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Abstract. This paper presents a segmentation method, integrating ju-
diciously the merits of rough-fuzzy computing and multiresolution image
analysis technique, for documents having both text and graphics regions.
It assumes that the text and non-text regions of a given document are
considered to have different textural properties. The M -band wavelet
packet is used to extract the scale-space features, which is able to zoom
it onto narrow band high frequency components of a signal. A scale-space
feature vector is thus derived, taken at different scales for each pixel in an
image. Finally, the rough-fuzzy-possibilistic c-means algorithm is used to
address the uncertainty problem of document segmentation. The perfor-
mance of the proposed technique, along with a comparison with related
approaches, is demonstrated on a set of real life document images.

1 Introduction

With the advances in information technology, automated processing of docu-
ments has become an imperative need. The documents in digitized form require
a large amount of storage space, after being compressed using advanced tech-
niques. Text-graphics segmentation partitions a document image into distinct
regions corresponding to the text and non-text parts facilitating efficient search-
ing and storage of the text parts in documents.

Many techniques have been proposed to segment the document image into
text and non-text regions in the literature [1]. Recently, wavelet techniques have
become powerful tools in this domain. Li and Gray [2] have used features based
on distribution characteristics of wavelet coefficients in high frequency bands to
segment document images into four classes, namely, background, photograph,
text, and graph. Kundu and Acharyya [3] proposed a scheme for text-graphics
segmentation based on wavelet scale-space features followed by k-means cluster-
ing. Lee et al. [4] used an algorithm based on local energy estimation in wavelet
packet domain and k-means clustering.

In this paper, a text-graphics segmentation method is proposed, which inte-
grates the principles of rough-fuzzy computing and multiresolution image anal-
ysis technique. This approach is based on the assumption that the text portion
of the document image is comprised of one texture class and the non-text part
of the other. The M -band wavelet packet (MWP) is used to extract the scale-
space features, which offers a richer range of possibilities for document image
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and is able to zoom it onto narrow band high frequency components of a sig-
nal. It yields a large number of subbands which are required for good-quality
segmentation. Subsequently features are computed by using nonlinear energy
estimation followed by a smoothing filter. However, one of the main problems in
document image segmentation analysis is uncertainty. It includes incompleteness
and vagueness in class definitions. To address this issue, an unsupervised clus-
tering algorithm, termed as rough-fuzzy-possibilistic c-means (RFPCM), is used
to segment the feature vectors. This approach needs not to assume any a priori
information regarding the font size, scanning resolution and type of layout.

2 Rough-Fuzzy-Possibilistic C-Means Algorithm

LetX = {x1, · · · , xj , · · · , xn} be the set of n objects and V = {v1, · · · , vi, · · · , vc}
be the set of c centroids and βi be the ith cluster, where xj ∈ IRm and vi ∈ IRm.
Each cluster in the RFPCM algorithm [5] is represented by three parameters,
namely, a cluster centroid, a crisp lower approximation and a fuzzy boundary.
The centroid is calculated based on the weighting average of the crisp lower
approximation A(βi) and fuzzy boundary B(βi) as follows:

vi = w × C1 + w̃ ×D1; where C1 =
1

|A(βi)|
∑

xj∈A(βi)

xj , (1)

D1 =
1

ni

∑

xj∈B(βi)

{a(µij)
ḿ1 + b(νij)

ḿ2}xj , ni =
∑

xj∈B(βi)

{a(µij)
ḿ1 + b(νij)

ḿ2}.

