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Abstract

A survey of results is presented on relationships between the algebraic systems derived from the

approximation spaces induced by information systems and various classes of algebras of relations.

Rough relation algebras are presented and it is shown that they form a discriminator variety. A

characterisation of the class of representable rough relation algebras is given. The family of

closure operators derived from an approximation space is abstractly characterised as certain type

of Boolean algebra with operators. A representation theorem is given which says that every such

an algebra is isomorphic with a similar algebra that is derived from an information system.

1 Notation and definitions

The history and the impact of rough sets as a means of modelling incomplete information are consid-

ered elsewhere in this Volume, so we shall be content to just state the basic notions. Let U be a set and

θ an equivalence relation on U . The pair 〈U, θ〉 will be called an approximation space. For A ⊆ U ,

Au =
⋃

{θx : x ∈ A} is the upper approximation of A, and A ⊆ U , Ad =
⋃

{θx : θx ⊆ A} is its

lower approximation. A rough subset of U with respect to θ is a pair 〈Xd, Xu〉 with X ⊆ U . The

collection of all rough subsets of U with respect to θ is denoted by Sbθr(U) , and will sometimes be

called a full algebra of rough sets. If θ is understood, we shall just write Sbr(U)

2 Rough Sets and Regular Double Stone Algebras

An algebraic approach to rough sets was first proposed in (Iw1). Iwinski’s aim – later extended by

(PP1) – was to endow the rough subsets ofU with a natural algebraic structure. It turns out that regular

double Stone algebras are the proper setting.

A double Stone algebra (DSA) 〈L,+, ·, ∗, +, 0, 1〉 is an algebra of type 〈2, 2, 1,

1, 0, 0〉 such that

1. 〈L,+, ·, 0, 1〉 is a bounded distributive lattice,



2. x∗ is the pseudocomplement of x, i.e. y ≤ x∗ ⇔ y · x = 0,

3. x+ is the dual pseudocomplement of x, i.e. y ≥ x+ ⇔ y + x = 1,

4. x∗ + x∗∗ = 1, x+ · x++ = 0.

Conditions 2. and 3. are equivalent to the equations

x · (x · y)∗ = x · y∗, x + (x+ y)+ = x+ y+

x · 0∗ = x, x + 1+ = x

0∗∗ = 0, 1++ = 1

so that DSA is an equational class. L is called regular, if it additionally satisfies the equation x ·x+ ≤

y + y∗. This is equivalent to x+ = y+ and x∗ = y∗ imply x = y.

The center B(L) = {x∗ : x ∈ L} of L is a subalgebra of L and a Boolean algebra, in which ∗ and
+ coincide with the Boolean complement which we denote by −. An element of the centre of L will

also be called a Boolean element. The dense set {x ∈ L : x∗ = 0} of L is denoted byD(L), or simply

D, if L is understood. For any M ⊆ L, M+ is the set {x+ : x ∈M}.

A construction of regular double Stone algebras which is important for our purposes is given by

Lemma 2.1. (Ka1) Let 〈B,+, ·,−, 0, 1〉 be a Boolean algebra and F be a not necessarily proper

filter on B. Set

〈B, F 〉 = {〈a, b〉 ∈ B × B : a ≤ b and − b+ a ∈ F} .

Then, L = 〈B, F 〉 is a 0,1 – sublattice of B × B, and it becomes a regular double Stone algebra by

setting

〈a, b〉∗ = 〈−b,−b〉, 〈a, b〉+ = 〈−a,−a〉 .

Furthermore,B(L) ∼= B as Boolean algebras, and D(L) ∼= F as lattices. Note that

B(L) = {〈a, a〉 : a ∈ B}, D(L) = {〈a, 1〉 : a ∈ F} .

Conversely, if M is a regular double Stone algebra, B = B(M), F = D(M)++, then the mapping

which assigns to each x ∈M the pair 〈x++, x∗∗〉 is an isomorphism between M and 〈B, F 〉.

If F = B, then 〈B, F 〉 is also denoted by B[2].

In view of things to come it is useful to note that by Lemma 2.1 each element x of a regular double

Stone algebra is uniquely described by the greatest Boolean element below x and the smallest Boolean

element above x.

