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1. Introduction

Rough sets [23] are often induced by descriptions of objects based on the precise observations of at-
tributes. The limited expressivity of the language defined by these attributes prevents sets of objects
defined in extension from being precisely described in this language. Only upper and lower approxima-
tions of sets can be characterised in terms of unions of equivalence classes of the equivalence relation
defined by the attributes. On the other hand, sets of objects defined by a property expressed in the lan-
guage of the attributes may be ill-known when the attribute values of objects are imprecise. In this case,
the attributes become set-valued mappings. However, these sets represent imprecision, i.e. they contain
mutually exclusive values, one of which is the actual attribute value of the object under concern. Again
in this case, a set of objects is only approached via an upper and a lower approximation, that is the sets
of objects that possibly and necessarily satisfy the property, respectively [8].

This paper describes the situation where both sources of uncertainty are present. Orlowska and
Pawlak [20] were among the first to consider the possibility of imprecision in information systems. These
authors interpreted overlapping sets containing the attribute values of objects as a form of similarity
between them. Two objects are related if they are potentially indistinguishable, i.e. their attribute values
are possibly the same. They noticed that from ill-known attribute values, this relation on the set of objects
is reflexive and symmetric and not transitive. It is no longer an equivalence relation.

Most of the research devoted to information systems in the eighties and the nineties focused on
approximations of sets of objects based on complete information systems inducing equivalence classes
of indiscernible objects. In this case the only source of uncertainty is the lack of a sufficient number of
attributes. An early exception is Grzymala-Busse [13] who proposed to replace each item with missing
attribute values in a data table by precise items bearing all possible values of the attribute, thus turning
incompleteness into inconsistency. Research on the hybrid situation, putting together indiscernibility of
objects and incomplete knowledge about attribute values, was revived in the late nineties (see [19] for
a survey). For instance Kryszkiewicz [15] considered a special case where attribute values are either
precisely known or totally unknown. He generalized the definition of rough sets turning equivalence
classes of objects into sets of similar objects forming a covering.

The idea of defining abstract extensions of rough sets, replacing the partition associated with an
equivalence relation by a covering has attracted many authors, the first of whom seems to be Pomykala
[24]. The latter proposed two natural definitions of upper and lower approximations of a set of objects:
one can extend the lower approximation of a set as the union of covering elements contained in the set,
and the upper approximation as its dual via complementation; or extend the upper approximation of
a set as the union of covering elements intersecting the set, and the lower approximation as its dual via
complementation.These definitions were also discussed by Yao [31]. Many other definitions of covering-
based rough sets have been proposed (see the extensive recent review by Samanta and Chakraborty [26]).

In this paper we try to bridge the gap between generalized rough sets based on coverings, and the
possible-world approach to incomplete information. Each set in a covering is then the upper inverse
image [7] of an attribute value through a multiple-valued mapping describing incomplete knowledge on
attribute values. It is the set of objects that are possibly indistinguishable. Due to the presence of two
sources of uncertainty, the rough set upper and lower approximations of a set are ill-known, each being
bracketed by two nested sets. This interpretive setting leads us to choose, among possible covering-based
rough sets definitions, some of them that look more appropriate than others.

The paper is organized as follows. Section 2 provides the formal setting and notations. Section
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3 explains how incomplete information on attributes generates a covering of the set of objects and a
tolerance relation and recalls some generalizations of rough sets based on coverings. Section 4 shows
how upper and lower approximations of subsets of objects naturally emerge from the covering thus
constructed. Moreover, by adopting a possible-world approach, viewing multiple-valued mappings as
sets of selection functions, coverings are shown to be interpreted as imprecisely-known partitions. It
enables some covering-based extensions of rough sets to be properly interpreted.

In Section 5, we also study what rough probability [22] becomes in such a setting. We obtain im-
precise evaluations of Pawlak’s upper and lower quality functions [21] and of the accuracy index of an
approximation of a set. We also consider uncertainty measures, actually belief and plausibility functions,
induced on the set of objects by a probabilistic observation of attribute values. Finally, in Section 6,
the approach is extended to the case of a fuzzy attribute mapping, the attribute values of objects being
described by means of possibility distributions of the attribute range, thus mixing rough sets and Dubois
and Prade’s twofold (ill-known) fuzzy sets [8].

2. Preliminaries and notation

Rough sets are induced by the impossibility to distinguish between objects in a data table by means of
their precise description in terms of attribute values, because more attributes, or more refined attribute
scales, would be needed to tell them apart. Then only upper and lower approximation of sets of objects
defined in extension can be described by the available attributes. The opposite situation is when all
objects have potentially distinct descriptions (attribute scales are sufficiently refined) but the attribute
values are only partially known. Then, a set of objects defined by a certain property expressed in terms
of attribute values can be ill-known in extension. This section recalls the two situations separately in
more details, while the next section considers them jointly.

2.1. An attribute function generates a rough set

Let us establish some notation. Let U = {u1, . . . , un} be a set of objects. Let f : U → V be an attribute
function (it represents the observation of an attribute1 for objects in U ). V = {v1, . . . , vm} is the class
of possible values of the attribute. Let Ci = f−1({vi}) be the collection of objects described by value
vi, for each i = 1, . . . ,m. Clearly Π = {C1, . . . , Cm} is a partition of U . For an arbitrary set of objects
S we can define its upper and lower approximations by means of attribute f as:

apprΠ(S) = ∪{C ∈ Π : C ∩ S 6= ∅}; appr
Π

(S) = ∪{C ∈ Π : C ⊆ S}. (1)

Thus S is an exact set when appr
Π

(S) = S = apprΠ(S). If not, it is called a rough set. In that case,
we easily check that none of these equalities holds, i.e.,

appr
Π

(S) ( S ( apprΠ(S).

It depicts the limited expressive power of attribute f for describing a set S defined in extension: assume
that all we observe about each object u ∈ U is the attribute value, f(u). Then, all we know about the
class S is that it contains appr

Π
(S) and it is contained in apprΠ(S).

1Notice that V may be a Cartesian product of attribute domains, so f may represent a collection of attributes.
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According to [18], rough sets and classification problems are related. For instance, let d : U → K
be a decision function that classifies the objects of the universe U . For each k ∈ K, Sk = d−1({k})
represents a class of objects, and the family of classes {S1, . . . , Sk} is another partition of U . The
classification problem is one of approximating this partition by means of equivalence classes of the
attribute mapping f . In other words, a class Si is an exact set if and only if the observation of the
attribute(s) suffices to classify all objects in or out it. Thus, all the classes are exacts sets when Π is a
refinement of {S1, . . . , Sk}. Otherwise appr

Π
(S) and apprΠ(S) represent all we know about the class

S when we can only observe the attribute f .

2.2. An ill-known attribute function generates an ill-known set

Let a one-to-many mapping F : U → ℘(V ) represent an imprecise observation of the attribute f : U →
V . Namely, for each object u ∈ U , all that is known about the attribute value f(u) is that it belongs to
the set F (u) ⊆ V . Suppose we want to describe the set f−1(A) of objects that satisfy a propertyA ⊂ V ,
namely {u ∈ U : f(u) ∈ A}. Because of the incompleteness of the information, the subset f−1(A) ⊆ U
is an “ill-known set” [8]. Let us first recall the following definition:

Definition 2.1. ([7]) Let X and Y be two arbitrary sets and let H : X → ℘(Y ) be a multi-valued
mapping with non-empty images. Let A ⊆ Y be an arbitrary subset of Y . The upper inverse of A is
defined as

H∗(A) = {x ∈ X : H(x) ∩A 6= ∅}.
The lower inverse of A is defined as

H∗(A) = {x ∈ X : H(x) ⊆ A}.

According to this definition f−1(A) can be approximated from above and from below, respectively by
upper and lower inverses of A via F :

• F ∗(A) = {u ∈ U : F (u) ∩A 6= ∅} is the set of objects that possibly belong to f−1(A).

• F∗(A) = {u ∈ U : F (u) ⊆ A} is the set of objects that surely belong to f−1(A).

The Boolean algebra interval [F∗(A), F ∗(A)] = {B,F∗(A) ⊆ B ⊆ F ∗(A)}, called an interval set by
Yao [28], contains the set f−1(A). The multi-valued mappings F ∗ and F∗ are respectively upper and
lower inverses of F .

