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Abstract

Introduction of rough sets by Professor Zdzisław Pawlak has completed 35 years. The theory has already attracted the

attention of many researchers and practitioners, who have contributed essentially to its development, from all over the

world. The methods, developed based on rough set theory alone or in combination with other approaches, found appli-

cations in many areas. In this article, we outline some selected past and present research directions of rough sets. In

particular, we emphasize the importance of searching strategies for relevant approximation spaces as the basic tools in

achieving computational building blocks (granules or patterns) required for approximation of complex vague concepts. We

also discuss new challenges related to problem solving by intelligent systems (IS) or complex adaptive systems (CAS). The

concern is to control problems using interactive granular computing, an extension of the rough set approach, for effective

realization of computations realized in IS or CAS. These challenges are important for the development of natural com-

puting too.

Keywords Rough set � Granular computing � (Approximate) Boolean reasoning � Interaction � Adaptive judgment �
Complex adaptive system � Natural computing

1 Introduction

The rough set approach was proposed by Pawlak

(1982, 1991) as a tool for dealing with imperfect knowl-

edge, in particular with vague concepts. Rough set theory

has gained interest of many researchers and practitioners

from all over the world.

The rough set approach is of fundamental importance in

artificial intelligence and cognitive sciences, especially in

machine learning, data mining and knowledge discovery,

pattern recognition, decision support systems, expert sys-

tems, intelligent systems, multiagent systems, (complex)

adaptive systems, autonomous systems, cognitive systems,

conflict analysis, risk management systems.

Many methods based on rough sets have wide applica-

tions in many real life projects, e.g., acoustics, bioinfor-

matics, business and finance, chemistry, computer

engineering and electrical engineering (including data

compression, control, digital image processing, digital

signal processing, parallel and distributed computer sys-

tems, power systems, sensor fusion, fractal engineering),

decision analysis and systems, economics, environmental

studies, digital image processing, informatics, medicine,

molecular biology, musicology, neurology, robotics, social

science, software engineering, spatial visualization, Web

engineering, and Web mining.

Rough sets have established relationships with many

other approaches such as fuzzy set theory, granular com-

puting, evidence theory, formal concept analysis, (ap-

proximate) Boolean reasoning, multicriteria decision

analysis, statistical methods, decision theory, matroids.

Despite the overlap with many other theories, rough set

theory may be considered as an independent discipline on

its own right. There are reports on many hybrid methods
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obtained by combining rough sets with other approaches

such as soft computing (fuzzy sets, neural networks,

genetic algorithms), statistics, natural computing, mereol-

ogy, principal component analysis, singular value decom-

position or support vector machines.

The main advantage of rough set theory in data analysis

is that it does not need any preliminary or additional

information about data like probability distributions needed

in statistics, basic probability assignments needed in evi-

dence theory, a grade of membership or the value of pos-

sibility needed in fuzzy set theory.

Let us list a set of unique features which place the rough

set approach at an advantageous position from the per-

spective of application. Being grounded in data it naturally

can deal with (1) introduction of efficient algorithms for

finding hidden patterns in data, (2) determination of opti-

mal sets of data (data reduction), evaluation of the signif-

icance of data, (3) generation of sets of decision rules from

data, (4) easy-to-understand formulation, (5) straightfor-

ward interpretation of obtained results, (6) suitability of

many of its algorithms for parallel processing.

It is worthwhile to mention that rough sets play a crucial

role in the development of granular computing (GrC)

(Pedrycz et al. 2008). The extension of GrC to interactive

granular computing (IGrC) requires generalization of the

basic concepts such as complex granules (including both

physical and abstract parts), information (decision) systems

as well as methods of inducing hierarchical structures of

information (decision) systems (Jankowski 2017; Jan-

kowski et al. 2014b, 2015; Skowron and Jankowski

2016a, b, c; Skowron et al. 2012a, 2016) and interactions

among information systems. The current research projects

are aiming at developing foundations of IGrC based on the

rough set approach in combination with other soft com-

puting approaches, in particular with fuzzy sets. The

approach is called interactive rough granular computing

(IRGrC). In IRGrC computations are based on interactions

in the physical world controlled by complex granules.

IRGrC can be treated as the basis for developing: (1)

Wisdom Technology, in particular for approximate rea-

soning (called adaptive judgment) about properties of

interactive computations, (2) context inducing and dis-

covery of structured objects, (3) reasoning about changes,

(4) process mining (this research was inspired by Pawlak

1992), (5) perception based computing, (6) risk manage-

ment in computational systems, etc.

Due to the space limitation we restrict to a few refer-

ences of rough sets including two basic papers by Pawlak

(1982, 1991), some survey papers (Pawlak and Skowron

2007; Skowron et al. 2015) and books (Chikalov et al.

2012; Pal et al. 2004; Skowron and Suraj 2013). The basic

ideas of rough set theory and its extensions as well as many

interesting applications can be found in a number of books,

issues of the Transactions on Rough Sets, special issues of

other journals, numerous proceedings of international

conferences, and tutorials (see e.g., Chikalov et al. 2012;

Kacprzyk and Pedrycz 2015; Pawlak and Skowron 2007;

Skowron and Suraj 2013). The readers are referred to the

cited books and papers, references in them as well as to the

web pages www.roughsets.org, rsds.univ.rzeszow.pl. In

this survey, we concentrate on a computational approach to

rough sets rather than on the conceptual approach. Both of

these approaches are present in works by Pawlak. These

two approaches are characterized in Yao (2015).

In this paper we present discussion on some selected

research directions of rough sets developed over the last

35 years, and we also outline some future perspectives of

rough sets in relation to reaction systems (Ehrenfeucht

et al. 2017; Ehrenfeucht and Rozenberg 2006) and IGrC.

This paper summarizes and extends the aspects considered

in Pawlak and Skowron (2007), Skowron et al.

(2013, 2015) and Skowron and Suraj (2013).

2 Rudiments of rough sets

The philosophy of rough set is founded on the assumption

that with every object of the universe of discourse some

information (data, knowledge) is associated. Objects

characterized by the same information are indiscernible

(similar) in view of the available information about them.

The indiscernibility relation generated in this way is the

mathematical basis of rough set theory. This understanding

of indiscernibility is related to the idea of Gottfried Wil-

helm Leibniz, according to him objects are indiscernible if

and only if all available functionals take on them identical

values (Leibniz’s Law of Indiscernibility: The Identity of

Indiscernibles) (Leibniz 1686). However, in the rough set

approach indiscernibility is defined relative to a given set

of functionals (attributes).

