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Abstract. A variety of numerical approaches for reasoning with uncertainty have been in-
vestigated in the literature. We propose rough membership functions, rm-functions for short, as
a basis for such reasoning. These functions have values in the interval [0, 1] and are computable
on the basis of the observable information about the objects rather than on the objects them-
selves. We investigate properties of the rm-functions. In particular, we show that our approach
is intensional with respect to the class of all information systems [P91]. As a consequence we
point out some differences between the rm-functions and the fuzzy membership functions [Z65],
e.g. the rm-function values for X ∪ Y (X ∩Y ) cannot be computed in general by applying the
operation max (min) to the rm-function values for X and Y .

1. Introduction. One of the fundamental problems studied in artificial intel-
ligence is related to the object classification, that is, the problem of associating a
particular object with one of many predefined sets. We study that problem. Our
approach is based on the observation that the classification of objects is performed
on the basis of the accessible information about them. Objects with the same
accessible information will be considered as indiscernible [P91]. Therefore we are
faced with the problem of determining whether or not an object belongs to a given
set when only some properties (i.e. attribute values) of the object are accessible.
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We introduce rough membership functions (rm-functions for short) which al-
low us to measure the degree with which any object with given attribute values
belongs to a given set X. The information about objects is stored in data ta-
bles called information systems [P91]. Any rm-function µA

X is defined for a given
information system A and a given set X of objects.

The paper is structured as follows.

Section 2 contains a brief discussion of information systems [P91], informa-
tion functions [Sk91] and rough sets [P91]. In Section 3 we define a partition of
boundary regions [S91] and we present some basic properties of this partition,
which we apply later.

In Section 4 we define the rm-functions and we study their basic properties.

In Section 5 we present formulas for computing the rm-function values
µA

X∪Y (x) and µA

X∩Y (x) from the values µA

X(x) and µA

Y (x) (when it is possible,
i.e. when the classified objects are not in a particular boundary region) if infor-
mation encoded in the information system A is accessible. In the construction of
those formulas we apply the partition of boundary regions related to X and Y
defined in Section 3. One can interpret that result as follows: the computation
of the rm-function values µA

X∪Y (x) and µA

X∩Y (x) (if one excludes a particular
boundary region!) is extensional under the condition that the information system
is fixed.

We also show, in Section 5, that our approach is intensional with respect to
the set of all information systems (with a universe including the sets X and Y ),
namely it is not possible, in general, to compute the rm-function values µA

X∪Y (x)
and µA

X∩Y (x) from µA

X(x) and µA

Y (x) when information about A is not accessible
(Theorem 3).

In Section 5 we specify the maximal classes of information systems such that
the computation of rm-function values for union and intersection is extensional
when related to those classes, and is defined by the operations min and max (as in
the fuzzy set approach [Z65, DP80]), i.e. the values µA

X∪Y (x) and µA

X∩Y (x) are ob-
tained by applying the operations min and max to µA

X(x) and µA

Y (x), respectively
(if A belongs to those maximal classes).

2. Information systems and rough sets. Information systems (sometimes
called data tables, attribute-value systems, condition-action tables etc.) are used
for representing knowledge. The information system notion presented here is due
to Pawlak and was investigated by several researchers (see the references in [P91]).

The rough sets have been introduced as a tool for dealing with inexact, un-
certain or vague knowledge in artificial intelligence applications, like for example
knowledge based systems in medicine, natural language processing, pattern recog-
nition, decision systems, approximate reasoning. Since 1982 the rough sets have
been intensively studied and by now many practical applications based on the
theory of rough sets have been implemented.
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In this section we present some basic notions related to information systems
and rough sets which will be necessary for understanding our results.

An information system is a pair A = (U,A), where U is a non-empty, finite
set called the universe, and A is a non-empty, finite set of attributes, i.e.

a : U → Va for a ∈ A ,

where Va is called the value set of a.
With every subset of attributes B ⊆ A we associate a binary relation IND(B),

called the B-indiscernibility relation, and defined as follows:

IND(B) = {(x, y) ∈ U2 : for every a ∈ B, a(x) = a(y)} .

By [x]IND(B) or [x]B we denote the equivalence class of x with respect to the
equivalence relation IND(B), i.e. the set {y ∈ U : xIND(B) y}.

If xIND(B) y then we say that the objects x and y are indiscernible with
respect to attributes from B. In other words, we cannot distinguish x from y in
terms of attributes in B.

Some subsets of objects in an information system cannot be expressed exactly
in terms of the available attributes, they can only be roughly defined.

If A = (U,A) is an information system, B ⊆ A and X ⊆ U then the sets

BX = {x ∈ U : [x]B ⊆ X} and BX = {x ∈ X : [x]B ∩ X 6= ∅}

are called the B-lower and the B-upper approximation of X in A, respectively.
A set X is said to be B-definable if BX = BX. It is easy to observe that

BX is the greatest B-definable set contained in X, whereas BX is the smallest
B-definable set containing X. One can observe that a set is B-definable iff it is
the union of some equivalence classes of the indiscernibility relation IND(B).

