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Abstract—A methodology is described for evolving a Rough-fuzzy multi layer perceptron with modular concept using a genetic

algorithm to obtain a structured network suitable for both classification and rule extraction. The modular concept, based on “divide and

conquer” strategy, provides accelerated training and a compact network suitable for generating a minimum number of rules with high

certainty values. The concept of variable mutation operator is introduced for preserving the localized structure of the constituting

knowledge-based subnetworks, while they are integrated and evolved. Rough set dependency rules are generated directly from the

real valued attribute table containing fuzzy membership values. Two new indices viz., “certainty” and “confusion” in a decision are

defined for evaluating quantitatively the quality of rules. The effectiveness of the model and the rule extraction algorithm is extensively

demonstrated through experiments alongwith comparisons.

Index Terms—Soft computing, knowledge-based fuzzy networks, rough sets, genetic algorithms, pattern recognition, rule extraction/

evaluation, knowledge discovery, data mining.
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1 INTRODUCTION

SOFT computing is a consortium of methodologies, which
works synergistically and provides flexible information

processing capability for handling real life ambiguous
situations [1]. Its aim is to exploit the tolerance for
imprecision, uncertainty, approximate reasoning and par-
tial truth in order to achieve tractability, robustness, low-
cost solutions, and close resemblance to human like
decision. The guiding principle is to devise methods of
computation which lead to an acceptable solution at low
cost by seeking for an approximate solution to an
imprecisely/precisely formulated problem.

There are ongoing efforts during the past decade to
integrate fuzzy logic, artificial neural networks (ANN) and
genetic algorithms (GAs) to build efficient systems in soft
computing paradigm. Recently, the theory of rough sets [2],
[3] has emerged as another mathematical tool for dealing
with uncertainty arising from inexact or incomplete
information and is also being used in soft computing [4].
The Rough-fuzzy MLP (Multi Layer Perceptron) [5],
developed recently for pattern classification, is such an
example combining both rough sets and fuzzy sets with
neural networks for building an efficient connectionist
system. In this hybridization, fuzzy sets help in handling
linguistic input information and ambiguity in output
decision, while rough sets extract the domain knowledge
for determining the network parameters. Some other
attempts in using rough sets (either individually or in
combination with fuzzy set) for designing neural network
systems are available in [6], [7], [8], [9], where rough sets are
used mainly for generating the network parameters and in

[10] where roughness at the neuronal level has been
incorporated. One may also note the utility of GAs in
determining the network parameters as well as the topology
(growing/pruning of links), as has been noticed during the
past decade [11], [12]. Several algorithms have been
developed for extracting embedded knowledge, in the form
of symbolic rules, from these hybrid networks [13], [14].

Two important issues which have not been adequately
addressed by the above methodologies are those of lengthy
training time and poor interpretibility of the networks. A
major disadvantage in neural networks learning of large
scale tasks is the high computational time required (due to
local minima and slow convergence). Use of knowledge-
based networks offers only a partial solution to the
problem. Also, in most of the above methodologies the link
weights of the network are rather uniformly distributed and
the network is not suitable for extracting crisp (certain)
rules. Compact networks with structure imposed on the
weight values are more desirable in this respect for network
interpretation. We introduce here the concept of modular
learning (in an evolutionary framework) to deal with these
problems.

A recent trend in neural network design for large scale
problems is to split the original task into simpler subtasks and
to coevolve the subnetwork modules for each of the subtasks
[15]. The modules are then combined to obtain the final
solution. Some of the advantages of this modular approach
includedecomplexificationof the taskand itsmeaningful and
clear neural representation. The divide and conquer strategy
leads to super-linear speedup in training. It also avoids the
“temporal crosstalk problem” and interference while learn-
ing. In addition, the number of parameters (i.e., weights) can
be reduced using modularity; thereby leading to a better
generalization performance of the network, compactness in
size and crispness in extracted rules.

In this paper, a modular evolutionary approach is
adopted for designing a hybrid connectionist system in soft
computing framework for both classification and rule
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generation. The basic building block used is the Rough-
fuzzy MLP [5], mentioned earlier. The original classifica-
tion task is split into several subtasks and a number of
Rough-fuzzy MLPs are obtained for each subtask. The
subnetwork modules are integrated in a particular manner
so as to preserve the crude domain knowledge which was
encoded in them using rough sets. The pool of integrated
networks is then evolved using a GA with a restricted
(adaptive/variable) mutation operator that utilizes the
domain knowledge to accelerate training and preserves
the localized rule structure as potential solutions. The
parameters for input and output fuzzy membership
functions of the network are also tuned using GA together
with the link weights. We have modified the existing
procedure for generation of rough set dependency rules
for handling directly the real valued attribute table
containing fuzzy membership values. This helps in
preserving all the class representative points in the
dependency rules by adaptively applying a threshold that
automatically takes care of the shape of membership
functions. Unlike previous attempts of knowledge-based
network design [5], [16], [17], here all possible inference
rules and not only the best rule, contribute to the final
solution. The use of GAs in this context is beneficial for
modeling multimodal distributions, since all major repre-
sentatives in the population are given fair chance during
network synthesis.

In the second part of the investigation, a rule extraction
algorithm, based on this hybrid model, is presented. The
performance of the rules is evaluated quantitatively. Two
new measures are accordingly defined indicating the
certainty and confusion in a decision. These new indices are
used along with some existing measures to evaluate the
quality of the rules. A quantitative comparison of the rule
extraction algorithm is made with some existing ones like
Subset [16], M of N [17], and X2R [18] on both real life
(speech and medical) and artificially generated data sets
with dimensions ranging from two to nine and class
boundaries overlapping as well as nonlinear.