Any set of all indiscernible (similar) objects is called an

elementary set, and forms a basic granule (atom) of

knowledge about the universe. An arbitrary union of some

elementary sets is referred to as crisp (precise) set. If a set

is not crisp then it is called rough (imprecise, vague). It is

to be noted, that due to the computational complexity of

searching for relevant crisp sets for the considered prob-

lem, the searching is usually restricted to a feasible sub-

family of the family of all possible unions of elementary

sets.

Consequently, each rough set has borderline cases, i.e.,

objects which cannot be classified with certainty as mem-

bers of either the set or its complement. Obviously, crisp

sets have no borderline elements at all.

Thus, the assumption that objects can be ‘‘seen’’ only

through the information available about them leads to the
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view that knowledge has granular structure. Due to the

granularity of knowledge, some objects of interest cannot be

discerned, and appear as the same (or similar). As a conse-

quence, vague concepts, in contrast to precise concepts,

cannot be characterized in terms of only the elements

belonging to the concept or satisfying the concept. There-

fore, in the proposed approach, we assume that any vague

concept is replaced by a pair of precise concepts—called the

lower and the upper approximation of the vague concept. The

lower approximation consists of all objects which definitely

belong to the concept, and the upper approximation contains

all objects which possibly belong to the concept. The dif-

ference between the upper and the lower approximation

constitutes the boundary region of the vague concept. These

approximations are two basic operations in rough set theory.

Hence, rough set theory expresses vagueness not by

means of membership, but by employing a boundary region

to a set. If the boundary region of a set is empty, it means

that the set is crisp, otherwise the set is rough (inexact). A

nonempty boundary region of a set indicates also the

possibility that our knowledge about the set is not sufficient

to define the set precisely.

In the literature one can find more details on different

aspects of rough set approximations of vague concepts.

The starting point of rough set theory is the indiscerni-

bility relation, which is generated from the information

about objects of interest (defined later in this section as

signatures of objects). The aim of indiscernibility relation

is to express the fact that we are unable to discern some

granules (or clusters) of objects, each having the same

properties, based on the available information (or knowl-

edge). This entails that, in general, we are unable to deal

with each particular object separately; rather we can only

consider granules (clusters) of indiscernible objects as a

fundamental basis for the theory.

From a practical point of view, it is better to define basic

concepts of this theory in terms of data. Therefore we will

start our considerations from a data set called an information

system.

Suppose we are given a pair IS ¼ ðU;ATÞ of non-empty,

finite sets U and AT, where U is the universe of objects, and

AT is a set consisting of attributes. Each attribute can be

considered as a function at:U �! Vat, whereVat is the set of

values for attribute at, called the domain of at. The pair

IS ¼ ðU;ATÞ is called an information system (see e.g.,

Pawlak 1981). It is to be noted here that similar to the notion

of information system, Barwise and Seligman (1997) have

introduced a notion of classification.

Any information system can be represented by a data

table with rows labeled by objects and columns labeled by

attributes. Any pair (x, at), where x 2 U and at 2 AT

defines the particular entry in the table indicated by the

value at(x).

Definition 1 Any subset AT 0 of AT determines a binary

relation INDAT 0 � U � U; called an indiscernibility rela-

tion, defined by

x INDAT 0 y if and only if atðxÞ ¼ atðyÞ for every at 2 AT 0:

ð1Þ

Obviously, INDAT 0 is an equivalence relation. The set

of all equivalence classes of INDAT 0 , i.e., the partition

determined by AT 0, will be denoted by U=INDAT 0 , or

simply U=AT 0; an equivalence class of INDAT 0 , i.e., the

block of the partition U=AT 0, containing x will be denoted

as ½x�AT 0 (or more precisely ½x�INDAT 0
) or AT 0ðxÞ.

If ðx; yÞ 2 INDAT 0 we say that x and y are AT 0-indis-

cernible. Equivalence classes of the relation INDAT 0 (or

blocks of the partition U=AT 0) are referred to as AT 0-ele-

mentary sets or AT 0-elementary granules. In the rough set

approach, the elementary sets are the basic building blocks

(concepts) of our knowledge about reality. The unions of

AT 0-elementary sets are called AT 0-definable sets.

For AT 0 � AT we denote by InfAT 0ðxÞ the AT 0-signature

of x 2 U, which is represented by the set

fðat; atðxÞÞ: at 2 AT 0g. Let InfAT 0ðUÞ ¼ fInfAT 0ðxÞ: x 2 Ug.
Then for any objects x; y 2 U the following equivalence

holds: xINDAT 0y if and only if InfAT 0ðxÞ ¼ InfAT 0ðyÞ.
This indiscernibility relation is further used to define the

basic concepts of rough set theory. Below we present some

definitions for AT 0 � AT:

Definition 2 The following two operations on sets X � U,

given by,

LOWAT 0ðXÞ ¼ x 2 U: ½x�AT 0 � X
� �

; ð2Þ

UPPAT 0ðXÞ ¼ x 2 U: ½x�AT 0 \ X 6¼ ;
� �

; ð3Þ

assign to every subset X of the universe U, respectively

two sets LOWAT 0ðXÞ and UPPAT 0ðXÞ, called the AT 0-lower

and the AT 0-upper approximation of X.

Definition 3 The set

BNAT 0ðXÞ ¼ UPPAT 0ðXÞ � LOWAT 0ðXÞ; ð4Þ

is referred to as the AT 0-boundary region of X.

Any pair AS ¼ ðU; INDAT 0Þ; where AT 0 � AT , is

called an approximation space. One can rewrite the above

definitions relative to the approximation space AS:

LOWASðXÞ ¼ x 2 U: ½x�INDAT 0
� X

n o

;

UPPASðXÞ ¼ x 2 U: ½x�INDAT 0
\ X 6¼ ;

n o

;

BNASðXÞ ¼ UPPINDAT 0
ðXÞ � LOWINDAT 0

ðXÞ:

ð5Þ

If the boundary region of X is the empty set, i.e.,

BNAT 0ðXÞ ¼ ;, then the set X is crisp (exact) with respect
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to AT 0; in contrary, if BNAT 0ðXÞ 6¼ ;, the set X is referred to

as rough (inexact) with respect to AT 0.

Therefore with every rough set we associate two crisp

sets, called lower and upper approximation. Intuitively, the

lower approximation of a set consists of all elements that

surely belong to the set, and the upper approximation of the

set constitutes of all elements that possibly belong to the

set. The boundary region of the set consists of all elements

that cannot be classified uniquely as belonging to the set or

as belonging to its complement, with respect to the avail-

able knowledge. This is exactly the idea of vagueness

proposed by Frege (1903).

