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Rough Sets and Conflict Analysis

Zdzis law Pawlak and Andrzej Skowron1

Institute of Mathematics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland
skowron@mimuw.edu.pl

Commemorating the life and work of Zdzis law Pawlak1.

Summary. E-service intelligence requires tools for approximate reasoning about
vague concepts. The rough set based methods make it possible to deal with imperfect
knowledge. In particular, approximate reasoning about vague concepts can be based
on the rough set approach. This approach seems to be of fundamental importance
to AI and cognitive sciences, especially in the areas of machine learning and pattern
recognition, knowledge acquisition, decision analysis, data mining and knowledge
discovery from databases, expert systems, and conflict analysis. We discuss the basic
concepts of rough sets and we outline some current research directions on rough sets.
Conflict analysis is one of the basic issues in e-service intelligence. The contribution
of this article is an extension of the existing approach based on rough sets to conflict
analysis.

Keywords: Information and decision systems, indiscernibility, approximation
space, set approximations, rough set, rough membership function, reducts, de-
cision rule, dependency of attributes, conflicts, classifier, information granula-
tion, vague concept approximation, rough mereology, ontology approximation

1 Introduction

E-service intelligence has been identified as a new e-service direction with
many potential applications in different areas such as governmental manage-
ment, medicine, business, learning, banking, science (e.g., habitat monitoring
with wireless sensor networks) or logistics. To realize intelligent presentation
of web content, intelligent online services, personalized support or direct cus-
tomer participation in organizational decision-making processes, it is neces-

1 Professor Zdzis law Pawlak passed away on 7 April 2006.



sary to develop methods that will make it possible to understand vague con-
cepts and reasoning schemes expressed in natural language by humans who
will cooperate with e-services. Hence, methods for approximation of vague
concepts as well as methods for approximate reasoning along with reasoning
performed in natural language are needed. In this article, we discuss some
basic concepts of the rough set approach created for dealing with vague con-
cepts and for approximate reasoning about vague concepts. Among the most
important issues of e-service intelligence are also conflict analysis and negoti-
ations. We also outline an approach for conflict analysis based on the rough
set approach.

2 Preliminaries of Rough Sets

This section briefly delineates basic concepts in rough set theory. Basic ideas
of rough set theory and its extensions, as well as many interesting applications
can be found in books (see, e.g., [14, 18, 21, 22, 30, 35, 39, 40, 50, 52, 57, 67,
70, 71, 74, 84, 87, 90, 91, 100, 129, 151]), issues of the Transactions on Rough
Sets [79, 80, 81, 82], special issues of other journals (see, e.g., [13, 48, 69,
78, 110, 130, 154, 155]), proceedings of international conferences (see, e.g.,
[1, 34, 51, 89, 109, 120, 137, 138, 142, 153, 156, 126, 127, 139] ), tutorials (see,
e.g., [38]), and on the internet such as www.roughsets.org, logic.mimuw.edu.pl,
rsds.wsiz.rzeszow.pl.

2.1 Rough Sets: An Introduction

Rough set theory, proposed by Pawlak in 1982 [74, 73] can be seen as a new
mathematical approach to vagueness.

The rough set philosophy is founded on the assumption that with every
object of the universe of discourse we associate some information (data, knowl-
edge). For example, if objects are patients suffering from a certain disease,
symptoms of the disease form information about patients. Objects character-
ized by the same information are indiscernible (similar) in view of the available
information about them. The indiscernibility relation generated in this way
is the mathematical basis of rough set theory. This understanding of indis-
cernibility is related to the idea of Gottfried Wilhelm Leibniz that objects are
indiscernible if and only if all available functionals take on them identical val-
ues (Leibniz’s Law of Indiscernibility: The Identity of Indiscernibles) [2, 44].
However, in the rough set approach indiscernibility is defined relative to a
given set of functionals (attributes).

Any set of all indiscernible (similar) objects is called an elementary set,
and forms a basic granule (atom) of knowledge about the universe. Any union
of some elementary sets is referred to as crisp (precise) set. If a set is not crisp
then it is called rough (imprecise, vague).



Consequently, each rough set has borderline cases (boundary–line), i.e.,
objects which cannot be classified with certainty as members of either the set
or its complement. Obviously crisp sets have no borderline elements at all.
This means that borderline cases cannot be properly classified by employing
available knowledge.

Thus, the assumption that objects can be “seen” only through the infor-
mation available about them leads to the view that knowledge has granular
structure. Due to the granularity of knowledge, some objects of interest can-
not be discerned and appear as the same (or similar). As a consequence, vague
concepts in contrast to precise concepts, cannot be characterized in terms of
information about their elements. Therefore, in the proposed approach, we as-
sume that any vague concept is replaced by a pair of precise concepts – called
the lower and the upper approximation of the vague concept. The lower ap-
proximation consists of all objects which definitely belong to the concept and
the upper approximation contains all objects which possibly belong to the
concept. The difference between the upper and the lower approximation con-
stitutes the boundary region of the vague concept. Approximations are two
basic operations in rough set theory.

Hence, rough set theory expresses vagueness not by means of membership,
but by employing a boundary region of a set. If the boundary region of a set
is empty it means that the set is crisp, otherwise the set is rough (inexact). A
nonempty boundary region of a set means that our knowledge about the set
is not sufficient to define the set precisely.

Rough set theory it is not an alternative to classical set theory but it is
embedded in it. Rough set theory can be viewed as a specific implementation
of Frege’s idea of vagueness, i.e., imprecision in this approach is expressed by
a boundary region of a set.

Rough set theory has attracted attention of many researchers and practi-
tioners all over the world, who have contributed essentially to its development
and applications. Rough set theory overlaps with many other theories. Despite
this overlap, rough set theory may be considered as an independent discipline
in its own right. The rough set approach seems to be of fundamental impor-
tance in artificial intelligence and cognitive sciences, especially in research ar-
eas such as machine learning, intelligent systems, inductive reasoning, pattern
recognition, mereology, knowledge discovery, decision analysis, and expert sys-
tems. The main advantage of rough set theory in data analysis is that it does
not need any preliminary or additional information about data like probability
distributions in statistics, basic probability assignments in Dempster–Shafer
theory, a grade of membership or the value of possibility in fuzzy set theory.
One can observe the following about the rough set approach:

• introduction of efficient algorithms for finding hidden patterns in data,
• determination of optimal sets of data (data reduction),
• evaluation of the significance of data,
• generation of sets of decision rules from data,



• easy-to-understand formulation,
• straightforward interpretation of obtained results,
• suitability of many of its algorithms for parallel processing.

2.2 Indiscernibility and Approximation

The starting point of rough set theory is the indiscernibility relation, which
is generated by information about objects of interest (see Sect. 2.1). The
indiscernibility relation expresses the fact that due to a lack of information
(or knowledge) we are unable to discern some objects employing available
information (or knowledge). This means that, in general, we are unable to
deal with each particular object but we have to consider granules (clusters)
of indiscernible objects as a fundamental basis for our theory.

From a practical point of view, it is better to define basic concepts of this
theory in terms of data. Therefore we will start our considerations from a
data set called an information system. An information system is a data table
containing rows labeled by objects of interest, columns labeled by attributes
and entries of the table are attribute values. For example, a data table can
describe a set of patients in a hospital. The patients can be characterized
by some attributes, like age, sex, blood pressure, body temperature, etc. With
every attribute a set of its values is associated, e.g., values of the attribute
age can be young, middle, and old. Attribute values can be also numerical.
In data analysis the basic problem we are interested in is to find patterns in
data, i.e., to find a relationship between some set of attributes, e.g., we might
be interested whether blood pressure depends on age and sex.

Suppose we are given a pair A = (U,A) of non-empty, finite sets U and A,
where U is the universe of objects, and A – a set consisting of attributes, i.e.
functions a : U −→ Va, where Va is the set of values of attribute a, called the
domain of a. The pair A = (U,A) is called an information system (see, e.g.,
[72]). Any information system can be represented by a data table with rows
labeled by objects and columns labeled by attributes. Any pair (x, a), where
x ∈ U and a ∈ A defines the table entry consisting of the value a(x)2.

Any subset B of A determines a binary relation I(B) on U , called an
indiscernibility relation, defined by

xI(B)y if and only if a(x) = a(y) for every a ∈ B, (1)

where a(x) denotes the value of attribute a for object x.
Obviously, I(B) is an equivalence relation. The family of all equivalence

classes of I(B), i.e., the partition determined by B, will be denoted by U/I(B),
or simply U/B; an equivalence class of I(B), i.e., the block of the partition
U/B, containing x will be denoted by B(x) (other notation used: [x]B or

2 Note, that in statistics or machine learning such a data table is called a sample
[25].



[x]I(B)). Thus in view of the data we are unable, in general, to observe indi-
vidual objects but we are forced to reason only about the accessible granules
of knowledge (see, e.g., [70, 74, 94]).