Now, suppose that 〈U, θ〉 is an approximation space. We can view the classes of θ as atoms of a

complete subalgebra of the Boolean algebra Sb(U). Conversely, any atomic complete subalgebra

B of Sb(U) gives rise to an equivalence relation θ on U , and this correspondence is bijective. The

elements of B are ∅ and the unions of classes of its associated equivalence relation. If {a} ∈ B, then,

for every X ⊆ U we have
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If a ∈ Xu, then a ∈ X, and the rough sets of the corresponding approximation space are the elements

of the regular double Stone algebra 〈B, F 〉, where F is the filter ofB which is generated by the union

of singleton elements of B1. Note that, if θ is the identity on U , then F = {U}, and we see that the

full algebra of rough sets on U need not be of the form B[2]. At any rate, we have

Proposition 2.2. (Iw1, PP1, Co2) Suppose that 〈U, θ〉 is an approximation space. Then, Sbθr(U) is a

regular double Stone algebra with the operations of Lemma 2.1.

Steve Comer has shown that a converse also holds:

Proposition 2.3. (Co1, Co2) Let L be a regular double Stone algebra. Then, there is an approxima-

tion space 〈U, θ〉 such that L is isomorphic to a subalgebra of Sb(U)[2]

Proof. Every Stone algebra can be embedded into an algebra of the form B[2], where B is a complete

and atomic Boolean algebra, see (BG1). As remarked above, each such algebra is isomorphic to a full

algebra of rough sets.

3 Rough Relation Algebras

Pawlak’s original approach to model incomplete information was to take sets as the basic entity.

However, sets can themselves have an underlying structure or a special form. Subsequently, (Co2)

proposed to look at the case where the underlying sets are binary relations, and how incomplete

information about these can be modelled.

If we are given a set U , then the subsets of U can be thought of as truth sets of unary predicates, and

appropriate operations on subsets of U are the usual Boolean ones which, in the case of rough sets,

lead to certain regular double Stone algebras. If we look at binary relations we have additional natural

operations, namely, relational composition ◦, relational converse −1, and the identity relation 1′ as a

new constant: Here,

R ◦ S = {〈a, c〉 ∈ U × U : There is some b ∈ U such that R(a, b) and S(b, c)},

R−1 = {〈b, a〉 : R(a, b)},

1′ = {〈a, a〉 : a ∈ U}.

With these operations we can view the set of all binary relations on U as an algebra

Rel(U) = 〈Sb(U2),∪,∩,−, ∅, U × U, ∗, −1, 1′〉 ,

called the full algebra of binary relations on U. Any subalgebra of Rel(U) is called an algebra of

binary relations (BRA) on U.

Tarski has introduced a class of algebras which generalizes the notion of BRA:

A relation algebra (RA) 〈A,+, ·,−, 0, 1, ◦,−1, 1′〉 is a structure of type 〈2, 2, 1,

0, 0, 2, 1, 0〉which satisfies

1I should like to thank Piero Pagliani for pointing this out.
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1. 〈A,+, ·,−, 0, 1〉 is a Boolean algebra.

2. 〈A, ◦, −1, 1′〉 is an involuted monoid.

3. For all a, b, c the following conditions are equivalent:

(a ◦ b) · c = 0, (a−1 ◦ c) · b = 0, (c ◦ b−1) · a = 0 .

It can be shown that the class of RAs is equational. For the background and the relevant facts of RAs

the reader is invited to consult (Jo2) or (TG1).

A relation algebraA is called representable, if it is a subalgebra of a product of full algebras of binary

relations.

Now, we shall generalize RAs to rough structures (Co2): Let 〈U, θ〉 be an approximation space, and

set V = U × U . θ defines in a canonical way an equivalence 2θ on V by

〈x, y〉 ≡2θ 〈u, v〉 iff x ≡θ u and y ≡θ v ,

and 〈V, 2θ〉 is an approximation space.