By P(X) we denote the power set of X.
Every information system A = (U,A) determines an information function

Inf
A

: U → P

(
A ×

⋃

a∈A

Va

)

defined as follows:

Inf A(x) = {(a, a(x)) : a ∈ A} .

Hence xIND(A)y iff Inf A(x) = Inf A(y).
We restrict our considerations to the information functions related to infor-

mation systems but our results can be extended to the case of more general
information functions [Sk91]. One can consider as information function an arbi-
trary function f defined on the set of objects U with values in some computable
set C.

For example, one may take as the set U of objects the set TotA of total elements
in the Scott information system A [Sc82] and as C a computable (an accessible)
subset of the set D of sentences in A. The information function f related to C
can be defined as follows: f(x) = x ∩ C for x ∈ TotA.
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Every such general information function f defines the indiscernibility relation
IND(f) ⊆ U × U as follows:

xIND(f) y iff f(x) = f(y) .

3. An approximation of classifications. In this section we introduce and
study the notion of approximation of classification. It was preliminarily considered
in [S91, SG91]. The main idea is based on the observation that it is possible to
classify boundary regions corresponding to sets from a given classification, i.e. a
partition of the object universe.

Let A = (U,A) be an information system and let X, Z be families of subsets
of U such that Z ⊆ X and |Z| > 1, where |Z| denotes the cardinality of Z. The
set ⋂

X∈Z

BNA(X) ∩
⋂

X∈X−Z

(U − BNA(X))

is said to be the Z-boundary region defined by X and A and is denoted by
BdA(Z, X).

By CLASS−APPRA(X) we denote the set family

{AX : X ∈ X} ∪ {BdA(Z, X) : Z ⊆ X and |Z| > 1} .

From the above definitions we get the following proposition [S91]:

Proposition 1. Let A = (U,A) be an information system and let X be a

family of pairwise disjoint subsets of U such that
⋃

X = U . Let Z ⊆ X and

|Z| > 1. Then

(i) The set BdA(Z, X) is definable in A;

(ii) CLASS−APPRA(X) − {∅} is a partition of U ;

(iii) If x ∈ BdA(Z, X) then [x]A ⊆
⋃

Z;

(iv) If x ∈ BdA(Z, X) then for every X ∈ X

[x]A ∩ X 6= ∅ iff X ∈ Z;

(v) The following equality holds:

A
( ⋃

Y

)
=

⋃

X∈Y

AX ∪
⋃

|Z|>1
Z⊆Y

BdA(Z, X), where Y ⊆ X .

P r o o f. (i) If x ∈ BdA(Z, X) then x ∈ BNA(X) for any X ∈ Z and x ∈
U −BNA(X) for any X ∈ X−Z. From the definability in A of the sets BNA(X)
and U − BNA(X) for X ⊆ U we have [x]A ⊆ BNA(X) for any X ∈ Z and
[x]A ⊆ U−BNA(X) for any X ∈ X−Z. Hence [x]A ⊆ BdA(Z, X). We proved that
BdA(Z, X) ⊆ A(BdA(Z, X)). Since BdA(Z, X) ⊇ A(BdA(Z, X)) we get BdA(Z, X)
= A(BdA(Z, X)).
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(ii) It is easy to observe that CLASS−APPRA(X) is a family of pairwise
disjoint sets. We prove that

⋃
CLASS−APPRA(X) = U .

If x ∈ U then x ∈ X for some X ∈ X. If x ∈ AX then x ∈ CLASS−APPRA(X),
otherwise x ∈ AX − AX. In the latter case let

Zx = {X ∈ X : [x]A ∩ X 6= ∅} .

Then we have |Zx| > 1 and x ∈ BdA(Zx, X).
(iii) Let x ∈ BdA(Z, X). Suppose that y 6∈

⋃
Z for some y ∈ [x]A. Since⋃

X = U we have y ∈
⋃

X −
⋃

Z. Hence y ∈ X0 for some X0 ∈ X − Z. In
consequence, X0 ∩ [y]A = X0 ∩ [x]A 6= ∅. If x ∈ BdA(Z, X) then x ∈ U −BNA(X)
for X ∈ X − Z. Since U − BNA(X) is definable in A we obtain [x]A ⊆ U −
BNA(X) = (U − AX) ∪ AX. Hence [x]A ⊆ AX0 or [x]A ⊆ U − AX0. Since
X0 ∩ [x]A 6= ∅ we get

(∗) [x]A ⊆ AX0 .

From the assumption x ∈ BdA(Z, X) we also have x ∈ BNA(X) for any X ∈ Z, so

(∗∗) [x]A ∩ X 6= ∅ for any X ∈ Z .