If (x, y) ∈ I(B) we will say that x and y are B-indiscernible. Equivalence
classes of the relation I(B) (or blocks of the partition U/B) are referred to
as B-elementary sets or B-elementary granules. In the rough set approach
the elementary sets are the basic building blocks (concepts) of our knowledge
about reality. The unions of B-elementary sets are called B-definable sets3.

For B ⊆ A we denote by InfB(x) the B-signature of x ∈ U , i.e., the set
{(a, a(s)) : a ∈ A}. Let INF (B) = {InfB(s) : s ∈ U}. Then for any objects
x, y ∈ U the following equivalence holds: xI(B)y if and only if InfB(x) =
InfB(y).

The indiscernibility relation will be further used to define basic concepts
of rough set theory. Let us define now the following two operations on sets
X ⊆ U

B∗(X) = {x ∈ U : B(x) ⊆ X}, (2)

B∗(X) = {x ∈ U : B(x) ∩X 6= ∅}, (3)

assigning to every subset X of the universe U two sets B∗(X) and B∗(X)
called the B-lower and the B-upper approximation of X, respectively. The set

BNB(X) = B∗(X) −B∗(X), (4)

will be referred to as the B-boundary region of X.
From the definition we obtain the following interpretation:

• The lower approximation of a set X with respect to B is the set of all
objects, which can be for certain classified as X using B (are certainly X
in view of B).

• The upper approximation of a set X with respect to B is the set of all
objects which can be possibly classified as X using B (are possibly X in
view of B).

• The boundary region of a set X with respect to B is the set of all objects,
which can be classified neither as X nor as not-X using B.

In other words, due to the granularity of knowledge, rough sets cannot be
characterized by using available knowledge. Therefore with every rough set we
associate two crisp sets, called lower and upper approximation. Intuitively, the
lower approximation of a set consists of all elements that definitely belong to
the set, whereas the upper approximation of the set constitutes of all elements
that possibly belong to the set, and the boundary region of the set consists of
all elements that cannot be classified uniquely to the set or its complement,
by employing available knowledge. The approximation definition is clearly
depicted in Figure 1.

3 One can compare data tables corresponding to information systems with relations
in relational databases [26].
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Fig. 1. A rough set

The approximations have the following properties:

B∗(X) ⊆ X ⊆ B∗(X), (5)

B∗(∅) = B∗(∅) = ∅, B∗(U) = B∗(U) = U,

B∗(X ∪ Y ) = B∗(X) ∪B∗(Y ),

B∗(X ∩ Y ) = B∗(X) ∩B∗(Y ),

X ⊆ Y implies B∗(X) ⊆ B∗(Y ) and B∗(X) ⊆ B∗(Y ),

B∗(X ∪ Y ) ⊇ B∗(X) ∪B∗(Y ),

B∗(X ∩ Y ) ⊆ B∗(X) ∩B∗(Y ),

B∗(−X) = −B∗(X),

B∗(−X) = −B∗(X),

B∗(B∗(X)) = B∗(B∗(X)) = B∗(X),

B∗(B∗(X)) = B∗(B∗(X)) = B∗(X).

Let us note that the inclusions in (5) cannot be in general substituted by
the equalities. This has some important algorithmic and logical consequences.

Now we are ready to give the definition of rough sets.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then

the set X is crisp (exact) with respect to B; in the opposite case, i.e., if
BNB(X) 6= ∅, the set X is referred to as rough (inexact) with respect to B.



Thus any rough set, in contrast to a crisp set, has a non-empty boundary
region.

One can define the following four basic classes of rough sets, i.e., four
categories of vagueness:

B∗(X) 6= ∅ and B∗(X) 6= U, iff X is roughly B-definable, (6)

B∗(X) = ∅ and B∗(X) 6= U, iff X is internally B-indefinable,

B∗(X) 6= ∅ and B∗(X) = U, iff X is externally B-indefinable,

B∗(X) = ∅ and B∗(X) = U, iff X is totally B-indefinable.

The intuitive meaning of this classification is the following.
If X is roughly B-definable, this means that we are able to decide for some

elements of U that they belong to X and for some elements of U we are able
to decide that they belong to −X, using B.

If X is internally B-indefinable, this means that we are able to decide
about some elements of U that they belong to −X, but we are unable to
decide for any element of U that it belongs to X, using B.

If X is externally B-indefinable, this means that we are able to decide for
some elements of U that they belong to X, but we are unable to decide, for
any element of U that it belongs to −X, using B.

If X is totally B-indefinable, we are unable to decide for any element of U
whether it belongs to X or −X, using B.

Thus a set is rough (imprecise) if it has nonempty boundary region; other-
wise the set is crisp (precise). This is exactly the idea of vagueness proposed
by Frege.

Let us observe that the definition of rough sets refers to data (knowledge),
and is subjective, in contrast to the definition of classical sets, which is in some
sense an objective one.

A rough set can also be characterized numerically by the following coeffi-
cient

αB(X) =
card(B∗(X))

card(B∗(X))
, (7)

called the accuracy of approximation, where card(X) denotes the cardinality of
X 6= ∅. Obviously 0 ≤ αB(X) ≤ 1. If αB(X) = 1 then X is crisp with respect
to B (X is precise with respect to B), and otherwise, if αB(X) < 1 then X
is rough with respect to B (X is vague with respect to B). The accuracy of
approximation can be used to measure the quality of approximation of decision
classes on the universe U . One can use another measure of accuracy defined

by 1−αB(X) or by 1− card(BNB(X))
card(U) . Some other measures of approximation

accuracy are also used, e.g., based on entropy or some more specific properties
of boundary regions (see, e.g., [108, 122, 27]). The choice of a relevant accuracy
of approximation depends on a particular data set. Observe that the accuracy
of approximation of X can be tuned by B. Another approach to accuracy
of approximation can be based on the Variable Precision Rough Set Model
(VPRSM) [152] (see Section 3.1).



In the next section, we discuss decision rules (constructed over a selected
set B of features or a family of sets of features) which are used in inducing
classification algorithms (classifiers) making it possible to classify to decision
classes unseen objects. Parameters which are tuned in searching for a classifier
with the high quality are its description size (defined using decision rules) and
its quality of classification (measured by the number of misclassified objects
on a given set of objects). By selecting a proper balance between the accuracy
of classification and the description size we expect to find the classifier with
the high quality of classification also on unseen objects. This approach is based
on the minimal description length principle [97, 98, 124].

2.3 Decision Systems and Decision Rules

Sometimes we distinguish in an information system A = (U,A) a partition
of A into two classes C,D ⊆ A of attributes, called condition and decision
(action) attributes, respectively. The tuple A = (U,C,D) is called a decision
system.

Let V =
⋃

{Va |a ∈ C}
⋃

{Vd |d ∈ D}. Atomic formulae over B ⊆ C∪D and
V are expressions a = v called descriptors (selectors) over B and V , where
a ∈ B and v ∈ Va. The set F(B, V ) of formulae over B and V is the least set
containing all atomic formulae over B and V and closed with respect to the
propositional connectives ∧ (conjunction), ∨ (disjunction) and ¬ (negation).

By ‖ϕ‖A we denote the meaning of ϕ ∈ F(B, V ) in the decision table A
which is the set of all objects in U with the property ϕ. These sets are defined
by ‖a = v‖A = {x ∈ U | a(x) = v}, ‖ϕ ∧ ϕ′‖A = ‖ϕ‖A ∩ ‖ϕ′‖A; ‖ϕ ∨ ϕ′‖A =
‖ϕ‖A ∪ ‖ϕ′‖A; ‖¬ϕ‖A = U −‖ϕ‖A The formulae from F(C, V ), F(D,V ) are
called condition formulae of A and decision formulae of A, respectively.

Any object x ∈ U belongs to the decision class ‖
∧

d∈D d = d(x)‖A of A.
All decision classes of A create a partition U/D of the universe U .

A decision rule for A is any expression of the form ϕ ⇒ ψ, where ϕ ∈
F(C, V ), ψ ∈ F(D,V ), and ‖ϕ‖A 6= ∅. Formulae ϕ and ψ are referred to as
the predecessor and the successor of decision rule ϕ ⇒ ψ. Decision rules are
often called “IF . . . THEN . . . ” rules. Such rules are used in machine learning
(see, e.g., [25]).

Decision rule ϕ⇒ ψ is true in A if and only if ‖ϕ‖A ⊆ ‖ψ‖A. Otherwise,
one can measure its truth degree by introducing some inclusion measure of
‖ϕ‖A in ‖ψ‖A.

Given two unary predicate formulae α(x), β(x) where x runs over a fi-

nite set U ,  Lukasiewicz [53] proposes to assign to α(x) the value card(‖α(x)‖)
card(U) ,

where ‖α(x)‖ = {x ∈ U : x satisfies α}. The fractional value assigned to the

implication α(x) ⇒ β(x) is then card(‖α(x)∧β(x)‖)
card(‖α(x)‖) under the assumption that

‖α(x)‖ 6= ∅. Proposed by  Lukasiewicz, that fractional part was much later
adapted by machine learning and data mining literature.