A rough relation on 〈U, θ〉 is a rough subset of 〈V, 2θ〉. In other words, a rough relation on 〈U, θ〉 is

a pair 〈Sd, Su〉, where S ⊆ V and for all 〈a, b〉 ∈ V

〈a, b〉 ∈ Sd ⇔2 θ〈a, b〉 ⊆ S,

〈a, b〉 ∈ Su ⇔2 θ〈a, b〉 ∩ S 6= ∅ .

(Recall that 2θ〈a, b〉 is the equivalence class of 〈a, b〉 with respect to 2θ.)

Sb
2θ
r (V ) is a regular double Stone algebra by the results of the preceding section. We define the

additional relational operators on Sb
2θ
r (V ) as follows:

〈Td, Tu〉 ◦ 〈Sd, Su〉 = 〈Td ◦ Sd, Tu ◦ Su〉 ,

〈Sd, Su〉
−1 = 〈S−1

d , S−1
u 〉 ,

1′ = 〈θ, θ〉 .

The structure 〈Sb
2θ
r (V ),∪,∩, ∗, +, ∅, V, ◦, −1, 〈θ, θ〉〉 is called the full algebra of rough relations

over 〈U, θ〉. Subalgebras of Sb
2θ
r (V ) are called algebras of rough relations.

Rough relation algebras are a generalization of relation algebras, where the Boolean part is replaced

by a regular double Stone algebra, and the following set of axioms was proposed by (Co2):

A rough relation algebra (R2A) is an algebra

〈L,+, ·, ∗, +, 0, 1, ; , −1, 1′〉

such that

(i). 〈L,+, ·, ∗, +, 0, 1〉 is a regular double Stone algebra,

(ii). (x; y); z = x; (y; z),
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(iii). (x+ y); z = x; z + y; z,

(iv). x; 1′ = 1′; x = x,

(v). (x−1)−1 = x,

(vi). (x+ y)−1 = x−1 + y−1,

(vii). (x; y)−1 = y−1; x−1,

(viii). (x−1; (x; y)∗) · y = 0,

(ix). (x; y) · z ≤ x; x−1; z,

(x). (x∗; y∗)∗∗ = x∗; y∗,

(xi). (1′)∗∗ = 1′.

If B is a relation algebra, then B[2] becomes a rough relation algebra if ; and −1 are defined compo-

nentwise. We shall denote this algebra by B
[2]
r .

It is clear that every full algebra of rough relations is an R2A. A rough relation algebra is representable,

if it is a subalgebra of a product of full algebras of rough relations.

Many equations which hold in RAs also hold in R2As. Some properties specific to rough relation

algebras are given in

Proposition 3.1. (Co2, Du1) Let L be an R2A. Then,

1. B(L) is closed under ; and −1, and 1′ ∈ B(L).

2. B(L) is a relation algebra and a subalgebra of L.

3. If L ∼= Sb
2θ
r (V ) for some approximation space, then B(L) ∼= Rel(U/θ).

4. D(L) is closed under ; and −1.

5. (x; y)∗∗ = x∗∗; y∗∗ for all x, y ∈ L.

Proof. 1. The closure of B(L) under ; and 1′ are just axioms (x) and (xi). Since −1 distributes over
∗, and (a−1)−1 = a, we have

a∗ · a = 0 ⇒ (a∗)−1 · a−1 = 0 ⇒ (a∗)−1 ≤ (a−1)∗ ,

and conversely,

a−1 · (a−1)∗ = 0 ⇒ a · ((a−1)∗)−1 = 0 ⇒ ((a−1)∗)−1 ≤ a∗ ⇒ (a−1)∗ ≤ (a∗)−1 .

2. To show that L satisfies condition 3. for RAs, one can use 2.1. of (CT1) which goes through

unchanged. Clearly, B(L) is a subalgebra of L.

3. This follows immediately from the definition of B(L).
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4. Let x, y ∈ D(L). Then,

1 = x∗∗ = y∗∗ = x∗∗; y∗∗ = (x; y)∗∗ ,

and therefore (x; y)∗ = 0.

5. Clearly, x ≤ x∗∗ and y ≤ y∗∗ imply

(x; y)∗∗ ≤ (x∗∗; y∗∗)∗∗ = x∗∗; y∗∗ .