3. Coverings induced by incomplete observations

There is a strong similarity between rough sets and ill-known sets. However the origin of uncertainty is
radically different. In the case of rough sets, attribute values are known but there are not enough attributes
(or attribute domains are too coarse) to single out objects by their descriptions using these attributes. In
the case of ill-known sets there may be enough attribute values, but the lack of knowledge about objects
forbids a precise enumeration of the contents of sets defined by means of properties. It is clear that
these sources of uncertainty being unrelated, they can be simultaneously present. This section describes
this hybrid situation. It is shown here that imprecise observations of the attribute can be described, in
a natural way, by coverings. We are then led to study direct covering-based extensions of rough sets
proposed by Pomykala and Yao already referred to in the introduction.
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3.1. From ill-known attributes to coverings

Consider again the multimapping F between U and V . For each value v ∈ V , let us consider its upper
inverse image, the subset of objects of U for which it is possible that f(u) = v:

F ∗({v}) = {u ∈ U : v ∈ F (u)} ⊆ U.

In other words, if u 6∈ F ∗({vi}), we are sure that f(u) 6= vi. Let V = {v1, . . . , vm} and C ⊆ ℘(U) be
the following family of subsets of U :

C = {F ∗({v}) : v ∈ V } = {F ∗({v1}), . . . , F ∗({vm})}

Two important remarks must be made:

• The lower inverse image F∗({v}) may easily be empty as it is the set of objects known to have
attribute value v exactly. However, F ∗({v}) = ∅ only if no object may have value v. It may be
also that F ∗({v}) = U, if all objects may have value v.

• Just like in the precisely-informed case of rough sets, the sets F ∗({vi}) may not be distinct. It
holds that F ∗({vi}) = F ∗({vj}) = S if all objects in S may have value vi or vj (among other
possible alternatives) and all objects outside S are known not to have these values. More generally,
it is possible to define an equivalence relation ∼F on V defined as follows:

vi ∼F vj ⇐⇒ F ∗({vi}) = F ∗({vj}).

It defines a partition of V . Attribute values in an equivalence class Vk of ∼F play the same role in
distinguishing objects. It is then useless to distinguish these values and it is convenient to replace
V by the quotient set V/ ∼F , moreover deleting the class Vk such that F ∗({v}) = ∅,∀v ∈ Vk (i.e.
attribute values taken by no object.)

These considerations allow us to assume that the attribute range V is such that vi 6= vj impliesF ∗({vi}) 6=
F ∗({vj}), and F ∗({v}) 6= ∅,∀v ∈ V . In other words the class C = {F ∗({v}) : v ∈ V } =
{F ∗({v1}), . . . , F ∗({vm})} contains distinct non-empty sets of objects. This assumption will be taken
for granted in the remainder of the paper.

We will next show that C is a covering of U and that, under the above proviso, it basically determines
the same information as the imprecise observation of the attribute, F , up to a renaming of attribute values
v ∈ V .

Let us check it in the following theorem:

Theorem 3.1. Let F : U → ℘(V ) be a multi-valued mapping defined on U .
Let C = {F ∗({v1}), . . . , F ∗({vm})} = {C1, . . . , Cm}. Then:

1. If F (u) 6= ∅, ∀u ∈ U then C is a covering of U , i.e. ∪mi=1Ci = U.

2. The family of pairs {(C1, v1), . . . , (Cm, vm)} univocally determines F .

3. The covering C = {C1, . . . , Cm} determines F only up to a possible permutation of elements of
V .
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Proof:

1. Let u ∈ U be an arbitrary element in the universe. Since F (u) 6= ∅, there exists i ∈ {1, . . . ,m}
such that vi ∈ F (u), i.e. u ∈ F ∗({vi}) = Ci. Hence, u ∈ ∪mi=1Ci.

2. By construction, u ∈ F ∗({v}) ⇐⇒ v ∈ F (u). If each element Ci of the covering is attached
to an attribute value vi, we can define F (u) = {vi : u ∈ Ci}, ∀u ∈ U. Hence, F is univocally
determined by the family of pairs (Ci, vi).

3. It is clear that the number of elements in the covering is m ≤ |V |. By assumption, the attribute
range V is such that vi 6= vj implies F ∗({vi}) 6= F ∗({vj}), so, there is the same number of
elements in V as in the covering.

So, C and F represent the same knowledge about the equivalence classes associated to the ill-known
attribute function f modeled by F , the key-equivalence being v ∈ F (u) ⇐⇒ u ∈ F ∗({v}). Note
that, if only the covering C, generated by F , is available, we can no longer retrieve the values vi such
that F ∗({vi}) = Ci, hence the multi-mapping F is, strictly speaking, out of reach. However, we can
recompute a set V ′ and an equivalent multi-mapping F ′ : U → ℘(V ′) (i.e. yielding the same covering),
letting V ′ = {1, . . .m} and F ′(u) = {i ∈ V ′ : u ∈ Ci}. Clearly V ′ has the same number of elements
as C and V . In fact, the multi-mapping F can be recovered as soon as the bijection between C and V is
known. The results in the last theorem are clarified in the following example.

Example 3.1. Let U = {u1, u2, u3, u4}. Let V = {v1, v2, v3} and let F : U → ℘(V ) be defined as
follows:

F (u1) = {v1, v2}, F (u2) = {v1, v3}, F (u3) = {v2, v3}, F (u4) = {v3}.

Let us suppose that F represents an imprecise information of an attribute f : U → V . The covering
associated to F , C = {C1, C2, C3}, is given by:

C1 = F ∗({v1}) = {u1, u2}, C2 = F ∗({v2}) = {u1, u3},
C3 = F ∗({v3}) = {u2, u3, u4}.

Note that the multivalued mapping F ′(u1) = {1, 2}, F ′(u2) = {1, 3}, F ′(u3) = {2, 3}, F ′(u4) = {3}
also induces the same covering as F .

Let us suppose that we only know that C = {C1, C2, C3} is the covering associated to a unknown
multi-valued mapping F . In that case, we can assume that there are three different possible (useful)
values {1, 2, 3} for the attribute. F can then be retrieved as follows (up to a renaming of such values):

F (u1) = {k : u1 ∈ Ck} = {1, 2}
F (u2) = {k : u2 ∈ Ck} = {1, 3}
F (u3) = {k : u3 ∈ Ck} = {2, 3}
F (u4) = {k : u4 ∈ Ck} = {3}
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Remark 3.1. We easily check that C is a partition if and only if the images of F are disjoint. In that
case, as noticed earlier at the beginning of this section, these images form a partition of V , and V can
be replaced by its equivalence classes. Namely, we are back to the case when F represents the precise
observation of an attribute f , (i.e., F (u) = {f(u)}, ∀u ∈ U), and then C coincides with the partition
Π = {f−1({v1}), . . . , f−1({vm})}.

Remark 3.2. The covering can be a class of nested sets.
Let V = {v1, . . . , vm} be a finite set and let Ci = F ∗({vi}). Then the covering C = {C1, . . . , Cm}

is a family of nested sets if and only if the images of F are nested. In fact,

Ci ⊆ Cj ⇔ [vi ∈ F (u)⇒ vj ∈ F (u)]

So, C1 ⊆ C2 ⊆ . . . ⊆ Cm if and only if the images of F are of the form F (u) = {vj : j ≥ i} =
{vi, . . . , vm}, for some i ∈ {1, . . . ,m}. So, the elements of the covering are nested if and only if the
images of F are also nested. It means that the attribute may have the same value on all objects, but there
are different degrees of precision in the perception of the attribute for each object of the population.

Remark 3.3. What happens when we observe l different attributes on the same universe of objects?

• Particular case: The images of F are Cartesian products. Let us suppose that F (u) = F1(u) ×
. . .× Fl(u), ∀u ∈ U. Then

F ∗({(v1, . . . , vl)}) = {u ∈ U : (v1, . . . , vl) ∈ F (u)}
= {u ∈ U : v1 ∈ F1(u), . . . , vl ∈ Fl(u)} = ∩li=1F

∗
i ({vi}).

So, in this case, the elements of the covering C associated to F are the intersections of elements
of the partial coverings Ci. Furthermore, the binary relation R can be written as a function of
the partial binary relations Ri, i = 1, . . . , l. In fact, uRu′ ⇔ uRiu

′, ∀ i = 1, . . . , l. This case
generalizes the case of precise observations of the l attributes.