Let us also observe that the definition of rough set starts

with referring to data (knowledge), and hence it is sub-

jective, in contrast to the definition of classical sets, which

is in some sense an objective one.

Information systems with distinguished attributes (de-

cisions) are called decision systems. More formally, a

decision system is a tuple DT ¼ ðU;AT ; dÞ, where (U, AT)
is an information system and d 62 AT is a distinguished

attribute d:U �! Vd called decision attribute or decision

function. The set Vd is the set of values for decision attri-

bute d. Each value v 2 Vd defines a decision class

Xv ¼ fx 2 U: dðxÞ ¼ vg. Attributes from AT are called

conditional attributes (or conditions).

3 From partitions to coverings and beyond

Let us recall that a covering C of a nonempty (finite) set U

is a family of nonempty subsets of U such that the union of

this family is equal to U, i.e.,
S

C ¼ U: A covering C of U
is a partition if and only if for any X; Y 2 C we have

X \ Y ¼ ;, if X 6¼ Y :

The original approach of Professor Pawlak was based on

indiscernibility, defined by equivalence relations; more

exactly on approximation spaces of the form (U, IND),

where U is a finite set and IND � U � U is an equivalence

relation over U. Any such indiscernibility relation defines a

partition of the universe of objects. Over the years many

generalizations of this approach were introduced, many of

which were based on coverings rather than partitions. In

particular, one can consider similarity (tolerance) based

rough set approach, binary relation based rough set

approach, neighborhood and covering based rough set

approach, dominance based rough set approach,

hybridization of rough sets and fuzzy sets, and many others

(see e.g., Kacprzyk and Pedrycz 2015; Skowron et al.

2015; Vluymans et al. 2015).

Let us consider an example of generalization of

approximation space. A generalized approximation space1

can be defined by a tuple AS ¼ ðU;I; mÞ where I is the

uncertainty function defined on U with values in the

powerset PðUÞ of U, IðxÞ is considered to be the neigh-

boorhood of x. W assume x 2 IðxÞ for any x 2 U: The

inclusion function m is defined on the Cartesian product

PðUÞ �PðUÞ, takes values in the interval [0, 1] measur-

ing the degree of inclusion of two sets (Skowron and

Stepaniuk 1996). It should be noted that the uncertainty

functionI defines, in general, a covering fIðxÞ: x 2 Ug of
U rather than a partition of U.

The lower and upper approximation operations can be

defined in AS by

LOWASðXÞ ¼ x 2 U: mðIðxÞ;XÞ ¼ 1f g; ð6Þ

UPPASðXÞ ¼ x 2 U: mðIðxÞ;XÞ[ 0f g: ð7Þ

In the approach formulated by Pawlak, IðxÞ is equal to the

equivalence class ½x�AT 0 of the indiscernibility relation

INDAT 0 ; in case of tolerance (similarity) relation s �
U � U (Polkowski et al. 1995) we take

IðxÞ ¼ ½x�s ¼ fy 2 U: x s yg, i.e., IðxÞ is equal to the

tolerance class of s with respect to x. The standard way od

defining rough inclusion relation, denoted by mSRI ; for

X; Y � U is as follows.2

mSRIðX; YÞ ¼

X \ Yj j

Xj j
; if X is non-empty;

1; otherwise:

8

<

:
ð8Þ

For applications it is important to come up with some

constructive definitions of I and m.

One should note that dealing with coverings requires

solving several new algorithmic problems such as selection

of family of definable sets or resolving problems with

selection of relevant definition of approximation of sets

among many possible ones. One should also note that for a

given problem (e.g., classification problem) one should

discover the relevant covering for the target classification.

In the literature there are numerous papers dedicated to

theoretical aspects of the covering based rough set

approach. However, still much more work should be done

on rather hard algorithmic issues for the discovery of rel-

evant covering.

Another issue, to be solved, is related to inclusion

measures. Parameters of such measures are tuned to induce

the high quality of approximations. Usually, this is done on

the basis of the minimum description length principle

(MDL). In particular, approximation spaces with rough

inclusion measures have been investigated. This approach

was further extended to rough mereological approach.

More general cases of approximation spaces with rough

1 More general cases are considered, e.g., in articles Skowron and

Stepaniuk (2010) and Skowron et al. (2012c).
2

Xj j denotes the cardinality of the set X.
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inclusion were also discussed in the literature including

approximation spaces in GrC. Finally, the approach for

ontology approximation used in hierarchical learning of

complex vague concepts (Skowron and Suraj 2013) is

especially worthwhile to mention.

One of the present challenges is to extend the rough set

approach of approximations, based on GrC, in the context

of IGrC, which incorporates interactions with the envi-

ronment. In particular, in intelligent systems (IS) and

complex adaptive systems (CAS) in order to control

computation and agent needs to invent adaptive strategies

for approximation of decision functions. So, this direction

of research is of great importance in applications.

It is worthwhile mentioning that over the years the

definition of information system is changing. In particular,

in Skowron and Dutta (2017) any attribute at is linked not

only with the value set Vat but also with a relational

structure Rat over Vat. This addresses cases such as dis-

cretization or preferences over value sets of attributes (see

e.g., Greco et al. 2004; Nguyen 2006). In this case one

should also consider that a set of formulas F at, linked to

the attribute at is interpreted over Rat. From this set F at,

some formulas may be used as constraints in the contexts

of feature extraction problem. Recently, it was also

emphasized (see e.g., Jankowski 2017; Jankowski et al.

2014b, 2015; Skowron and Jankowski 2016a, b, c; Skow-

ron et al. 2012a, 2016) that for many applications, infor-

mation systems should be considered as open objects

(complex granules) rather than closed objects (complex

granules), where they are open to interact with the envi-

ronment, consisting physical objects as well as other

information systems grounded on physical objects too. One

of the consequences of this point of view is the necessity of

developing methods for controlling these interactions

toward achieving the needs of agents.

4 Rough sets and induction

Rough set based approach has strong potential to model

inductive reasoning. Inducing classifiers or clusters using

rough set based methods is one such example. In this

section, we present an illustrative example of the rough set

approach towards induction of concept approximations.

The approach can be generalized considering inductive

extensions of approximation spaces.

Let us consider the problem of approximation of con-

cepts over a universe U1: We assume that the concepts are

perceived only through some subsets of U1, called sam-

ples. This is a typical situation in the machine learning,

pattern recognition, or data mining approaches (Cios et al.

2007).