For the converse assume that (x; y)∗∗ � x∗∗; y∗∗. Then, (x∗∗; y∗∗) · (x; y)∗ 
 0, and

((x−1)∗∗; (x; y)∗) · y∗∗ 
 0 ,

((x−1)∗∗; (x; y)∗) · y 
 0

(x∗∗; y) · (x; y)∗ 
 0

((x; y)∗ · y−1) · x∗∗ 
 0

((x; y)∗ · y−1) · x 
 0

(x; y) · (x; y)∗ 
 0 ,

a contradiction.

Just like relation algebras, R2As have very strong structural properties: An algebra A is a discrimina-

tor algebra if there is some term operation f in the language of A such that

f(a, b, c) =

{

c, if a = b,

a, otherwise.

A variety V is called a discriminator variety if it is generated by a class K of algebras such that some

term operation f in the language of V represents the discriminator term as above on each member of

K . Discriminator algebras have, among others, the following pleasant properties, see (JAN1):

Proposition 3.2. Let V be a discriminator variety. Then,

1. V is congruence permutable, congruence distributive, congruence extensile, and semisimple.

2. For every non trivial algebra A in V the following are equivalent:

(a) A is simple.

(b) A is subdirectly irreducible.

(c) A is directly indecomposable.

3. There is an effective way of associating with each open Horn formula ϕ in the language of V

an equation σϕ in this language such that ϕ and σϕ have the same truth set in every simple

member of V.
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To show that R2A is a discriminator variety we first state

Lemma 3.3. (Du1) Let L be an R2A and ψ ∈ Con(B(L)). Then,

1. ψL ∈ Con(L).

2. Con(L) ∼= Con(B(L)).

We now have

Proposition 3.4. (Du1) The variety of R2As is a discriminator variety.

Proof. It is enough to show that a simple R2A L is a discriminator algebra. For a, b ∈ B(L) we

denote the symmetric difference by a ⊗ b; recall that a = b⇔ a⊗ b = 0. Set

τ(a, b) = 1; (a∗∗ ⊗ b∗∗ + a++ ⊗ b++); 1.

Then,

τ(a, b) =

{

1, if a 6= b,

0, otherwise.

Let a = b; then, since L is regular, a∗∗ = b∗∗ and a++ = b++, and thus a∗∗⊗ b∗∗ = a++ ⊗ b++ = 0.

It follows that

[1; (a∗∗ ⊗ b∗∗); 1] + [1; (a++ ⊗ b++); 1] = 1; [(a∗∗ ⊗ b∗∗)) + (a++ ⊗ b++)] = τ(a, b) = 0.

Conversely, let a 6= b. Then, a∗∗ 6= b∗∗ or a++ 6= b++. Since L is simple, so is B(L) by Lemma 3.3.

We know from (Jo1) that for a relation algebra A and x ∈ A,

x 6= 0 ⇔ 1; x; 1 = 1.

Therefore,

1; (a∗∗ ⊗ b∗∗); 1 = 1 or 1; (a++ ∗ b++); 1 = 1,

since a∗∗, b∗∗, a++, b++ are Boolean. Consequently,

1 = [1; (a∗∗⊗ b∗∗); 1] + [1; (a++ ⊗ b++); 1] = τ(a, b).

Now, set

σ(a, b, c) = τ(a, b) · a+ τ(a, b)∗ · c.

If a = b, then τ(a, b) = 0, and hence σ(a, b, c) = τ(a, b)∗ · c = c. If a 6= b, then τ(a, b) = 1, and

therefore σ(a, b, c) = τ(a, b) · a = a.

Finally, the representable R2As can be characterized as follows:
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Proposition 3.5. (Du1) Suppose that L = 〈B, F 〉 is an R2A. Then, L is representable if and only if

B(L) is a representable relation algebra and L satisfies the equation (x; y)++ = x++; y++.

Proof. Call an R2A canonical which satisfies the equation. To show the result, we first prove some

auxiliary results which seem interesting in their own right. Our first claim explains why we call these

algebras canonical:

Claim 1. (1) L is canonical if and only if

〈a, b〉; 〈c, d〉= 〈a; c, b; d〉

for all 〈a, b〉, 〈c, d〉 ∈ 〈B, F 〉.