From (∗) and (∗∗) we would have X ∩X0 6= ∅ for any X ∈ Z but this contradicts
the assumption that X is a family of pairwise disjoint sets.

(iv) Let x ∈ BdA(Z, X) and X ∈ X.
Suppose that [x]A ∩ X 6= ∅, i.e. x ∈ BNA(X). Hence from the definition of

BdA(Z, X) we have X ∈ Z.
If X ∈ Z then we have x ∈ BNA(X). Hence [x]A ∩ X 6= ∅.
(v) (⊆) If x ∈ BdA(Z, X) we deduce from (iii) that x ∈ A

⋃
Z ⊆ A

⋃
Y. We

also have AX ⊆ A
⋃

Y for any X ∈ Y.
(⊇) Let x ∈ A

⋃
Y, i.e. [x] ⊆

⋃
Y. If x 6∈ AX for X ∈ Y then let Zx =

{X ∈ Y : [x]A ∩ X 6= ∅}. Hence |Zx| > 1 and [x]A ⊆
⋃

Zx. Thus, we have
x ∈ BdA(Zx, X).

4. Rough membership functions—definition and basic properties.

One of the fundamental notions of set theory is the membership relation, usually
denoted by ∈. When one considers subsets of a given universe it is possible to
apply characteristic functions for expressing the fact whether or not a given ele-
ment belongs to a given set. We discuss the case when only partial information
about objects is accessible. In this section we show it is possible to extend the
characteristic function notion to that case.

Let A = (U,A) be an information system and let ∅ 6= X ⊆ U . The rough

A-membership function of the set X (or rm-function, for short), denoted by µA

X ,
is defined as follows:

µA

X(x) =
|[x]A ∩ X|

|[x]A|
for x ∈ U .
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The above definition is illustrated in Fig. 1.

Fig. 1.

One can observe a similarity of the expression on the right hand side of the
above definition with the one used to define conditional probability.

From the definition of µA

X we have the following proposition characterizing
some basic properties of rm-functions.

Proposition 2. Let A = (U,A) be an information system and let X,Y ⊆ U .

The rm-function µA

X
has the following properties:

(i) µA

X(x) = 1 iff x ∈ AX;
(ii) µA

X(x) = 0 iff x ∈ U − AX;
(iii) 0 < µA

X(x) < 1 iff x ∈ BNA(X);
(iv) If IND(A) = {(x, x) : x ∈ U} then µA

X is the characteristic function of X ;
(v) If xIND(A)y then µA

X(x) = µA

X(y).
(vi) µA

U−X(x) = 1 − µA

X(x) for any x ∈ X;

(vii) µA

X∪Y (x) ≥ max(µA

X(x), µA

Y (x)) for any x ∈ U ;
(viii) µA

X∩Y (x) ≤ min(µA

X(x), µA

Y (x)) for any x ∈ U ;
(ix) If X is a family of pairwise disjoint subsets of U then

µA⋃
X
(x) =

∑

X∈X

µA

X(x) for any x ∈ U .

P r o o f. (i) We have x ∈ AX iff [x]A ⊆ X iff µA

X(x) = 1.
(ii) We have x ∈ U − AX iff [x]A ∩ X = ∅ iff µA

X(x) = 0.
(iii) We have

x ∈ BNA(X) iff ([x]A ∩ X 6= ∅ and [x]A ∩ (U − X) 6= ∅)

iff (µA

X(x) > 0 and µA

X(x) < 1) .

(iv) If IND(A) = {(x, x) : x ∈ U} then |[x]A| = 1 for any x ∈ X. Moreover,
|[x]A ∩ X| = 1 if x ∈ X and |[x]A ∩ X| = 0 if x ∈ U − X.

(v) Since [x]A = [y]A we have µA

X(x) = µA

X(y).
(vi) We have

µA

U−X(x) =
|[x]A ∩ (U − X)|

|[x]A|
= 1 −

|[x]A ∩ X|

|[x]A|
= 1 − µA

X(x) .
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(vii) We have

µA

X∪Y (x) =
|[x]A ∩ (X ∪ Y )|

|[x]A|
≥

|[x]A ∩ X|

|[x]A|
= µA

X(x) .

In a similar way one can obtain µA

X∪Y (x) ≥ µA

Y (x).
(viii) The proof runs as in the case (vi).
(ix) We have

µA⋃
X
(x) =

|[x]A ∩
⋃

X|

|[x]A|
=

|
⋃
{[x]A ∩ X : X ∈ X}|

|[x]A|
=

∑

X∈X

µA

X(x) .

The last equality follows from the assumption that X is a family of pairwise
disjoint sets.

The set {Inf A(x) : x ∈ U} is called the A-information set and is denoted by
INF(A). For every X ⊆ U we define the rough A-information function, denoted
by µ̂A

X , as follows:

µ̂A

X(u) = µA

X(x), where u ∈ INF(A) and Inf
A
(x) = u .

