: Pu(w)= 1P (2:) U Pu(a;)}.
28: else if (Neighbor == i)

29: Pi(a,)= {P(x) N )}
31: else if (Neighbor == R)

32: Pr(z;)={v; € V(G) NP, (v;)}.
34: else if (Neighbor == L)

35: Pr(z;)={v e V(G) : NP(v)}.
37: else if (Neighbor == U)

38: Py(x;)={Pr(z;) U Pr(z;)}.
40: else if (Neighbor == 1I)

41: P[(.’L‘Z)Z{PR({B?) n PL(lz)}
43: endif

53: endfor

54: endfor

5 Reformulation for Pawlak’s properties

via graphs

In this section, we construct some of Pawlak’s concepts in
terms of graphs.

Definition 10 Let G = (V(G), E(G)) be a graph and H be
a subgraph of G. Then, we have
(i)  Hpj-definable (Hp;-exact) if P; (V(H)) = P; (V(H)).

(i) Hpjrough if P; (V(H)) # P (VH), V je
{r,l, <r>, <l> ui, <u>,<i>}.

Example 8 (Continue from Example 5) Take j =1/ If
V(H) = {a}, then Hp;-exact. While, V(K) = {a, b} is Kp,-
rough. The results for je{r,<r>,<l>,
u,i, <u >, <i> } are similar.

Proposition 1 Let G = (V(G), E(G)) be a graph. Then for
allje{r,<r>,<l>,ui,<u>,<i>}, we have

(i) Every exact graph is Hpj-exact.
(i)  Every rough graph is Hp;-rough.

Proof Obviously, by Definition 10. [J

Definition 11 Let G = (V(G), E(G)) be a graph and H be
a subgraph of G. Then, H is called

(i) Roughly Hpj-definable, if P; (V(H)) # ¢ and P;
(V(H) # V(G),
(i) Internally Hp;-undefinable, if P; (V(H)) =
P; (V(H)) # V(G),
(iii) Externally Hp;-undefinable, if P; (V(H)) # ¢ and
P;(V(H)) = V(G),
(iv)  Totally Hp;-undefinable, if P; (V(H)) =

Pj(V(H)) = V(G).

¢ and

¢ and

Definition 12 Let G = (V(G), E(G)) be a graph and H be a
subgraph of G. A membership function €; is called a j-strong
if x € P; (V(H)). It is called a j-weak membership if x € P;
(VH), Vje{rl,<r>,<l>, ui <u>,<i>}

Lemma 1 Let G = (V(G),E(G)) be a graph and H be a
subgraph of G. Then, we have

(i) Ifx€V(H), then x € V(H).
(i) Ifxe V(H), then x&V(H).

Proof Obviously, by Definition 12. [J

The inverse implication of Lemma 1 may not be true, in
general.

Example 9 (Continue from Example 5) Take j = r. Sup-
pose that V(H) = {b,c,d}. Then, P,(V(H)) = {b,c} and
P, (V(H)) = V(G). 1t is clear that d € V(H), while, &,
V(H) and a€, V(H) and a ¢ V(H). We have results for
je{l,<r>,<l>, uji,<u>,<i>} by the same
manner.

Proposition 2 Let G = (V(G), E(G)) be a graph and H be
a subgraph of G. Then, the following implications are held:

(1) xe€,V(H) = x€,V(H) = x€; V(H).
(2 xg,V(H)= xg,V(H)=xg,V(H).

3) =xe V(H)= xe_,. V(H)=xg
@) =xe V(H)= xe_,. V(H)=x€

V(H).
V(H).

<u > <i>

<u > <i>

@ Springer
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(5) xEV(H)= x€,V(H)=x€,V(H).
(6) xEV(H)= x€V(H)=x€,V(H).
() xE;s V(H)= XE-,» V(H)=xE_, - V(H).
(8) XCis V(H)= x€-;= V(H) >xC > V(H).

The converse may not be true, in general.