• General case: The images of F are not necessarily Cartesian products. In this general case, we
cannot ensure the equalities F ∗({(v1, . . . , vl)}) = ∩li=1F

∗
i ({vi}), because the inclusion

F ∗({(v1, . . . , vl)}) ⊇ ∩li=1F
∗
i ({vi})

is not fulfilled in general. With respect to the binary relation, the implication uRu′ ⇒ uRiu
′, ∀ i =

1, . . . , l, holds, but the converse is not true in general. Let us give an example: let U = {u1, u2}
and let l = 2. let V = V1 × V2 = {v11, v12} × {v21, v22}. Let F be the multi-valued mapping
defined as F (u1) = {(v11, v21), (v12, v22)} and F (u2) = {(v11, v22), (v12, v21)}. Its respective
projections on V1 and V2, F1 and F2, are vacuous, so they do not give any relevant information.
In fact, F1(u1) = F1(u2) = V1 = {v11, v12} and F2(u1) = F2(u2) = V2 = {v21, v22}. Hence,
the corresponding binary relations R1 and R2 are also uninformative (u1 and u2 are R1− and
R2−indistinguishable). Nevertheless, they are R− distinguishable, since F (u1) ∩ F (u2) = ∅. In
other words, u1 6Ru2, but u1R1u2 and u1R2u2.



1008 I. Couso, D. Dubois / Rough sets and Incomplete Information

3.2. Coverings viewed as ill-known partitions

The multimapping F represents incomplete knowledge about the real attribute mapping f : U → V .
Each attribute mapping consistent with F generates a partition of U . As a consequence, the covering in-
duced by F must be viewed as an ill-known partition. This will allow us to choose appropriate extensions
of upper and lower approximations in the sense of a covering.

Definition 3.1. An attribute mapping f satisfying f(u) ∈ F (u),∀u ∈ U , written f ∈ F for short, is
called a selection function of F .

Each such mapping f induces an equivalence relation Rf on U , namely uRfv ⇐⇒ f(u) = f(v). The
sets {f−1({v}) 6= ∅, v ∈ V } form a partition Πf of U . This partition enables f to be reconstructed (up
to a renaming of elements in f(U)). The equivalence class of an element u ∈ U with respect to Rf is
denoted [u]f = f−1({f(u)}). The upper (resp. lower) approximation of a subset S of objects according
to attribute function f is apprf (S) = ∪u∈Sf−1({f(u)}) (resp. appr

f
(S) = (apprf (Sc))c).

When the attribute mapping is ill-known and described by F , it generates a set of possible partitions
Πf of U , each associated with some attribute mapping f ∈ F . It is then natural to interpret the covering
C induced by F as a set of possible partitions of U , one of which is the right one.

Proposition 3.1. The covering C = {F ∗({v}) : v ∈ V } induced by F is such that ∀f ∈ F,∀v ∈ V ,
∃u ∈ U, [u]f ⊆ F ∗({v}). Moreover F ∗({v}) = ∪f∈F f−1({v}).2

Proof:
Fix f ∈ F , and let u such that f(u) = v. Then [u]f = f−1({v}). So ∀u′ ∈ [u]f , as u′ ∈ f−1({v}),
f(u′) = v ∈ F (u′). Hence u′ ∈ F ∗({v}). More generally, F ∗({v}) = {u ∈ U : v = f(u), f ∈ F} =
∪f∈F {u ∈ U : v = f(u)} = ∪f∈F f−1({v}).

So each element F ∗({v}) of the covering induced by F is the union of possible equivalence classes
of objects whose attribute value is v. Or equivalently, if what is known is the covering C = {C1, . . . Ck}
interpreted as the set of partitions {Π = (E1, . . . , Ek), Ej ⊆ Cj , j = 1, . . . k} (where for convenience
we admit that some Ej may be empty, and implicitly deleted). It consists in allocating each object u ∈ U
to a single set Cj among those to which it belongs in C.

Example 3.2. Consider again Example 3.1, according to the information provided by F , such that
F (u1) = {v1, v2}, F (u2) = {v1, v3}, F (u3) = {v2, v3}, F (u4) = {v3}. It can be checked that F
induces the following possible partitions of U , each obtained by choosing one element in F (ui), i =
1, . . . ,m:

2Remember that, by convention, ∀v ∈ V, F ∗({v}) 6= ∅.



I. Couso, D. Dubois / Rough sets and Incomplete Information 1009

Π1 = {{u1, u2}, {u3}, {u4}}
Π2 = {{u1, u2}, {u3, u4}}
Π3 = {{u1}, {u3}, {u2, u4}}
Π4 = {{u1}, {u2, u3, u4}}
Π5 = {{u1, u3}, {u2}, {u4}}
Π6 = {{u1}, {u2}, {u3, u4}}
Π7 = {{u1, u3}, {u2, u4}}

We easily check that we can recover the class of possible partitions, {Π1, . . . ,Π7}, from C or equiva-
lently, from F ′. Namely, as C = {{u1, u2}, {u1, u3}, {u2, u3, u4}}, a partition is recovered by assigning
to a single set each object ui belonging to more than one element of the covering. So, u1 can be re-
assigned either to C1 or C2, u2 either to C1 or C3, u3 either to C2 or C3, u4 can only belong to C3. For
instance, deciding to assign u1 and u2 to C1, u3 to C3 yields Π2, etc. Note that in this case, C2 gets
empty so that the obtained partition only has two elements.

More generally, the multimapping F corresponds to at most
∏
u∈U |F (u)| partitions. This product is the

number of selection functions of the multimapping F . In the example, F has 8 selections, but there are
only 7 possible partitions, because Π4 is obtained by two selection functions of F .

In the situation of incomplete information, a covering is interpreted differently from the case of, say,
formal concept analysis [12], where elements of the covering are known concepts. Here, a covering
should be interpreted as a set of possible partitions, one of which is the correct one. As seen above,
these partitions are generated by all the selections of the multiple-valued attribute mapping representing
imprecise attribute information. Each such selection is a precise attribute mapping generating a standard
rough set. So, incomplete information mappings lead to ill-known rough sets.

4. From coverings to ill-known rough sets

In this section, we choose among the covering-based extensions of rough sets appearing in the literature,
the ones that fit the setting of imprecise attribute mappings. We show that the relation between objects
induced by an ill-known attribute function and its associated covering leads to the loose upper and lower
approximations of a set proposed by Pomykala [24] and Yao[31], the loose upper approximation being
formed by the union of covering elements that intersect the set. The mapping that assigns to each object
its indistiguishability neighborhood is called the top-class mapping. The upper approximation of a set of
objects is then the upper inverse image of this set via the top-class mapping. The lower approximation
is defined by duality as the complement of the upper approximation of the complement of the set. We
next lay bare the definition of a tight pair of approximations in that setting. Interestingly, the upper
and lower approximations correspond respectively to all objects that surely belong to the rough upper
approximation (a lower approximation of the rough upper approximation), and all objects that possibly
belong to the rough lower approximation (an upper approximation of the rough lower approximation).
But the tight pair of approximations does not seem to correspond to a proposal in the literature, although
it can be approximated by another extension of rough sets proposed by Pomykala too.
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4.1. Generalized rough sets based on coverings

Many generalizations of the concept of “rough set” can be found in the literature. One of them precisely
consists in replacing the partition (induced by the equivalence relation) by a more general covering of
the universe (see [24, 2, 29, 31, 32], for instance). See Samantha and Chakraborty [26] for an exten-
sive classification of covering-based rough sets and their properties. The concepts of lower and upper
approximations can be extended to this more general context in different ways. In fact there are several
equivalent ways of defining the pairs of upper and lower approximations in the standard rough set setting,
and these lead to different definitions in the case of coverings.

The most straightforward method is as follows [24]. Let C be a covering of the universe, U , i.e., a
family of subsets of U such that ∪{C ∈ C} = U. Let us replace the partition Π by C in Equation 1. In
that case, the upper and lower approximations considered in Equation 1 are no longer dual. In fact, the
class

∪{C ∈ C : C ∩ S 6= ∅}

overlaps the set
∪{C ∈ C : C ⊆ Sc}.

hence does not coincide with its complement. This approach is followed by Yao ([31]) who considers
the following two pairs of (dual) upper and lower approximations:

• What can be called the loose pair:

apprL
C(S) = ∪{C ∈ C : C ∩ S 6= ∅}

apprL
C(S) = [apprL

C(Sc)]c = {u ∈ U : ∀C ∈ C [u ∈ C ⇒ C ⊆ S]}
= ∪{C ∈ C : C ⊆ S ∧ [6 ∃C ′ ∈ C, C ′ ∩ Sc 6= ∅ ∧ C ∩ C ′ 6= ∅]}.