The correctness of the above definition follows from (v) of Proposition 1.
If A = (U,A) is an information system then we define the rough A-inclusion

of subsets of U in the standard way, namely:

X ≤A Y iff µA

X(x) ≤ µA

Y (x) for any x ∈ U .

Proposition 3. If X ≤A Y then AX ⊆ AY and AX ⊆ AY .

P r o o f. Follows from Proposition 2 (see (i) and (ii)).

The above definition of the rough A-inclusion is not equivalent to the one of
[P91]. Indeed, in [P91] the reverse implication to that formulated in Proposition 2
is not valid.

One can show that they are equivalent for any information system A only
if AX ⊆ AY . This is a consequence of our definition taking into account some
additional information about objects from the boundary regions.

5. Rough membership functions for union and intersection. Now we
present some results which are obtained as a consequence of our assumption that
objects are observable by means of partial information about them represented
by attribute values. In this section we prove that the inequalities in (vii) and (viii)
of Proposition 2 cannot in general be replaced with equalities.

We also prove that for some boundary regions it is not possible to compute
the values of the rm-functions for the union X ∪ Y and intersection X ∩ Y from
the values of the rm-functions for X and Y only (if information about information
systems is not accessible and there do not hold some special relations between the
sets X and Y ). These results show that the assumptions about properties of the
fuzzy membership functions [DP80, p. 11] related to the union and intersection
should be modified if one would like to take into account that objects are classified
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on the basis of partial information about them. We also present necessary and
sufficient conditions for the following equalities (used in fuzzy set theory) to be
true, for any x ∈ U :

µA

X∪Y (x) = max(µA

X(x), µA

Y (x)) ,

µA

X∩Y (x) = min(µA

X(x), µA

Y (x)) .

These conditions are expressed by means of the boundary regions of a partition
of U defined by X and Y or by means of some relationships which should hold
for X and Y . In particular, we show that the above equalities are true for an
arbitrary information system A iff X ⊆ Y or Y ⊆ X.

First we prove the following two lemmas.

Lemma 1. Let A = (U,A) be an information system, X,Y ⊆ U and X =
{X ∩ Y,X ∩ −Y,−X ∩ Y,−X ∩ −Y }. If x ∈ U − BdA(X, X) then

µA

X∩Y (x) =

if x ∈ BdA({X ∩ −Y,−X ∩ Y }, X) ∪ BdA({X ∩ −Y,−X ∩ Y,−X ∩ −Y }, X)

then 0

else if x ∈ BdA({X ∩ Y,X ∩ −Y,−X ∩ Y }, X)

then µA

X(x) + µA

X(x) − 1

else min(µA

X(x), µA

Y (x)) .

P r o o f. In the proof we apply Proposition 1(iii).
Let x ∈ BdA({X ∩−Y,−X ∩Y }, X)∪BdA({X ∩−Y,−X ∩ Y,−X ∩−Y }, X).

Hence [x]A ⊆ (X ∩ −Y ) ∪ (−X ∩ Y ) ∪ (−X ∩ −Y ), so [x]A ∩ (X ∩ Y ) = ∅ and
µA

X∩Y (x) = 0.
If x ∈ BdA({X ∩ Y,X ∩ −Y,−X ∩ Y }, X) then

[x]A ⊆ X ∩ Y ∪ X ∩ −Y ∪−X ∩ Y .

Hence [x]A = [x]A ∩ (X ∩ Y ) ∪ [x]A ∩ (X ∩ −Y ) ∪ [x]A ∩ (−X ∩ Y ), so [x]A =
[x]A ∩X ∪ [x]A ∩Y . We obtain |[x]A| = |[x]A ∩X|+ |[x]A ∩Y | − |[x]A ∩ (X ∩Y )|.
Hence µA

X∩Y (x) = µA

X(x) + µA

Y (x) − 1.
If x ∈ A(X ∩ Y ) then [x]A ⊆ X ∩ Y . Hence µA

X∩Y (x) = 1. We also have
[x]A ⊆ X and [x]A ⊆ Y because X ∩ Y ⊆ X and X ∩ Y ⊆ Y . Hence µA

X(x) =
µA

Y (x) = 1.
If x ∈ A(X ∩ −Y ) then [x]A ⊆ X ∩ −Y . Hence [x]A ∩ (X ∩ Y ) = ∅ and

[x]A ∩ Y ⊆ (X ∩ −Y ) ∩ Y = ∅, so

µA

X∩Y (x) = min(µA

X(x), µA

Y (x)) .

If x ∈ A(−X ∩ Y ) the proof is analogous to the latter case.
If x ∈ A(−X ∩ −Y ) we obtain µA

X∩Y (x) = µA

X(x) = µA

Y (x) = 0.
If x ∈ BdA({X∩Y,X∩−Y }, X) we have [x]A = [x]A∩(X∩Y )∪[x]A∩(X∩−Y ).