The organization of the article is as follows: Section 3
explains, in brief the Rough-fuzzy MLP [5] along with some
definitions on rough set theory. Relevant design details of
the modular evolutionary algorithms are presented in
Section 4. The rule extraction method and the quantitative
performance measures are presented in Section 5. Finally,
the effectiveness of the proposed model and its comparison
with some related ones are provided in Section 5.

2 ROUGH-FUZZY MLP

The Rough-fuzzy MLP [5] is described briefly in this
section. First, we explain the Fuzzy MLP, for convenience.
Some definitions on rough set theory are then provided,
followed by a discussion on the methodology for extracting
rough set dependency rules. Finally, the knowledge
encoding algorithm for mapping the rules to the parameters
of a fuzzy MLP is explained.

2.1 Fuzzy MLP

The fuzzy MLP model [19] incorporates fuzziness at the
input and output levels of the MLP and is capable of
handling exact (numerical) and/or inexact (linguistic)
forms of input data. Any input feature value is described

in terms of some combination of membership values in the
linguistic property sets low (L), medium (M) and high (H).
Class membership values ð�Þ) of patterns are represented at
the output layer of the fuzzy MLP. During training, the
weights are updated by backpropagating errors with
respect to these membership values such that the contribu-
tion of uncertain vectors is automatically reduced. A three-
layered feedforward MLP is used. The output of a neuron
in any layer ðhÞ other than the input layer ðh ¼ 0Þ is given as

yhj ¼
1

1þ expðÿ
P

i y
hÿ1
i whÿ1

ji Þ
; ð1Þ

where yhÿ1i is the state of the ith neuron in the preceding

ðhÿ 1Þth layer and whÿ1
ji is the weight of the connection from

the ith neuron in layer hÿ 1 to the jth neuron in layer h. For

nodes in the input layer, y0j corresponds to the jth component

of the input vector. Note that xh
j ¼

P

i y
hÿ1
i whÿ1

ji . Input Vector

An n-dimensional pattern Fi ¼ ½Fi1; Fi2; . . . ; Fin� is repre-

sented as a 3n-dimensional vector

Fi ¼ ½�lowðFi1ÞðFiÞ; . . . ; �highðFinÞðFiÞ� ¼ ½y
0
1; y

0
2; . . . ; y

0
3n�; ð2Þ

where the � values indicate the membership functions of
the corresponding linguistic �-sets low, medium, and high
along each feature axis and y01; . . . ; y

0
3n refer to the activa-

tions of the 3n neurons in the input layer.
When the input feature is numerical, we use the �-fuzzy

sets (in the one dimensional form), with range [0, 1],
represented as

�ðFj; c; �Þ ¼

2 1ÿ
jjFjÿcjj

�

� �2

; for �
2
� jjFj ÿ cjj � �

1ÿ 2
jjFjÿcjj

�

� �2

; for 0 � jjFj ÿ cjj � �
2

0; otherwise;

8

>

>

<

>

>

:

ð3Þ

where �ð> 0Þ is the radius of the �-function with c as the
central point. Note that features in linguistic and set forms
can also be handled in this framework [19].

Output Representation. Consider an l-class problem
domain such that we have l nodes in the output layer.
Let the n-dimensional vectors ok ¼ ½ok1 . . . okl� and vk ¼
½vk1; . . . ; vkl� denote the mean and standard deviation
respectively, of the numerical training data for the kth
class ck. The weighted distance of the training pattern Fi

from kth class ck is defined as

zik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼1

Fij ÿ okj
vkj

� �2

v

u

u

t for k ¼ 1; . . . ; l; ð4Þ

where Fij is the value of the jth component of the ith pattern
point.

The membership of the ith pattern in class k, lying in the
range ½0; 1� is defined as [20]

�kðFiÞ ¼
1

1þ ðzikfd Þ
fe
; ð5Þ

where positive constants fd and fe are the denominational
and exponential fuzzy generators controlling the amount of
fuzziness in the class membership set.
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2.2 Rough Sets: Definitions

Let us present here some preliminaries of rough set theory,
which are relevant to this article. For details one may refer
to [2] and [21].

An information system is a pair S ¼< U;A > , where U is
a nonempty finite set called the universe and A a nonempty
finite set of attributes. An attribute a can be regarded as a
function from the domain U to some value set Va. A
decision system is any information system of the form
A ¼ ðU;A [ fdgÞ, where d 6 2 A is the decision attribute.
The elements of A are called conditional attributes.

An information system may be represented as an
attribute-value table, in which rows are labeled by objects
of the universe and columns by the attributes. Similarly, a
decision system may be represented by a decision table.

With every subset of attributes B � A, one can easily
associate an equivalence relation IB on U :

IB ¼ fðx; yÞ 2 U : for every a 2 B; aðxÞ ¼ aðyÞg:

Then, IB ¼
T

a2B Ia. If X � U , the sets fx 2 U : ½x�B �
Xg and fx 2 U : ½x�B \X 6¼ ;g, where ½x�B denotes the
equivalence class of the object x 2 U relative to IB, are
called the B-lower and B-upper approximation of X in S and
denoted by BX;BX, respectively. Xð� UÞ is B-exact or B-
definable in S if BX ¼ BX. It may be observed that BX is
the greatest B-definable set contained in X and BX is the
smallest B-definable set containing X.