(2)

• What can be called the tight pair :

apprT
C(S) = ∪{C ∈ C : C ⊆ S}

apprT
C(S) = [apprT

C(S
c)]c = {u ∈ U : ∀C ∈ C , [u ∈ C ⇒ C ∩ S 6= ∅]}.

= ∪{C ∈ C : C ∩ S 6= ∅ ∧ [6 ∃C ′ ∈ C, C ′ ⊆ Sc ∧ C ∩ C ′ 6= ∅]}
(3)

It is clear that apprL
C(S) ⊂ apprT

C(S), generally, and that apprT
C(S) ⊂ apprL

C(S). So, by
construction

apprL
C(S) ⊂ apprT

C(S) ⊂ S ⊂ apprT
C(S) ⊂ apprL

C(S),

which explains the names “loose and tight” approximation pairs.

There are other possible ways of extending rough sets with coverings. For instance, Bonikowski
et al. [2] rely on the duality between intensions (properties) and extensions (sets of objects) along the
line of formal concept analysis[12]. Then, a covering is a set of known concepts or properties 3. So,
an object is described by the elements of the coverings it belongs to. The minimal description M(u) of
object u is the set of minimal elements C of the coverings that contain u. Then two objects u and u′ are

3Not exactly what we call attributes, even if you can define a property as a Boolean attribute
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indiscernible if they have the same minimal description. One is led to considering the Boolean algebra
induced by C on U , whose atoms are made of indiscernible objects.

Bonikowski et al. then define the lower approximation of a subset S of objects as apprT
C(S), but he

defines the upper approximation as apprBC (S) = apprT
C(S)∪Bn(S), where Bn(S) is the boundary of

S obtained as
Bn(S) = ∪u∈S\apprTC(S) ∪Ci∈M(u) Ci

That is, considering the boundary as unions of neighborhoods (obtained from M(u)) of elements in S
that are not in its lower approximation. This boundary is very thick and overlaps the lower approximation.

In the next section, we show that the approximations of sets of objects that arise in a natural way
from imprecise observations of an attribute or a set thereof form the two pairs in Equation (2) proposed
by Pomykala and studied by Yao.

4.2. The top-class function and the associated tolerance relation

It is possible to define a kind of neighborhood around each object u ∈ U by considering the upper inverse
image of its ill-known attribute value:

Definition 4.1. Let us consider the multi-valued mapping F : U → ℘(V ). Let us define another multi-
valued mapping IF : U → ℘(U) as follows:

IF (u) := F ∗(F (u)) = {u′ ∈ U : F (u′) ∩ F (u) 6= ∅}, ∀u ∈ U.

IF is called the top-class function associated to F .

We may interpret the top-class IF (u) as the neighborhood of u. It is the set of elements that could be-
long to the equivalence class f−1({f(u)}) of objects not distinguishable from u, induced by the attribute
f whose imprecise description is F , namely:

1. If the observation of the attribute is precise (i.e., F (u) = {f(u)}, ∀u ∈ U), the top-class function
is of the form IF (u) = f−1({f(u)}) = {u′ ∈ U : f(u′) = f(u)}. In words, IF associates, to
each object u ∈ U, its equivalence class (the class of objects that are indistinguishable from u.) (If
R is the equivalence relation associated to F , then IF (u) = [u]R = {u′ ∈ U : uRu′}, ∀u ∈ U.)

2. Let us now suppose that F represents an imprecise observation of the attribute f : U → V . The
above multi-valued function, IF : U → ℘(U), associates, to each u ∈ U, the most precise set that
contains its equivalence class. In words, all that is known about the objects in U that are possibly
indistinguishable from u is that they belong to IF (u). Another way to put it is that if u′ 6∈ IF (u),
then u′ and u can not belong to the same equivalence class.

The following lemma is instrumental in the proof of Theorem 4.1.

Lemma 4.1. Let F : U → ℘(V ) be the multi-valued function that represents the imprecise observation
of the attribute and let C be the covering associated to F . Let IF : U → ℘(U) be the top-class function
associated to F . Then

∀u ∈ U, IF (u) = ∪{C ∈ C : u ∈ C} =
⋃

v∈F (u)

F ∗({v}).
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Proof:
We easily check that u′ ∈ IF (u) if and only if there exists C ∈ C such that u, u′ ∈ C. Indeed consider
C where u ∈ C. Then ∃ vi ∈ V, u ∈ F ∗(vi) = C which means vi ∈ F (u) exactly. This attribute
value vi does not depend on the choice of u ∈ C. If moreover u′ ∈ C too, vi ∈ F (u′) as well. Hence
F (u) ∩ F (u′) 6= ∅. Hence u′ ∈ IF (u), so that C ⊆ IF (u). Conversely, if u′ ∈ IF (u) then, by
construction, ∃ vi ∈ V, u, u′ ∈ F ∗(vi) = C ∈ C. In other words, u′ ∈ IF (u) if and only if u′ ∈ ∪{C ∈
C : u ∈ C}. Besides, it is clear that {C ∈ C : u ∈ C} = {F ∗({v}) : v ∈ F (u)}.

Remark 4.1. The top-class IF (u) clearly differs from the minimal description M(u) of Bonikowski
induced by the covering, as the former involves no minimality requirement. In fact M(u) ⊂ IF (u).
The neighborhood of u defined by IF (u) was also proposed by Pomykala [24] and is often denoted
Friends(u). Kryszkiewicz [15] also lays bare this notion, for a special case of ill-known attribute
function whereby attribute values are either known or totally unknown.

The top-class function, IF, does not univocally determine the covering C as seen in the following exam-
ple.

Example 4.1. Let U = {u1, u2, u3}, V = {1, 2, 3} and let F : U → ℘(V ) be defined as follows:
F (u1) = {1, 2}, F (u2) = {2, 3}, F (u3) = {1, 3}. The top-class function, IF : U → ℘(U), associated
to F is given by:

IF (u1) = IF (u2) = IF (u3) = {u1, u2, u3}.

Let us now consider another multi-valued mapping, F ′ : U → ℘(V ), defined asF ′(ui) = {1, 2, 3}, ∀ i =
1, 2, 3. We easily check that the top-class function associated to F ′ coincides with IF . The information
provided by F is more precise than the information provided by F ′, since F (ui) ( F ′(ui), i = 1, 2, 3.
Nevertheless, the top-class functions associated to F and F ′ do coincide; in particular, IF is trivial and
has clearly lost all the information contained in F .

Interestingly, we have built a multiple-valued mapping IF within U , and we can naturally consider upper
and lower inverses of subsets of U in the sense of Dempster. The following theorem shows that they
coincide with the upper approximations of sets of objects induced by the ill-known attribute mapping by
collecting elements of the covering that intersect the given set, i.e., Pomykala-Yao’s loose pair of upper
and lower approximations (Equation 2) coincide with the upper and lower inverse images of IF .

Theorem 4.1. Let us consider a multi-valued mapping F : U → ℘(V ). Let C = {F ∗({v}) : v ∈
V } = {C1, . . . , Cm} the covering of U associated to F . Let S ⊆ U be an arbitrary subset of U . Let
IF : U → ℘(U) be the top-class function associated to F . Let apprL

C(S) and apprL
C(S) be the upper

and lower approximations of S of Equation 2. Then:

apprL
C(S) = IF ∗(S) and apprL

C(S) = IF∗(S).

Proof:
According to Lemma 4.1, IF (u) = ∪{C ∈ C : u ∈ C}. Hence:

IF ∗(S) = {u ∈ U : IF (u) ∩ S 6= ∅} =

{u ∈ U : ∪{C ∈ C : u ∈ C} ∩ S 6= ∅} = ∪{C ∈ C : C ∩ S 6= ∅}.
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This class coincides (see Equation 2) with Pomykala-Yao’s first upper approximation apprL
C(S).On the

other hand, Dempster upper and lower images are dual, and thus:

IF∗(S) = [IF ∗(Sc)]c = [apprL
C(S

c)]c = apprL
C(S).