Hence [x]A ∩ (X ∩ Y ) = [x]A ∩ Y and [x]A = [x]A ∩ X ⊆ X. Hence µA

X∩Y (x) =
µA

Y (x) ≤ µA

X(x) = 1.
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If x ∈ BdA({X ∩ Y,−X ∩ Y }, X) the proof is analogous to the latter case.

If x ∈ BdA({X∩−Y,−X∩−Y }, X) one can calculate that µA

X∩Y (x) = µA

Y (x) =
0 ≤ µA

X(x). Similarly, in the case when x∈BdA({−X ∩Y,−X ∩−Y }, X) one can
calculate that µA

X∩Y
(x) = µA

X
(x) = 0 ≤ µA

Y
(x).

If x ∈ BdA({X ∩ Y,−X ∩−Y }, X) we have µA

X∩Y (x) = µA

X(x) = µA

Y (x).

Lemma 2. Let A = (U,A) be an information system, X,Y ⊆ U and X =
{X ∩ Y,X ∩ −Y,−X ∩ Y,−X ∩ −Y }. If x ∈ U − BdA(X, X) then

µA

X∪Y (x) =

if x ∈ BdA({X ∩ −Y,−X ∩ Y }, X) ∪ BdA({X ∩−Y,−X ∩ Y,−X ∩ −Y }, X)

then µA

X(x) + µA

Y (x)

else if x ∈ BdA({X ∩ Y,X ∩ −Y,−X ∩ Y }, X)

then 1

else max(µA

X(x), µA

Y (x)) .

P r o o f. In the proof we apply Proposition 1(iii).

If x ∈ BdA({X ∩ −Y,−X ∩ Y } then

[x]A = [x]A ∩ (X ∩ −Y ) ∪ [x]A ∩ (−X ∩ Y ) .

Hence [x]A ∩ X = [x]A ∩ X ∩ −Y , [x]A ∩ Y = [x]A ∩ −X ∩ Y . Since

[x]A ∩ (X ∪ Y ) = ([x]A ∩ X) ∪ ([x]A ∩ Y ) and

([x]A ∩ X) ∩ ([x]A ∩ Y ) = [x]A ∩ X ∩ −Y ∩ −X ∩ Y = ∅

we get µA

X∪Y (x) = µA

X(x) + µA

Y (x).

If x ∈ BdA({X ∩ −Y,−X ∩ Y,−X ∩−Y }, X) then

[x]A = [x]A ∩ (X ∩ −Y ) ∪ [x]A ∩ (−X ∩ Y ) ∪ [x]A ∩ (−X ∩−Y ) .

Since

[x]A ∩ (X ∪ Y ) = ([x]A ∩ X) ∪ ([x]A ∩ Y ) and

([x]A ∩ X) ∩ ([x]A ∩ Y ) = [x]A ∩ X ∩ −Y ∩ −X ∩ Y = ∅

we get µA

X∪Y (x) = µA

X(x) + µA

Y (x).

If x ∈ BdA({X ∩ Y,X ∩ −Y,−X ∩ Y }, X) then

[x]A = [x]A ∩ (X ∩ Y ) ∪ [x]A ∩ (X ∩ −Y ) ∪ [x]A ∩ (−X ∩ Y ) .

Hence [x]A ∩ (X ∪ Y ) = [x]A, so µA

X∪Y (x) = 1.

If x ∈ A(−X ∩ −Y ) then [x]A = [x]A ∩ (−X ∩−Y ). Hence [x]A ∩ (X ∪ Y ) =
[x]A ∩ X = [x]A ∩ Y = ∅.

If x ∈ A(X ∩ Y ) then [x]A = [x]A ∩ X ∩ Y . Hence [x]A ∩ (X ∪ Y ) = [x]A =
[x]A ∩ X = [x]A ∩ Y .

If x ∈ A(−X ∩ Y ) then [x]A = [x]A ∩ (−X ∩ Y ). Hence [x]A ∩ (X ∪ Y ) =
[x]A ∩ Y 6= ∅ and [x]A ∩ X = ∅. If x ∈ A(−X ∩ Y ) then the proof is analogous.
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If x ∈ BdA({X ∩ Y,X ∩ −Y }, X) then

[x]A = [x]A ∩ (X ∩ Y ) ∪ [x]A ∩ (X ∩ −Y ) .

Hence [x]A ∩ (X ∪ Y ) = [x]A ∩ X ⊇ [x]A ∩ (X ∩ Y ) = [x]A ∩ Y .

If x ∈ BdA({X ∩ Y,−X ∩ Y }, X) then the proof is analogous.

If x ∈ BdA({X ∩ Y,−X ∩−Y }, X) then µA

X∪Y (x) = µA

X(x) = µA

Y (x).