Each object x of a decision system determines a decision rule



∧

a∈C

a = a(x) ⇒
∧

d∈D

d = d(x). (8)

For any decision table A = (U,C, d) one can consider a generalized decision
function ∂A : U −→ Pow(×d∈DVd) defined by

∂A(x) =
{

i : ∃x′ ∈ U [ (x′, x) ∈ I(A) and d(x′) = i]
}

, (9)

where Pow(Vd) is the powerset of the Cartesian product ×d∈DVd of the family
{Vd}d∈D.

A is called consistent (deterministic), if card(∂A(x)) = 1, for any x ∈ U .
Otherwise A is said to be inconsistent (non-deterministic). Hence, a decision
table is inconsistent if it consists of some objects with different decisions but
indiscernible with respect to condition attributes. Any set consisting of all ob-
jects with the same generalized decision value is called a generalized decision
class. Now, one can consider certain (possible) rules (see, e.g. [31, 33]) for de-
cision classes defined by the lower (upper) approximations of such generalized
decision classes of A. This approach can be extend, using the relationships of
rough sets with the Dempster-Shafer theory (see, e.g., [108, 101]), by consid-
ering rules relative to decision classes defined by the lower approximations of
unions of decision classes of A.

Numerous methods have been developed for different decision rule gen-
eration that the reader can find in the literature on rough sets (see also
Section 3.2). Usually, one is searching for decision rules (semi) optimal with
respect to some optimization criteria describing quality of decision rules in
concept approximations.

In the case of searching for concept approximation in an extension of a
given universe of objects (sample), the following steps are typical. When a set
of rules has been induced from a decision table containing a set of training
examples, they can be inspected to see if they reveal any novel relationships
between attributes that are worth pursuing for further research. Furthermore,
the rules can be applied to a set of unseen cases in order to estimate their
classificatory power. For a systematic overview of rule application methods
the reader is referred to the literature (see, e.g., [56, 3] and also Section 3.2).

2.4 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between
attributes in a given decision system A = (U,C,D). Intuitively, a set of at-
tributes D depends totally on a set of attributes C, denoted C ⇒ D, if the
values of attributes from C uniquely determine the values of attributes from
D. In other words, D depends totally on C, if there exists a functional de-
pendency between values of C and D. Hence, C ⇒ D if and only if the rule
(8) is true on A for any x ∈ U . D can depend partially on C. Formally such
a dependency can be defined in the following way.



We will say that D depends on C to a degree k (0 ≤ k ≤ 1), denoted
C ⇒k D, if

k = γ(C,D) =
card(POSC(D))

card(U)
(10)

where
POSC(D) =

⋃

X∈U/D

C∗(X), (11)

called a positive region of the partition U/D with respect to C, is the set of all
elements of U that can be uniquely classified to blocks of the partition U/D,
by means of C.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (to degree k) on C. If k = 0 then the positive region of the
partition U/D with respect to C is empty.

The coefficient k expresses the ratio of all elements of the universe, which
can be properly classified to blocks of the partition U/D, employing attributes
C and will be called the degree of the dependency.

It can be easily seen that if D depends totally on C then I(C) ⊆ I(D). It
means that the partition generated by C is finer than the partition generated
by D. Notice, that the concept of dependency discussed above corresponds to
that considered in relational databases.

Summing up: D is totally (partially) dependent on C, if all (some) elements
of the universe U can be uniquely classified to blocks of the partition U/D,
employing C.

Observer, that (10) defines only one of possible measures of dependency
between attributes (see, e.g., [122]). One also can compare the dependency
discussed in this section with dependencies considered in databases [26].

2.5 Reduction of Attributes

We often face a question whether we can remove some data from a data-
table preserving its basic properties, that is – whether a table contains some
superfluous data.

Let us express this idea more precisely.
Let C,D ⊆ A, be sets of condition and decision attributes respectively.

We will say that C ′ ⊆ C is a D-reduct (reduct with respect to D) of C, if C ′

is a minimal subset of C such that

γ(C,D) = γ(C ′,D). (12)

The intersection of all D-reducts is called a D-core (core with respect to D).
Because the core is the intersection of all reducts, it is included in every reduct,
i.e., each element of the core belongs to some reduct. Thus, in a sense, the
core is the most important subset of attributes, since none of its elements can
be removed without affecting the classification power of attributes. Certainly,



the geometry of reducts can be more compound. For example, the core can
be empty but there can exist a partition of reducts into a few sets with non
empty intersection.

Many other kinds of reducts and their approximations are discussed in the
literature (see, e.g., [5, 59, 60, 102, 121, 123, 124]). It turns out that they can
be efficiently computed using heuristics based, e.g., on the Boolean reasoning
approach.

2.6 Discernibility and Boolean Reasoning

Methodologies devoted to data mining, knowledge discovery, decision support,
pattern classification, approximate reasoning require tools aimed at discover-
ing templates (patterns) in data and classifying them into certain decision
classes. Templates are in many cases most frequent sequences of events, most
probable events, regular configurations of objects, the decision rules of high
quality, standard reasoning schemes. Tools for discovering and classifying of
templates are based on reasoning schemes rooted in various paradigms [20].
Such patterns can be extracted from data by means of methods based, e.g.,
on Boolean reasoning and discernibility.

The discernibility relations are closely related to indiscernibility and belong
to the most important relations considered in rough set theory.

The ability to discern between perceived objects is important for con-
structing many entities like reducts, decision rules or decision algorithms. In
the classical rough set approach the discernibility relation DIS(B) ⊆ U×U is
defined by xDIS(B)y if and only if non(xI(B)y). However, this is in general
not the case for the generalized approximation spaces (one can define indis-
cernibility by x ∈ I(y) and discernibility by I(x) ∩ I(y) = ∅ for any objects
x, y where I(x) = B(x), I(y) = B(y) in the case of the indiscernibility relation
defined in Section 2.2 and in more general case (see Section 3) I(x), I(y) are
neighborhoods of objects not necessarily defined by the equivalence relation.

The idea of Boolean reasoning is based on construction for a given problem
P of a corresponding Boolean function fP with the following property: the
solutions for the problem P can be decoded from prime implicants of the
Boolean function fP . Let us mention that to solve real-life problems it is
necessary to deal with Boolean functions having large number of variables.

A successful methodology based on the discernibility of objects and
Boolean reasoning has been developed for computing of many important for
applications. These include reducts and their approximations, decision rules,
association rules, discretization of real value attributes, symbolic value group-
ing, searching for new features defined by oblique hyperplanes or higher order
surfaces, pattern extraction from data as well as conflict resolution or negoti-
ation.

Most of the problems related to generation of the above mentioned enti-
ties are NP-complete or NP-hard. However, it is possible to develop efficient



heuristics returning suboptimal solutions of the problems. The results of ex-
periments on many data sets are very promising. They show very good quality
of solutions generated by the heuristics in comparison with other methods re-
ported in literature (e.g., with respect to the classification quality of unseen
objects). Moreover, they are very efficient from the point of view of time
necessary for computing of the solution. Many of these methods are based
on discernibility matrices. Note, that it is possible to compute the necessary
information about these matrices using directly4 information or decision sys-
tems (e.g., sorted in preprocessing [3, 62, 144]) which significantly improves
the efficiency of algorithms.

It is important to note that the methodology makes it possible to con-
struct heuristics having a very important approximation property which can
be formulated as follows: expressions generated by heuristics (i.e., implicants)
close to prime implicants define approximate solutions for the problem.

2.7 Rough Membership

Let us observe that rough sets can be also defined employing the rough mem-
bership function (see Eq. 13) instead of approximation [77]. That is, consider

µB
X : U →< 0, 1 >,

defined by

µB
X(x) =

card(B(x) ∩X)

card(X)
, (13)

where x ∈ X ⊆ U .
The value µB

X(x) can be interpreted as the degree that x belongs to X in
view of knowledge about x expressed by B or the degree to which the elemen-
tary granule B(x) is included in the set X. This means that the definition
reflects a subjective knowledge about elements of the universe, in contrast to
the classical definition of a set.

The rough membership function can also be interpreted as the conditional
probability that x belongs to X given B. This interpretation was used by
several researchers in the rough set community (see, e.g., [4, 32, 123, 140, 143]).
Note also that the ratio on the right hand side of the equation (13) is known as
the confidence coefficient in data mining [25, 37]. It is worthwhile to mention
that set inclusion to a degree has been considered by  Lukasiewicz [53] in
studies on assigning fractional truth values to logical formulas.