This pair of approximations is also used by Kryszkiewicz[15] in his special framework for incomplete
knowledge.

Instead of the top-class function, we can lay bare a relation among objects induced by the covering, and
retrieve these upper and lower approximations by applying the rough set definitions to this relation.

Definition 4.2. F induces the following binary relation RF ⊆ U × U : uRFu′ ⇔ F (u) ∩ F (u′) 6= ∅.

In other words: uRFu′ ⇔ ∃C ∈ C such that u, u′ ∈ C. We will call RF the binary relation
induced by the multi-valued mapping F (or the binary relation induced by the covering C). We easily
check the following:

Proposition 4.1. RelationRF is reflexive and symmetric, but it is not transitive, in general. Furthermore,
the following assertions are equivalent:

• RF is transitive

• Ci, Cj ∈ C ⇒ Ci = Cj or Ci ∩ Cj = ∅.

• The different images of F are disjoint, i.e, [F (u) ∩ F (u′) 6= ∅ ⇒ F (u) = F (u′)].

Orlowska & Pawlak [20] interpret uRFu′ as a similarity between u and u′, and indeed these two proper-
ties are characteristic of the mathematical notion of similarity. But this terminology may be misleading
in our context since it suggests a measure of proximity between elements while uRFu′ only represents
potential similarity between u and u′. For instance, if F (u) = F (u′) = V , then the attribute values of u
and u′ are totally unknown, and so is their actual similarity, while uRFu′ holds.

According to definition 4.2, uRF u′ if and only if these elements may be in the same equivalence
class.4 In other words, they are not RF -related when we are sure that they do not belong to the same
equivalence class, that is, we are sure that f(u) 6= f(u′), ∀f ∈ F , i.e., they are not associated to the
same attribute value. 5

The above binary relation RF is univocally determined by the top-class function IF . In fact, RF can
be obtained from IF as follows:

u′RFu⇔ u′ ∈ IF (u)(⇔ u ∈ IF (u′)).

Conversely, IF is determined by RF as follows:

IF (u) = {u′ ∈ U : u′RFu}, ∀u ∈ U.
4Here we refer to the equivalence classes of equivalence relation associated to the true values of the attribute. This equivalence
relation is not known. We only know that it is some subset of RF .
5Kryszkiewicz [15] also uses this relation in his restricted framework for incompleteness, with a similar comment.
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Let us emphasize again that the covering C provides more information than any of RF or IF . If uRFu′,
you only know that their images by F do overlap. So, you know that there is at least some C in the
covering such that u, u′ ∈ C. But you do not know how many nor which C ′s satisfy this condition. In
fact, two different coverings may induce the same binary relation, since they can be associated to same
two-class function, as example 4.1 shows.

From now on, let us use the following notation:

[u]RF = IF (u) = {u′ ∈ U : uRFu′} = {u′ ∈ U : F (u) ∩ F (u′) 6= ∅}

According to this notation, the upper and lower approximations of S can be alternatively written just like
for standard rough sets:

apprL
C(S) = {u ∈ U : [u]RF ∩ S 6= ∅}

apprL
C(S) = {u ∈ U : [u]RF ⊆ S}

(4)

Remark 4.2. Yao and Lingras say in [30] that the concepts of upper and lower approximations can be
extended as in Equation 4, when R is a general binary relation. But they do not try to relate this type
of formulation (Equation 4) with the upper and lower approximations for coverings given in Equations 2
and 3.

Contrary to the precise standard rough set case, the set F ∗(A) = {u ∈ U : F (u) ∩ A 6= ∅} of ob-
jects whose attribute value possibly lies in a subset A of V is not representable in terms of the associated
covering. Namely, apprL

C(F ∗(A)) does not necessarily coincide with F ∗(A). Indeed, for all A ∈ 2V ,

apprL
C(F ∗(A)) = {u ∈ U : [u]RF ∩ F ∗(A) 6= ∅}

= {u ∈ U : {u′ : F (u) ∩ F (u′) 6= ∅} ∩ {u′′, F (u′′) ∩A 6= ∅} 6= ∅}
= {u ∈ U : ∃u′ with F (u) ∩ F (u′) 6= ∅ and F (u′) ∩A 6= ∅}

However the above set only contains {u ∈ U : F (u) ∩ A 6= ∅} = F ∗(A) (this inclusion is
easy to check just enforcing u = u′). Let, for instance, F be defined on U = {u1, u2} as follows:
F (u1) = {1, 2} and F (u2) = {2, 3} and let A = {3}. Then F ∗(A) = {u2} but u1 belongs to
apprL

C(F ∗(A)), because F (u1) ∩ F (u2) 6= ∅ and F (u2) ∩A 6= ∅ (although F (u1) ∩A = ∅.)
This fact contrasts with the deterministic case where a deterministic mapping f is used, and where

F ∗(A) = f−1(A) is an exact set, with respect to the equivalence relation on U induced by f .

Remark 4.3. Contrary to the standard rough set case, the family of loose upper approximations {IF ∗(A) :
A ⊆ U} = {apprL

C(A) : A ⊆ U} does not determine the multimapping F , nor the covering C (we
checked it in Example 4.1). It could be of interest to look for the “reduct” of the cover C, i.e., the least
precise covering associated to the same IF .

4.3. The possible world approach to upper and lower approximations of rough sets

The peculiar behavior of upper inverse images F ∗(A) as not closed under representation by a covering
leads us to claim that a covering induced by a multimapping associated to an ill-known attribute does
not play the same role as a partition in the theory of rough sets. Namely, we have to really consider
the covering as a family of possible partitions induced by the selection functions f ∈ F . Each partition
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represents a possible situation characterized by a precise description of attribute values, hence a possible
actual database. This is the possible world approach [17].

Under this view, the upper approximation apprL
C(S) in the sense of the covering as induced by the

top-class function turns out to be the union of possible standard rough set upper approximations of S
induced by selections of F :

Proposition 4.2. apprL
C(S) = ∪f∈F apprf (S); apprL

C(S) = ∩f∈F appr
f
(S).

Proof:
apprL

C(S) = ∪v∈V {∪f∈F f−1({v}) : ∪f∈F f−1({v}) ∩ S 6= ∅} using Proposition 3.1. Factorizing
∪f∈F out yields:
apprL

C(S) = ∪f∈F ∪v∈V {f−1({v}) : f−1({v}) ∩ S 6= ∅} = ∪f∈F apprf (S).
The other result obtains by duality: apprL

C(S) = (apprL
C(Sc))c

= [∪f∈F apprf (Sc)]c = ∩f∈F (apprf (Sc))c = ∩f∈F appr
f
(S).

So a given V -related coverage C such thatCi = F ∗({vi}), we can always select in eachCi a (possibly
empty) single subset 6 Di so that the non-empty D′is forms a partition Π. Each such partition defines
an attribute mapping f such that ∀i,∀u ∈ Di, f(u) = vi. So a covering can be viewed as a Boolean
possibility distribution over partitions. Note that from the above results, if the only information about
each element u ∈ U is the imprecise measurement F (u) and S is a particular class of objects described
by some property, then, it is known that S includes apprL

C(S) and is included in apprL
C(S).

However more information is available, namely, all objects u ∈ ∩f∈F apprf (S) do belong to the
upper approximation of S induced by the ill-known attribute function, and ∪f∈F appr

f
(S) contains the

ill-known lower approximation of S. The following proposition studies the relationship between these
sets and the tight pairs of covering-based rough sets.

Proposition 4.3. apprT
C(S) ⊆ ∪f∈F appr

f
(S); apprT

C(S) ⊇ ∩f∈F apprf (S).

Proof:
Note that the alternative lower approximation due to Pomykala-Yao: apprT

C(S) = ∪{C ∈ C : C ⊆ S}
can be written ∪v∈V {∪f∈F f−1({v}) : ∪f∈F f−1({v}) ⊆ S} ⊆ ∪f∈F ∪v∈V {f−1({v}) : f−1({v}) ⊆
S} = ∪f∈F appr

f
(S). The other expression follows by duality.

The converse inclusions in the above proposition may fail to hold.