We now define the notions relevant to knowledge
reduction. The aim is to obtain irreducible but essential
parts of the knowledge encoded by the given information
system; these would constitute reducts of the system. So one
is, in effect, looking for maximal sets of attributes taken from
the initial set (A, say), which induce the same partition on
the domain as A. In other words, the essence of the
information remains intact and superfluous attributes are
removed. Reducts have been nicely characterized in [21],
[22] by discernibility matrices and discernibility functions.
Consider U ¼ fx1; . . . ; xng and A ¼ fa1; . . . ; amg in the
information system S ¼< U;A > . By the discernibility
matrix M ðSÞ, of S is meant an n� n-matrix such that

cij ¼ fa 2 A : aðxiÞ 6¼ aðxjÞg; ð6Þ

A discernibility function fS is a function of m Boolean
variables �aa1; . . . ; �aam corresponding to the attributes
a1; . . . ; am, respectively, and defined as follows:

fSð�aa1; . . . ; �aamÞ ¼
^ _

ðcijÞ : 1 � i; j � n; j < i; cij 6¼ ;
n o

;

ð7Þ

where
W

ðcijÞ is the disjunction of all variables �aa with a 2 cij.
It is seen in [21] that fai1 ; . . . ; aipg is a reduct in S if and and
only if ai1 ^ . . . ^ aip is a prime implicant (constituent of the
disjunctive normal form) of fS .

2.3 Rough Sets: Dependency Rule Generation

A principal task in the method of rule generation is to
compute reducts relative to a particular kind of information
system, the decision system. Relativised versions of these
matrices and functions shall be the basic tools used in the
computation. d-reducts and d-discernibility matrices are
used for this purpose [21]. The methodology is described
below.

Let S ¼< U;A > be a decision table, with C and D ¼
fd1; . . . ; dlg its sets of condition and decision attributes
respectively. Divide the decision table S ¼< U;A > into
l tables Si = < Ui; Ai >; i ¼ 1; . . . ; l, corresponding to the
l decision attributes d1; . . . ; dl, where U ¼ U1 [ . . . [ Ul and
Ai ¼ C [ fdig.

Let fxi1; . . . ; xipg be the set of those objects of Ui that
occur in Si; i ¼ 1; . . . ; l. Now for each di-reduct B ¼
fb1; . . . ; bkg (say), a discernibility matrix (denoted MdiðBÞ)
from the di-discernibility matrix is defined as follows [5]:

cij ¼ fa 2 B : aðxiÞ 6¼ aðxjÞg; ð8Þ

for i; j ¼ 1; . . . ; n.
For each object xj 2 xi1 ; . . . ; xip , the discernibility function

f
xj
di

is defined as

f
xj
di
¼

^ _

ðcijÞ : 1 � i; j � n; j < i; cij 6¼ ;
n o

; ð9Þ

where
W

ðcijÞ is the disjunction of all members of cij. Then,
f
xj
di

is brought to its conjunctive normal form (c.n.f). One
thus obtains a dependency rule ri, viz., Pi  di, where Pi is
the disjunctive normal form (d.n.f) of f

xj
di
; j 2 i1; . . . ; ip.

The dependency factor dfi for ri is given by

dfi ¼
cardðPOSiðdiÞÞ

cardðUiÞ
; ð10Þ

where POSiðdiÞ ¼
S

X2Idi
liðXÞ; and liðXÞ is the lower

approximation ofXwith respect to Ii. In this case, dfi ¼ 1 [5].

2.4 Knowledge Encoding

Consider the case of feature Fj for class ck in the l-class
problem domain. The inputs for the ith representative
sample Fi are mapped to the corresponding three-dimen-
sional feature space of �lowðFijÞðFiÞ, �mediumðFijÞðFiÞ, and
�highðFijÞðFiÞ. Let these be represented by Lj, Mj, and Hj

respectively. As the method considers multiple objects in a
class a separate nk � 3n-dimensional attribute-value decision
table is generated for each class ck (where nk indicates the
number of objects in ck).

The absolute distance between each pair of objects is
computed along each attribute Lj, Mj, Hj for all j. We
modify (8) to directly handle a real-valued attribute table
consisting of fuzzy membership values. We define

cij ¼ fa 2 B :j aðxiÞ ÿ aðxjÞ j> Thg ð11Þ

for i; j ¼ 1; . . . ; nk, where Th is an adaptive threshold. Note
that the adaptivity of this threshold is built in, depending
on the inherent shape of the membership function.

Consider Fig. 1. Let a1, a2 correspond to two membership
functions (attributes) with a2 being steeper as compared to
a1. It is observed that r1 > r2. This results in an implicit
adaptivity of Th while computing cij in the discernibility
matrix directly from the real-valued attributes. Here lies the
novelty of the proposed method. Moreover, this type of
thresholding also enables the discernibility matrix to
contain all the representative points/clusters present in a
class. This is particularly useful in modeling multimodal
class distributions.

While designing the initial structure of the Rough-
fuzzy MLP, the union of the rules of the l classes is
considered. The input layer consists of 3n attribute values
while the output layer is represented by l classes. The
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hidden layer nodes model the first level (innermost)
operator in the antecedent part of a rule, which can be
either a conjunct or a disjunct. The output layer nodes
model the outer level operands, which can again be either
a conjunct or a disjunct. For each inner level operator,
corresponding to one output class (one dependency rule),
one hidden node is dedicated. Only those input attributes
that appear in this conjunct/disjunct are connected to the
appropriate hidden node, which, in turn, is connected to
the corresponding output node. Each outer level operator
is modeled at the output layer by joining the correspond-
ing hidden nodes. Note that a single attribute (involving
no inner level operators) is directly connected to the
appropriate output node via a hidden node, to maintain
uniformity in rule mapping.