It can be shown that the rough membership function has the following
properties [77]:

1) µB
X(x) = 1 iff x ∈ B∗(X);

2) µB
X(x) = 0 iff x ∈ U −B∗(X);

3) 0 < µB
X(x) < 1 iff x ∈ BNB(X);

4 i.e., without the necessity of generation and storing of the discernibility matrices



4) µB
U−X(x) = 1 − µB

X(x) for any x ∈ U ;
5) µB

X∪Y (x) ≥ max(µB
X(x), µB

Y (x)) for any x ∈ U ;
6) µB

X∩Y (x) ≤ min(µB
X(x), µB

Y (x)) for any x ∈ U .

From the properties it follows that the rough membership differs essentially
from the fuzzy membership [149], for properties 5) and 6) show that the mem-
bership for union and intersection of sets, in general, cannot be computed – as
in the case of fuzzy sets – from their constituents membership. Thus formally
the rough membership is more general from fuzzy membership. Moreover, the
rough membership function depends on an available knowledge (represented
by attributes from B). Besides, the rough membership function, in contrast
to fuzzy membership function, has a probabilistic flavor.

Let us also mention that rough set theory, in contrast to fuzzy set theory,
clearly distinguishes two very important concepts, vagueness and uncertainty,
very often confused in the AI literature. Vagueness is the property of sets and
can be described by approximations, whereas uncertainty is the property of
objects considered as elements of a set and can be expressed by the rough
membership function.

Both fuzzy and rough set theory represent two different approaches to
vagueness. Fuzzy set theory addresses gradualness of knowledge, expressed
by the fuzzy membership, whereas rough set theory addresses granularity of
knowledge, expressed by the indiscernibility relation. A nice illustration of
this difference has been given by Dider Dubois and Henri Prade [19] in the
following example. In image processing fuzzy set theory refers to gradualness
of gray level, whereas rough set theory is about the size of pixels.

Consequently, both theories are not competing but are rather complemen-
tary. In particular, the rough set approach provides tools for approximate
construction of fuzzy membership functions. The rough-fuzzy hybridization
approach proved to be successful in many applications (see, e.g., [68, 71]).

Interesting discussion of fuzzy and rough set theory in the approach to
vagueness can be found in [96]. Let us also observe that fuzzy set and rough
set theory are not a remedy for classical set theory difficulties.

One of the consequences of perceiving objects by information about them
is that for some objects one cannot decide if they belong to a given set or not.
However, one can estimate the degree to which objects belong to sets. This is a
crucial observation in building foundations for approximate reasoning. Dealing
with imperfect knowledge implies that one can only characterize satisfiability
of relations between objects to a degree, not precisely. One of the fundamental
relations on objects is a rough inclusion relation describing that objects are
parts of other objects to a degree. The rough mereological approach [70, 87,
88, 90] based on such a relation is an extension of the Leśniewski mereology
[45].



3 Extensions

The rough set concept can be defined quite generally by means of topological
operations, interior and closure, called approximations [84]. It was observed
in [73] that the key to the presented approach is provided by the exact math-
ematical formulation of the concept of approximative (rough) equality of sets
in a given approximation space. In [74], an approximation space is represented
by the pair (U,R), where U is a universe of objects, and R ⊆ U × U is an
indiscernibility relation defined by an attribute set (i.e., R = I(A) for some
attribute set A). In this case R is an equivalence relation. Let [x]R denote an
equivalence class of an element x ∈ U under the indiscernibility relation R,
where [x]R = {y ∈ U : xRy}.

In this context, R-approximations of any set X ⊆ U are based on the exact
(crisp) containment of sets. Then set approximations are defined as follows:

• x ∈ U belongs with certainty to the R-lower approximation of X ⊆ U , if
[x]R ⊆ X.

• x ∈ U belongs with certainty to the complement set of X ⊆ U , if [x]R ⊆
U −X.

• x ∈ U belongs with certainty to the R-boundary region of X ⊆ U , if
[x]R ∩X 6= ⊘ and [x]R ∩ (U −X) 6= ⊘.

Several generalizations of the above approach have been proposed in the
literature (see, e.g., [29, 70, 113, 118, 131, 152]). In particular, in some of these
approaches, set inclusion to a degree is used instead of the exact inclusion.

Different aspects of vagueness in the rough set framework are discussed,
e.g., in [55, 65, 66, 96, 107].

Our knowledge about the approximated concepts is often partial and un-
certain [30]. For example, concept approximation should be constructed from
examples and counter examples of objects for the concepts [25]. Hence, the
concept approximations constructed from a given sample of objects is ex-
tended, using inductive reasoning, on unseen so far objects. The rough set
approach for dealing with concept approximation under such partial knowl-
edge is presented, e.g., in [118]. Moreover, the concept approximations should
be constructed under dynamically changing environments [107]. This leads to
a more complex situation when the boundary regions are not crisp sets what
is consistent with the postulate of the higher order vagueness, considered by
philosophers (see, e.g., [36]). It is worthwhile to mention that a rough set ap-
proach to the approximation of compound concepts has been developed and
at this time no traditional method is able directly to approximate compound
concepts [11, 141]. The approach is based on hierarchical learning and ontol-
ogy approximation [8, 61, 70, 111]). Approximation of concepts in distributed
environments is discussed in [105]. A survey of algorithmic methods for con-
cept approximation based on rough sets and Boolean reasoning in presented,
e.g., in [103].



3.1 Generalizations of Approximation Spaces

Several generalizations of the classical rough set approach based on approxi-
mation spaces defined as pairs of the form (U,R), where R is the equivalence
relation (called indiscernibility relation) on the set U , have been reported in
the literature. Let us mention two of them.

A generalized approximation space5 can be defined by a tuple AS =
(U, I, ν) where I is the uncertainty function defined on U with values in the
powerset Pow(U) of U (I(x) is the neighboorhood of x) and ν is the inclusion
function defined on the Cartesian product Pow(U) × Pow(U) with values
in the interval [0, 1] measuring the degree of inclusion of sets. The lower AS∗

and upper AS∗ approximation operations can be defined in AS by

AS∗(X) = {x ∈ U : ν(I(x),X) = 1}, (14)

AS∗(X) = {x ∈ U : ν(I(x),X) > 0}. (15)

In the standard case I(x) is equal to the equivalence class B(x) of the indis-
cernibility relation I(B); in case of tolerance (similarity) relation τ ⊆ U × U
[95] we take I(x) = {y ∈ U : xτy}, i.e., I(x) is equal to the tolerance class of
τ defined by x. The standard inclusion relation νSRI is defined for X,Y ⊆ U
by

νSRI(X,Y ) =

{

card(X∩Y )
card(X) , if X is non − empty,

1, otherwise.
(16)

For applications it is important to have some constructive definitions of I and
ν.

One can consider another way to define I(x). Usually together with AS
we consider some set F of formulae describing sets of objects in the universe
U of AS defined by semantics ‖ · ‖AS , i.e., ‖α‖AS ⊆ U for any α ∈ F. Now,
one can take the set

NF (x) = {α ∈ F : x ∈ ‖α‖AS}, (17)

and I(x) = {‖α‖AS : α ∈ NF (x)}. Hence, more general uncertainty func-
tions having values in Pow(Pow(U)) can be defined and in the consequence
different definitions of approximations are considered. For example, one can
consider the following definitions of approximation operations in AS:

AS◦(X) = {x ∈ U : ν(Y,X) = 1 for some Y ∈ I(x)}, (18)

AS◦(X) = {x ∈ U : ν(Y,X) > 0 for any Y ∈ I(x)}. (19)

There are also different forms of rough inclusion functions. Let us consider
some examples.

5 Some other generalizations of approximation spaces are also considered in the
literature (see, e.g., [47, 49, 104, 146, 147, 145, 148]).



In the first example of rough inclusion function a a threshold t ∈ (0, 0.5)
is used to relax the degree of inclusion of sets. The rough inclusion function
νt is defined by

νt (X,Y ) =







1, if νSRI (X,Y ) ≥ 1 − t,
νSRI(X,Y )−t

1−2t , if t < νSRI (X,Y ) < 1 − t,

0, if νSRI (X,Y ) ≤ t.

(20)

One can obtain approximations considered in the variable precision rough
set approach (VPRSM) [152] by substituting in (14)-(15) the rough inclusion
function νt defined by (20) instead of ν, assuming that Y is a decision class
and N(x) = B(x) for any object x, where B is a given set of attributes.

Another example of application of the standard inclusion was developed
by using probabilistic decision functions. For more detail the reader is referred
to [122, 123].

The rough inclusion relation can be also used for function approximation
[118] and relation approximation [133]. In the case of function approximation
the inclusion function ν∗ for subsets X,Y ⊆ U × U , where U ⊆ R and R is
the set of reals, is defined by

ν∗ (X,Y ) =

{

card(π1(X∩Y ))
card(π1(X)) , if π1(X) 6= ∅,

1, if π1(X) = ∅,
(21)

where π1 is the projection operation on the first coordinate. Assume now,
that X is a cube and Y is the graph G(f) of the function f : R −→ R.
Then, e.g., X is in the lower approximation of f if the projection on the first
coordinate of the intersection X ∩G(f) is equal to the projection of X on the
first coordinate. This means that the part of the graph G(f) is “well” included
in the box X, i.e., for all arguments that belong to the box projection on the
first coordinate the value of f is included in the box X projection on the
second coordinate.