Example 4.2. Suppose U and V only have two elements. Let F (u1) = V and F (u2) = {v2}. There
are only two possible attribute mappings: f1(u1) = v2 = f1(u2); f2(u1) = v1 and f2(u2) = v2.
Consider approximating S = {u2}. Then f−1

1 (v2) = U 6⊂ S, while f−1
1 (v1) = ∅, and f−1

2 v1) =
{u1}, f−1

2 (v2) = {u2}. So ∪f∈F appr
f
(S) = S, but clearly f−1

1 ({v1}) ∪ f−1
1 ({v2}) = U 6⊂ S

and f−1
2 ({v1}) ∪ f−1

2 ({v2}) = U 6⊂ S. Hence apprT
C(S) = ∅. So the tight pair is not useful in

approximating the upper and lower rough approximation of S.

6We assume the finite subsets F ∗({vi}) are distinct if not empty.
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So the above construct gives a natural interpretation to definitions of loose upper and lower approx-
imations with respect to a covering following Pomykala and Yao, not of the tight approximations. In
summary:

apprL
C(S) = ∪{C ∈ C : C ∩ S 6= ∅} = ∪f∈F apprf (S)

apprL
C(S) = (apprL

C(Sc))c = ∩f∈F appr
f
(S).

(5)

and
apprT

C(S) = ∪{C ∈ C : C ⊆ S} ⊆ ∪f∈F appr
f
(S)

apprT
C(S) = [apprT

C(S
c)]c ⊇ ∩f∈F apprf (S).

(6)

The ill-known upper approximation of S is bracketed by the pair (∪f∈F apprf (S), apprL
C(S)) and

the ill-known lower approximation of S is bracketed by the pair (apprL
C(S),∩f∈F apprf (S), laying

bare the fact that there is a double source of uncertainty about S: the one due to indiscernibility related
to the attribute mapping, and the one due to the imprecision about this attribute mapping. One open
question is now to find a simple lower approximation of ∩f∈F apprf (S) and upper approximation of
∪f∈F appr

f
(S), preferably among the many notions of covering-based rough sets. It is not clear that the

tight upper and lower approximations defined via the selection functions can be expressed in terms of the
covering induced by the incomplete attribute mapping.

5. Generalized accuracy measures

The concept of “rough probability” proposed by Pawlak can be extended to this more general context of
reasoning with imprecisely known objects. This notion tries to measure the accuracy of rough sets.

5.1. Rough probability

Following Pawlak [21] the upper and lower qualities of S are defined as

q(S) =
|apprΠ(S)|
|U |

and q(S) =
|appr

Π
(S)|

|U |
(7)

The difference q(S)−q(S) reflects how well S can be described by the partition Π. Pawlak also considers

the accuracy of approximation of S by the partition as the quantity αR(S) =
q(S)

q(S) . Note that from a
mathematical point of view, it is well known that q and q are respectively belief and plausibility measures

with respect to mass function defined on the partition by m(Ci) = |Ci|
|U | . However, this terminology is

not correct in the sense that the rough set setting does not consider there exists an ill-known object to
be discovered. What is ill-known here is the set S of objects. So, it sounds better to consider these
evaluations as inner and outer measures of S, due to the fact that S is not measurable in the language of
the partition (as done by Fagin and Halpern[11]).

Pawlak[22] also suggested generalizing these concepts by starting from a probability function, P,
on the σ− algebra σ(Π) (instead of using the cardinality of sets), and defining the lower and upper
probabilities of S as:

PΠ(S) = inf P ({C : C ∈ σ(Π), C ⊇ S}) = P (apprΠ(S)),
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PΠ(S) = supP ({C : C ∈ σ(Π), C ⊆ S}) = P (appr
Π

(S)).

The probability measure on U corresponds to a way of assigning importance weights to elements (e.g.
they can be duplicated), so that importance weights affect quality functions and accuracy evaluations.
When, in particular, P is the Laplace probability, i.e., when P (C) = |C|

|U | , ∀C ∈ σ(Π), then PΠ and

PΠ respectively coincide with the lower and upper qualities of S. Pawlak [22] referred to the interval
[PΠ(S), PΠ(S)] as the rough probability of S. The same comment as above applies here, if we consider
(U,Π, P ) as a probability space: we can only compute upper and lower probabilities of subsets not
because there is some ill-known element inU described by an imprecise probability function, but because
we cannot describe all subsets properly with the partition.

However we may suggest the following interpretation of rough probabilities: Assume that all we
know about each object u ∈ U is the value of the attribute on it f(u). Suppose that, for each i ∈
{1, . . . ,m}, the probability of selecting an object from Ci = f−1({vi}) is known. Then, all we know
about the probability of selecting an object from the class S is that it lies between PΠ(S) and PΠ(S).

5.2. Accuracy of an ill-known rough set

Since the conjoint occurrence of indiscernibility and measurement imprecision of the attribute leads to
introduce imprecision in the knowledge of the upper and lower approximations of a subset of objects, we
get imprecise evaluations qC(S), qC(S) of the quality functions (7) due to the lack of knowledge of the
attribute mapping f ∈ F inducing a covering C. Namely

qC(S) = [
| ∩f∈F apprf (S)|

|U |
,
| ∪f∈F apprf (S)|

|U |
]

and

qC(S) = [
| ∩f∈F appr

f
(S)|

|U |
,
| ∪f∈F appr

f
(S)|

|U |
]

Our results enable an efficient computation of the upper bound of qC(S) as |apprLC(S)|
|U | and of the lower

bound of qC(S) as
|apprLC(S)|
|U | .

The accuracy of approximation of S by the ill-known f ∈ F is the interval

α̃R(S) = [ inf
f∈F

q
f
(S)

qf (S)
, sup
f∈F

q
f
(S)

qf (S)
]

This quantity cannot be easily computed by separate calculations on the numerator and the denominator
because they may not use to the same selection function f in numerator and denominator, as requested
by the definition.

Imprecise rough membership function : The Laplacean probability P (S|u) that an object u belongs
to S is only known to lie in interval

[ inf
f∈F

|[u]f ∩ S|
|[u]f |

, sup
f∈F

|[u]f ∩ S|
|[u]f |

]
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We could generalize these evaluations to when a probability distribution exists on U , like in the case of
rough probabilities. In this case we get bracketings of the inner and outer probabilities P (apprf (S)) and
P (appr

f
(S)).

5.3. Imprecise“rough” probability

Let us first recall the notions of Dempster upper and lower probabilities.

Definition 5.1. ([7]) Let H : X → ℘(Y ) be a multi-valued mapping with non-empty images. Let σX
be a σ−algebra on X . Let P : σX → [0, 1] be a probability measure. Let A ⊆ Y be an arbitrary subset
of Y such that H∗(A) ∈ σX . The upper probability of A is defined as

P ∗(A) = P (H∗(A)) = P ({x ∈ X : H(x) ∩A 6= ∅}).

The lower probability of A is defined as

P∗(A) = P (H∗(A)) = P ({x ∈ X : H(x) ⊆ A}).

Dempster lower probabilities are∞−order monotone capacities. Thus, when Y is a finite universe,
they are a pair of belief and plausibility functions in the sense of Shafer[27]. We can extend the concept
of “rough probability” to the case of coverings as follows.

Definition 5.2. Let F : U → ℘(V ) an arbitrary multi-valued mapping defined on the finite universe U
and let C be the associated covering. Let P be a probability measure induced by a probability distribution
on U . Let us define P C : ℘(U)→ [0, 1] and P C : ℘(U)→ [0, 1] as follows:

P C(S) := P (apprL
C(S)), P C(S) := P (apprL

C(S)), ∀S ⊆ U.

Call [P C(S), P C(S)] the covering-rough probability of S.

Note that one may be tempted to define P on the σ-algebra generated by C. But this algebra makes
little sense in our setting as the intersection of elements of a covering do not generally contain any
equivalence class induced by the ill-known attribute mapping f .

Theorem 5.1. Let P C : ℘(U) → [0, 1] and P C : ℘(U) → [0, 1] denote the covering-upper and lower
probabilities in the previous definition. Then, P C and P C are respectively a plausibility and a belief
function.

Proof:
Notice that they coincide with the Dempster upper and lower probabilities induced by the multi-valued
mapping IF , i.e.,

P C(S) = P (apprL
C(S)) = P (IF ∗(S)) = P ∗(S) and

P C(S) = P (apprL
C(S)) = P (IF∗(S)) = P∗(S), ∀S ⊆ U.