Example 10 (Continue from Example 5). Suppose that
V(H) = {a,b}. Then P,(V(H)) = ¢, P,(V(H)) = {b},
P, (V(H)) = {a} and P,(V(H)) = {a,b}. Accordingly, b €
€,(V(H)) and a € g, (V(H)). But, b € ¢ (V(H)) and a €
gu (V(H)). Also, a € €; (V(H)) and b € €; (V(H)). While,
ac¢ (V(H)and b e & (V(H)).

According to Definitions 8 and 9, we give an algorithm

2 to determine P;(V(H)), P;(V(H)), BNDp(V(H)),
POSp,(V(H)) and NEGp,(V(H)).

Algorithm?2. Generate approximations on graphs

Input: j-adhesion neighborhoods.

Output: Approximations on a graph G.

1: Compute the Neighborhoods of vertices V' (G), denote P;(x)
Vje{r,l,R, L u,iUIT}.

6 A comparison between approach of Nada
and our study

The comparison in Table 1 between Nada’s method (Nada
et al. 2018) and the proposed method aims to increase the
accuracy measure and reduce the boundary region by
increasing lower approximations and decreasing the upper
approximations. So, Example 11 will be studied at j = r.

Example 11 (Continue for Example 5) Lower approxi-
mations and upper approximations in Definitions 5 and 8
are given. Also, the j-boundary and j-accuracy are evalu-
ated the comparison between them are discussed in
Table 1.

In Example 12, we apply Definitions 5, 6, 8 and 9 in
Walczak’s example in Chemistry. We take five amino
acids as a sample in Table 2. From Table 3 and Fig. 4, we
show that the vertices of subgraphs V(H;) = {vy,v4} and
V(H,) = {v2,vs} are necessary to determine the high
energy of unfolding.

2:Input V(H) C V(G).

3:for (j € |V(G)])

4: P,(V(H))=V(H) Uz e V(G): Pj(x)NV(H) # ¢}. Table 2 Quantitative attributes of five amino acids

5: endfor % a P a5 s as

6: for (5 € |V(GQ)|)

7. Bi(V(H)) ={x e V(G): Pj(z) CV(H)}. Vi 0.23 254.2 2.126 0.02 82.2
8: endfor V) 0.48 303.6 2.994 1.24 112.3
9: for (j € [V(G)]) Vs 0.61 287.9 2.994 1.08 103.7
10:  BNDp,(V(H ))| o ffﬁp (4) = Step(7). vy 0.45 2829 2.933 0.1 99.1
e api(VIH) = [siepa- vs 0.11 335.0 3.458 0.19 1275
12: endfor
Table 1 Comparison between the boundary region and accuracy measure for Nada approachs and our study

V(H) Nada’s method (Nada et al. 2018) (as in Definition 1) (i.e., Definition 5 when The current method in Definition 8

i=Jr)
N, (V(H)) N.(V(H)) BNDy, (V(H)) ay, (V(H)) P,(V(H)) P.(V(H)) BNDp (V(H)) uap(V(H))

{a} ¢ {a,b,c} {a,b,c} 0 ¢ {a,d} {a,d} 0

{v} ¢ {a,b,d} {a,b,d} 0 {v} {v} ¢ 1

{c} ¢ {a,c,d} {a,c,d} 0 {c} {c} ¢ 1

{d} ¢ {c.d} {c.d} 0 ¢ {a,d} {a,d} 0

fab} (b} vG) V() ! B {abd e .

{a,c} ¢ V(G) V(G) 0 {c} {a,c,d} {a,d} i

{bay @ vG) vG) 0 By {abd e :

{c,d} ¢ {a,c,d} {a,c,d} 0 {c} {a,c,d} {a,d} i

{a,b,c} {a,b} V(G) {c¢,d} i {b,c} V(G) {a,d} i

{a,c,d} {c} V(G) {a,b,d} 1 {a,c,d} {a,c,d} ¢ 1

{b,c,d} {d} V(G) {a,b,c} 1 {b,c} V(G) {a,d} 1

V(G) V(G) V(G) 0 1 V(G) V(G) 0 1
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Table 3 Comparison between boundary region and accuracy measure for Nada et al’s method and our study

