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Abstract. This paper concerns the relationship between rough sets and
flow graphs. It is shown that flow graph can be used both as formal
language for computing approximations of sets in the sense of rough
set theory, and as description tool for data structure. This description is
employed next for finding patterns in data. To this end decision algorithm
induced by the flow graph is defined and studied.
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1 Introduction

We study in this paper the relationship between rough sets and flow graphs.
It is revealed that flow graph can be used as a formal language for rough set
theory and can be also used for decision algorithm simplification. Flow graphs
introduced in this paper are different from those proposed by Ford and Fulkerson
for optimal flow analysis [1].

Flow graphs can be used for approximate reasoning modeling based on the
flow principle. In particular, it is shown in this paper that if we interpret nodes
of flow graphs as subsets of a finite universe, such that for any branch (x,y) of
the flow graph (x is an input of y) we have x ∩ y �= ∅, then the union of all inputs
x of y is the upper approximation of y. Similarly, the union of all inputs x of y,
such that x ⊆ y, is the lower approximation of y, provided that all inputs of y
are mutually disjoint.

Besides, independency and dependency (statistical) of conditions and deci-
sions of decision rules are defined and discussed.

This paper is a continuation of the author’s ideas presented in [7,8] (see also
[2,3]).

2 Rough Sets

In this section we recall briefly after [6] basic concept of rough set theory.
A starting point of rough set based data analysis is a data set, called an

information system.
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Formally, by an information system we will understand a pair S = (U, A),
where U and A, are finite, nonempty sets called the universe, and the set of
attributes, respectively. With every attribute a ∈ A we associate a set Va of its
values, called the domain of a. Any subset B of A determines a binary relation
I(B) on U, called an indiscernibility relation, and defined as follows: (x, y) ∈ I(B)
if and only if a(x) = a(y) for every a ∈ A, where a(x) denotes the value of at-
tribute a for element x.

Obviously I(B) is an equivalence relation. The family of all equivalence classes
of I(B), i.e., a partition determined by B, will be denoted by U/I(B), or simply
by U/B. An equivalence class of I(B), i.e., block of the partition U/B, containing
x will be denoted by B(x).

If (x, y) belongs to I(B), we will say that x and y are B-indiscernible (indis-
cernible with respect to B). Equivalence classes of the relation I(B) (or blocks of
the partition U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two disjoint classes of attributes,
called condition and decision attributes, respectively, then the system will be
called a decision system, denoted by S = (U, C, D), where C and D are disjoint
sets of condition and decision attributes, respectively.

Suppose we are given an information system S = (U, A), X ⊆ U, and B ⊆ A.
Our task is to describe the set X in terms of attribute values from B. To this end
we define two operations assigning to every X ⊆ U two sets B∗(X) and B∗(X)
called the B-lower and the B-upper approximation of X, respectively, and defined
as follows:

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X} (1)

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩ X �= ∅} (2)

Hence, the B-lower approximation of a set X is the union of all B-granules that
are included in X, whereas its B-upper approximation is the union of all B-
granules that have a nonempty intersection with X. The set

BNB(X) = B∗(X) − B∗(X) (3)

will be referred to as to the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X is

crisp (exact) with respect to B. In the opposite case, i.e., if BNB(X) �= ∅, then
X is referred to as to rough (inexact) with respect to B.

3 Flow Graphs

In this section we recall after [7] basic definitions and properties of flow graphs.
Flow graphs can be considered as a special kind of databases, where instead of

data about individual objects some statistical features of objects are presented in
terms of information flow distribution. It turns out that such data representation
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gives a new insight into data structures and leads to new methods of intelligent
data analysis.

A flow graph is a directed acyclic finite graph G = (N,B, ϕ), where N is a set
of nodes, B ⊆ N × N is a set of directed branches, ϕ : B → R+ is a flow function,
and R+ is the set of non-negative reals. We list basic concepts of flow graphs:

– If (x, y) ∈ B then x is an input of y and y is an output of x.
– If x ∈ N then I(x) and O(x) denote the sets of all x’s inputs and outputs.
– Input and output of a graph G are defined, respectively, as

I(G) = {x ∈ N : I(x) = ∅} and O(G) = {x ∈ N : O(x) = ∅}

– Inputs and outputs of G are its external nodes; other nodes are internal.
– If (x, y) ∈ B then ϕ(x, y) is a throughflow from x to y;

We will assume in what follows that ϕ(x, y) �= 0 for every (x, y) ∈ B.