We assume that an information system IS ¼ ðU;ATÞ is
given (where U � U1), and that for some C � U1 there is

a set PUðCÞ ¼ C \ U. In this way, we obtain a decision

system DTd ¼ ðU;AT ; dÞ, where dðxÞ ¼ 1 if x 2 PUðCÞ
and dðxÞ ¼ 0, otherwise.

We would like to illustrate how from the decision

function d defined over U, one can induce a decision

function lC; defined over U1ð� UÞ; with values in the

interval [0, 1]. This can be treated as an approximation of

the characteristic function of C.

Let us assume that RULESðDTdÞ is a set of decision

rules induced by some rule generation method from DTd.

For any object x 2 U1, let

MatchRulesðDTd; xÞ

be the set of rules that is supported by x.

Now, the rough membership function lC : U1 ! ½0; 1�,
approximating the characteristic function of C, can be

defined as follows.

1. Let RkðxÞ (where k ¼ 0; 1), for x 2 U1 be the set of all

decision rules from MatchRulesðDTd; xÞ with right

hand side d ¼ k, where d ¼ 1 denotes that the rule r is

voting for C and d ¼ 0 denotes that the rule r is voting

against C, respectively.

2. We define real values wkðxÞ, where w1ðxÞ is called the

weight ‘‘for’’ and w0ðxÞ the weight ‘‘against’’ mem-

bership of the object x in C, respectively, and wkðxÞ ¼
P

r2RkðxÞ
strengthðrÞ; here strength is a normalized

function depending on length, support, confidence of

decision rules and on some global information about

the decision system DTd such as the size of the

decision system or the class distribution.

3. Finally, one can define the value of lCðxÞ in the following
way: lCðxÞ is undefined if maxðw1ðxÞ;w0ðxÞÞ\x;

lCðxÞ ¼ 0 if w0ðxÞ � w1ðxÞ� h and w0ðxÞ[x;

lCðxÞ ¼ 1 if w1ðxÞ � w0ðxÞ� h and w1ðxÞ[x and

lCðxÞ ¼
hþðw1ðxÞ�w0ðxÞÞ

2h
, otherwise, where x; h (x	 h)

are the parameters set by the user.

In Fig. 1 the induced exemplary rough membership

function lC is presented.

For computing the value lCðxÞ for x 2 U1 the user

should select a strategy resolving the conflict between the

votes ‘‘for’’ and ‘‘against’’ the membership of x in C. The

degree of these conflicts are represented by values l1ðxÞ
and l0ðxÞ, respectively. Note that for some x due to the

small differences between these values the selected strat-

egy may not produce the definite answer, and these cases

will create the boundary region.

We can now define the lower approximation, the upper

approximation and the boundary region of the concept C,
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relative to the induced rough membership function, lC as

follows

LOWðC; lCÞ ¼ x 2 U1: lCðxÞ ¼ 1f g;

UPPðC; lCÞ ¼ x 2 U1: lCðxÞ[ 0 or lCðxÞ is undefinedf g;

BNðC; lCÞ ¼ UPPðC; lCÞnLOWðC; lCÞ:

ð9Þ

The whole procedure can be generalized for the case of

approximation of more complex information granules than

simple concepts.

5 Boolean reasoning and scalability

Solutions for many algorithmic problems related to rough

sets were proposed using the (approximate) Boolean rea-

soning approach (Blake 1937; Boole 1948, 1954; Brown

1990; Skowron and Suraj 2013). Some progress was also

made in developing methods scalable for large data sets. In

this section we present discussion on some applications of

Boolean reasoning approach for solving different problems

using rough sets.

The discernibility relations are closely related to indis-

cernibility and belong to the most important relations

considered in rough set theory. However, it is to be noted

that the discernibility relation is not always defined as the

complement of the indiscernibility relation. Tools for dis-

covering and classifying patterns are based on reasoning

schemes rooted in various paradigms. Such patterns can be

extracted from data by means of methods using Boolean

reasoning and the notion of discernibility.

The ability to discern between perceived objects is

important for constructing reducts, decision rules or

decision algorithms. In the standard approach, the dis-

cernibility relation DISAT 0 � U � U is defined by

xDISAT 0y if and only if it is not that xINDAT 0y; i.e.,

AT 0ðxÞ \ AT 0ðyÞ ¼£, where AT 0ðxÞ, AT 0ðyÞ are neigh-

borhoods of x and y, respectively. However, this is not the

case for generalized approximation spaces.

The idea of Boolean reasoning is based on construction

of a corresponding Boolean function fP for a given problem

P having the following property: the solutions for the

problem P can be decoded from prime implicants of the

Boolean function fP (Brown 1990; Nguyen 2006; Skowron

2000). Let us mention that to solve real-life problems it is

necessary to deal with Boolean functions of large size.

A successful methodology based on the discernibility of

objects and Boolean reasoning has been developed for

computing many important factors of applications. These

applications include generation of reducts and their

approximations, decision rules, association rules, dis-

cretization of real-valued attributes, symbolic value

grouping, searching for new features defined by oblique

hyperplanes or higher order surfaces, pattern extraction

from data as well as conflict resolution or negotiation (see

e.g., Pawlak and Skowron 2007; Skowron and Suraj 2013).

Most of the problems related to generation of the above

mentioned aspects are NP-complete or NP-hard. However,

it was possible to develop efficient heuristics providing

suboptimal solutions of the problems. The results of

experiments on many data sets are very promising. They

show very good quality of solutions generated by the

heuristics in comparison with other methods reported in

literature (e.g., with respect to the classification quality of

unseen objects). Moreover, they are very efficient from the

point of view of time that is necessary for computing the

solution. Many of these methods are based on discernibility

matrices. However, it is possible to compute the necessary

information about these matrices without their explicit

construction (i.e., by sorting or hashing original data).

The considered methodology makes it possible to con-

struct heuristics having a very important approximation

property which can be formulated as follows: expressions,

called approximate implicants, generated by heuristics, that

are close to prime implicants, define approximate solutions

for the problem (Nguyen 2006).

Mining large data sets is one of the biggest challenges in

Knowledge Discovery and Databases (KDD). In many

practical applications, there is a need of data mining

algorithms running on terminals of possibly distributed

database systems where the only access to data is enabled

by SQL queries or NoSQL operations.

Let us consider two illustrative examples of problems

for large data sets: (1) searching for short reducts, and (2)

searching for best partitions defined by cuts on continuous
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Fig. 1 Exemplary rough membership function lC
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attributes. In both cases, the traditional implementations of

rough sets and Boolean reasoning based methods charac-

terizes the high computational cost. The critical factor for

time complexity of algorithms solving the discussed

problems is the number of data access operations. Fortu-

nately some efficient modifications of the original algo-

rithms were proposed by relying on concurrent retrieval of

higher level statistics which are sufficient for the heuristic

search of reducts and partitions (see e.g., Pawlak and

Skowron 2007; Skowron and Suraj 2013). The rough set

approach was also applied in development of other scalable

big data processing techniques (e.g., Slezak and Eastwood

2009).

