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Abstract. A major issue in magnetic resonance (MR) image analysis
is to remove the intensity inhomogeneity artifact present in MR images,
which generally affects the performance of an automatic image analy-
sis technique. In this context, the paper presents a novel approach for
bias field correction in MR images by incorporating the merits of rough
sets in estimating intensity inhomogeneity artifacts. Here, the concept
of lower approximation and boundary region of rough sets deals with
vagueness and incompleteness in filter structure definition and enables
the algorithm to estimate optimum or near optimum bias field. A theo-
retical analysis is presented to justify the use of rough sets for bias field
estimation. The performance of the proposed approach, along with a
comparison with other bias field correction algorithms, is demonstrated
on a set of MR images for different bias fields and noise levels.

Keywords: Magnetic resonance imaging, intensity inhomogeneity, bias
field, rough sets.

1 Introduction

One of the key problems in any automatic image analysis technique on MR
images is that it often provides incorrect results due to the presence of some
degrading artifacts [1]. Among them, a specific artifact, known as intensity in-
homogeneity or bias field, creates a shading effect in the images. This slow spa-
tially varying artifact compels the intensity values of a specific tissue class to
vary in different regions, thus increasing the overall variation of the tissue class.
Although this artifact is hardly visible in human eyes, it is able to degrade the
performance of any automatic image analysis tools such as segmentation or reg-
istration. Hence, before applying these tools, a preprocessing step is generally
applied to remove such inhomogeneity artifacts from the MR images.

Several retrospective methods have been proposed in the past that try to
remove bias field depending on the information of the acquired image. Some
histogram based methods such as N3 [2] try to estimate this artifact by max-
imizing high frequency information of the tissue intensity distribution, while
others try to remove it by simultaneously segmenting the image into meaningful
tissue classes and estimating the bias field [3,4]. Pham and Prince [5] and Ahmed
et al. [6] used fuzzy-c-means clustering algorithm to remove this artifact, while
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Ashburner and Friston [7] proposed a probabilistic framework for simultaneous
image registration, tissue classification, and bias correction.

The simplest method to remove intensity inhomogeneity is filtering method,
which is only dependent on the information of the acquired image. One of the
popular filtering methods is homogeneous unsharp masking (HUM). The HUM
was initially proposed by Axel et al. [8]. It is generally implemented either after
masking out the background pixels from the image or by replacing the back-
ground pixels with average intensity values. However, Zhou et al. [9] also tried
to remove the high-intensity structures and replaced them by the average inten-
sity in their neighborhood. There exist some other methods in the literature that
use median filter instead of mean filter to estimate the intensity inhomogeneity
component [10,11]. However, Brinkmann et al. [12] showed experimentally that
the mean filter outperforms median filter in estimating the inhomogeneity com-
ponent from the MR images. In [12], they also tried to find the optimum window
size or the optimum range of window size for the low-pass filter.

Generally, arithmetic mean (AM) filter is used as a low-pass filter in the
HUM. But in AM filter, all the pixels in the neighborhood contribute equally
in calculating the local average, which causes a problem in calculating the bias
field component of the pixels in object-background edge area. In [12], Brinkmann
et al. used a thresholding technique to differentiate background pixels from the
object pixels. Recently, Banerjee and Maji [14] used contraharmonic mean filter
instead of arithmetic mean filter to remove this problem. In HUM algorithm
of Brinkmann et al., all the pixels are considered to contribute in estimating
the bias field component. However, the pixels with similar intensity value are
expected to contribute more than the other pixels in the neighborhood.

In this regard, the paper presents a rough set theoretic bias field estimation
technique. The concept of lower approximation and boundary region of rough
sets deals with uncertainty, vagueness, and incompleteness in filter structure
definition. The filter structure of each pixel consists of two parts, namely, lower
approximation and boundary region. The bias field component for each pixel
depends on the weighting average of these two parts. A theoretical analysis is
presented to justify the use of rough sets for bias field estimation. The effective-
ness of the proposed algorithm, along with a comparison with related algorithms,
is demonstrated on a set of benchmark MR images both qualitatively and quan-
titatively for different bias fields and noise levels.

2 Basics of HUM and Rough Sets

This section presents the basic notions of homogeneous unsharp masking (HUM)
filtering method and theory of rough sets. The proposed algorithm for estimating
intensity inhomogeneity artifact is developed based on these concepts.