With every node x of a flow graph G we associate its inflow

ϕ+(x) =
∑

y∈I(x)

ϕ(y, x) (4)

and outflow

ϕ−(x) =
∑

y∈O(x)

ϕ(x, y) (5)

Similarly, we define an inflow and an outflow for the whole flow graph G:

ϕ+(G) =
∑

x∈I(G)

ϕ−(x) (6)

ϕ−(G) =
∑

x∈O(G)

ϕ+(x) (7)

We assume that for any internal node x, ϕ+(x) = ϕ−(x) = ϕ(x), where ϕ(x) is
the throughflow of node x.

Obviously, ϕ+(G) = ϕ−(G) = ϕ(G), where ϕ(G) is the throughflow of G.
The above formulas can be considered as flow conservation equations [2].

Example: Assume that there are 100 play blocks in the collection; 60 are tri-
angular, 40 are square, 70 are blue, 10 are red, 20 are green, 10 are small and
90 are large. Flow graph for the set of play blocks is presented in Fig. 1. We see
that there are 45 triangular and blue play blocks, etc. Thus the flow gives clear
picture of the relationship between different features of play blocks. ��
If we replace flow by relative flow with respect to total flow, we obtain a normal-
ized flow graph – a directed acyclic finite graph G = (N,B, σ), where, as before,
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Fig. 1. Flow graph

N is a set of nodes, B ⊆ N × N is a set of directed branches, but instead of
ϕ : B → R+ we have a normalized flow defined by

σ(x, y) =
ϕ(x, y)
ϕ(G)

(8)

for any (x, y) ∈ B.
The value of σ(x, y) is called the strength of (x, y). Obviously, 0 ≤ σ(x, y) ≤ 1.

The strength of the branch expresses simply the ratio of throughflow of the
branch to the total flow.

Normalized graphs have interesting properties which are discussed next. In
what follows we will use normalized flow graphs only, therefore by flow graphs
we will understand normalized flow graphs, unless stated otherwise.

For the sake of further study, if we invert all arrows in a flow graph the new
resulting flow graph will be called inverse.

With every node x of a flow graph G we associate its normalized inflow

σ+(x) =
ϕ+(x)
ϕ(G)

=
∑

y∈I(x)

σ(y, x) (9)

and normalized outflow

σ−(x) =
ϕ−(x)
ϕ(G)

=
∑

y∈O(x)

σ(x, y) (10)
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Fig. 2. Normalized flow graph

Obviously, for any internal node x, we have σ+(x) = σ−(x) = σ(x), where σ(x)
is a normalized throughflow of x. Moreover, let

σ+(G) =
ϕ+(G)
ϕ(G)

=
∑

x∈I(G)

σ−(x) (11)

σ−(G) =
ϕ−(G)
ϕ(G)

=
∑

x∈O(G)

σ+(x) (12)

Obviously, σ+(G) = σ−(G) = σ(G) = 1.
A (directed) path from x to y, x �= y, in G is a sequence of nodes x1, . . . , xn

such that x1 = x, xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n − 1. A path
from x to y is denoted by [x . . . y] and n − 1 is called length of the path.

A flow graph is linear if all paths from node x to node y have the same length,
for every pair of nodes x, y.

A set of nodes of a linear flow graph is called a k-layer if it consists of all
nodes of this graph linked by a path of the length k with some input node.

The set of all inputs will be called the input layer of the flow graph, whereas
the set of all outputs is the output layer of the flow graph. For any input node x
and output node y of a linear graph, the length of [x . . . y] is the same. The layers
different than input and output layers will be referred to as to hidden layers.

Example (cont.): Fig. 2 shows normalized flow graph for the play blocks. We
have three layers {x1, x2}, {y1, y2, y3} and {z1, z2}, where {x1, x2} is the input
layer, {z1, z2} is the output layer and {y1, y2, y3} is the hidden layer. ��
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4 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty factor

cer(x, y) =
σ(x, y)
σ(x)

(13)

and the coverage factor

cov(x, y) =
σ(x, y)
σ(y)

(14)

where σ(x) �= 0 and σ(y) �= 0.
These coefficients are widely used in data mining (see, e.g., [5,11,12]) but

they can be traced back to �Lukasiewicz [4], who used them first in connection
with his research on logic and probability.

If we interpret nodes of a flow graph as subsets of a fixed set U (the universe),
then cer(x, y) can be understood as the degree of inclusion of x in y [9], while
cov(x, y) – as the degree of inclusion of y in x, for any sets x, y, where:

cer (X, Y) =

{
|X∩Y |
|X| if X �= ∅
1 if X = ∅

cov(X, Y ) = cer(Y, X), and |x| denotes the cardinality of set x.
Observe that by x, y we denote both nodes of the flow graph and subsets of

the universe U . However, it does not lead to confusion, because it is always clear
from the context when we speak about nodes or sets.