6 Rough sets: some future challenges
from the point of view of applications

Complex adaptive systems (CAS) are made up of multiple

interacting elements, and have the capacity to change

themselves and learn from experience. The key problems

of complex systems are difficulties with their formal

modeling and simulation.3 Some approaches to modeling

CAS are based on agent-based models and/or complex

network-based models (see e.g., Meia et al. 2015; Yang

and Shan 2008).

Decision support in the context of CAS (Holland 2014;

Valiant 2013; Yang and Shan 2008) requires identification

of the relevant computation models as well as methods for

incorporating reasoning behind computations performed by

agents. Agents perform computations on complex objects

(e.g., behavioral patterns, classifiers, clusters, structural

objects, sets of rules, aggregation operations, approximate

reasoning schemes). In granular computing (GrC), all such

constructed and/or induced objects are called granules. To

model interactive computations (Goldin et al. 2006) per-

formed by agents, the existing GrC approach to interactive

granular computing (IGrC) was extended by introducing

interactions among different parts of complex granules (c-

granules or granules, for short).

The IGrC approach is an extension of the joint research

with Andrzej Jankowski (Jankowski and Skowron

2007, 2008, 2009; Jankowski et al. 2014a, 2015; Nguyen

et al. 2010; Skowron and Jankowski 2016a; Skowron et al.

2012b, 2013, 2016). This is a step towards realization of

the Wisdom Technology (WisTech) program (Jankowski

2017; Jankowski and Skowron 2007, 2008, 2009; Skowron

et al. 2012a) in combination with IGrC, and is developed

over years of experiences, based on the work on different

real-life projects. The developed model is called the Wis-

tech IGrC model.

Other issues such as evolution of communication lan-

guage of agents and risk management in interactive com-

putations will be discussed in more detail in our next

papers (see also Jankowski 2017).

We would like to emphasize that still much more work

should be done to develop approximate reasoning methods

about complex vague concepts for making progress in

development of IS or CAS. This idea was very well

expressed by Professor Leslie Valiant4:

A fundamental question for artificial intelligence is to

characterize the computational building blocks that

are necessary for cognition.

In IGrC, the computational building blocks are represented

by complex granules (c-granules, for short) which are used

to model computations in IS or CAS.

In the following section we present some intuitive

explanations concerning c-granules and IGrC. For more

details the readers are referred to Jankowski (2017), Jan-

kowski et al. (2014b, 2015), Skowron and Jankowski

(2016a, b, c) and Skowron et al. (2012a, 2016). We begin

with a discussion on modeling complex states and transi-

tion relations on such states.

6.1 Modeling of complex states and transition
relations on complex states

In this section, we discuss two fundamentally different

styles of modeling. In the first case, the models are

designed by humans in the world of mathematics and next

they are verified in the physical reality. In the second case,

models are learned through interactions with the environ-

ment and they are continuously tuned using new acquired

data and accumulated knowledge. After satisfactory inter-

actions with the environment the model, which was not

available to the designer a priori, rather is learned with

time, provides a representation of the agent’s environment.

In this regard, the modeling needs to be based on the

information acquired by agent-environment interaction.

We discuss the first step in this direction by linking reac-

tion systems with rough sets.

We start by quoting Brooks (1975).

Mathematics and the physical sciences made great

strides for three centuries by constructing simplified

models of complex phenomena, deriving, properties

from the models, and verifying those properties

experimentally. This worked because the

3 https://en.wikipedia.org/wiki/Complex_adaptive_system.

4 The 2011 winner of the ACM Turing Award, the highest distinction

in computer science, ‘‘for his fundamental contributions to the

development of computational learning theory and to the broader

theory of computer science’’(http://people.seas.harvard.edu/*valiant/

researchinterests.htm).
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complexities ignored in the models were not the

essential properties of the phenomena. It does not

work when the complexities are the essence.

Taking into account the above opinion one may expect that

the models of transition relations on states of complex

systems designed by humans may not reflect the dynamics

of complex systems. Usually we have only a partial,

imprecise or imperfect information about states. Moreover,

questions related to perception arise too. In particular, these

can be questions about the perception of states perceived

by agents performing computations. The answers to such

questions depend on the understanding of interactions of

agents with the complex system embedded in the environ-

ment. Through interactions the agents can try to get

satisfactory information for performing relevant actions

toward achieving their goals. Here, one should resolve the

problems related to understanding interactions of physical

objects to gain proper information about the environment

in which the tasks are performed. Some progress in this

direction has been made in the context of IGrC (see e.g.,

Jankowski 2017; Jankowski et al. 2014b, 2015; Skowron

and Jankowski 2016a, b, c; Skowron et al. 2012a, 2016 and

the following sections).

In this section, we restrict our discussion to two

approaches for modeling processes. The first one was

developed for reaction systems, proposed for modeling

chemical and/or biological processes (Ehrenfeucht and

Rozenberg 2006, 2007, 2009). We call them exact models.

The second one is based on the rough set approach (Pawlak

1982, 1991; Pawlak and Skowron 2007). In the case of the

rough set approach the transition relation is learned from

data gathered from the result of interactions of the ‘agent’

with the phenomena in the environment. The induced

models are evolving with time using adaptive strategies.

In the following subsections we discuss an application

of realistic modeling using the framework of rough sets

(Pawlak 1982, 1991; Pawlak and Skowron 2007; Skowron

and Nguyen 2013) to reaction systems which originated as

a pure mathematical model of interactions of biochemical

reactions in the living cell (Brijder et al. 2011; Ehrenfeucht

et al. 2012, 2017; Ehrenfeucht and Rozenberg 2006;

Salomaa 2012). For more details the reader is referred to

Dutta et al. (2018).

6.1.1 Reaction systems

In this subsection we recall some basic notions concerning

reaction systems (mostly taken from Ehrenfeucht and

Rozenberg 2006; Ehrenfeucht et al. 2017). The original

motivation behind reaction systems was to model interac-

tions between biochemical reactions in the living cell.

Therefore, the formal notion of reaction reflects the basic

intuition behind biochemical reactions. A biochemical

reaction can take place if all of its reactants are present in a

given state and none of its inhibitors is present. When a

reaction takes place, it creates its products. This leads to

the following definitions.