V(H) Nada’s method (Nada et al. 2018) (as in Definition 1) (i.e., Definition 5 when Our proposed method (as in Definition 8)
J=Jr
N, (V(H)) N, (V(H)) BNDy, (V(H)) o, (V(H)) P.(V(H)) P.(V(H)) BNDp (V(H)) ap(V(H))
v} ¢ {n} {n} 0 {n} {vi} ¢ 1
{v2} ¢ {2} {v2} 0 {v2} {v2} ) 1
{vs} ¢ {v3} {vs} 0 {vs} {vs} ¢ 1
{va} {va} {vi,vs,va} {v1, 3} ! {vs} {vs} ¢ 1
{vs} fvs} {v2,vs,vs} {v2,v3} 3 {vs} {vs} ¢ 1
{vi,val {vi,va} {vi,v3,v4} {vs} 3 {vi,va} {vioma} @ 1
{va,vs} {v2,vs} {v2,v3,vs} {vs} : {va,vs} {va,vs} @ 1
{V37V4} {V4} {V],Vz,V3,V4} {vl,V27V3} % {V3,V4} {V37V4} d) 1
{v3,vs} {vs} {va,v3,vs} {v2,v3} % {v3,vs} {vs3,vs5} ¢ 1
V(G) V(G) V(G) 10} 1 V(G) V(G) 10} 1
Example 12 (A chemical example) Let V(G)=  neighborhood systems and j-adhesion neighborhoods for

{vi,v2,v3,v4,vs} be five amino acids (AAs) which
described in terms of five attributes: a; = PIE, ar =
SAC = surface area, a3 = MR = molecular refractivity,
as = LAM = the side chain polarity and as = Vol =
molecular volume (Walzak et al. 1999) as shown in
Table 2. We illustrate five graphs Gy, where k = 1,2,---,5
on V(H) C V(G) in Fig. 3 such that Ry = {(x;,x;) €
X xX: xi(ax) —x(a) <%, i,j,k=1,2,---,5}, where
oy represents the standard of the quantitative attributes ay,
k=1,2,3,4,5. From intersection of five graphs, we have a
new graph G in Fig. 4 which uses to construct j-

adjacent vertices.
Take j = r. Then, we have

D) Ne(x1) = {xi,xa}, Ne(x2) = {x2,xs5}, Ny(x3) =
{3, x4, x5}, Np(xa) = {xa}, No(xs) = {xs}.
(i) Pr(a) = {u}, Prn)= {n}, Pls)= {x}
Pr(xs) = {xa}, Pr(xs) = {xs}.
Similarily, we obtain the
j={l,<r>,<l>, ui,<u>,<i>}.
Table 3 gives a comparison between the r-lower
approximations, r-upper approximations, r-boundary
regions and r-accuracy measures for Nada method at j =
r and our proposed method in Definition 8. We prove that

results of

v_1 v a v_1
v_2 v_3 v_2
v_5
v_1 v_4
v_2 v_3
v_5

Fig. 3 A graph Gy for Ry, where k = 1,2,3,4,5

v_5 v_5

v_5
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P

6 v_5

Fig. 4 Intersection of graphs Gy to generate a graph G

our study method has more accurate than the previous
approaches.

7 Conclusion and future work

Jj-Adhesion neighborhoods on general graphs are important
tools to approximate graphs as finite structures. Different
eight types of j-adhesion neighborhoods are introduced and

discussed for each
je{rLiu <r>,<l> <i>,<u>}. By these
neighborhoods, j-lower approximations and j-upper

approximations will be constructed. Moreover, the rela-
tionships among j-approximations are superposed. Fur-
thermore, we show that boundary regions are decreased
through increasing the j-lower approximations and
decreasing the j-upper approximations. So, the j-accuracy
is more accurate than the other type defined in (Nada et al.
2018). The results in this article are very significant in
decision-making, especially, to classify the family of
coronavirus (Lai et al. 2020; Kampf et al. 2020) which is a

topological ~ space  and Stone—Cech

compactification.
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