Proof. “⇒”: Suppose L is canonical, and let 〈a, b〉, 〈c, d〉 ∈ 〈B, F 〉. Then, there are x, y ∈ L such

that a = x++, b = x∗∗, c = y++, d = y∗∗, and

〈x+ +, x ∗ ∗〉; 〈y+ +, y ∗ ∗〉 = x; y

= 〈(x; y) + +, (x; y) ∗ ∗〉

= 〈x+ +; y + +, x ∗ ∗; y ∗ ∗〉 .

“⇐”: Let 〈a, b〉, 〈c, d〉 ∈ 〈B, F 〉. Then,

(〈a, b〉; 〈c, d〉)++ = 〈a; c, b; d〉++ = 〈a; c, a; c〉= 〈a, a〉; 〈c, c〉= 〈a, b〉++; 〈c, d〉++,

which proves the claim.

Claim 2. (2) For any L, B(L)
[2]
r is canonical and, if L is canonical, then it is a subalgebra ofB(L)

[2]
r .

Proof. This follows immediately from the definition of B
[2]
r and Claim 1.

Claim 3. (3) If C is (isomorphic to) a full relation algebra Rel(U), then C
[2]
r is isomorphic to a full

algebra of rough relations.

Proof. LetU ′ = {x′ : x ∈ U} be disjoint from U , and set V = U∪U ′. Define an equivalence relation

θ on V by identifying x and x′, so that θx = {x, x′}. Then, B(RV ) and C are isomorphic as relation

algebras. Let 〈Rd, Rd〉 ∈ B(RV ), and define

S = R ∪ {〈x, y〉 : x, y ∈ U, θx× θy ⊆ −Rd} .

Then, Sd = Rd, Su = 1, and thus 〈Rd, 1〉 ∈ D(RV ) for each R ∈ C. Now, the mapping defined

by 〈Rd, Rd〉 7→ 〈Rd, 1〉 is a lattice isomorphism, and hence B(RV ) ∼= D(RV ). It follows that

RV = B(RV )
[2]
r

∼= C
[2]
r .

Now we can prove the Proposition:

“⇒”: It is enough to show that every full algebra RU of rough relations is canonical. Let L = RU

be the full algebra of rough relations over 〈U, θ〉. Then, B(L) ∼= Rel(U/θ), and thus B(L) is a

representable relation algebra.
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Next, let 〈Rd, Ru〉, 〈Sd, Su〉 ∈ RU . Then,

(〈Rd, Ru〉, 〈Sd, Su〉)
++ = (〈Rd; Sd, Ru, Su〉)

++,

= 〈Rd; Sd, Rd, Sd〉,

= 〈Rd;Rd〉; 〈Sd, Sd〉,

= 〈Rd;Ru〉
++; 〈Sd, Su〉

++.

“⇐”: Suppose that L = 〈B, F 〉 is canonical, and that B is a representable relation algebra. Since

L ≤ B
[2]
r by Claim 2, we can assume that L = B

[2]
r ; furthermore, we may assume by 3.4 and 3.2 that

L is simple. Then, B is simple by 3.3, and, since it is representable, there is some set U such that

B ≤ Rel(U). It follows that L = B
[2]
r ≤ Rel(U)

[2]
r , which is representable by Claim 3.

In particular, the representable rough relation algebras form an equational class.

Relation algebras are a special case of the more general concept of Boolean algebras with operators.

Motivated by rough relation algebras, Steve (Co3) has investigated the theory of regular double Stone

algebras with operators.

4 Information Systems

In the previous sections we have looked at the algebraic structure arising from one given approxima-

tion space, and we have considered the special case when the underlying carrier set was the universal

binary relation on some other set. In this section we shall describe the algebraic structure of a set of

approximation spaces derived from an information system. It turns out that there is a close connection

between the resulting structures and cylindric algebras and their derivatives. The standard reference

for cylindric algebras are the books (HMT1, HMT2) and we shall refer to these for definitions and

results on these algebras. All results in this section are due to Steve Comer.