If x ∈ BdA({X ∩ −Y,−X ∩ −Y }, X) then µA

X∪Y (x) = µA

X(x) and µA

Y (x) = 0.

If x ∈ BdA({−X ∩ Y,−X ∩ −Y }, X) then µA

X∪Y (x) = µA

Y (x) and µA

X(x) = 0.

If x ∈ BdA({X ∩ −Y,X ∩ Y,−X ∩ −Y }, X) then µA

X∪Y (x)=µA

X(x)≥µA

Y (x).

If x ∈ BdA({−X ∩ Y,X ∩ Y,−X ∩ −Y }, X) then µA

X∪Y (x)=µA

Y (x)≥µA

X(x).

Theorem 1. Let A be a (non-empty) class of information systems with the

universe including sets X and Y. The following conditions are equivalent :

(i) µA

X∩Y (x) = min(µA

X(x), µA

Y (x)) for any x ∈ U and A = (U,A) ∈ A;

(ii) BdA(Y, X) = ∅ for any Y ⊇ {X ∩ −Y,−X ∩ Y } and A = (U,A) ∈ A,
where X = {X ∩ Y,X ∩ −Y,−X ∩ Y,−X ∩ −Y }.

P r o o f. (ii)→(i). Follows from Lemma 1.

(i)→(ii). Suppose that BdA(Y, X) 6= ∅ for some Y ⊇ {X ∩ −Y,−X ∩ Y } and
A ∈ A.

If x ∈ BdA({X ∩ −Y,−X ∩ Y }, X) 6= ∅ for some A ∈ A then

[x]A ∩ (X ∩ −Y ) 6= ∅ and [x]A ∩ (−X ∩ Y ) 6= ∅ .

Hence µA

X(x) > 0 and µA

Y (x) > 0. Also, from Lemma 1, µA

X∩Y (x) = 0. Thus we
have µA

X∩Y (x) 6= min(µA

X(x), µA

Y (x)), contrary to (i).

If x ∈ BdA({X ∩−Y,−X ∩ Y,−X ∩−Y }, X) for some A ∈ A and x ∈ U then
one gets a contradiction with (i) in the same manner as before.

If x ∈ BdA({X ∩ −Y,−X ∩ Y,X ∩ Y }, X) 6= ∅ for some A ∈ A then [x]A =
[x]A ∩ (X ∩ −Y ) ∪ [x]A ∩ (−X ∩ Y ) ∪ [x]A ∩ (X ∩ Y ). Hence

[x]A ∩ X = [x]A ∩ (X ∩−Y ) ∪ [x]A ∩ (X ∩ Y ) and

[x]A ∩ Y = [x]A ∩ (−X ∩ Y ) ∪ [x]A ∩ (X ∩ Y ) .

Since [x]A ∩ (X ∩ −Y ) 6= ∅ and [x]A ∩ (−X ∩ Y ) 6= ∅ we would have µA

X(x) >
µA

X∩Y (x) and µA

Y (x) > µA

X∩Y (x) but this contradicts (i).

If x ∈ BdA({X ∩ −Y,−X ∩ Y,−X ∩−Y,X ∩ Y }, X) for some A ∈ A then

[x]A = [x]A ∩ (X ∩ −Y ) ∪ [x]A ∩ (−X ∩ Y )

∪ [x]A ∩ (X ∩ Y ) ∪ [x]A ∩ (−X ∩ −Y ) .

Again we would have

[x]A ∩ X = [x]A ∩ (X ∩−Y ) ∪ [x]A ∩ (X ∩ Y ) and

[x]A ∩ Y = [x]A ∩ (−X ∩ Y ) ∪ [x]A ∩ (X ∩ Y ) .
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Since [x]A ∩ (X ∩ −Y ) 6= ∅ and [x]A ∩ (−X ∩ Y ) 6= ∅ we would have µA

X(x) >
µA

X∩Y (x) and µA

Y (x) > µA

X∩Y (x), which contradicts (i).

This completes the proof of (i)→(ii).

Theorem 2. Let A be a (non-empty) class of information systems with the

set of objects including sets X and Y. The following conditions are equivalent :

(i) µA

X∪Y (x) = max(µA

X(x), µA

Y (x)) for any x ∈ U and A = (U,A) ∈ A;

(ii) BdA(Y, X) = ∅ for any Y ⊇ {X ∩ −Y,−X ∩ Y } and A = (U,A) ∈ A,
where X = {X ∩ Y,−X ∩ Y,X ∩ −Y,−X ∩ −Y }.

P r o o f. (ii)→(i). Follows from Lemma 2.

(i)→(ii). Suppose that BdA(Y, X) 6= ∅ for some Y ⊇ {X ∩ −Y,−X ∩ Y } and
A ∈ A.

If x ∈ BdA({X ∩ −Y,−X ∩ Y }, X) 6= ∅ for some A ∈ A then

[x]A ∩ (X ∩ −Y ) 6= ∅ and [x]A ∩ (−X ∩ Y ) 6= ∅ .