Here 1 ≤ ḿ1 < ∞ and 1 ≤ ḿ2 < ∞ are the fuzzifiers, µij ∈ [0, 1] and νij ∈ [0, 1]
are the probabilistic and possibilistic membership functions, respectively, of the
object xj to the cluster βi. The parameters w and w̃(= 1−w) correspond to the
relative importance of lower approximation and boundary region, respectively.
The constants a and b(= 1 − a) define the relative importance of probabilistic
and possibilistic memberships, respectively. The probabilistic and possibilistic
membership values of an object xj are calculated as

µij =

⎛

⎝

c
∑

k=1

(

d2ij

d2kj

)
1

ḿ1−1

⎞

⎠

−1

; where d2ij = ||xj − vi||2, (2)

and νij =
1

1 + E
; whereE =

{

b||xj − vi||2
ηi

}
1

ḿ2−1

. (3)

The scale parameter ηi represents zone of influence of cluster βi. In the RFPCM,
the membership values of objects in lower approximation are µij = νij = 1, while
those in boundary region are the same as fuzzy-possibilistic c-means. The main
steps of the RFPCM algorithm are as follows
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1. Assign initial centroids vi, i = 1, 2, · · · , c and the fuzzifiers ḿ1 and ḿ2.
2. Compute µij and νij by (2) and (3), and finally, uij for c clusters and n

objects where uij = {aµij + bνij}.
3. Calculate threshold δ, which determines the class labels of all objects as

δ =
1

n

n
∑

j=1

(uij − ukj)

where n is the total number of objects, uij and ukj are the highest and
second highest memberships of xj .

4. If (uij − ukj) ≤ δ, then xj ∈ A(βi) and xj ∈ A(βk), where A(βi) represents
the upper approximation of cluster βi. Furthermore, xj is not part of any
lower approximation region.

5. Otherwise, xj ∈ A(βi). In addition, by properties of rough sets, xj ∈ A(βi).
6. Modify µij and νij as 1 for the objects in lower approximations, while those

in boundary regions are remain unchanged.
7. Compute new centroid as per (1).
8. Repeat steps 2 to 7, until no more new assignments can be made.

3 Feature Extraction

This section presents the feature extraction methodology that includes multi-
channel filtering using the MWP with adaptive basis selection and subsequently
local energy estimation and smoothing.

3.1 M-Band Wavelet Packet

In dyadic wavelet (2W) [6], scaling φ and wavelet functions ψ are defined as

φj,k(t) = 2j/2φ(2jt− k); and ψj,k(t) = 2j/2ψ(2jt− k) (4)

for all j, k ∈ ZZ. Here k determines the position along x-axis; j determines
function’s width, that is, how broad or narrow it is along x-axis.

TheM -band orthonormal wavelet bases are constructed as a direct generaliza-
tion of the 2W. The 2W decomposes a signal into frequency subbands that have
the same bandwidth on a logarithmic scale, whereas M -band wavelet (MW), in
addition, focuses on narrow band high frequency components of a signal, thereby
simultaneously having a logarithmic and a linear decomposition of frequency
channels. Let φ(t) be the scaling function satisfying

φ(t) =
∑

k

hφ(k)
√
Mφ(Mt− k). (5)

Additionally, the M − 1 wavelets can be expressed as

ψl(t) =
∑

k

hl
ψ(k)

√
Mψ(Mt− k); l = 1, · · · ,M − 1, (6)

where hφ(n) and hl
ψ(n) are scaling and wavelet function coefficients, respectively.

Scaling and translating the functions, φ(t) and ψl(t), the φj,k(t) and ψl,j,k(t) are
obtained, respectively, as
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φj,k(t) = M j/2φ(M jt− k), (7)

ψl,j,k(t) = M j/2ψl(M
jt− k); l = 1, · · · ,M − 1. (8)

For any given function f(t) ∈ L2(IR), it can be shown that

f(t) =
∑

k∈ZZ

〈f(t)φj,k(t)〉φj,k(t) +

M−1
∑

l=1

∑

j∈ZZ

∑

k∈ZZ

〈f(t)ψl,j,k(t)〉ψl,j,k(t) (9)

where ZZ represents the set of integers, l = 1, · · · ,M − 1, j ∈ ZZ, k ∈ ZZ and
< ., . > represents the inner product.

An MW decomposes an image into M2 subbands. Since in the MWP, at each
decomposition level every subband is further decomposed, each of these M2

subbands gives rise to another M2 number of bases. So if the decomposition
depth is p, then an MWP decomposition results in M2p number of subbands,
and this large number of bases are required for good quality segmentation.