Let the dependency factor for a particular dependency

rule for class ck be df ¼ � ¼ 1 by (10). The weight w1
ki

between a hidden node i and output node k is set at �
facþ ",

where fac refers to the number of outer level operands in

the antecedent of the rule and " is a small random number

taken to destroy any symmetry among the weights. Note

that fac � 1 and each hidden node is connected to only one

output node. Let the initial weight so clamped at a hidden

node be denoted as �. The weight w0
iaj

between an attribute

aj (where a corresponds to low (L), medium (M), or high (H) )

and hidden node i is set to �
facdþ ", such that facd is the

number of attributes connected by the corresponding inner

level operator. Again facd � 1. Thus, for an l-class problem

domain, there are at least l hidden nodes. It is to be

mentioned that the number of hidden nodes is determined

directly from the dependency rules. It depends on the form

in which the antecedents are present in the rules.

3 MODULAR EVOLUTION OF ROUGH-FUZZY MLP

The design procedure of Modular Neural Networks (MNN)
involves two broad steps—effective decomposition of the
problem such that the subproblems can be solved with
compact networks and efficient combination and training of
the networks such that there is gain in terms of training
time, network size and accuracy. These are described in
detail in the following section along with the steps involved
and the characteristics features.

3.1 Algorithm

We use two phases. First, an l-class classification problem is
split into l two-class problems. Let there be l sets of
subnetworks, with 3n inputs and one output node each.
Rough set theoretic concepts are used to encode domain

knowledge into each of the subnetworks, using (9), (10), and
(11). As explained in Section 2.4, the number of hidden
nodes and connectivity of the knowledge-based subnet-
works is automatically determined. Each two-class problem
leads to the generation of one or more crude subnetworks,
each encoding a particular decision rule. Let each of these
constitute a pool. So, we obtain m � l pools of knowledge-
based modules. Each pool k is perturbed to generate a total
of nk subnetworks, such that n1 ¼ . . . ¼ nk ¼ . . . ¼ nm.
These pools constitute the initial population of subnet-
works, which are then evolved independently using genetic
algorithms.

At the end of the above phase, the modules/subnet-
works corresponding to each two-class problem are con-
catenated to form an initial network for the second phase.
The inter module links are initialized to small random
values as depicted in Fig. 2. A set of such concatenated
networks forms the initial population of the GA. The
mutation probability for the intermodule links is now set to
a high value, while that of intramodule links is set to a
relatively lower value. This sort of restricted mutation helps
preserve some of the localized rule structures, already
extracted and evolved, as potential solutions. The initial
population for the GA of the entire network is formed from
all possible combinations of these individual network
modules and random perturbations about them. This
ensures that for complex multimodal pattern distributions
all the different representative points remain in the
population. The algorithm then searches through the
reduced space of possible network topologies. The steps
are summarized below followed by an example.

3.1.1 Steps

Step 1. For each class, generate rough set dependency rules
using the methodology described in Section 2.3.
Step 2. Map each of the dependency ru1les to a separate
subnetwork modules (Fuzzy MLPs) using the methodology
described in Section 2.4.
Step 3. Partially evolve each of the subnetworks using
conventional GA.
Step 4. Concatenate the subnetwork modules to obtain the
complete network. For concatenation the intramodule links
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are left unchanged while the intermodule links are

initialized to low random values. Note that each of the

subnetworks solves a 2-class classification problem, while

the concatenated network solve the actual l-class problem.

Every possible combination of subnetwork modules is

generated to form a pool of networks.
Step 5. The pool of networks is evolved using a modified GA

with an adaptive/variable mutation operator. The mutation

probability is set to a low value for the intramodule links

and to a high value for the intermodule links.

3.1.2 Example

Consider a problem of classifying a two dimensional data

into two classes. The input fuzzifier maps the features into a

six-dimensional feature space. Let a sample set of rules

obtained from rough set theory be

c1  ðL1 ^M2Þ _ ðH2 ^M1Þ; c2  M2 _H1; c2  L2 _ L1;

where Lj, Mj, Hj correspond to �lowðFjÞ, �mediumðFjÞ, �highðFjÞ,

respectively. For the first phase of the GA three different

pools are formed, using one crude subnetwork for class 1

and two crude subnetworks for class 2, respectively. Three

partially trained subnetworks result from each of these

pools. They are then concatenated to form ð1� 2Þ ¼ 2

networks. The population for the final phase of the GA is

formed with these networks and perturbations about them.

The steps followed in obtaining the final network is

illustrated in Fig. 3. Note that Fig. 4 explains the chromo-

some representation of intra and intermodule links.

3.1.3 Characteristic Features

1. The use of rough sets for knowledge encoding
provides an established mathematical framework
for network decomposition. Knowledge encoding
not only produces an initial network close to the
optimal one, it also reduces the search space. The
initial network topology is automatically determined
and provides good building blocks for the GA.

2. In earlier concurrent algorithms for neural network
learning, there exist no guidelines for the decom-
position of network modules in [23]. Arbitrary
subnetworks are assigned to each of the classes.
Use of networks with the same number of hidden
nodes for all classes leads to overlearning in the case
of simple classes and poor learning in complex
classes. Use of rough set theory circumvents the
above problem.