The approach based on inclusion functions has been generalized to the
rough mereological approach [70, 87, 88, 90] (see also Section 3.6). The inclu-
sion relation xµry with the intended meaning x is a part of y to a degree at
least r has been taken as the basic notion of the rough mereology being a gen-
eralization of the Leśniewski mereology [45, 46]. Research on rough mereology
has shown importance of another notion, namely closeness of complex objects
(e.g., concepts). This can be defined by xclr,r′y if and only if xµry and yµr′x.

Rough mereology offers a methodology for synthesis and analysis of ob-
jects in a distributed environment of intelligent agents, in particular, for syn-
thesis of objects satisfying a given specification to a satisfactory degree or
for control in such a complex environment. Moreover, rough mereology has
been recently used for developing the foundations of the information granule
calculi, aiming at formalization of the Computing with Words paradigm, re-
cently formulated by Lotfi Zadeh [150]. More complex information granules



are defined recursively using already defined information granules and their
measures of inclusion and closeness. Information granules can have complex
structures like classifiers or approximation spaces. Computations on informa-
tion granules are performed to discover relevant information granules, e.g.,
patterns or approximation spaces for complex concept approximations.

Usually there are considered families of approximation spaces labeled by
some parameters. By tuning such parameters according to chosen criteria (e.g.,
minimal description length) one can search for the optimal approximation
space for concept description (see, e.g., [3]).

3.2 Concept Approximation

In this section, we consider the problem of approximation of concepts over a
universe U∞ (concepts that are subsets of U∞). We assume that the concepts
are perceived only through some subsets of U∞, called samples. This is a
typical situation in the machine learning, pattern recognition, or data mining
approaches [25, 37]. We explain the rough set approach to induction of concept
approximations using the generalized approximation spaces of the form AS =
(U, I, ν) defined in Section 3.1.

Let U ⊆ U∞ be a finite sample. By ΠU we denote a perception function
from P (U∞) into P (U) defined by ΠU (C) = C∩U for any concept C ⊆ U∞.
Let AS = (U, I, ν) be an approximation space over the sample U .

The problem we consider is how to extend the approximations of ΠU (C)
defined by AS to approximation of C over U∞. We show that the problem
can be described as searching for an extension ASC = (U∞, IC , νC) of the
approximation space AS, relevant for approximation of C. This requires to
show how to extend the inclusion function ν from subsets of U to subsets
of U∞ that are relevant for the approximation of C. Observe that for the
approximation of C it is enough to induce the necessary values of the inclusion
function νC without knowing the exact value of IC(x) ⊆ U∞ for x ∈ U∞.

Let AS be a given approximation space for ΠU (C) and let us consider a
language L in which the neighborhood I(x) ⊆ U is expressible by a formula
pat(x), for any x ∈ U . It means that I(x) = ‖pat(x)‖U ⊆ U , where ‖pat(x)‖U

denotes the meaning of pat(x) restricted to the sample U . In case of rule based
classifiers patterns of the form pat(x) are defined by feature value vectors.

We assume that for any new object x ∈ U∞ \ U we can obtain (e.g.,
as a result of sensor measurement) a pattern pat(x) ∈ L with semantics
‖pat(x)‖U∞ ⊆ U∞. However, the relationships between information granules
over U∞ such as sets ‖pat(x)‖U∞ and ‖pat(y)‖U∞ , for different x, y ∈ U∞, are,
in general, known only if they can be expressed by relationships between the
restrictions of these sets to the sample U , i.e., between sets ΠU (‖pat(x)‖U∞)
and ΠU (‖pat(y)‖U∞).

The set of patterns {pat(x) : x ∈ U} is usually not relevant for approxi-
mation of the concept C ⊆ U∞. Such patterns are too specific or not enough



general, and can directly be applied only to a very limited number of new ob-
jects. However, by using some generalization strategies, one can search, in a
family of patterns definable from {pat(x) : x ∈ U} in L, for such new patterns
that are relevant for approximation of concepts over U∞. Let us consider a
subset PATTERNS(AS,L,C) ⊆ L chosen as a set of pattern candidates for
relevant approximation of a given concept C. For example, in case of rule
based classifier one can search for such candidate patterns among sets defin-
able by subsequences of feature value vectors corresponding to objects from
the sample U . The set PATTERNS(AS,L,C) can be selected by using some
quality measures checked on meanings (semantics) of its elements restricted
to the sample U (like the number of examples from the concept ΠU (C) and its
complement that support a given pattern). Then, on the basis of properties of
sets definable by these patterns over U we induce approximate values of the
inclusion function νC on subsets of U∞ definable by any of such pattern and
the concept C.

Next, we induce the value of νC on pairs (X,Y ) where X ⊆ U∞ is definable
by a pattern from {pat(x) : x ∈ U∞} and Y ⊆ U∞ is definable by a pattern
from PATTERNS(AS,L,C).

Finally, for any object x ∈ U∞ \ U we induce the approximation of the
degree νC(‖pat(x)‖U∞ , C) applying a conflict resolution strategy Conflict res
(a voting strategy, in case of rule based classifiers) to two families of degrees:

{νC(‖pat(x)‖U∞ , ‖pat‖U∞) : pat ∈ PATTERNS(AS,L,C)}, (22)

{νC(‖pat‖U∞ , C) : pat ∈ PATTERNS(AS,L,C)}. (23)

Values of the inclusion function for the remaining subsets of U∞ can be cho-
sen in any way – they do not have any impact on the approximations of C.
Moreover, observe that for the approximation of C we do not need to know
the exact values of uncertainty function IC – it is enough to induce the val-
ues of the inclusion function νC . Observe that the defined extension νC of ν
to some subsets of U∞ makes it possible to define an approximation of the
concept C in a new approximation space ASC .

Observe that one can also follow principles of Bayesian reasoning and use
degrees of νC to approximate C (see, e.g., [76, 125, 128]).

In this way, the rough set approach to induction of concept approximations
can be explained as a process of inducing a relevant approximation space.

3.3 Higher Order Vagueness

In [36], it is stressed that vague concepts should have non-crisp boundaries. In
the definition presented in Section 2.2, the notion of boundary region is defined
as a crisp set BNB(X). However, let us observe that this definition is relative
to the subjective knowledge expressed by attributes from B. Different sources
of information may use different sets of attributes for concept approxima-
tion. Hence, the boundary region can change when we consider these different



views. Another aspect is discussed in [107, 117] where it is assumed that in-
formation about concepts is incomplete, e.g., the concepts are given only on
samples (see, e.g., [25, 37, 56]). From [107, 117] it follows that vague concepts
cannot be approximated with satisfactory quality by static constructs such as
induced membership inclusion functions, approximations or models derived,
e.g., from a sample. Understanding of vague concepts can be only realized in
a process in which the induced models are adaptively matching the concepts
in a dynamically changing environment. This conclusion seems to have impor-
tant consequences for further development of rough set theory in combination
with fuzzy sets and other soft computing paradigms for adaptive approximate
reasoning.

3.4 Information Granulation

Information granulation can be viewed as a human way of achieving data
compression and it plays a key role in the implementation of the strategy of
divide-and-conquer in human problem-solving [150]. Objects obtained as the
result of granulation are information granules. Examples of elementary infor-
mation granules are indiscernibility or tolerance (similarity) classes (see Sec-
tion 2.2). In reasoning about data and knowledge under uncertainty and im-
precision many other more compound information granules are used (see, e.g.,
[92, 94, 104, 114, 115]). Examples of such granules are decision rules, sets of
decision rules or classifiers. More compound information granules are defined
by means of less compound ones. Note that inclusion or closeness measures
between information granules should be considered rather than their strict
equality. Such measures are also defined recursively for information granules.