3.2 Filtering and Adaptive Basis Selection

In the filtering stage, an eight-tap four-band orthogonal wavelet [7], as shown
in Table 1, is used to decompose the document images into M × M channels
without downsampling. The filter length is increased with the increasing level of
decomposition. The filters are expanded by inserting appropriate number of zeros
between taps of filters, thereby satisfying the quadrature mirror filter condition.

Table 1. Filter Coefficients for Eight-Tap Four-Band Wavelet

# of Taps (n) φ(n) ψ1(n) ψ2(n) ψ3(n)
0 -0.067371764 -0.094195111 -0.094195111 -0.067371764
1 0.094195111 0.067371764 -0.067371764 -0.094195111
2 0.40580489 0.56737176 0.56737176 0.40580489
3 0.56737176 0.40580489 -0.40580489 -0.56737176
4 0.56737176 -0.40580489 -0.40580489 0.56737176
5 0.40580489 -0.56737176 0.56737176 -0.40580489
6 0.094195111 -0.067371764 -0.067371764 0.094195111
7 -0.067371764 0.094195111 -0.094195111 0.067371764

In order to find out a suitable basis without going for a full decomposition,
an adaptive decomposition algorithm using a maximum entropy or information
content criterion extracted from each of the subbands is used [8]. After first
level decomposition of the image into M ×M channels, energy for each subband
is evaluated. Among these subbands, those for which energy values exceed a
threshold value (ǫ1) of the parent band energy, are considered and decomposed
further. A subband at second decomposition level is further decomposed if its
energy value is more than another threshold value (ǫ2) of the total energy of all
the subbands at current scale. Hence, the number of subbands can be generated
in this scheme in the range of 16 to 4096. Empirically it is seen that ǫ1 = 0.01
and ǫ2 = 0.10 are good choice for the images considered in the experiment.
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3.3 Local Energy Estimation and Smoothing

After the selection of significant bases, a local estimator, which constitutes a
nonlinear operator followed by a smoothing filter, is applied to each subbands
[3]. It gives high energy value for the regions in each subbands where frequency
components are strong, otherwise low energy value is obtained where it is weak.

In this feature-extraction scheme, standard deviation is used as the nonlinear
operator, calculated over small overlapping windows around each pixel. The local
energy Eb(x, y) around the (x, y)th pixel of bth subband is given as

Eb(x, y) =

√

√

√

√

1

R

w
∑

m=1

w
∑

n=1

∣

∣Fb(m,n)2 − F b(x, y)2
∣

∣ (10)

where w is the window size and R = w × w. F b(x, y) is the mean around the
(x, y)th pixel and Fb(m,n) is the filtered image. Gaussian low-pass filter used as
the smoothing filter is of the form

HG(u, v) =
1

2π
√
σ
e−

1

2σ2
(u2+v2) (11)

where σ determines the passband width of the averaging filter. Formally, the
feature image Featb(x, y) corresponding to subband image Fb(x, y) is given by:

Featb(x, y) =
1

G2

∑

(m,n)∈Gxy

Γ (Fb(m,n))HG(x−m, y − n) (12)

where Γ (.) gives the energy measure and Gxy is a G × G window centered at
pixel with coordinates (x, y). It is found that an averaging window size of 9× 9
to be appropriate in most of the segmentation experiment.