When C is a partition, [P C(S), P C(S)] clearly coincides Pawlak’s rough probability, ∀S ⊆ U . The
same reservations apply to the interpretation obtained set-functions as belief and plausibility functions:
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they are actually upper and lower bounds of weighted quality functions P (apprf (S)) and P (appr
f
(S)),

respectively. Moreover, the lower bound of P (apprf (S)), and the upper bound of P (appr
f
(S)) can be

obtained likewise, but it is not clear that they are infinite monotone or alternating functions.
Like in the complete information case the covering-rough probability could nevertheless be inter-

preted as follows: Assume that, for each object u ∈ U, we can only observe an imprecise measurement,
F (u), of a certain characteristic, f . On the other hand, let S be a class of objects (in a certain classi-
fication process d : U → K.) Under this information, all I know about the probability of selecting an
element from the class S is that it is between P C(S) and P C(S). One may assume that the probability
values on the setsC ∈ C are known (or they can be estimated from a sample of the population), so P C(S)
and P C(S) can be derived (or estimated from a sample).

Remark 5.1. Another view is that V is equipped with a probability distribution pV (values f(u) were
observed for not directly accessible objects u). In the latter case, we consider indiscernible the outcomes
u that yield the same f(u), and measurable the subsets of U exactly described via f . Then, we can
define a mass function mf on U , letting mf (f−1({v})) = pV (v),∀v ∈ V . However, the fact that we
only know that f ∈ F prevents us from assigning the mass pV (v) to a precise subset of U . Then we may
assign it to F ∗(v) as being the largest subset containing the real equivalence class. It defines a random set
on U with mass function m such that each random set mf , f ∈ F, is a specialization of m. Conversely
we could assign the masses pV (v) to ∩f∈F f−1({v}). We would then get a random set on U with mass
function m that is a specialization of each random set mf , f ∈ F.

6. Fuzzy rough sets induced by fuzzy attribute mappings : preliminary
steps

In this section we show how to extend the previous construction when the ill-known attribute mapping is
represented by means of a fuzzy mapping. Ill-known sets are then represented by two nested fuzzy sets
called twofold fuzzy sets[8]. On the other hand, fuzzy rough sets [9] have been constructed by changing
the equivalence relation into a similarity relation. This section bridges the gap between the two notions,
by first constructing the fuzzy relation induced by the fuzzy attribute mapping and then building the
fuzzy loose approximations as a variant of fuzzy rough set.

6.1. Twofold fuzzy sets

From now on, let F(X) represent the class of fuzzy subsets of an arbitrary universe X . Let F̃ : U →
F(V ) represent an imprecise observation of the attribute f : U → V , i.e., for each u ∈ U , F̃ (u) is a
possibility distribution over V that represents our imprecise knowledge about f(u):

For an arbitrary pair u ∈ U , v ∈ V , the possibility degree that v coincides with the true
attribute value f(u) is F̃ (u)(v) ∈ [0, 1].

In particular we assume that ∃v ∈ V, F̃ (u)(v) = 1, which extends to the fuzzy case the requirement
that F (u) 6= ∅. For each α ∈ (0, 1], let us now denote by F̃α : U → ℘(V ) the α− cut of F̃ , i.e., the
multimapping:

F̃α(u) = { v ∈ V : F̃ (u)(v) ≥ α}. (8)
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According to [10, 3], this multimapping induces the following interpretation of F̃ is equivalent to the
following one:

For each α ∈ (0, 1], the probability that f(u) belongs to F̃α(u), ∀u ∈ U, is greater or equal
to 1− α.

Dubois and Prade [8] considered the problem of describing the set f−1(A) ⊆ U of objects that
satisfy a crisp property A, when f is only known via F̃ . Because of incomplete information, the subset
f−1(A) is an ill-known set bracketed by a pair of fuzzy sets F̃ ∗(A) and F̃∗(A) defined by:

• µF̃ ∗(A) = supv∈A µF̃ (u)(v) : all objects that are more or less possibly in f−1(A).

• µF̃∗(A) = infv 6∈A 1− µF̃ (u)(v) : all objects that more or less surely belong to f−1(A).

The pair (F̃∗(A), F̃ ∗(A)) is such that Support(F̃∗(A)) ⊆ f−1(A) ⊆ core(F̃ ∗(A)) and was called a
twofold fuzzy set.

6.2. Fuzzy rough sets

A fuzzy relation R̃ is a fuzzy set ofU×U . When symmetric and reflexive and min-transitive (R̃(u1, u3) ≥
min(R̃(x1, u2)R̃(u2, u3)), it is called a similarity relation by Zadeh [33]. It is a straightforward gener-
alization of an equivalence relation, as the α-cuts of R̃ are nested equivalence relations. The value
R(u1, u2) evaluates the actual similarity between precise objects, contrary to Orlowska-Pawlak defini-
tion of similarity [20]. Indeed, Zadeh’s similarity measures are closely related to metrics and ultrametrics
(1 − R(u1, u2) is a generalized form of metric). Definitions of rough sets can be extended to similarity
relations:

Definition 6.1. [9] Let R̃ : U × U → [0, 1] be a similarity relation on U . Let F be a fuzzy subset of U .
The lower approximation of F is the fuzzy set:

appr
R̃

(F )(u) = inf
u′∈U

max{1− R̃(u, u′), F (u′)}

The upper approximation of F is the fuzzy set:

apprR̃(F )(u) = sup
u′∈U

min{R̃(u, u′), F (u′)}

When R̃ is reflexive and symmetric, it is clear that the support of R̃ yields a covering CR̃ = {{u′, R̃(u, u′) >
0}, u ∈ U}. Denote Ci

R̃
= {u′, R̃(ui, u′) > 0}, 1, . . . , |U |. The supports of appr

R̃
(F ) and apprR̃(F )

are respectively equal to apprTCR̃
(S) and apprLCR̃(S) if S is the support of F .

Note that other definitions have been proposed later on, where the min and max operators are replaced
by general T− norms and conorms, and the implication max(1− a, b) at work in the definition of upper
approximation is replaced by a residuated implication [25]. The above definition preserves the duality
between upper and lower approximations while in general this is not true. Moreover, appr

R̃
(F )(u) = 1

means that the fuzzy neighborhood R̃(·, u) of u entirely lies in the core of F , which enforces a very
strong view of fuzzy set-inclusion.
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Noticing that a fuzzy similarity relation R̃ (reflexive, symmetric and transitive in the sense of a t-norm
[25]) is such that its similarity classes{R̃(u, ·), u ∈ U} overlap, they form a fuzzy covering of U . For this
reason, De Cock et al. [5] have proposed several other definitions of upper and lower approximations of
fuzzy sets especially the following ones (their notation) :

R̃ ↓↓ F (u) = inf
u′∈U
I(R̃(u, u′), inf

u′′∈U
I(R̃(u′, u′′), F (u′′))),

R̃ ↓↑ F (u) = inf
u′∈U
I(R̃(u, u′), sup

u′′∈U
T (R̃(u′, u′′), F (u′′))).

where I is an implication operation, and T a t-norm. Using the covering induced by the support of the
fuzzy relation R̃, R̃ ↓↓ S and R̃ ↓↑ S have supports respectively defined by

(R̃ ↓↓ S)0 = {u,∀i = 1, . . . , |U |, u ∈ Ci
R̃

=⇒ Ci
R̃
⊆ S} = apprLCR̃

(S),

(R̃ ↓↑ S)0 = {u,∀i = 1, . . . , |U |, u ∈ Ci
R̃

=⇒ Ci
R̃
∩ S 6= ∅} = apprTCR̃(S).

The first is a loose lower approximation in the sense of Eq. (2), and the second is a tight upper
approximation in the sense of Eq. (3). In this paper, we will only deal with the fuzzy-upper and lower
approximations of crisp sets S ⊆ U . According to Definition 6.1, when, in particular, we approximate a
crisp set, S, we have:

apprR̃(S)(u) = supu′∈S R̃(u, u′).
appr

R̃
(S)(u) = infu′ 6∈S [1− R̃(u, u′)].