2.1 Homogeneous Unsharp Masking

The HUM assumes that intensity inhomogeneity is a low-frequency component
in the high-frequency structure of the image. It is usually implemented with
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a noise threshold to prevent background pixels from distorting the bias field
estimation.

The model of the HUM assumes that intensity inhomogeneity is multiplicative.
If the ith pixel of the inhomogeneity-free image is ui, and corresponding intensity
inhomogeneity field and noise are bi and ni, respectively, then the ith pixel vi of
the acquired image is obtained as follows:

vi = uibi + ni. (1)

Generally one can estimate the bias field either from the noise-free image or
from the noisy image. However, Guillemaud and Brady [4] showed that post-
filtering is more preferable than pre-filtering. Also, intensity inhomogeneity is a
low-frequency component. Hence, the model of the HUM can be rewritten as

ui =
vi
bi

=
viCN

LPF (vi)
, (2)

where LPF (.) is the low-pass filter and CN represents the normalizing constant,
which depends on the low-pass filter. If the low-pass filter is an averaging filter,
then the constant CN is used to preserve the average intensity of the image.

2.2 Basics of Rough Sets

The theory of rough sets begins with the notion of an approximation space,
which is a pair < U,R >, where U = {x1, · · · , xi, · · · , xn} be a non-empty set,
the universe of discourse, and R is an equivalence relation on U . The relation R
decomposes the set U into disjoint classes in such a way that two elements xi

and xj are in the same class iff (xi, xj) ∈ R. Let denote by U/R the quotient set
of U by the relation R, and

U/R = {X1, · · · , Xi, · · · , Xm} (3)

whereXi is an equivalence class ofR. If two elements xi and xj in U belong to the
same equivalence class Xi ∈ U/R, we say that xi and xj are indistinguishable.
The equivalence classes of R and the empty set ∅ are the elementary sets in the
approximation space < U,R >. Given an arbitrary set X ∈ 2U , in general, it
may not be possible to describe X precisely in < U,R >. One may characterize
X by a pair of lower and upper approximations defined as follows [13]:

R(X) =
⋃

Xi⊆X

Xi; and R(X) =
⋃

Xi∩X �=∅
Xi. (4)

Hence, the lower approximation R(X) is the union of all the elementary sets,
which are subsets of X , and the upper approximation R(X) is the union of all
the elementary sets, which have a non-empty intersection with X . The interval
[R(X), R(X)] is the representation of an ordinary set X in the approximation
space < U,R > or simply called the rough set of X . The lower (respectively,
upper) approximation R(X) (respectively, R(X)) is interpreted as the collec-
tion of those elements of U that definitely (respectively, possibly) belong to X .
B(X) = R(X)\R(X) is called the boundary region of X . Further, a set X ∈ 2U

is said to be definable or exact in < U,R > iff R(X) = R(X).
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3 Rough Sets for Bias Field Correction

This section presents a new approach, using the merits of rough sets, for esti-
mating bias field present in the MR images.

3.1 Bias Field Correction Using Rough Sets

Using the merits of rough sets, next a new bias field correction technique is
described. The proposed algorithm adds the concept of lower and upper approx-
imations of rough sets into the HUM algorithm, because the rough sets have the
ability to deal with uncertainty, vagueness, and incompleteness in filter structure
definition.

Generally, all pixels within the filtered area do not contribute equally in es-
timating the bias field component of the center pixel. The pixels with similar
intensity value with respect to the center pixel are expected to contribute more
in estimating the bias field as they lie in same or similar cluster. Hence, all pixels
in the filtered area should not be given equal priority in estimating the bias field
component of the center pixel.

Let the coordinate i of a pixel in the image I be (ix, iy). Given an arbitrary
filter Ni of size Δx × Δy corresponding to the ith pixel, one may characterize
Ni by a pair of upper and lower approximations defined as follows:

R(Ni) =

{
j = (jx, jy) : |jx − ix| < Δx

2
, |jy − iy| < Δy

2

}
;

and R(Ni) =
{
j : |vj − vi| < δi, j ∈ R(Ni)

}
; (5)

therefore, the boundary region of Ni is given by

B(Ni) =
{
j : |vj − vi| ≥ δi, j ∈ R(Ni)