Assume that if {x1, . . . , xn} is a layer then xi ∩ xj = ∅ for any xi �= xj, and∑n
i=1 xi = U, i.e., every layer is a partition of the universe.
Consequently, the union of all inputs x of y can be understood as the upper

approximation of y and the union of all inputs x of y such that cer(x, y) = 1 as
the lower approximation of y.

In what follows, we will interpret layers as attributes in information systems,
input and hidden layers are interpreted as condition attributes, whereas output
layer is interpreted as the decision attribute.

Example (cont.): Fig. 3 illustrates certainty and coverage factors for previously
considered example. Here, the input layer represents condition attribute shape,
the hidden layer – the condition attribute color, whereas the output layer – the
decision attribute size. We can see from the graph that the lower approximation
of z1 is the empty set, whereas the upper approximation of z1 is y1 ∪ y2. The
lower approximation of z2 is y3, whereas the upper approximation is y1 ∪ y2 ∪ y3.
The lower approximation of y1 is the empty set, and the upper approximation
is x1 ∪ x2. For the set y2 both approximations are equal x1, etc.

From the inverse flow graph we get, e.g., that the lower approximation of x2

is the empty set, the upper approximation is the set y1 ∪ y3, and the lower and
upper approximations of y3 are both equal to z2. ��
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Fig. 3. Certainty and coverage factors

The following properties are immediate consequences of definitions given above:
∑

y∈O(x)

cer(x, y) = 1 (15)

∑

x∈I(y)

cov(x, y) = 1 (16)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y) (17)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y) (18)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
(19)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
(20)

The above properties have a probabilistic flavor, e.g., equations (17) and (18)
have a form of total probability theorem, whereas formulas (19) and (20) are
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Bayes’ rules [10]. However, in our approach, these properties are interpreted in
a deterministic way and they describe flow distribution among branches in the
network.

The certainty, coverage, and strength of the path [x1 . . . xn] are defined as

cer[x1 . . . xn] =
n−1∏

i=1

cer(xi, xi+1) (21)

cov[x1 . . . xn] =
n−1∏

i=1

cov(xi, xi+1) (22)

σ[x . . . y] = σ(x)cer[x . . . y] = σ(y)cov[x . . . y] (23)

respectively.

5 Flow Graph and Decision Algorithms

Flow graphs can be interpreted as decision algorithms [7].
Let us assume that the set of nodes of a flow graph is interpreted as a set of

logical formulas. The formulas are understood as propositional functions and if
x is a formula, then σ(x) is to be interpreted as a truth value of the formula. Let
us observe that the truth values are numbers from the closed interval < 0, 1 >,
i.e., 0 ≤ σ(x) ≤ 1.

According to [4] these truth values can be also interpreted as probabilities.
Thus σ(x) can be understood as flow distribution ratio (percentage), truth value
or probability. We will stick to the first interpretation.

With every branch (x, y) we associate a decision rule x → y, read if x then
y; x will be referred to as to condition, whereas y – decision of the rule. Such a
rule is characterized by three numbers: σ(x, y), cer(x, y), and cov(x, y).

Table 1. Decision algorithm

certainty coverage strength
x1, y1 → z1 0.10 0.45 0.05
x1, y1 → z2 0.90 0.45 0.41
x1, y2 → z1 0.30 0.30 0.03
x1, y2 → z2 0.70 0.08 0.07
x1, y3 → z2 1.00 0.06 0.05
x2, y1 → z1 0.10 0.25 0.02
x2, y1 → z2 0.90 0.25 0.23
x2, y3 → z2 1.00 0.17 0.15
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Fig. 4. Flow graph of the decision algorithm

Thus every path [x1 . . . xn] determines a sequence of decision rules x1 → x2,
x2 → x3, . . . , xn−1 → xn. From previous considerations it follows that such se-
quence can be interpreted as a single decision rule x1x2 . . . xn−1 → xn, in short
x∗ → xn, where x∗ = x1x2 . . . xn−1, characterized by

cer(x∗, xn) =
σ(x∗, xn)

σ(x∗)
(24)

cov(x∗, xn) =
σ(x∗, xn)

σ(xn)
(25)

where

σ(x∗, xn) = σ[x1, . . . , xn−1, xn] and σ(x∗) = σ[x1, . . . , xn−1] (26)

The set of all decision rules xi1xi2 . . . xin−1 → xin associated with paths [xi1 . . . xin ],
such that xi1 and xin are input and output of the flow graph, respectively, will
be called a decision algorithm induced by the flow graph.