An information system S = 〈U,Ω, V, f〉 as discussed e.g. in (Pa1, Pa2), consists of

1. A set U of objects,

2. A finite set Ω of attributes,

3. A set V of attribute values,

4. An information function f : U × Ω → V .

We think of f(u, x) as the value which object u takes at the attribute x. With each Q ⊆ Ω we can

associate an equivalence relation θQ on U by setting

a ≡θQ
b

def
⇐⇒ f(a, x) = f(b, x) for all x ∈ Q,

so that 〈U, θQ〉 is an approximation space.

Intuitively, a ≡θQ
b if the objects a and b are indiscernible with respect to the values of their attributes

from Q. Given A ⊆ U , we denote its upper approximation with respect to θQ by QA, and its lower
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approximation by QA. Clearly, Q is a closure operator on 〈Sb(U),⊆〉, and Q is an interior operator.

A set A ⊆ U is called definable with knowledgeQ ⊆ Ω, if A is a union of equivalence classes of θQ;

equivalently,A is definable from Q, iff QA = QA.

As an example – which uses rough relations – let us consider the following scenario: Suppose that U

is a set of car brands, Ω a set of attributes associated with cars, e.g. colour, price, reliability etc, V a set

of appropriate attributes, and f an information function. Let R be a binary relation on U which was

obtained by presenting to a subject two car models, and asking her to decide which she likes better. In

order to find out what were the decisive factors in her choice, we can now use rough set methods: Let,

as a simple example, θ be the equivalence on U which identifies cars by their colour. If θ〈a, b〉 ∈ R

and, say, a is red and b is green, we can infer that there is some evidence that she generally prefers

green cars over red ones, and if R = 2{colour}R , then she is never inconsistent in her choices with

respect to colour.

The knowledge approximation algebraBS associated with S is the structure

〈Sb(U),∪,∩,−, ∅, U,Q〉Q⊆Ω .

We note that BS is a complete and atomic Boolean algebra with the additional closure operators

Q, Q ⊆ Ω. If Q ⊆ Ω, the reduct 〈Sb(U),∪,∩,−, ∅, U,Q〉 of BS is denoted by RdQBS , and it is

called an approximation closure algebra.

(Co1) has proposed the following axioms for a class of algebras which are intended to capture the

knowledge approximation algebras associated with information systems: An algebraB = 〈B,+, ·,−, 0, 1, κP〉P⊆Ω

is a knowledge approximation algebra of type Ω – called a KAΩ – if each κP is a unary operator on

B, and

A1. 〈B,+, ·,−, 0, 1〉 is a complete atomic Boolean algebra,

A2. κP 0 = 0,

A3. x ≤ κPx,

A4. κP (x · κP y) = κPx · κP y,

A5. If x 6= 0, then κ∅x = 1,

A6. κP∪Qx = κPx · κQx, if x is an atom of B,

for all x, y ∈ B and P,Q ⊆ Ω. The class of all knowledge approximation algebras of type Ω is

denoted by KAΩ. We note that axioms A1 – A4 tell us that for each P ⊆ Ω, the reduct RdPBS =

〈B,+, ·,−, 0, 1, κP〉 ofB is a cylindric algebra of dimension 1 (CA1) in the sense of (HMT1). Thus,

we can regard the operators κP as (in general non - commuting) cylindrifications, and it follows from

the corresponding properties of cylindric algebras that the properties given below hold:

Proposition 4.1. (Co1) Let B = 〈B,+, ·,−, 0, 1, κP〉P⊆Ω be an approximation algebra. Then,

1. If x ≤ y, then κPx ≤ κP y.
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2. κPκPx = κPx.

3.
∑

i κPxi = κP (
∑

i xi)

4. κP (
∏

i κPxi) =
∏

i(κPxi).

The next result shows that the algebra associated with an information system is a KAΩ:

Proposition 4.2. (Co1) Let S = 〈U,Ω, V, f〉 be an information system, and BS be its associated

knowledge approximation algebra. Then,

1. B∈KAΩ,

2. Each RdQBS is a cylindric algebra of dimension one.

Proof. 1. BS is a complete and atomic Boolean algebra, and the operationsQ are closure operators.