Let us discuss shortly an example of information granulation in the
process of modeling patterns for compound concept approximation (see, e.g.,
[6, 7, 8, 9, 10, 61, 134]. We start from a generalization of information sys-
tems. For any attribute a ∈ A of an information system (U,A) we consider
together with the value set Va of a a relational structure Ra over the uni-
verse Va (see, e.g., [119]). We also consider a language La of formulas (of the
same relational signature as Ra). Such formulas interpreted over Ra define
subsets of Cartesian products of Va. For example, any formula α with one
free variable defines a subset ‖α‖Ra

of Va. Let us observe that the relational
structure Ra induces a relational structure over U . Indeed, for any k-ary re-
lation r from Ra one can define a k-ary relation ga ⊆ Uk by (x1, . . . , xk) ∈ ga

if and only if (a(x1), . . . , a(xk)) ∈ r for any (x1, . . . , xk) ∈ Uk. Hence, one can
consider any formula from La as a constructive method of defining a subset
of the universe U with a structure induced by Ra. Any such a structure is a
new information granule. On the next level of hierarchical modeling, i.e., in
constructing new information systems we use such structures as objects and
attributes are properties of such structures. Next, one can consider similarity
between new constructed objects and then their similarity neighborhoods will
correspond to clusters of relational structures. This process is usually more



complex. This is because instead of relational structure Ra we usually con-
sider a fusion of relational structures corresponding to some attributes from
A. The fusion makes it possible to describe constraints that should hold be-
tween parts obtained by composition from less compound parts. Examples
of relational structures can be defined by indiscernibility, similarity, intervals
obtained in discretization or symbolic value grouping, preference or spatio-
temporal relations (see, e.g., [29, 37, 113]). One can see that parameters to be
tuned in searching for relevant6 patterns over new information systems are,
among others, relational structures over value sets, the language of formulas
defining parts, and constraints.

3.5 Ontological Framework for Approximation

In a number of papers (see, e.g., [116]) the problem of ontology approximation
has been discussed together with possible applications to approximation of
compound concepts or to knowledge transfer (see, e.g., [63, 99, 116, 106]).

In the ontology [132] (vague) concepts and local dependencies between
them are specified. Global dependencies can be derived from local depen-
dencies. Such derivations can be used as hints in searching for relevant com-
pound patterns (information granules) in approximation of more compound
concepts from the ontology. The ontology approximation problem is one of the
fundamental problems related to approximate reasoning in distributed envi-
ronments. One should construct (in a given language that is different from the
ontology specification language) not only approximations of concepts from on-
tology but also vague dependencies specified in the ontology. It is worthwhile
to mention that an ontology approximation should be induced on the basis
of incomplete information about concepts and dependencies specified in the
ontology. Information granule calculi based on rough sets have been proposed
as tools making it possible to solve this problem. Vague dependencies have
vague concepts in premisses and conclusions. The approach to approximation
of vague dependencies based only on degrees of closeness of concepts from
dependencies and their approximations (classifiers) is not satisfactory for ap-
proximate reasoning. Hence, more advanced approach should be developed.
Approximation of any vague dependency is a method which allows us for any
object to compute the arguments “for” and “against” its membership to the
dependency conclusion on the basis of the analogous arguments relative to
the dependency premisses. Any argument is a compound information granule
(compound pattern). Arguments are fused by local schemes (production rules)
discovered from data. Further fusions are possible through composition of lo-
cal schemes, called approximate reasoning schemes (AR schemes) (see, e.g.,
[9, 92, 70]). To estimate the degree to which (at least) an object belongs to
concepts from ontology the arguments “for” and “against” those concepts are
collected and next a conflict resolution strategy is applied to them to predict
the degree.

6 for target concept approximation



3.6 Mereology and Rough Mereology

This section introduces some basic concepts of rough mereology (see, e.g.,
[85, 86, 88, 92, 93, 94]).

Exact and rough concepts can be characterized by a new notion of an
element, alien to naive set theory in which this theory has been coded until
now. For an information system A=(U,A), and a set B of attributes, the
mereological element elAB is defined by letting

xelABX if and only if B(x) ⊆ X. (24)

Then, a concept X is B-exact if and only if either xelABX or xelABU \ X
for each x ∈ U , and the concept X is B–rough if and only if for some x ∈ U
neither xelABX nor xelABU \X.

Thus, the characterization of the dichotomy exact–rough cannot be done
by means of the element notion of naive set theory, but requires the notion of
containment (⊆), i.e., a notion of mereological element.

The Leśniewski Mereology (theory of parts) is based on the notion of a
part [45, 46]. The relation π of part on the collection U of objects satisfies

1. if xπy then not yπx, (25)

2. if xπy and yπz then xπz. (26)

The notion of mereological element elπ is introduced as

xelπy if and only if xπy or x = y. (27)

In particular, the relation of proper inclusion ⊂ is a part relation π on any
non–empty collection of sets, with the element relation elπ =⊆.

Formulas expressing, e.g., rough membership, quality of decision rule, qual-
ity of approximations can be traced back to a common root, i.e., ν(X,Y )
defined by equation (16). The value ν(X,Y ) defines the degree of partial con-
tainment of X into Y and naturally refers to the Leśniewski Mereology. An
abstract formulation of this idea in [88] connects the mereological notion of
element elπ with the partial inclusion by introducing a rough inclusion as a
relation ν ⊆ U × U × [0, 1] on a collection of pairs of objects in U endowed
with part π relation, and such that

1. ν(x, y, 1) if and only if xelπy, (28)

2. if ν(x, y, 1) then (if ν(z, x, r) then ν(z, y, r)), (29)

3. if ν(z, x, r) and s < r then ν(z, x, s). (30)

Implementation of this idea in information systems can be based on Archimedean
t–norms [88]; each such norm T is represented as T (r, s) = g(f(r)+f(s)) with
f, g pseudo–inverses to each other, continuous and decreasing on [0, 1]. Letting
for (U,A) and x, y ∈ U



DIS(x, y) = {a ∈ A : a(x) 6= a(y)} (31)

and

ν(x, y, r) if and only if g(
card(DIS(x, y))

card(A)
) ≥ r (32)

defines a rough inclusion that satisfies additionally the transitivity rule

ν(x, y, r), ν(y, z, s)

ν(x, z, T (r, s))
. (33)

Simple examples here are: the Menger rough inclusion in the case f(r) =

− ln r, g(s) = e−s yields ν(x, y, r) if and only if e−
card(DIS(x,y))

card(A) ≥ r and it
satisfies the transitivity rule:

ν(x, y, r), ν(y, z, s)

ν(x, y, r · s)
, (34)

i.e., the t–norm T is the Menger (product) t–norm r · s, and, the  Lukasiewicz
rough inclusion with f(x) = 1 − x = g(x) yielding ν(x, y, r) if and only if

1 − card(DIS(x,y))
card(A) ≥ r with the transitivity rule:

ν(x, y, r), ν(y, z, s)

ν(x, y,max{0, r + s− 1})
, (35)

i.e., with the  Lukasiewicz t–norm.
Rough inclusions [88] can be used in granulation of knowledge [150]. Gran-

ules of knowledge are constructed as aggregates of indiscernibility classes close
enough with respect to a chosen measure of closeness. In a nutshell, a gran-
ule gr(x) about x of radius r can be defined as the aggregate of all y with
ν(y, x, r). The aggregating mechanism can be based on the class operator of
mereology (cf. rough mereology [88]) or on set theoretic operations of union.

Rough mereology [88] combines rough inclusions with methods of mere-
ology. It employs the operator of mereological class that makes collections of
objects into objects. The class operator Cls satisfies the requirements, with
any non–empty collection M of objects made into the object Cls(M)

if x ∈M then xelπCls(M), (36)

if xelπCls(M) then there exist y, z such that yelπx, yelπz, z ∈M. (37)

In case of the part relation ⊂ on a collection of sets, the class Cls(M) of
a non–empty collection M is the union

⋃

M .
Granulation by means of the class operator Cls consists in forming the

granule gr(x) as the class Cls(y : ν(y, x, r)). One obtains a granule family
with regular properties (see [142]).



4 Conflicts

Knowledge discovery in databases considered in the previous sections reduces
to searching for functional dependencies in the data set.

In this section, we will discuss another kind of relationship in the data -
not dependencies, but conflicts.

Formally, the conflict relation can be seen as a negation (not necessarily,
classical) of indiscernibility relation which was used as a basis of rough set
theory. Thus indiscernibility and conflict are closely related from logical point
of view.

It turns out that the conflict relation can be used to the conflict analysis
study.

Conflict analysis and resolution play an important role in business, gov-
ernmental, political and lawsuits disputes, labor-management negotiations,
military operations and others. To this end many mathematical formal mod-
els of conflict situations have been proposed and studied, e.g., [12, 15, 16, 24,
41, 42, 43, 54, 58, 64, 75, 136].

Various mathematical tools, e.g., graph theory, topology, differential equa-
tions and others, have been used to that purpose.

Needless to say that game theory can be also considered as a mathematical
model of conflict situations.

In fact there is no, as yet, “universal” theory of conflicts and mathematical
models of conflict situations are strongly domain dependent.

We are going to present in this paper still another approach to conflict
analysis, based on some ideas of rough set theory – along the lines proposed
in [75] and extended in this paper.

The considered model is simple enough for easy computer implementa-
tion and seems adequate for many real life applications but to this end more
research is needed.

4.1 Basic Concepts of Conflict Theory

In this section, we give after [75] definitions of basic concepts of the proposed
approach.

Let us assume that we are given a finite, non-empty set Ag called the
universe. Elements of Ag will be referred to as agents. Let a voting function
v : Ag → {−1, 0, 1}, or in short {−, 0,+}, be given assigning to every agent
the number −1, 0 or 1, representing his opinion, view, voting result, etc. about
some discussed issue, and meaning against, neutral and favorable, respectively.