Hence µA

X(x) > 0 and µA

Y (x) > 0. Also, from Lemma 2, µA

X∪Y (x) = µA

X(x) +
µA

Y (x). This gives µA

X∪Y (x) > µA

X(x) and µA

X∪Y (x) > µA

Y (x), contrary to (i).

If x ∈ BdA({X ∩−Y,−X ∩ Y,−X ∩−Y }, X) for some A ∈ A and x ∈ U then
one gets a contradiction with (i) as before.

If x ∈ BdA({X ∩ −Y,−X ∩ Y,X ∩ Y }, X) 6= ∅ for some A ∈ A then [x]A =
[x]A ∩ (X ∩ −Y ) ∪ [x]A ∩ (−X ∩ Y ) ∪ [x]A ∩ (X ∩ Y ) and [x]A ∩ Z 6= ∅ for
Z ∈ {X ∩ −Y,−X ∩ Y,X ∩ Y }. Hence

|[x]A| > |[x]A ∩ X| and |[x]A| > |[x]A ∩ Y | .

Thus µA

X(x) < 1 and µA

Y (x) < 1. However, µA

X∪Y (x) = 1 from Lemma 2. This
contradicts (i).

Now assume that x ∈ BdA({X ∩−Y,−X ∩ Y,−X ∩−Y,X ∩ Y }, X) for some
A ∈ A. Then

[x]A = [x]A ∩ (X ∩−Y ) ∪ [x]A ∩ (−X ∩ Y )

∪ [x]A ∩ (X ∩ Y ) ∪ [x]A ∩ (−X ∩ −Y )

and

[x]A ∩ Z 6= ∅ for Z ∈ {X ∩ −Y,−X ∩ Y,−X ∩−Y,X ∩ Y } .

Hence

[x]A ∩ (X ∪ Y ) = [x]A ∩ X ∪ [x]A ∩ (−X ∩ Y ) ,

[x]A ∩ (X ∪ Y ) = [x]A ∩ Y ∪ [x]A ∩ (X ∩ −Y ) .

Consequently, µA

X∪Y (x) > µA

X(x) and µA

X∪Y (x) > µA

Y (x). This contradicts (i).

The proof of (i)→(ii) is complete.

Now we characterize the conditions related to the boundary regions occurring
in Theorems 1 and 2.
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Lemma 3. Let A be a class of information systems with the set of objects

including sets X and Y. The following conditions are equivalent for arbitrary

A = (U,A) ∈ A:

(i) BdA(Y, X) = ∅ for any Y ⊇ {X∩−Y,−X∩Y }, where X = {X∩Y,−X∩Y,
X ∩−Y,−X ∩ −Y };

(ii) α ∨ β ∨ γ ∨ δ ∨ ε holds, where

α := (X ⊆ Y or Y ⊆ X) ;

β := (X − Y 6= ∅ and Y − X 6= ∅ and X ∪ Y = U and X ∩ Y = ∅

and BdA({X ∩ −Y,−X ∩ Y }, X) = ∅) ;

γ := (X − Y 6= ∅ and Y − X 6= ∅ and X ∪ Y = U and X ∩ Y 6= ∅

and BdA({X ∩ −Y,−X ∩ Y }, X) = ∅

and BdA({X ∩ −Y,−X ∩ Y,X ∩ Y }, X) = ∅) ;

δ := (X − Y 6= ∅ and Y − X 6= ∅ and X ∪ Y 6= U and X ∩ Y = ∅

and BdA({X ∩ −Y,−X ∩ Y }, X) = ∅

and BdA({X ∩ −Y,−X ∩ Y,−X ∩ −Y }, X) = ∅);

ε := (X − Y 6= ∅ and Y − X 6= ∅ and X ∪ Y 6= U and X ∩ Y 6= ∅

and BdA({X ∩ −Y,−X ∩ Y }, X) = ∅

and BdA({X ∩ −Y,−X ∩ Y,−X ∩ −Y }, X) = ∅

and BdA({X ∩ −Y,−X ∩ Y,X ∩ Y }, X) = ∅

and BdA({X ∩ −Y,−X ∩ Y,X ∩ Y,−X ∩ −Y }, X) = ∅) .