Definition 4 A reaction is a triplet a ¼ ðRa; Ia;PaÞ, where
Ra; Ia;Pa are finite nonempty sets with Ra \ Ia ¼ ;. If S is a
set such that Ra; Ia;Pa � S, then a is a reaction in S.

The sets Ra; Ia;Pa, are called the reactant set of a, the

inhibitor set of a, and the product set of a, respectively.

Clearly, since Ra; Ia are disjoint and nonempty, if a is a

reaction over S, then jSj � 2: We will use rac(S) to denote

the set of all reactions over S.

The enabling of a (biochemical) reaction in the given

state of a biochemical system and the resulting state

transformation are defined as follows.

Definition 5 Let T be a finite set

• Let a be a reaction. Then a is enabled by T, denoted by

enaðTÞ, if Ra � T and Ia \ T ¼ ;. The result of a on T,

denoted by resaðTÞ, is defined by: resaðTÞ ¼ Pa if

enaðTÞ and resaðTÞ ¼ ;, otherwise.
• Let A be a finite set of reactions. The result of A on T,

denoted by resAðTÞ, is defined by:

resAðTÞ ¼
S

a2A resaðTÞ.

The intuition behind a finite set T is that of a state of a

biochemical system, i.e., a set of biochemical entities

present in the current biochemical environment. Thus a

single reaction a is enabled by state T if T separates Ra

from Ia, i.e., Ra � T and Ia \ T ¼ ;: When a is enabled by

T, then its result on T is just Pa: For a set A of reactions, its

result on T is cumulative, i.e., it is the union of the results

of all individual reactions from A. Since reactions which

are not enabled by T do not contribute to the result of A on

T, resAðTÞ can be defined by

resAðTÞ ¼
[

resaðTÞja 2 A and enaðTÞf g:

Now the central notion of a reaction system is defined as

follows.

Definition 6 A reaction system is an ordered pair A ¼
ðS;AÞ; where S is a finite set such that jSj � 2 and A �
racðSÞ is a nonempty set of reactions in S.

Thus a reaction system is basically a finite set of reac-

tions over a set S, which is called the background set of A
and its elements are called entities. The result function of

A, resA: 2
S �! 2S is defined by resA ¼ resA:

The behaviour of a reaction system (which results from

the interactions between its reactions) is determined by its

dynamic processes which are formally defined as follows.
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Definition 7 Let A ¼ ðS;AÞ be a reaction system and let

n� 1 be an integer. An (n-step) interactive process in A is a

pair p ¼ ðc; dÞ of finite sequences such that c ¼ C0; . . .;Cn

and d ¼ D0; . . .;Dn, where C0; . . .;Cn;D0; . . .;Dn � S, and

Di ¼ resAðDi�1 [ Ci�1Þ for all i 2 f1; . . .; ng:

The sequence c is the context sequence of p and the

sequence d is the result sequence of p:. Then, the sequence

s ¼ W0;W1; . . .;Wn defined by Wi ¼ Ci [ Di for all i 2
f0; . . .; ng is the state sequence of p with W0 ¼ C0 called

the initial state of p (and of s). If Ci � Di for all

i 2 f1; . . .; ng, then we say that p (and s) is context-inde-

pendent. Note that we can assume then that Ci ¼ ; for all
i 2 f1; . . .; ng without changing the state sequence.

Thus, an interactive process begins in the initial state

W0 ¼ C0 [ D0. The reactions from A enabled by W0 pro-

duce the result D1 which together with C1 forms the suc-

cessor state W1 ¼ C1 [ D1: The iteration of this procedure

determines p: for each i 2 f0; . . .; n� 1g, the successor of

state Wi is determined by Wiþ1 ¼ Ciþ1 [ Diþ1; where

Diþ1 ¼ resAðWiÞ:
The context sequence formalizes the intuition that, in

general, a reaction system is not a closed system and so its

behavior is influenced by its ‘‘environment.’’ Note that a

context-independent state sequence is determined by its

initial state W0 and the number of steps (n). In general, for

an n-step interactive process p of A; p is determined by its

context sequence and n.

Also, in a context-independent state sequence

s ¼ W0; . . .;Wi;Wiþ1; . . .;Wn, during the transition fromWi

to Wiþ1 all entities from Wi � resAðWiÞ vanish. This

reflects the assumption of no permanency: an entity from a

current state vanishes unless it is produced/sustained by A.

Clearly, if p is not context-independent, then an entity from

a current state Wi can be also sustained (thrown in) by the

context (Ciþ1). This feature is also a major difference with

standard models of concurrent systems such as Petri nets

(see e.g., Reisig 2013).

6.1.2 Rough set-based modeling of complex states

and transition relations

In the framework of reaction systems one uses statements

like ‘‘a system is in a state’’ without being concerned with

the questions such as how this ‘‘being in a state’’ is per-

ceived? However, such questions are relevant from the

practical/applied points of view, because due to the com-

plex nature of physical systems only a partial, incomplete

information about their states may be perceived. The rough

set approach seems more realistic, in this regard, as it

address the problem by assuming that states are perceived

through attributes.

In the previous subsection we have recalled a mathe-

matical model of reaction system. Now, we will discuss

how to modify this model, so as to make it closer to the

physical reality.

Let us assume that in the physical reality we can identify

physical situations (see Fig. 2) and perceive them by some

attributes (see Fig. 3). One can collect the results of per-

ceived situations in the form of a data table to which a new

column is added reflecting the domain expert’s opinion

concerning the question whether or not a given entity s is

represented in the perceived physical situation u (see

Fig. 3). We will discuss now how rough sets can be used to

approximate properties such as ‘‘a given entity is repre-

sented in a perceived situation’’ or ‘‘a given state of reac-

tion system is represented in a perceived situation.’’ Then,

we illustrate how one could check if the proposed model of

reaction system is consistent with the perceived data.

(S,A) – reac�on 

system model

How to check if a given en�ty s∈S is in the physical situa�on u ?