3. Sufficient reduction in training time is obtained, as
the above approach parallelizes the GA to an extent.
The search string for the GA for subnetworks being
smaller, more than linear decrease in searching time
is obtained. Also very small number of training
cycles are required in the refinement phase, as the
network is already very close to the solution. Note
that the modular aspect of our algorithm is similar to
the coevolutionary algorithm (CEA) used for solving
large scale problems with EAs [23].

4. The splitting of an l-class problem into l two-class
problems bears analogy to the well known divide and
conquer strategy and speeds up the search procedure
significantly. Here, one can use a smaller chromo-
some and/or population size, thereby alleviating to
some extent the space-time complexity problem.
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5. The algorithm indirectly constrains the solution in
such a manner that a structure is imposed on the
connection weights. This is helpful for subsequent
rule-extraction from the weights, as the resultant
network obtained has sparse but strong interconnec-
tion among the nodes. Although in the above
process some amount of optimality is sacrificed
and often for many-class problems the number of
nodes required may be higher than optimal, yet the
network is less redundant. However the nature of
objective function considered and the modular
knowledge-based methodology used enables suffi-
cient amount of link pruning and the total number of
links are found to be significantly less. The use of
restricted mutation (as defined in Section 3.2.3)
minimizes the destruction of encoded rule structures
in the knowledge-based networks.

6. For each two-class (sub)problem a set of subnet-
works encoding separate decision rules are avail-
able. Since all possible combination of these
subnetworks are considered for the final evolution-
ary training, greater diversity within the population
is possible. This results in faster convergence of the
GA which utilizes multiple theories about a domain.
This also ensures that all the clusters in the feature
space are adequately represented in the final
solution.

3.2 Evolutionary Design

Here, we discuss different features of the genetic algorithm

[24] with relevance to our algorithm.

3.2.1 Chromosomal Representation

The problem variables consist of the weight values and the

input/output fuzzification parameters. Each of the weights

is encoded into a binary word of 16 bit length, where

½000 . . . 0� decodes to ÿ128 and ½111 . . . 1� decodes to 128. An

additional bit is assigned to each weight to indicate the

presence or absence of the link. The fuzzification para-

meters tuned are the centers ðcÞ and radius ð�Þ for each of

the linguistic attributes low, medium, and high of each

feature, and the output fuzzifiers fd and fe [19]. These are

also coded as 16 bit strings in the range ½0; 2�. For the input

parameters, ½000 . . . 0� decodes to 0 and ½111 . . . 1� decodes to

1.2 times the maximum value attained by the corresponding

feature in the training set. The chromosome is obtained by

concatenating all the above strings. Sample values of the

string length are around 2000 bits for reasonably sized

networks.

Initial population is generated by coding the networks

obtained by rough set-based knowledge encoding and by

random perturbations about them. A population size of 64

was considered.

3.2.2 Crossover

It is obvious that due to the large string length, single point
crossover would have little effectiveness. Multiple point
crossover is adopted, with the distance between two
crossover points being a random variable between eight
and 24 bits. This is done to ensure a high probability for
only one crossover point occurring within a word encoding
a single weight. The crossover probability is fixed at 0:7.

3.2.3 Mutation

The search string being very large, the influence of mutation
is more on the search compared to crossover. The mutation
probability has a spatio-temporal variation. The maximum
value of pmut is chosen to be 0:4 and the minimum value as
0:01. The mutation probabilities also vary along the
encoded string, the bits corresponding to intermodule links
being assigned a probability pmut (i.e., the value of pmut at
that iteration) and intramodule links assigned a probability
pmut=10. This is done to ensure least alterations in the
structure of the individual modules already evolved.
Hence, the mutation operator indirectly incorporates the
domain knowledge extracted through rough set theory.

3.2.4 Choice of Fitness Function

An objective function of the form described below is chosen.

F ¼ �1f1 þ �2f2; ð12Þ

where

f1 ¼
No: of Correctly Classified Sample in Training Set

Total No: of Samples in Training Set

f2 ¼ 1ÿ
No: of links present

Total No: of links possible
:

Here, �1 and �2 determine the relative weight of each of
the factors. �1 is taken to be 0:9 and �2 is taken as 0:1, to
give more importance to the classification score compared
to the network size in terms of number of links. Note
that we optimize the network connectivity, weights and
input/output fuzzification parameters simultaneously.

Selection is done by the roulette wheel method. The
probabilities are calculated on the basis of ranking of the
individuals in terms of the objective function, instead of the
objective function itself. Elitism is incorporated in the
selection process to prevent oscillation of the fitness
function with generation. The fitness of the best individual
of a new generation is compared with that of the current
generation. If the latter has a higher value the correspond-
ing individual replaces a randomly selected individual in
the new population.

4 RULE GENERATION AND QUANTITATIVE

EVALUATION

4.1 Extraction Methodology

Algorithms for rule generation from neural networks
mainly fall in two categories—pedagogical and decomposi-
tional [13]. Our algorithm can be categorized as decom-
positional. It is described below.
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1. Compute the following quantities: PMean ¼Mean
of all positive weights, PThres1 ¼ Mean of all
positive weights less than PMean, PThres2 ¼ Mean

of all weights greater than PMean. Similarly calcu-
late NThres1 and NThres2 for negative weights.