P r o o f. We have the following equivalences:

BdA({X ∩ −Y,−X ∩ Y }, X) = ∅ iff

X ⊆ Y or Y ⊆ X or

(X − Y 6= ∅ and Y − X 6= ∅ and BdA({X ∩ −Y,−X ∩ Y }, X) = ∅);

BdA({X ∩ −Y,−X ∩ Y,−X ∩−Y }, X) = ∅ iff

X ⊆ Y or Y ⊆ X or X ∪ Y = U or

(X − Y 6= ∅ and Y − X 6= ∅ and X ∪ Y 6= U and

BdA({X ∩ −Y,−X ∩ Y,−X ∩ −Y }, X) = ∅) ;

BdA({X ∩ −Y,−X ∩ Y,X ∩ Y }, X) = ∅ iff

X ⊆ Y or Y ⊆ X or X ∩ Y = ∅ or

(X − Y 6= ∅ and Y − X 6= ∅ and X ∩ Y 6= ∅ and

BdA({X ∩ −Y,−X ∩ Y,X ∩ Y }, X) = ∅) ;
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BdA({X ∩ −Y,−X ∩ Y,−X ∩−Y,X ∩ Y }, X) = ∅ iff

X ⊆ Y or Y ⊆ X or X ∩ Y = ∅ or X ∪ Y = U or

(X − Y 6= ∅ and Y − X 6= ∅ and X ∩ Y 6= ∅ and X ∪ Y 6= U and

BdA({X ∩ −Y,−X ∩ Y,−X ∩ −Y,X ∩ Y }, X) = ∅) .

Hence, taking the conjunction of the above equivalences, we obtain

BdA(Y, X) = ∅ for any Y ⊇ {X ∩ −Y,−X ∩ Y }

iff one of the conditions α, β, γ, δ, ε from (ii) is satisfied.

Let us remark that only when condition α holds, i.e. when X ⊆ Y or Y ⊆ X ,
condition (ii) is independent of the properties of boundary regions in the infor-
mation systems.

Below we illustrate the conditions formulated in (ii) of Lemma 3.

X and Y form a partition of U . The condition for the boundary regions is

BdA({X ∩−Y,−X ∩ Y }, X) = ∅ .

The conditions for the boundary regions are

BdA({X ∩ −Y,−X ∩ Y }, X) = ∅ and

BdA({X ∩ −Y,−X ∩ Y,X ∩ Y }, X) = ∅ .
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The conditions for the boundary regions are

BdA({X ∩−Y,−X ∩ Y }, X) = ∅ and

BdA({X ∩−Y,−X ∩ Y,−X ∩ −Y }, X) = ∅ .

The conditions for the boundary regions are

BdA({X ∩−Y,−X ∩ Y }, X) = ∅ and

BdA({X ∩−Y,−X ∩ Y,−X ∩ −Y }, X) = ∅ and

BdA({X ∩−Y,−X ∩ Y,X ∩ Y }, X) = ∅ and

BdA({X ∩−Y,−X ∩ Y,X ∩ Y,−X ∩ −Y }, X) = ∅ .

Now we prove that the assumptions of Lemmas 1 and 2 related to the boundary
region BdA(X, X) cannot be removed because otherwise it will not be possible to
compute the values of µA

X∪Y (x) and µA

X∩Y (x) from µA

X(x) and µA

Y (x) only.

Theorem 3. There is no function F : [0, 1] × [0, 1] → [0, 1] such that for any

finite sets X and Y and any information system A = (U,A) such that X,Y ⊆ U
the following equality holds:

µA

X∪Y (x) = F (µA

X(x), µA

Y (x)) for any x ∈ U .

P r o o f. Take X = {1, 2, 3, 5} and Y = {1, 2, 3, 4}. Let U = {1, . . . , 8}. It
is easy to construct attribute sets A and A′ such that [1]A = U and [1]A′ =
{1, 4, 5, 6}.

Thus we have

µA

X(1) = µA

Y (1) = 1/2 and µA

X∪Y (1) = 5/8, where A = (U,A)

and

µB

X(1) = µB

Y (1) = 1/2 and µB

X∪Y (1) = 3/4, where B = (U,A′) .
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Similarly one can prove

Theorem 4. There is no function F : [0, 1] × [0, 1] → [0, 1] such that for any

finite sets X and Y and any information system A = (U,A) such that X,Y ⊆ U
the following equality holds:

µA

X∩Y (x) = F (µA

X(x), µA

Y (x)) for any x ∈ U .

Conclusions. We introduced the rough membership functions (rm-functions)
as a new tool for reasoning with uncertainty. Their definition is based on the
observation that objects are classified by means of partial information which is
available. That definition allows us to overcome some problems which may be
encountered if we use other approaches (like the ones mentioned in Section 5).
We have investigated the properties of the rm-functions and, in particular, we
have shown that the rm-functions are computable in an algorithmic way, so that
their values can be derived without the help of an expert.

We would also like to point out one important topic for further research based
on the results presented here.Our rm-functions are defined relative to information
systems. We will look for a calculus with rules based on properties of rm-functions
and also on belief and plausibility functions for information systems. One im-
portant problem to be studied is the definition of strategies which would allow
reconstructing those rules when the information systems are modified by environ-
ment. In some sense we would like to embed rm-functions as well as the belief and
plausibility functions [Sh76, S91, SG91] into a non-monotonic reasoning related
to the information systems.
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