This implies A1, A2, and A3. For A4 we need to show that Q(C ∩ QD) = QC ∩ QD for all

C,D ⊆ Ω:

“⊆”: Let x ∈ Q(C ∩QD). Then, there is some y ∈ C ∩QD such that x ≡θQ
y. Hence,

x ∈ QC, and, since QD is a union of θQ classes, we also have x ∈ QD.

“⊇”: Let x ∈ QC ∩ QD. Then, there are y ∈ C, z ∈ D such that x ≡θQ
y and

x ≡θQ
z. Since D is a union of θQ classes, we have in fact y ∈ QD, which shows that

x ∈ Q(C ∩QD).

A5 follows from the fact that θΩ = 2U . To show A6, let P,Q ⊆ Ω. Because of A5, we can suppose

that both P and Q are not empty. Let x, y ∈ U ; then,

y ∈ P ∪Q{x} ⇔ y ≡P∪Q x,

⇔ f(y, z) = f(x, z) for all z ∈ P ∪Q,

⇔ f(y, z) = f(x, z) for all z ∈ P

and f(y, z) = f(x, z) for all z ∈ Q,

⇔ yθPx and yθQx,

⇔ y ∈ P {x} ∩Q{x}.

2. follows immediately from the definition.

In order to show that the converse also holds, i.e. that the models of the algebras in KAΩ are as

expected, we require some preparation. The definition of KAΩ and Proposition 4.1 show that each

element of KAΩ is a completely atomic normal Boolean algebra with operators, i.e. a completely

atomic Boolean algebra whose extra operators distribute over arbitrary joins, and do not move 0.

The completeness of the algebra and the operators imply that each κP is already determined by its

values on the atoms of the Boolean part B ofB. The atomic structure At(B) ofB is 〈At(B), TP 〉P⊆Ω,

where At(B) is the set of atoms of B, and for each P ⊆ Ω, TP is the relation

{〈x, y〉 ∈ At(B) × At(B) : y ≤ κPx} .

11



Proposition 4.3. (Co1) Let S be an information system and BS be its associated KAΩ with atomic

structure At(BS). Then, for all P,Q ⊆ Ω,

1. TP is an equivalence relation,

2. T∅ = 2At(BS),

3. TP ∩ TQ = TP∪Q.

In particular, At(BS) is a ∩ – subsemilattice of the partition lattice Π(At(BS)).

Proof. 1. We show that xTPy ⇔ κPx = κPy, from which the claim follows: Let y ≤ κPx, and

assume that x 6≤ κPy. Then, since x is an atom of B, we have x ∩ κP y = ∅, and A2 and A4 imply

that κPx ∩ κP y = ∅. This contradicts y ≤ κPx. The other direction is obvious.

2. is an immediate consequence of A5.

3. “⊆”: Let 〈x, y〉 ∈ TP ∩ TQ, i.e. κPx = κPy and κQx = κQy. Since x and y are atoms and using

A4 we obtain

κP∪Qx = κPx ∩ κQx = κP y ∩ κQy = κP∪Qy.

“⊇”: Let 〈x, y〉 ∈ TP∪Q. Then, using A6,

x ≤ κP∪Qx = κP∪Qy ≤ κPy ∩ κQy

shows that xTPy and xTQy.

A relational structure L = 〈U, TP 〉P⊆Ω is called a knowledge approximation atom structure, if for all

P,Q ⊆ Ω,

1. TP is an equivalence relation on U ,

2. T∅ = 2U ,

3. TP ∩ TQ = TP∪Q.

If Ω is finite and not empty, we can associate with each such structure an information system S(L) in

the following way: For each x ∈ Ω let V (x) be the set of blocks of T{x}, and set V =
⋃

x∈Ω . Then,

define the knowledge function f : U × Ω → V by

f(u, x) = The block of T{x} containing u.

It is easy to see that S(L) = 〈U,Ω, V, f〉 is an information system. Furthermore,

Proposition 4.4. (Co1) Let B be a KAΩ, Ω finite, and L = At(B) be its atomic structure. Then,

B ∼= BS(L).
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Proof. The carrier set BS(L) ofBS(L) is the power set of At(B). Thus, the mapping g : B → BS(L)

defined by g(b) = {x ∈ At(B) : x ≤ b} is a Boolean isomorphism.