2. For each hidden and output unit

a. for all weights greater than PThres1 search for
positive rules only and for all weights less than
NThres1 search for negated rules only by Subset
method.

b. search for combinations ofpositiveweights above
Pthres2 and negative weights greater than
NThres1 that exceed the bias. Similarly search
for negative weights less than NThres2 and
positive weights below PThres1 to find out rules.

3. Associate with each rule j a confidence factor

cfj ¼ inf
j:all nodes in the path

ð�iwji ÿ �jÞ

�iwji
; ð13Þ

where wji is the ith incoming link weight to node j.

Since our training algorithm imposes a structure on the
network, resulting in a sparse network having few strong
links, the PThres and NThres values are well separated.
Hence, the above rule extraction algorithm generates most of
the embedded rules over a small number of computational
steps.

The computational complexity of our algorithm is as
follows. Let the network have i; h; onumbers of input, hidden
and output nodes, respectively. Let us make the assumption
that i ¼ h ¼ o ¼ k. Let the fraction ofweights having value in
½0; PThres1Þ, ½PThres1; PThres2Þ, ½PThres2;1Þ, be p1, p2, p3,
respectively. Similarly let the corresponding fractions for
negative weights be n1; n2; n3. Then, the computational
complexity (C) becomes

C ¼ k:ð2ðp2þp3Þkþ1 þ 2ðn2þn3Þkþ1 þ 2ðp3þn1Þkþ1 þ 2ðp1þn3Þkþ1Þ:

If n1; n2; p1; p2 � p3; n3;

C � 4k:ð2p3k þ 2n3kÞ ¼ 4k:ðeln2:p3kþ eln2:n3kÞ:

Also if p3; n3 � 1,

C � 4k:ð1þ ln2:ðp3 þ n3Þkþ 0:5:ðln2:ðp3 þ n3ÞÞ
2k2;

i.e., C � Oðk3Þ.
An important consideration is the order of application of

rules in a rule base. Since most of the real life patterns are
noisy and overlapping, rule bases obtained are often not
totally consistent. Hence, multiple rules may fire for a single
example. Several existing approaches apply the rules
sequentially [25], often leading to degraded performance.
The rules extracted by our method have confidence factors
associated with them. Therefore, if multiple rules are fired
we use the strongest rule having the highest confidence.

Two existing rule extraction algorithms, similar in spirit
to the proposed algorithm, are the Subset method [16] and
M of N method [17]. The major problem with the Subset
algorithm is that the cost of finding all subsets grows as
the size of the power set of the links to each unit. It
requires lengthy, exhaustive searches of size Oð2kÞ for a
hidden/output node with a fan-in of k and extracts a
large set of rules, upto �p � ð1þ �nÞ, where �p and �n are

the number of subsets of positively and negatively

weighted links respectively. Some of the generated rules

may be repetitive, as permutations of rule antecedents are

not taken care of automatically. Moreover, there is no

guarantee that all useful knowledge embedded in the

trained network will be extracted. Computational com-

plexity of the M of N algorithm is Oðk3 þ ðk2:jÞÞ, where j

is the number of examples. Additionally, the rule

extraction procedure involves a backpropagation step

requiring significant computation time. The algorithm

has good generalization (accuracy), but can have degraded

comprehensibility [26]. Note that one considers groups of

links as equivalence classes, thereby generating a bound

on the number of rules rather than establishing a ceiling

on the number of antecedents.

4.2 Quantitative Measures

Here, we provide some measures in order to evaluate the

performance of the rules. Among them Certainty and

Confusion reflecting the confidence and ambiguity in a

decision, are newly defined. Note that these aspects had not

been considered earlier.
Let N be an l� l matrix whose ði; jÞth element nij

indicate the number of patterns actually belonging to class i,

but classified as class j.

1. Accuracy. It is the correct classification percentage,
provided by the rules on a test set defined as nic

ni
:100,

where ni is equal to the number of points in class i
and nic of these points are correctly classified.

2. User’s Accuracy [27]. If n0i points are found to be
classified into class i, then the user’s accuracy (U) is
defined as U ¼ nic=n

0
i. This gives a measure of the

confidence that a classifier attributes to a region as
belonging to a class. In other words, it denotes the
level of purity associated with a region.

3. Kappa [27]. The coefficient of agreement called
“kappa” measures the relationship of beyond chance
agreement to expected disagreement. It uses all the
cells in the confusion matrix, not just the diagonal
elements. The estimate of kappa (K) is the propor-
tion of agreement after chance agreement is removed
from consideration. The kappa value for class i ðKiÞ
is defined as

Ki ¼
n:nic ÿ ni:n

0
i

n:n0i ÿ ni:n0i
: ð14Þ

The numerator and denominator of overall kappa

are obtained by summing the respective numerators

and denominators of Ki separately over all classes.
4. Fidelity [26]. This represents how closely the rule

base approximates the parent neural network model
[26]. We measure this as the percentage of the test set
for which network and the rule base output agree.
Note that fidelity may or may not be greater than
accuracy.

5. Confusion. This measure quantifies the goal that the
“Confusion should be restricted within minimum number
of classes.” This property is helpful in higher level
decision making. Let n̂nij be the mean of all nij for
i 6¼ j. Then, we define
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Conf ¼
Cardfnij : nij � n̂nij; i 6¼ jg

l
ð15Þ

for an l class problem. The lower the value of Conf ,
lesser is the number of classes between which
confusion is occurs.

6. Cover. Ideally the rules extracted should cover all the
cluster regions of the pattern space. We use the
percentage of examples from a test set for which no
rules are fired as a measure of the uncovered region.
A rule base having a smaller uncovered region is
superior.