}
; (6)

where δi is a predefined threshold corresponding to the ith pixel. Hence, each
filter Ni, corresponding to the ith pixel, consists of two parts, namely, lower
approximation R(Ni) and boundary region B(Ni). The pixels in the lower ap-
proximation are given higher priority than the pixels in the boundary region
as they definitely contribute in estimating the bias field component. Hence, the
model of the HUM, using the merits of rough sets, can be rewritten as

u′′
i =

vi
b′′i

(7)

where the estimated bias field at coordinate i is given by

b′′i = {ωiAi + (1− ωi)Bi}

⎧
⎪⎪⎨

⎪⎪⎩

|I|∑

j∈I

vj

⎫
⎪⎪⎬

⎪⎪⎭
(8)
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where Ai =

∑

j∈R(Ni)

vj

|R(Ni)| ; and Bi =

∑

j∈B(Ni)

vj

|B(Ni)| (9)

ωi and (1 − ωi) represent the relative importance of lower approximation and
boundary region of filter Ni. The threshold δi controls the size of ith equivalence
class or information granule. In practice, the following definition works well:

δi = 3×
√√√√

1

|R̄(Ni)|
∑

j∈R̄(Ni)

(vj − vi)2. (10)

Hence, the pixels in the lower approximation are selected in such a way that
their intensity values lie near the intensity value of the center pixel. This selection
is achieved by introducing the threshold δi that enables the algorithm to select
only those pixels that lie in the same or similar cluster with respect to the center
pixel and contain information about its bias field.

3.2 Importance of Rough Sets

Let the intensity values of the pixel restored by the HUM with and without
rough sets be denoted by u′′

i and u′
i, respectively. Now better restoration can

be achieved by the rough set based bias field estimation method if the error in
estimating the intensity value of the restored pixel is minimum, that is,

(ui − u′′
i )

2 < (ui − u′
i)

2. (11)

Hence, the better restoration will be achieved if

u′
i < u′′

i and u′′
i < 2ui − u′

i. (12)

Now, u′
i < u′′

i ⇔ vi
b′i

<
vi
b′′i

⇔ b′′i < b′i

⇔ ωi

∑

j∈R(Ni)

vj

|R(Ni)| + (1− ωi)

∑

j∈B(Ni)

vj

|B(Ni)| <

∑

j∈Ni

vj

|Ni| ; (13)

the right-hand term of (13) can be rewritten as

∑

j∈Ni

vj

|Ni| =

∑

j∈R(Ni)

vj +
∑

j∈B(Ni)

vj

|R(Ni)|+ |B(Ni)|
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⇔ ωi
a1
b1

+ (1 − ωi)
a2
b2

<
a1 + a2
b1 + b2

where a1 =
∑

j∈R(Ni)

vj ; b1 = |R(Ni)|;

a2 =
∑

j∈B(Ni)

vj ; b2 = |B(Ni)|.

⇔ ωi

(
a1
b1

− a1 + a2
b1 + b2

)
+ (1 − ωi)

(
a2
b2

− a1 + a2
b1 + b2

)
< 0

⇔ (a1b2 − a2b1)

[
ωi

b1(b1 + b2)
− (1− ωi)

b2(b1 + b2)

]
< 0

⇔
(
a1
b1

− a2
b2

)[
ωi

b2
b1 + b2

− (1 − ωi)
b1

b1 + b2

]
< 0

Hence, either
a1
b1

<
a2
b2

and
ωi

1− ωi
>

b1
b2

(14)

⇔

∑

j∈R(Ni)

vj

|R(Ni)| <

∑

j∈B(Ni)

vj

|B(Ni)| and
ωi

1− ωi
>

|R(Ni)|
|B(Ni)| ;

or
a1
b1

>
a2
b2

and
ωi

1− ωi
<

b1
b2

(15)

⇔

∑

j∈R(Ni)

vj

|R(Ni)| >

∑

j∈B(Ni)

vj

|B(Ni)| and
ωi

1− ωi
<

|R(Ni)|
|B(Ni)| .

The terms a1

b1
and a2

b2
denote the local average within the lower approximation

and boundary region, respectively, while the terms b1
b1+b2

and b2
b1+b2

denote the
original weight assigned to the local average of lower approximation and bound-
ary region, respectively, while calculating the combined average considering all
the pixels in the filtered area. Let us assume that ωi0 = b1

b1+b2
. Combining (9),

(14), and (15), we get

ωi =

⎧
⎨

⎩

ωi0 + εi if Ai < Bi

ωi0 − εi if Ai > Bi

ωi0 if Ai = Bi

(16)
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Hence, the analysis reported above establishes the fact that if the local average
intensity of the boundary region is higher than that of the lower approximation,
higher weightage has to be given to the lower approximation than boundary
region to achieve better restoration by the proposed rough set based bias field
estimation technique. On the other hand, higher weightage has to be applied to
the boundary region if the local average intensity of the boundary region is lower
than that of lower approximation. In effect, the optimum value ωoptimum of the
weight parameter ωi can be estimated by gradually increasing or decreasing the
value of ωi, satisfying the condition u′′

i < 2ui − u′
i.