How to check  if a given state S* ⊆ S is in the physical situa�on u ?

physical reality

physical situa�on

u

Fig. 2 Reaction system and physical reality

signature of u rela�ve to the set 

of a�ributes  

percep�on of situa�on u by 

a�ributes from {at1 ,…, atm } 

u 

physical situa�on 

(at1 (u),…, atm (u))   

U at1 … atk d(s) 

u1 at1(u1) … atm(u1) 0 

u at1(u) … atm(u) 1 

… … 1 

decision table  for the en�ty s from S 

APPROXIMATION OF THE 

PROPERTY 

 s is represented 

 in the physical situa�on u 

ROUGH SETS 

APPROXIMATION OF THE 

PROPERTY 

 s is not represented 

 in the physical situa�on u1 

Fig. 3 Approximation of basic concepts related to the relationship of

reaction systems and physical reality
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Let A ¼ ðS;AÞ be a reaction system. For each entity

s 2 S, we consider a decision system

DTðsÞ ¼ ðU;ATðsÞ; dðsÞÞ, where U is a sample from the

space of physical objects perceived by attributes from

AT(s). Accordingly, the elements of U are called physical

situations (or situations, for short). The binary decision d(s)

is the characteristic function of the concept ‘‘entity s is

represented in the situation u’’, where u 2 U: This induces
the decision class CðsÞ ¼ fu 2 UjdðsÞðuÞ ¼ 1g corre-

sponding to this concept. C(s) consists of all situations

from U which include a physical object representing the

given entity s. The decision class C(s) can be approximated

using the information system ISðsÞ ¼ ðU;ATðsÞÞ, i.e., by
the rough set methodology one can consider now the lower

approximation LOWATðsÞðCðsÞÞ, the upper approximation

UPPATðsÞðCðsÞÞ, and the boundary region BNATðsÞðCðsÞÞ:

These three components of approximation describe the

result of perception of the property ‘‘entity s is represented

in situation u.’’ In order to represent the results of

approximating C(s) by these three components, one can

define the generalized decision dCðsÞ for the decision class

C(s) as follows: dCðsÞðuÞ ¼ 1 for u 2 LOWATðsÞðCðsÞÞ,

dCðsÞðuÞ ¼ 0 for u 2 UnUPPATðsÞðCðsÞÞ, and dCðsÞðuÞ ¼

f0; 1g for u 2 BNATðsÞðCðsÞÞ. This function can be exten-

ded to the indiscernibility classes of states or to the sig-

natures of states by setting dCðsÞð½u�ATðsÞÞ ¼ dCðsÞðuÞ and

dCðsÞðInfATðsÞðuÞÞ ¼ dCðsÞðuÞ. For the sake of not compli-

cating the notation, these extensions are also denoted by

dCðsÞ.

In order to express how a set of entities Ŝ � S, i.e., a

state of the system A, is perceived we need to consider an

aggregation of decision systems DTðsÞ, for s 2 Ŝ. The

result of this aggregation can also be defined as a decision

system in the following way.

Let Ŝ ¼ fs1; . . .; skg and DTðsiÞ ¼ ðU;ATðsiÞ; dðsiÞÞ;
for i ¼ 1; . . .; k: We set then:

• UðŜÞ ¼ fv̂ðuÞ: u 2 Ug, where for each u 2 U,

v̂ðuÞ ¼ ðv1ðuÞ; . . .; vkðuÞÞ, where viðuÞ ¼ InfATðsiÞðuÞ,

for i ¼ 1; . . .; k (i.e., viðuÞ is the signature of u relative

to the attributes from ATðsiÞ),

• ATðŜÞ consists of attributes which are the characteristic

functions of the lower approximations, the upper

approximations, and the boundary regions of the

decision classes CðsiÞ relative to the set of attributes

ATðsiÞ from DTðsiÞ for i ¼ 1; . . .; k extended to UðŜÞ.
More formally,

ATðŜÞ ¼
[

i¼1;...;k

vLOWATðsiÞ
ðCðsiÞÞ; vUPPATðsiÞ

ðCðsiÞÞ; vBNATðsiÞ
ðCðsiÞÞ

n o

;

where

(1) vLOWATðsiÞ
ðCðsÞÞðûÞ ¼ 1 if and only if viðuÞ 2

LOWATðsiÞðCðsiÞÞ,

(2) vUPPATðsiÞ
ðCðsiÞÞðûÞ ¼ 1 if and only if viðuÞ 2

UPPATðsiÞðCðsiÞÞ,

(2) vBNATðsiÞ
ðCðsiÞÞðûÞ ¼ f0; 1g if and only if viðuÞ 2

BNATðsiÞðCðsiÞÞ, and

• dðŜÞ to be the (generalized) decision defined by: for

u 2 U;

dðŜÞðv̂ðuÞÞ ¼ ðdCðs1Þðv1ðuÞÞ; . . .; dCðskÞðvkðuÞÞÞ:

The value dðŜÞðv̂ðuÞÞ of the generalized decision dðŜÞ
represents the result of perception of the property

‘‘entities from Ŝ are represented in the current situation

u.’’ Note that for some entities the perception may not

give a decision with certainty about their representation

in the current state due to uncertainty in perceiving the

physical situations through the available attributes.

Finally, we define the decision system DTðŜÞ (which is an

aggregation of decision systems DTðsiÞ; for i ¼ 1; . . .; k)
by

DTðŜÞ ¼ ðUðŜÞ;ATðŜÞ; dðŜÞÞ:

It is needed to point out here that other sorts of aggre-

gations can also be defined using operations of join with

constraints (Skowron and Stepaniuk 2005). They can be

used to extract subsets of objects from DTðŜÞ satisfying
some constraints for which the tested hypothetical laws are

true.

By selecting relevant sets of entities (i.e., relevant states)

of a given reaction system one may consider modeling

properties such as ‘‘the inhibitors from the set Ia are not

represented in the current situation u’’ as well as the

property that this condition is true for all considered

reactions. One may then aggregate decision (information)

systems corresponding to these properties in order to rep-

resent the combined result of perception for all these

properties. Analogously, it is possible to obtain decision

systems representing properties such as ‘‘product p from Pa

is represented in the current situation u’’, ‘‘all products

from Pa are represented in the current situation u’’, and

‘‘all products from Pa are represented in the current situ-

ation u for all considered reactions a.’’

One can also consider aggregation of the already con-

structed decision systems into a decision system over pairs

of objects with the first component of a pair representing

the current physical situation and the second component

describing the results of the reactions taking place in this

situation. Through such systems one can construct a set of

rules (local logic, a view of knowledge represented in the

system) describing properties of the second component
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induced from the properties of the first component. For

example, the following rule (written in an informal way)

can be considered as a ‘justifying criterion’ (to some sat-

isfactory degree) for the discussed exact model for reaction

systems:

In this rule the term ‘‘with certainty’’ means that the

considered situation belongs to the lower approximation of

the relevant region. Thus, one may write this rule formally

using formulas expressing the relevant approximated

regions. Then, the validity of this rule may be checked in a

given data table (information system).

Such rules can be rewritten in a more formal way using

definable regions of approximation (i.e., unions of the

indiscernibility classes) as follows.