3.4 Choice of Energy Window Size

A nonlinear energy estimator is used in order to discriminate texture pairs as the
unprocessed wavelet coefficients do not convey enough information for efficient
representation of texture cues. In the present work, the energy window size is
decided based on the measure of the edge density of the image as follows:

Dene =
no. of edge pixels

total no. of pixels in image
(13)

It gives the measure of overall image busyness. Sobel edge detector is used
here to extract the edges. Dene has a dynamic range of values between [0, 1]. For
highly active image, Dene is close to 1, so a smaller window for nonlinear opera-
tion is required. Moderately active images having the value of Dene within [0, 1]
would require a moderate window size for good feature extraction. It has been
found experimentally that the energy window size, for these different categories
of image activities, ranges from 5× 5 to 19× 19.
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4 Experimental Results

In this section, the performance of proposed text-graphics segmentation method-
ology is extensively compared with wavelet based different feature extraction
techniques and several clustering algorithms. In the current study, features are
extracted by the 2W decomposed upto third level, dyadic wavelet packet (2WP)
decomposed upto third level, the MW as implemented in [3] and the proposed
MWP. Daubechies 6 filter has been used for the feature extraction using the
2W and 2WP decomposition. The filter coefficients are shown in Table 2. The
MW and MWP decompositions use the filter coefficients as depicted in Table 1.
The clustering algorithms involve hard c-means (HCM), fuzzy c-means (FCM)
[9], possibilistic c-means (PCM) [10], fuzzy-possibilistic c-means (FPCM), rough-
fuzzy c-means (RFCM) [5], rough-possibilistic c-means (RPCM) [5] and RFPCM
[5]. The values of parameters ḿ1 = ḿ2 = 2.00, a = 0.50 and w = 0.95.

Table 2. Filter Coefficients for Six-Tap Daubechies Wavelet

# of Taps (n) φ(n) ψ(n)

0 0.3326705530 -0.0352262919
1 0.8068915093 -0.0854412739
2 0.4598775021 0.1350110200
3 -0.1350110200 0.4598775021
4 -0.0854412739 -0.8068915093
5 0.0352262919 0.3326705530

Some of the document images analyzed in the experiment are standard docu-
ments, others are scanned and taken online from parts of Anandabazar Patrika
(www.anandabazar.com) and Times of India (timesofindia.indiatimes.com).
Structured document images with nonoverlapping text and graphics regions are
shown in Fig. 1(i) having size of 496 × 496, Fig 1(ii) of 256 × 256, Fig 1(iii) of
377× 431 and Fig 1(iv) of 512× 512.

Fig. 1(v) - Fig. 4 show the comparative analysis among text-graphics seg-
mentation algorithms using different feature extraction methods to prove the
efficacy of the proposed algorithm. From the results reported in Fig. 1(v) - Fig.
4, it is seen that there is a significant improvement in the segmentation re-
sults using the MWP compared to the classical 2W and 2WP, where M = 2.
This may be explained by the significance of intermediate frequency bands ob-
tained using the MWP decomposition in characterizing the textural features.
Here, in these figures, the performance of different clustering techniques is also
analyzed. It is found that rough set based clustering approaches are yielding
good segmentation results over non-rough set based algorithms, irrespective of
feature extraction techniques and images. Among all rough set based cluster-
ing methods, the RFPCM gives excellent results as far as text identification is
concerned.
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(iii) (iv) (v)

Fig. 1. (i)-(iv) Input data set for document image segmentation. (v) Text obtained
using HCM: (a) 2W (b) 2WP (c) MW (d) MWP.

Fig. 2. Text obtained using FCM and PCM: (a) 2W (b) 2WP (c) MW (d) MWP

Fig. 3. Text obtained using FPCM and RFCM: (a) 2W (b) 2WP (c) MW (d) MWP
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Fig. 4. Text obtained using RPCM and RFPCM: (a) 2W (b) 2WP (c) MW (d) MWP

5 Conclusion

In this paper, a new texture-based methodology is presented for segmenting the
text part from the graphics part based on textural cues. The use of wavelet
theory via MWP decomposition of images provides a multiscale multidirectional
representation of the image and yields a huge number of frequency channels and
hence facilitates an improved segmentation of the different class regions. The
RFPCM is geared towards maximizing the utility of both rough sets and fuzzy
sets with respect to uncertainty handling. An extensive comparative study with
different feature extraction techniques and clustering approaches shows that the
proposed methodology is indeed effective in characterizing document images in
a better way.
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