7. Rule base size. It is measured in terms of the number
of rules. Lower the value is, the more compact is the
rule base.

8. Computational complexity. Here, we present the
CPU time required.

9. Certainty. By certainty of a rule base, we quantify the
confidence of the rules as defined by the certainty
factor cf (13).

5 IMPLEMENTATION AND RESULTS

The genetic-rough-neuro-fuzzy algorithm has been imple-
mented on both real life (speech, medical) and artificially
generated data. The data sets are available at http://
www.isical.ac.in/~sushmita/patterns. Let the proposed
methodology be termed Model S. Other models compared
include:

Model O: An ordinary MLP trained using backpropaga-
tion (BP) with weight decay.

Model F: A fuzzy multilayer perceptron trained using BP
[19] (with weight decay).

Model R: A fuzzy multilayer perceptron trained using BP
(with weight decay), with initial knowledge encoding using
rough sets [5].

Model FM.: A modular fuzzy multilayer perceptron
trained with GAs along with tuning of the fuzzification
parameters. Here, the term modular refers to the use of
subnetworks corresponding to each class, that are later
concatenated using GAs.

The speech data Vowel deals with 871 Indian Telegu
vowel sounds. These were uttered in a consonant-vowel-
consonant context by three male speakers in the age group
of 30 to 35 years. The data set has three features: F1, F2, and
F3 corresponding to the first, second and third vowel

formant frequencies obtained through spectrum analysis of

the speech data. Fig. 5 depicts the projection in the F1 ÿ F2

plane, of the six vowel classes �; a; i; u; e; o. These over-

lapping classes will be denoted by c1; c2; . . . ; c6.
The synthetic data Pat consists of 880 pattern points in

the two-dimensional space F1 ÿ F2, as depicted in Fig. 6.

There are three linearly nonseparable pattern classes. The

figure is marked with classes 1 ðc1Þ and 2 ðc2Þ, while

class 3 ðc3Þ corresponds to the background region.
Themedical data consistingofnine input features and four

pattern classes, deals with various Hepatobiliary disorders of

536 patient cases. The input features are the results of

different biochemical tests, viz., Glutamic Oxalacetic

Transaminate (GOT, Karmen unit), Glutamic Pyruvic Trans-

aminase (GPT,KarmenUnit), LactateDehydrase (LDH, iu/l),

Gamma Glutamyl Transpeptidase (GGT, mu/ml), Blood

Urea Nitrogen (BUN, mg/dl), Mean Corpuscular Volume of

red blood cell (MCV, fl), Mean Corpuscular Hemoglobin

(MCH, pg), Total Bilirubin (TBil, mg/dl), and Creatinine

(CRTNN, mg/dl). The hepatobiliary disorders, Alcoholic

Liver Damage (ALD), Primary Hepatoma (PH), Liver

Cirrhosis (LC), and Cholelithiasis (C), constitute the four

classes. These are referred to as c1, c2, c3, c4.
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Fig. 5. Projection in F1 ÿ F2 plane of the Vowel data.

Fig. 6. Artificially generated linearly nonseperable pattern Pat.

TABLE 1
Rough Set Dependency Rules for Vowel Data

along with the Input Fuzzification Parameter Values



5.1 Classification

Recognition scores obtained for each of the data by the
proposed soft modular network (Model S) are presented in
Table 2. It also shows a comparison with other related MLP-
based classification methods (Models O, F, R and FM). In all
cases, 10 percent of the samples are used as training set and
the remaining samples are used as test set. Ten such
independent runs are performed and the mean value and
standard deviation of the classification accuracy, computed
over them, are presented in Table 2.

The dependency rules, as generated via rough set theory
and used in the encoding scheme, are shown in Table 1 only

for vowel data, as an example. The values of input
fuzzification parameters used are also presented in Table 1.
The corresponding �-functions are shown in Fig. 7 only for
featureF1, as an illustration. In Table 1,Fi, whereF stands for
low, medium, or high, denotes a property F of the ith feature
[19]. The integrated networks contain 18, 15, and 10 hidden
nodes in a single layer for Vowel, Pat, and medical data,
respectively. After combination 96, 61, and 16 networks were
obtained, respectively. The initial population of the GA was
formed using 64 networks in each of these cases. In the first
phase of the GA (for models FM and S), each of the
subnetworks are partially trained for 10 sweeps.

The classification accuracies obtained by the models
are analysed for statistical significance. Tests of signifi-
cance are performed for the inequality of means (of
accuracies) obtained using the proposed algorithm and
the other methods compared. Since both mean pairs and
the variance pairs are unknown and different, a general-
ized version of t-test is appropiate in this context. This
problem is the classical Behrens-Fisher problem in
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TABLE 2
Comparative Performance of Different Models

Fig. 7. Input �-functions and data distribution along F1 axis for the Vowel
data. Solid lines represent the initial functions and dashed lines

represent the functions obtained finally after tuning with GAs. The

horizontal dotted lines represents the threshold level.

Fig. 8. Histogram plot of the distribution of weight values with Model S

and Model F for Vowel data.



hypothesis testing, a suitable test statistic is described in
[28] and tabled in [29]. The test statistic is of the form

v ¼
�xx1 ÿ �xx2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1s21 þ �2s22
p ;

where �xx1; �xx2 are themeans, s1; s2 are the standard deviations,
�1 ¼ 1=n1, �2 ¼ 1=n2, and n1; n2 are the number of observa-
tions. Since, experiments were performed on 10 independent
random training sets for all the algorithms, we have
n1 ¼ n2 ¼ 10. The test confidence level considered was
95 percent. In Table 2, we present the mean and standard
deviation (SD) of the accuracies. Using the means and SDs,
the valueof the test statistics is computed. If the value exceeds
the corresponding tabled value, the means are unequal with
statistical significance (algorithm having higher mean accu-
racy being significantly superior to the one having lower
value).