Now, let x ∈ B, and P ⊆ Ω. We need to show that

g(κBP x) = κ
BS(L)

P g(x) .(4.1)

This is clearly true if P = ∅, so that we can suppose that P 6= ∅; indeed, by A6 we may assume that

P is an atom of Sb(Ω), say, P = {a}. Furthermore, by the additivity of g and κP , we may suppose

that x is an atom of B.

Let y be an atom of B. Then,

y ∈ g(κBP x) ⇔ y ≤ κBP x

⇔ yTPx

⇔ TPy = TPx

⇔ f(x, a) = f(y, a)

⇔ yθPx

⇔ y ∈ θPx = κ
BS(L)

P x = κ
BS(L)

P g(x),

and we are done.

This shows that the axioms for knowledge approximation algebras are complete for the intended

models. A converse for the second part of 4.2 is given by

Proposition 4.5. (Co1)

1. Every complete atomic CA1 is isomorphic to an approximation closure algebra.

2. Every CA1 is embeddable into an approximation closure algebra.

Proof. 1. Let 〈B, c0〉 be a complete and atomic CA1, and Ω be a nonempty finite set. For each non

empty P ⊆ Ω let κPx = c0x; also, let κ∅x = 0 if x = 0, and κ∅x = 1 if x > 0. Then, 〈B, κP 〉P⊆Ω

is an approximation algebra, and the rest follows from 4.4

2. By 2.7.20 of (HMT1), each CA1 is embeddable into a complete and atomic one.

The situation regarding the decidability of the first order theory of KAΩ is rather disappointing, though

not altogether unexpected:

Proposition 4.6. (Co1)

1. If |Ω| = 1, then the theory of KAΩ is decidable.

2. If 2 ≤ |Ω| < ω then the theory of KAΩ is undecidable and finitely inseparable.

Proof. 1. Let |Ω| = 1. Then, the algebras in KAΩ are of the form 〈B, κ∅, κΩ〉, where 〈B, κΩ〉 is a

completely atomic CA1, and κΩ is definable in the Boolean part. It was shown in (HMT1) that the

theory of complete atomic CA1 ’s is the same as the theory of finite CA1 ’s, and that it is decidable.

2. Let Eq be the theory of two equivalence relations; it is known that Eq is finitely inseparable, see

(Mo1). There it is also shown that to prove that a theory T is finitely inseparable, it is enough to show
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There are formulas θv0, Rv0v1, Sv0v1 in the language of T such that for every finite

model A = 〈X,R, S〉 of Eq there is a finite model B of T such that 〈θB, R
B
, S

B
〉 ∼= A.

Let r, s ∈ Ω, r 6= s. We first give a translation of Eq into the language of KAΩ:

θv0 : v0 is an atom.

Rv0v1 : θv0 ∧ θv1 ∧ κ{r}v0 = κ{r}v1.

Sv0v1 : θv0 ∧ θv1 ∧ κ{s}v0 = κ{s}v1.

If we apply the translation to someB ∈ KAΩ, it follows from Proposition 4.3 that 〈At(B), R
B
, S
B
〉

is a model of Eq.

Finally, let A = 〈X,R, S〉 be a finite model of Eq. We obtain a knowledge approximation atom

structure L = 〈X, TP 〉P⊆Ω by setting

1. T{r} = R, T{s} = S, T∅ = T{i} = 2X for all i ∈ Ω, i 6∈ {r, s}.

2. TP =
⋂

{T{i} : i ∈ P} , for all P ⊆ Ω with |P | ≥ 2.

If A is finite, so is BS(L), and it is straightforward to show that 〈At(B), R
B

,

S
B
〉 is isomorphic to A.

In (Co2) a close connection of knowledge approximation algebras to a variant of diagonal free cylin-

dric algebras was established. Since a discussion of these results would require an unproportional

amount of new definitions and notation, we refer the reader to Comer’s paper.
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