Voting functions correspond to situations. Hence, let us assume there is
given a set U of situations and a set V oting Fun of voting functions as well as
a conflict function Conflict : U −→ V oting Fun. Any pair S = (s, v) where
s ∈ U and v = Conflict(s) will be called a conflict situation.



In order to express relations between agents from Ag defined by a given
voting function v we define three basic binary relations in Ag2 : conflict,
neutrality, and alliance.

To this end we first define the following auxiliary function:

φv(ag, ag′) =







1, if v(ag)v(ag′) = 1 or ag = ag′

0, if v(ag)v(ag′) = 0 and ag 6= ag′

−1, if v(ag)v(ag′) = −1.
(38)

This means that, if φv(ag, ag′) = 1, then agents ag and ag′ have the same
opinion about issue v (are allied on v); φv(ag, ag′) = 0 means that at least
one agent ag or ag′ has neutral approach to issue v (is neutral on v), and
φv(ag, ag′) = −1, means that both agents have different opinions about issue
v (are in conflict on v).

In what follows we will define three basic binary relations R+
v ,R0

v, R
−
v ⊆

Ag2 called alliance, neutrality and conflict relations respectively, and defined
by

R+
v (ag, ag′) iff φv(ag, ag′) = 1, (39)

R0
v(ag, ag′) iff φv(ag, ag′) = 0,

R−
v (ag, ag′) iff φv(ag, ag′) = −1.

It is easily seen that the alliance relation has the following properties:

R+
v (ag, ag), (40)

R+
v (ag, ag′) implies R+

v (ag′, ag),

R+
v (ag, ag′) and R+

v (ag′, ag′′) implies R+
v (ag, ag′′),

i.e., R+
v is an equivalence relation. Each equivalence class of alliance relation

will be called a coalition with respect to v. Let us note that the last condition
in (40) can be expressed as “a friend of my friend is my friend”.

For the conflict relation we have the following properties:

not R−
v (ag, ag), (41)

R−
v (ag, ag′) implies R−

v (ag′, ag),

R−
v (ag, ag′) and R−

v (ag′, ag′′) implies R+
v (ag, ag′′),

R−
v (ag, ag′) and R+

v (ag′, ag′′) implies R−
v (ag, ag′′).

The last two conditions in (41) refer to well known sayings “an enemy of my
enemy is my friend” and “a friend of my enemy is my enemy”.

For the neutrality relation we have:

not R0
v(ag, ag), (42)

R0
v(ag, ag′) = R0

v(ag′, ag).



Let us observe that in the conflict and neutrality relations there are no coali-
tions.

We have R+
v ∪R0

v∪R
−
v = Ag2 because if (ag, ag′) ∈ Ag2 then Φv(ag, ag′) =

1 or Φv(ag, ag′) = 0 or Φv(ag, ag′) = −1 so (ag, ag′) ∈ R+
v or (ag, ag′) ∈ R−

v

or (ag, ag′) ∈ R−
v . All the three relations R+

v , R0
v , R−

v are pairwise disjoint,
i.e., every pair of objects (ag, ag′) belongs to exactly one of the above defined
relations (is in conflict, is allied or is neutral).

With every conflict situation S = (s, v) we will associate a conflict graph

GS = (R+
v , R

0
v, R

−
v ). (43)

An example of a conflict graph is shown in Figure 2. Solid lines are denoting

Fig. 2. Exemplary conflict graph

conflicts, doted line – alliance, and neutrality, for simplicity, is not shown
explicitly in the graph. Of course, B,C, and D form a coalition.

A conflict degree Con(S) of the conflict situation S = (s, v) is defined by

Con(S) =

∑

{(ag,ag′): φv(ag,ag′)=−1} |φv(ag, ag′)|

2⌈n
2 ⌉ × (n− ⌈n

2 ⌉)
(44)

where n = Card(Ag).
One can consider a more general definition of conflict function Conflict :

U −→ V oting Funk where k is a positive integer. Then, a conflict situation is
any pair S = (s, (v1, ..., vk)) where (v1, ..., vk) = Conflict(s) and the conflict
degree in S can be defined by

Con(S) =

∑k
i=1 Con(Si)

k
(45)

where Si = (s, vi) for i = 1, . . . , k. Each function vi is called a voting function
on the i− th issue in s.

4.2 An Example

In this section, we will illustrate the above presented ideas by means of a
very simple tutorial example using concepts presented in the previous sec-
tion. We consider a conflict situation S = (s, v) where the domain ag of



the voting function v is defined by Ag = {(1, A), . . . , (240, A), (241, B), . . . ,
(280, B), (281, C), . . . , (340, C), (341,D), . . . , (500,D)} and v(1, A) = . . . =
v(200, A) = +, v(201, A) = . . . = v(230, A) = 0, v(231, A) = . . . =
v(240, A) = −, v(241, B) = . . . = v(255, B) = +, v(256, B) = . . . =
v(280, B) = −, v(281, C) = . . . = v(300, C) = 0, v(301, C) = . . . =
v(340, C) = −, v(341,D) = . . . = v(365,D) = +, v(366,D) = . . . =
v(400,D) = 0, v(401,D) = . . . = v(500,D) = −.

This conflict situation is presented in Table 1. The maximal coalitions in
this conflict situations are v−1(+) and v−1(−).

Table 1. Conflict situation with agents (Member,Party) and the voting function
Voting

(Member, Party) Voting

(1,A) +
... ...

(200,A) +
(201,A) 0

... ...
(230,A) 0
(231,A) −

... ...
(240,A) −

(241,B) +
... ...

(255,B) +
(256,B) −

... ...
(280,B) −

(Member, Party) Voting

(281,C) 0
... ...

(300,C) 0
(301,C) −

... ...
(340,C) −

(341,D) +
... ...

(365,D) +
(366,D) 0

... ...
(400,D) 0
(401,D) −

... ...
(500,D) −

If one would like to keep only party name then Table 1 can be represented
as it is shown in Table 2. This table presents a decision table in which the
only condition attribute is Party, whereas the decision attribute is Voting.
The table describes voting results in a parliament containing 500 members
grouped in four political parties denoted A,B,C and D. Suppose the parlia-
ment discussed certain issue (e.g., membership of the country in European
Union) and the voting result is presented in column Voting, where +, 0 and
− denoted yes, abstention and no respectively. The column support contains
the number of voters for each option.

The strength, certainty and the coverage factors for Table 2 are given in
Table 3. The certainty and coverage factors have now a natural interpretation
for the considered conflict situation.

From the certainty factors we can conclude, for example, that:



Table 2. Decision table with one condition attribute Party and the decision Voting

Fact Party Voting Support

1 A + 200
2 A 0 30
3 A − 10
4 B + 15
5 B − 25
6 C 0 20
7 C − 40
8 D + 25
9 D 0 35
10 D − 100

Table 3. Certainty and the coverage factors for Table 2

Fact Strength Certainty Coverage

1 0.40 0.83 0.83
2 0.06 0.13 0.35
3 0.02 0.04 0.06
4 0.03 0.36 0.06
5 0.05 0.63 0.14
6 0.04 0.33 0.23
7 0.08 0.67 0.23
8 0.05 0.16 0.10
9 0.07 0.22 0.41
10 0.20 0.63 0.57

• 83.3% of party A voted yes,
• 12.5% of party A abstained,
• 4.2% of party A voted no.

From the coverage factors we can get, for example, the following explanation
of voting results:

• 83.3% yes votes came from party A,
• 6.3% yes votes came from party B,
• 10.4% yes votes came from party C.

4.3 Conflicts and Rough Sets

There are strong relationships between the approach to conflicts and rough
sets presented in Section 4.1. In this section, we discuss examples of such rela-
tionships. The presented in this section approach seems to be very promising



for solving problems related to conflict resolution and negotiations (see, e.g.,
[41, 42, 43, 136]).

The application of rough sets can bring new results in the area related
to conflict resolution and negotiations between agents because this make it
possible to introduce approximate reasoning about vague concepts into the
area.

Now, we would like to outline this possibility.
First, let us observe that any conflict situation S = (s, V ) where V =

(v1, . . . , vk) and each vi is defined on the set of agents Ag = {ag1, . . . , agn}
can be treated as an information system A(S) with the set of objects Ag and
the set of attributes {v1, . . . , vk}. The discernibility between agents ag and
ag′ in S can be defined by

discS(ag, ag′) =

∑

{i: φvi
(ag,ag′)=−1} |φvi

(ag, ag′)|

k
, (46)

where ag, ag′ ∈ Ag.
Now, one can consider reducts of A(S) relative to the discernibility defined

by discS . For example, one can consider agents ag, ag′ as discernible if

discS(ag, ag′) ≥ tr,

where tr a given threshold.7 Any reduct R ⊆ V of S is a minimal set of
voting functions preserving all discernibility in voting between agents that
are at least equal to tr. All voting functions from V −R are dispensable with
respect to preserving such discernibility between objects.