Example (cont.): Decision algorithm induced by the flow graph given in Fig. 3
is shown in Table 1. With the decision algorithm we can associate a flow graph as
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shown in Fig. 4. Observe that the values of coefficients in Fig. 4 may not satisfy
exactly formulas (15)-(18) due to the round off errors in the computations.

One can see that the lower approximation of set z1 is the empty set and
the upper approximation of z1 is (x1 ∩ y1) ∪ (x1 ∩ y2) ∪ (x2 ∩ y1). The lower ap-
proximation of z2 is (x1 ∩ y3) ∪ (x2 ∩ y3) and its upper approximation is equal
to (x1 ∩ y1) ∪ (x1 ∩ y2) ∪ (x1 ∩ y3) ∪ (x2 ∩ y1) ∪ (x2 ∩ y3). ��

6 Conclusion

We have shown in this paper that approximations, basic operations in rough set
theory, which are in fact topological interior and closure operations defined in
algebraic terms, can be also defined in terms of flow intensity in a flow graph. If
we associate with every node of a flow graph a subset of a fixed universe then
the flow graph induces a relational structure such that two nodes connected by
a branch may be interpreted as partial inclusion of the corresponding subsets.

In particular, if X is included in Y then X belongs to the lower approxi-
mation of Y and if X is partially included in Y then X belongs to the upper
approximation of Y . Thus, the flow graph can be interpreted as family of lower
and upper approximations of subsets associated its nodes. This leads to a very
simple method of computing approximations without involving set theoretical
operations but employing only certainty and coverage coefficients.

This can be specially useful when data are given in a form of a decision table,
and the associated flow graph can be easily used to compute approximations and
consequently – decision rules (sure and possible).

This idea can be also formulated simpler by defining approximation of nodes
in a flow graph – instead of approximation of sets associated with nodes of the
flow graph. However, we have not consider this idea in this paper.

Finally, we would like to present some research topics related to flow graphs:

1. Extracting relevant flow graphs from data. Flow graphs derived from data
tables can be treated as a form of knowledge representation encoded in these
tables. Reasoning based on flow graphs can be much more efficient than
reasoning performed directly from data tables. However, one should develop
algorithms for extracting from data flow graphs that make it possible to
perform such reasoning with the satisfactory quality.

2. Developing case-based reasoning methods for cases with decisions represented
by flow graphs. In particular, this includes developing methods for incremen-
tal learning with flow graphs as compound decisions.

3. Reasoning about changes of flow graphs. Flow graphs can also be used in
reasoning about changes. This will require developing algorithms for inducing
rules predicting changes of flow graphs from properties of changing data.
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3. Greco, S., Pawlak, Z., S�lowiński, R.: Bayesian confirmation measures within rough
set approach. In: S. Tsumoto, R. S�lowiński, J. Komorowski, J. Grzyma�la-Busse
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5. E. Kloesgen, J. Żytkow (eds.): Handbook of Knowledge Discovery and Data Mining.
Oxford University Press, Oxford, UK (2002)

6. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System
Theory, Knowledge Engineering and Problem Solving 9, Kluwer Academic Pub-
lishers, Dordrecht (1991)

7. Pawlak, Z.: Rough sets, decision algorithms and Bayes’ theorem. European Journal
of Operational Research, 136 (2002) 181-189

8. Pawlak, Z.: Flow graphs and decision algorithms. In: G. Wang, Y. Yao, A. Skowron
(eds.), Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC
2003). Lecture Notes in Artificial Intelligence, 2639, Springer Verlag, Berlin (2003)
1-10

9. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximation
reasoning. International Journal of Approximate Reasoning, 15(4) (1996) 333-365

10. Swinburne, R. (ed.): Bayes’s Theorem. In: Proceedings of the British Academy,
113, Oxford University Press (2002)

11. Tsumoto, S.: Modelling medical diagnostic rules based on rough sets. In: L.
Polkowski, A. Skowron (eds.), Rough Sets and Current Trends in Computing
(RSCTC’98). Lecture Notes in Artificial Intelligence 1424, Springer Verlag, Berlin
(1998) 475-482

12. Wong, S.K.M., Ziarko, W.: Algorithm for inductive learning. Bull. Polish Academy
of Sciences 34(5-6) (1986) 271-276


	Introduction
	Rough Sets
	Flow Graphs
	Certainty and Coverage Factors
	Flow Graph and Decision Algorithms
	Conclusion