It is observed from Table 2 that Model S performs the
best (except for Model R on Vowel data and Model F on
Medical data) with the least network size as well as least
number of sweeps. For Model R with Vowel data and
Model F with Medical data, the classification performance
on test set is marginally better than that of Model S, but
with significantly higher number of links and training
sweeps required. Comparing models F and R, we observe
that the incorporation of domain knowledge in the latter
through rough sets boosts its performance. Similarly, using

the modular approach with GA (Model FM) improves the
efficiency of Model F. Since Model S encompasses the
principle of both models R and FM, it results in the least
redundant yet most effective model. The variation of the
classification accuracy of the models with iteration is also
studied. As expected, Model S is found to have high
recognition score at the very begining of evolutionary
training, the next values are attained by models R and FM,
and the lowest being attained by models O and F using
backpropagation. For example, in the case of Vowel data,
these figures are 64 percent for S, 52 percent for R,
44 percent for FM, and 0 percent for F and O. Model S
converges after about 90 iterations of the GA, providing the
highest accuracy compared to all the other models. The
backpropagation-based models require about 2,000-5,000
iterations for convergence.

It may be noted that the training algorithm suggested is
successful in imposing a structure among the connection
weights. As seen from Fig. 8, for vowel data, the weight
values for a fuzzy MLP trained with BP (Model F) is more
or less uniformly distributed between the maximum and
minimum values. On the other hand, the Modular Rough-
fuzzy MLP (Model S) has most of its weight values zero
while majority of its nonzero weights have a high value.
Hence, it can be inferred that the former model results in a
dense network with weak links, while the incorporation of
rough sets, modular concepts and GAs produces a sparse
network with strong links. The latter is suitable for rule
extraction. The connectivity (positive weights) of the trained
network is shown in Fig. 9.

5.2 Rule Extraction

We use the algorithm explained in Section 4.1 to extract
rules from the trained network (Model S). These rules are
compared with those obtained by the Subset method [16], M
of N method [17], a pedagogical method X2R [18], and a
decision tree-based method C4.5 [30] in terms of the
performance measures (Section 4.2). The set of rules
extracted from the proposed network (Model S) is pre-
sented in Table 4 along with their certainty factors (cf). The
values of the fuzzification parameters of the membership
functions L, M, and H are also mentioned. For the medical
data, we present the fuzzification parameters only for those
features that appear in the extracted rules.
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Fig. 9. Positive connectivity of the network obtained for the Vowel data,

using Model S. (Bold lines indicate weights greater than PThres2, while

others indicate values between PThres1 and PThres2).

TABLE 3
Comparison of the Performance of the Rules Extracted by Various Methods for Vowel, Pat, and Medical Data



A comparison of the performance indices of the extracted
rules is presented in Table 3. Since the network obtained
using Model S contains fewer links, the generated rules are
less in number and they have high certainty factor.
Accordingly, it possesses relatively higher percentage of
uncovered region, though the accuracy did not suffer much.
Although the Subset algorithm achieves the highest accuracy,
it requires the largest number of rules and computation
time. In fact, the accuracy/computation time of Subset
method is marginally better/worse than Model S, while the
size of the rule base is significantly less for Model S.

The accuracy achieved by Model S is better than that of
M of N, X2R, and C4.5, except for the Pat data with C4.5.
Also, considering user’s accuracy and kappa, the best
performance is obtained by Model S. The X2R algorithm
requires least computation time but achieves the least
accuracy with more rules. The Conf index is the minimum
for rules extracted by Model S; it also has high fidelity (e.g.,
94.22 percent, 89.17 percent and 74.88 percent for Vowel, Pat,
and medical data respectively).

In a part of the experiment, we also conducted a
comparison with Models F, R, and FM for rule extraction. It
was observed that the performance degrades substantially
for them because these networks are less structured and
hence less suitable, as compared to Model S, for rule
extraction.

6 CONCLUSIONS AND DISCUSSION

A methodology for modular evolution of a rough-fuzzy-
MLP using genetic algorithms for designing a knowledge-
based network for pattern classification and rule generation
is presented. The proposed algorithm involves synthesis of
severalMLPmodules, each encoding the rough set rules for a
particular class. These knowledge-basedmodules are refined
using a GA. The genetic operators are implemented in such a
way that they help preserve the modular structure already
evolved. It is seen that this methodology alongwithmodular
network decomposition results in accelerated training and
more sparse (compact) network with comparable classifica-
tion accuracy, as compared to earlier hybridizations.

The aforesaid model is used to develop a new rule
extraction algorithm. The extracted rules are compared with
some of the related rule extraction techniques on the basis
of some quantitative performance indices. Two new
measures, introduced to evaluate the confidence and
ambiguity in a decision, are found to be satisfactory. It is
observed that the proposed methodology extracts rules
which are less in number, yet accurate and have high
certainty factor and low confusion with less computation
time. The investigation, besides having significance in soft
computing research, has potential for application to large
scale problems involving knowledge discovery tasks [31]
and using case-based reasoning [32], particularly related to
mining of classification rules.
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