(9)

For each α, the α-cut of the upper and lower approximations of S coincides with the upper and lower
approximations of S for the α-cut of R̃, the (classical) equivalence relation Rα ⊆ U × U defined by
uRα u

′ ⇔ R̃(u, u′) ≥ α. Again, Support(appr
R̃

(S)) ⊆ S ⊆ core(apprR̃(S)). The above fuzzy rough
set is in the spirit of the loose approximation pairs of Pomykala and Yao’s definition of covering-based
approximations, changing the tolerance relation induced by the covering into the fuzzy relation R̃.

6.3. Fuzzy relation associated to a fuzzy–valued imprecise observation of the attribute

For each α ∈ (0, 1], the multi-valued mapping F̃α : U → ℘(V ) from Equation 8 plays the same role as
F in Section 3. Thus, for each α ∈ (0, 1], we can derive a binary reflexive and symmetric relation Rα as
follows:

Definition 6.2. Let F̃ : U → F(V ) be a fuzzy-valued mapping from U to V and let F̃α : U → ℘(V )
its α−cut, ∀ α ∈ (0, 1]. Let Rα ⊆ U × U be defined as follows:

u Rαu
′ ⇔ F̃α(u) ∩ F̃α(u′) 6= ∅.

This is the α− level relation associated to F̃ . We can then derive a binary fuzzy relation from F̃ in
a natural way as follows:

Definition 6.3. Let F̃ : U → F(V ) be a fuzzy-valued mapping from U to V . For each α ∈ (0, 1], let
Rα be the α−level binary relation associated to F̃ . Let RF̃ : U × U → [0, 1] be defined as follows:

RF̃ (u, u′) = sup{α ∈ (0, 1] : uRαu′} = sup{α ∈ (0, 1] : F̃α(u) ∩ F̃α(u′) 6= ∅}.
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This is the fuzzy relation associated to F̃ . Equivalently it can be directly defined by

RF̃ (u, u′) = sup
v∈V

min(µF̃ (u)(v), µF̃ (u′)(v))

Proposition 6.1. R is reflexive and symmetric, but it is not min–transitive in general. The following
statements are equivalent:

1. R is min-transitive

2. Rα is an equivalence relation for each α ∈ (0, 1]

3. The images of F̃α are disjoint for each α ∈ (0, 1], i.e., F̃α(u) ∩ F̃α(u′) 6= ∅ ⇒ F̃α(u) = F̃α(u′).

RF̃ (x, y) can be interpreted as the degree of possibility of the following assertion: “x and y belong
to the same equivalence class”.

6.4. Fuzzy rough set derived from a fuzzy attribute mapping

Thanks to the fuzzy relation RF̃ , a fuzzy–valued imprecise attribute function F̃ induces fuzzy upper
and lower approximations in a natural way, just applying the definition of fuzzy rough sets.Namely,
the formulae given in Equation 9 express loose fuzzy upper and lower approximations of an ill-known
crisp rough set bracketing a crisp set S, under imprecise observation of the attribute represented by
F̃ : U → F(V ).

Let S be an arbitrary crisp subset of U and let us define the upper and lower fuzzy–approximations
of S, denoted by apprRF̃ (S) and appr

RF̃
(S), as follows:

apprRF̃ (S)(u) = sup
u′∈S

RF̃ (u, u′), ∀u ∈ U, (10)

appr
RF̃

(S)(u) = inf
u′ 6∈S

[1−RF̃ (u, u′)], ∀u ∈ U. (11)

Under our present interpretation of fuzzy sets, apprRF̃ (S)(u) still represents the degree of possibility
that u belongs to S and appr

RF̃
(S)(u) represents the degree of necessity (security) that u belongs to S.

There is a connection between the above fuzzy-upper and lower approximations and the loose upper
and lower approximations of the cuts of the fuzzy attribute multimapping. Consider Cα = {F̃ ∗α(v), : v ∈
V } the covering induced by F̃α. In fact, we easily check that the fuzzy upper and lower approximations
(10) can be calculated as follows from apprCα(S) and apprCα(S):

apprRF̃ (S)(u) = sup{α ∈ (0, 1] : u ∈ apprLCα(S)}

appr
RF̃

(S)(u) = sup{α ∈ (0, 1] : u ∈ apprLCα(S)},

using the loose upper and lower approximations of Pomykala and Yao wrt covering Cα. Using the
interpretation of possibility degree as an upper probability bound, each α-cut of the fuzzy rough set
(appr

RF̃
(S), apprRF̃ (S)) is a pair of sets bracketing S with probability at least 1− α.
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Remark 6.1. Note that the fuzzy mapping F̃ induces the fuzzy covering C̃ = {C̃v, v ∈ V }, with mem-
bership grades such that C̃v(u) = µF̃ (u)(v). Then it can be checked that, for the fuzzy loose lower
approximation:

appr
RF̃

(S)(u) = inf
v∈V
I(C̃v(u), inf

u′∈U
I(C̃v(u′), S(u′))) = R̃F̃ ↓↓ S(u),

with S(·) the characteristic function of set S, and I(a, b) = max(1− a, b).

Proof:
appr

RF̃
(S)(u) = infu′ 6∈S 1−RF̃ (u, u′) = infu′ 6∈S 1− supv∈V min(C̃v(u), C̃v(u′))

= infu′ 6∈S infv∈V max(1− C̃v(u), 1− C̃v(u′)) = infv∈V max(1− C̃v(u), infu′ 6∈S 1− C̃v(u′))
= infv∈V I(C̃v(u), infu′∈U I(C̃v(u′), S(u′))).

So, the fuzzy loose lower approximation induced by an uncertain mapping provides a suitable mo-
tivation for one of the original fuzzy lower rough approximations proposed by De Cock et al. [5].
However, it justifies the use of a non-residuated implication, contrary to what they suggest.

7. Conclusion and perspectives

This paper proposes an interpretation of covering-based rough sets as modelling an ill-known rough set
induced both by the ill-observation of attribute values and the lack of discrimination of the set of at-
tributes. In this setting where two sources of uncertainty are present, it is shown that one upper and one
lower approximation is not enough: in fact the rough approximations (in the rough set sense) are them-
selves bracketed from above and from below since ill-known. In this context, the covering is viewed as
an ill-known partition, each partition generating a possible family of rough sets. The loose upper (resp.
lower) approximation in the sense of Pomikala and Yao, obtained by applying the usual upper approxi-
mation definition to the covering instead of the partition elements (resp. its dual via complementation),
is shown to make sense in this setting and contains (resp. is contained in) all possible upper (resp. lower)
approximations of a set in the sense of all such partitions.

The rough set construction based on the tolerance relation induced by the covering (associated to the
ill-known attribute mapping) only justifies the loose approximations. So, this choice of covering-based
generalization of rough sets is justified by the incomplete information semantics. Tight approximations
have been defined, which together with the loose ones bracket the ill-known upper and lower rough
approximations; but they seem to be difficult to compute and they do not seem to belong to the catalogue
of existing covering-based rough sets. Unfortunately, the companion pairs of covering-based definitions,
made by replacing the partition by the covering in the usual definition of lower approximation cannot
serve as a tight inner approximation to the ill-known rough set. There seems to be more work to be
done to get a simple expression of lower (resp. upper) approximation of the upper (resp. lower) rough
approximation, that we rigorously defined via a possible world approach.

This work is a first step to relate incomplete knowledge and covering-based rough sets. A further
step maybe to interpret connectives like conjunction, disjunction and implication of covering-based rough
sets within the incomplete information setting, using the implication lattices laid bare by Samanta and
Chakraborty [26]. Our approach also opens several perspectives. There is a need to reinterpret the
numerous works done about incomplete information databases in the light of our framework, especially
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works by Nakata and colleagues [19], but also special cases like [15]. The section on fuzzy mappings
should also be completed in order to recover tight fuzzy approximations and a more detailed comparison
with the framework of De Cock et al. [5] would be fruitful. This step requires considering a fuzzy
mapping as a possibility distribution over selection functions as done in the setting of fuzzy random
variables in the sense of Kwakernaak[16], Kruse and Meyer[14]. It does not look difficult to study fuzzy
extensions of fuzzy quality indices and fuzzy rough probabilities. Nevertheless, they may be instrumental
to bridge the gap between rough sets and imprecise probabilities. Finally, other kinds of interpretive
frameworks for covering-based rough sets deserve consideration, such as formal concept analysis.
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