In an analogous way can be considered reducts of the information system
AT (S) with the universe of objects equal to {v1, . . . , vk} and attributes defined
by agents and voting functions by ag(v) = v(ag) for ag ∈ Ag and v ∈ V . The
discernibility between voting functions can be defined, e.g., by

disc(v, v′) = |Con(Sv) − Con(Sv′ |, (47)

and makes it possible to measure the difference between voting functions v
and v′, respectively.

Any reduct R of AT (S) is a minimal set of agents that preserves the
differences between voting functions that are at least equal to a given threshold
tr.

In our next example we extend a model of conflict by adding a set A of
(condition) attributes making it possible to describe the situations in terms of
values of attributes from A. The set of given situations is denoted by U . In this
way we have defined an information system (U,A). Let us assume that there

7 To compute such reducts one can follow a method presented in [112] assum-
ing that any entry of the discernibility matrix corresponding to (ag, ag′) with
disc(ag, ag′) < tr is empty and the remaining entries are families of all subsets of
V on which the discernibility between (ag, ag′) is at least equal to tr [17].



is also given a set of agents Ag. Each agent ag ∈ Ag has access to a subset
Aag ⊆ A of condition attributes. Moreover we assume that Ag =

⋃

ag∈AGAag.
We also assume that there is also defined a decision attribute d on U such
that d(s) is a conflict situation S = (s, V ), where V = (v1, . . . , vk). Observe
that S = (s, V ) can be represented by a matrix

[vi(agj)]i=1,...,n;j=1,...,k

where vi(agj) is the result of voting by jth agent on the ith issue. Such
a matrix is a compound decision8 corresponding to s. For the constructed
decision system (U,A, d) one can use, e.g., the introduced above function
(44) to measure the discernibility between compound decision values which
correspond to conflict situations in the constructed decision table. The reducts
of this decision table relative to decision have a natural interpretation with
respect to conflicts.

The described decision table can also be used in conflict resolution. We
would like to illustrate this possibility. First, let us recall some notation. For
B ⊆ A we denote by InfB(s) the B-signature of the situation s, i.e., the
set {(a, a(s)) : a ∈ A}. Let INF (B) = {InfB(s) : s ∈ U}. Let us also
assume that for each agent ag ∈ Ag there is given a similarity relation τag ⊆
INF (Aag)×INF (Aag). In terms of these similarity relations one can consider
a problem of conflict resolution relative to a given threshold tr in a given
situation s described by InfA(s). This is the searching problem for a situation
s′, if such a situation exists, satisfying the following conditions:

1. InfA(s′)|Aag ∈ τag(InfAag
(s)), where τag(InfAag

(s)) is the tolerance
class of InfAag

(s) with respect to τag and InfA(s′)|Aag denotes the re-
striction of InfA(s′) to Aag.

2. InfA(s′) satisfies given local constraints (e.g., specifying coexistence of
local situations, see, e.g., [17, 83, 135]) and given global constraints (e.g.,
specifying quality of global situations, see, e.g., [17]).

3. The conflict degree in the conflict situation d(s′)9 measured by means of
the chosen conflict measure10 is at most tr.

In searching for conflict resolution one can apply methods based on
Boolean reasoning (see,e.g., [17, 112]).

We have proposed that changes to the acceptability of an issue by agents
can be expressed by similarity relations. Observe that in real-life applications
these similarities can be more compound than it was suggested above, i.e., they
are not defined directly by sensory concepts describing situations. However,
they are often specified by high level concepts (see, e.g., [41, 116] and also

8 For references to other papers on compound decision the reader is referred, e.g.,
to [4].

9 Let us observe that s′ is not necessarily in U . In such a case the value d(s′) should
be predicted by the induced classifier from (U, A, d).

10 For example, one can consider (45).



Section 3.5). These high level concepts can be vague and are linked with the
sensory concepts describing situations by means of a hierarchy of other vague
concepts. Approximation of vague concepts in the hierarchy and dependencies
between them (see Section 3.5) makes it possible to approximate the similarity
relations. This allows us to develop searching methods for acceptable value
changes of sensory concepts preserving similarities (constraints) specified over
high level vague concepts. One can also introduce some costs of changes of local
situations into new ones by agents and search for new situations accessible
with minimal or sub-minimal costs.

4.4 Negotiations for Conflict Resolution

In the previous section we have presented an outline to conflict resolution
assuming that the acceptable changes of current situations of agents are known
(in the considered example they were described by similarities). However,
if the required solution does not exists in the current searching space then
the negotiations between agents should start. Using the rough set approach
to conflict resolution by negotiations between agents one can consider more
advanced models in which actions and plans [28] performed by agents or their
teams are involved in negotiations and conflict resolution.

We would like to outline such a model. Assume that each agent ag ∈ Ag
is able to perform actions from a set Actionag. Each action ac ∈ Action(ag)
is specified by the input condition in(ac) and the output condition out(ac),
representing conditions making it possible to perform the action and the result
of action, respectively. We assume that in(ac) ∈ INF (INag) and out(ac) ∈
INF (OUTag) for some sets INag, OUTag ⊆ Aag. The action ac can be applied
to an object s if and only if in(ac) ⊆ InfAag

(s) and the result of performing
of ac in s is described by (InfAag

(s) − InfOUTag
(s)) ∪ out(ac). Now, the

conflict resolution task (see Section 4.3) in a given object (state) s can be
formulated as searching for a plan, i.e., a sequence ac1, . . . , acm of actions
from

⋃

ag∈Ag Action(ag) transforming the objects s into object s′ satisfying

the requirements formulated in Section 4.3.11

In searching for the plan, one can use a Petri net constructed from the set
⋃

ag∈Ag Action(ag) of actions.12 In this net places correspond to descriptors,
i.e., pairs (attribute, value) from in(ac) and out(ac) for ac ∈ Action(ac) and
ag ∈ Ag, transitions correspond to actions, and any transition is linked in a
natural way with places corresponding to input and outputs conditions. Such
a Petri net can be enriched by an additional control making it possible to
preserve dependencies between local states (see, e.g., [83, 135]) or constraints

11 To illustrate possible arising problems let us consider an example. Assume that
two vague concepts are given with classifiers for them. For any state satisfying the
first concept we would like to find a (sub-)optimal plan transforming the given
state to the state satisfying the second concept.

12 For applications of Petri nets in planning the reader is referred, e.g., to [23]



related to similarities. Next, a cooperation protocol between actions performed
by different agents should be discovered and the Petri net should be extended
by this protocol. Finally, markings corresponding to objects s′ with the conflict
degree at most tr, if such states exist, are reachable in the resulting Petri net
from a given marking corresponding to the state s. Searching for such protocols
is a challenge.

One of the very first possible approaches in searching for sequences of ac-
tions (plans) transforming a given situation into another one with the required
decreasing level of conflict degree is to create a Petri net from specification
of actions and perform experiments with such a net. The examples of mark-
ings reachable in the net are stored in an information system. This system
is next extended to a decision system by adding a decision describing the
conflict degree for each situation corresponding to the marking. From such a
decision table one can induce a classifier for different levels of conflicts. Next,
this classifiers can be used to create a new decision table. In this new deci-
sion table any object consists of a pair of situations together with a sequence
of actions transforming the first situation to the second. The decision for a
given object is equal to the difference in conflict degrees of situations from
the object. Then, condition attributes which make it possible to induce rules
for prediction differences in conflict degrees are discovered. These condition
attributes express properties of the first situation in the pair and properties
of the sequence of actions (of a given length) performed starting from this sit-
uation. Such rules specify the additional constraints for the net and they can
be embedded into the net as an additional control. The resulting net makes
it possible to select only such plans (i.e., sequences of actions) which decrease
conflict degrees. Certainly, to make the task feasible one should consider a
relevant length of the sequences of actions and next to develop a method for
composing plans. In turn, this will require to use hierarchical modelling with
of concept ontology and actions on different levels of hierarchy between them.
In our current project we are developing the outlined above methods.

5 Summary

In this article, we have presented basic concepts of rough set theory and also
some extensions of the basic approach. We have also discussed relationships
of rough sets with conflict analysis which is of great importance for e-service
intelligence. In our further study we would like to develop the approach based
to conflict analysis outlined in the paper.

There are numerous active research directions on rough set theory, and
applications of rough sets also in combination with other approaches to soft
computing. For more details the reader is referred to the bibliography on
rough sets and web pages cited in this paper.
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125. D. Ślȩzak. Rough sets and Bayes factor. In: Peters and Skowron [80], pp.
202–229.
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130. R. S lowiński, J. Stefanowski (Eds.). Special issue: Proceedings of the First
International Workshop on Rough Sets: State of the Art and Perspectives,
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