4 Experimental Results and Discussion

The performance of the proposed bias field estimation method is extensively
studied and compared with the HUM [8,12] and N3 algorithm [2]. In [12],
Brinkmann et al. showed that the optimal window size of the low-pass filter
lies in the range 65 to 127. Hence, in the present research work, the optimal
window size is fixed at 121 for all the experiments.

To analyze the performance of different algorithms, the experimentation is
done on some benchmark images obtained from “BrainWeb: Simulated Brain
Database” (http://www.bic.mni.mcgill.ca/brainweb/). The results are reported
for different noise levels and intensity inhomogeneity. The performance of dif-
ferent methods is evaluated using the RMSE value. A good bias field correction
procedure should make the value of RMSE as low as possible.

4.1 Performance of Different Algorithms

To find out the effectiveness of the proposed algorithm over the HUM algorithm
of Brinkmann et al. [12] and N3 algorithm of Sled et al. [2] for bias field estima-
tion, extensive experimentation is carried out on several image volumes. Fig. 1
presents the performance of the proposed bias field correction method, HUM
algorithm and N3 algorithm, in terms of RMSE value. From the results reported
in Fig. 1, it is observed that the proposed algorithm provides better restoration
in 6 cases out of the total 12 cases, in terms of RMSE value and comparable
performances in all other cases. The second, third and fourth columns of Fig. 2
and 3 compare the reconstructed images produced by the proposed algorithm,
HUM algorithm and N3 algorithm for different bias fields and noise levels. All the
results reported in Fig. 2 and 3 establish the fact that the proposed method esti-
mates the bias field more accurately than the existing HUM and N3 algorithms
irrespective of the bias fields and noise levels.

4.2 Unbiased Estimation

One of the caveats about the HUM algorithm is that it can alter an image even
when no inhomogeneity is present, while a perfect correction algorithm should
be expected to leave the image unchanged.
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Fig. 1. Performance of the proposed method, HUM algorithm and N3 algorithm for
bias affected images

Noise 1% RMSE = 5.47 RMSE = 7.15 RMSE = 8.62

Noise 7% RMSE = 11.79 RMSE = 11.88 RMSE = 12.41

Fig. 2. Input image with 20% bias field and images restored by the proposed algorithm,
HUM algorithm of Brinkmann et al. and N3 algorithm

To find the effectiveness of the proposed algorithm over HUM and N3 for
unbiased estimation, extensive experimentation is carried out on several image
volumes. Fig. 4 presents the performance of the proposed method, HUM algo-
rithm and N3 algorithm in terms of RMSE value.

From the results reported in Fig. 4, it is observed that the proposed algorithm
provides better restoration in all of the 6 cases, in terms of RMSE value. The
HUM algorithm of Brinkmann et al. and N3 algorithm of Sled et al. severely
changes the input image in spite of absence of intensity inhomogeneity artifacts,
whereas the proposed algorithm leaves the input image more or less unchanged.
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Noise 1% RMSE = 10.00 RMSE = 11.97 RMSE = 7.62

Noise 7% RMSE = 12.89 RMSE = 13.68 RMSE = 18.98

Fig. 3. Input image with 40% bias field and images restored by the proposed algorithm,
HUM algorithm of Brinkmann et al. and N3 algorithm
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Fig. 4. Performance of the proposed method, HUM algorithm and N3 algorithm for
bias-free images

5 Conclusion

The problem of removing intensity inhomogeneity artifact from MR images is of
high importance as it degrades the performance of any automatic image analysis
technique. In this regard, the contribution of the paper is two fold, namely, the
development of a bias field correction algorithm using the merits of rough sets
and demonstrating the effectiveness of the proposed algorithm, along with a
comparison with other algorithms, on a set of MR images for different bias fields
and noise levels.
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A theoretical analysis is presented to justify the use of rough sets for bias field
estimation. The proposed algorithm has been proven to be more effective than
the existing HUM algorithm both theoretically and experimentally. Using the
concept of rough sets, the algorithm provides better restoration of MR images
than using the HUM algorithm and N3 algorithm. The efficiency of the algorithm
has been tested on “BrainWeb: Simulated Brain Database”.
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