Let for a reaction system A ¼ ðS;AÞ :

• x be the information perceived about the physical

situation before performing reactions from A; i.e., the
(disjoint) union of signatures over the attribute sets of

information systems corresponding to reactants, inhi-

bitors, and products, respectively,

• y be the information perceived about the physical

situation obtained after performing reactions from A in

the physical situation represented by x,

• Ra ¼ fr1; . . .; rkag be the reactant set of a 2 A,

• Ia ¼ fi1; . . .; isag be the inhibitor set of a 2 A,

• Pa ¼ fp1; . . .; pnag be the product set of a 2 A, and

• P ¼
S

a2A Pa.

Then one can formally express the rules and meta-rules for

different levels of a reaction system as follows:

enaðxÞ�!
^

1
l
na

vLOWATðplÞ
ðCðplÞÞðyÞ¼1;foreacha2A;

vLOWATðpÞðCðpÞÞ
ðyÞ¼1�!

_

a2A

enaðxÞ&p2Pað Þ;foreachp2P;

where, for each a2A;

enaðxÞ �
^

1
 i
 ka

vLOWATðriÞ
ðCðriÞÞðxÞ ¼ 1 &

"

^

1
 j
 sa

vLOWATðijÞ
ðCðijÞÞðxÞ ¼ 0

#

:

The validity of the above rules in the corresponding

decision table means that the transition relation defined by

resA in the reaction system A is, in a sense, consistent with

the experimentally gathered data. This means that rules for

transforming the identified set of entities in the perceived

situation are the same as in the reaction system model.

Now, we are also ready to define perceived states of a

given reaction systems A ¼ ðS;AÞ relative to decision

systems DTðsÞ ¼ ðU;ATðsÞ; dðsÞÞ; for s 2 S.

Definition 8 Let u 2 U be a physical situation, let A ¼
ðS;AÞ be a reactions system, and let DTðsÞ ¼
ðU;ATðsÞ; dðsÞÞ be a decision system corresponding to the

entity s, for s 2 S; with IS ¼ ðU;ATðsÞÞ: The perceived

state of a reaction system A ¼ ðS;AÞ corresponding to u 2
U (relative to DTðsÞ for s 2 S) is defined by

Su ¼ s 2 S: u 2 LOWATðsÞðCðsÞÞ
� �

:

Using the rules discussed above one can predict the

successor state of Su in A as resAðSuÞ:
Since the perception of entities in physical situations is

only partial, instead of the perceived state Su one can

consider a pair of states ðSu; SuÞ defined by the lower and

the upper approximations, where

Su ¼ s 2 S: u 2 UPPATðsÞðCðsÞÞ
� �

:

Now, one can consider to have Su as a model of the

current state, or rather, due to uncertainty in the state

identification, a family fSu [ S0: S0 � SunSug as a model of

possible current states, and

fresAðSu [ S0Þ: S0 � SunSug

as the set of possible successor states.

if all reactants for each considered reaction are perceived with certainty

in the perceived state of reaction system

and

none of inhibitors for the considered reactions is perceived with certainty

in the perceived state of reaction system

then all products of all considered reactions

and

only these products are perceived with certainty after completion of all

reactions.
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Hence, as the result of uncertainty in perceiving the

physical reality, we obtain the nondeterminism in the

prediction of the successor state.

For more details on relationships of rough sets and

reaction systems readers are referred to Dutta et al. (2018),

where, in particular, relationships of rough sets with

exploration systems are discussed (Ehrenfeucht and

Rozenberg 2014, 2015).

Using the proposed modeling, one can expect to obtain a

set of such rules describing exact dependencies between

approximated regions. Moreover, one may use more

advanced methods of approximation such as Variable

Precision Rough Set Model (Ziarko 1993).

Finally, a model of transition relation can be represented

by a set of rules. These models may change when the

accumulated data are changing (by adding new states,

attributes or methods of aggregation). Hence, one may also

look for learning methods for prediction how such sets of

rules are changing (on the basis of the accumulated data

and knowledge). This problem of evolving models of

transition relations with time when conditions in the

environment are changing is one of the important issue to

be studied. Let us also note that the discussed sets of rules

may be used for inducing concurrent models consistent

with such sets of rules (see e.g., Pawlak 1992; Skowron and

Suraj 1993, 1995; Suraj 2000).

The proposed model based on the rough set approach

seems to be also suitable for modeling situations related to

different contexts in which reactions are performed as well

as for learning dependencies between different levels of

hierarchical modeling (such as modeling on the level of

biochemical reactions in cells and the level of cells con-

cerning behavioral patterns of cells). Further studies are

needed to clarify the usefulness of the proposed approach

in modeling complex phenomena occurring in real-life

applications. Another problem to which the proposed

approach seems to be very suitable, concerns about the

control of reaction systems. Also relations with other

approaches, like aggregation of information systems into

networks of information systems in the context of infor-

mation flow approach (Barwise and Seligman 1997) and

zoom structures (Ehrenfeucht and Rozenberg 2014) need to

be further explored.

Let us now turn back to the discussion on IGrC.

6.2 Rudiments of complex granules
and interactive granular computing

Recently many researchers emphasize that models of

computations should be based on the physical reality. This

concerns in particular the process of learning from envi-

ronment. More specifically, in Vapnik (1998) the need for

considering the physical world as the basis for

computations in the context of problems in applications is

well expressed:

further study of this [learning] phenomenon requires

analysis that goes beyond pure mathematical models.

As does any branch of natural science, learning the-

ory has two sides:

– The mathematical side that describes laws of general-

ization which are valid for all possible worlds and

– The physical side that describes laws which are valid

for our specific world, the world where we have to

solve our applied tasks.

[…] To be successful, learning machines must use

structures on the set of functions that are appropriate

for problems of our world. […] Constructing the

physical part of the theory and unifying it with the

mathematical part should be considered as one of the

main goals of statistical learning theory. […] In spite

of all results obtained, statistical learning theory is

only in its infancy…

According to Vapnik (1998), there are many branches of

the learning theory that have not yet been analyzed and that

are important both for understanding the phenomenon of

learning and for practical applications. Definitely, one of

such area of the research should consider the necessity of

linking the abstract world of mathematics with the physical

world. This may be related to the grounding problem

investigated in psychology (Anderson 2007; Harnad

1987, 1990; Jankowski 2017). In this paper we follow the

approach based on complex granules (c-granules, for short)

aiming to link these two worlds (see e.g., Jankowski 2017;

Jankowski et al. 2014b, 2015; Skowron and Jankowski

2016a, b, c; Skowron et al. 2012a, 2016).

One of the main assumptions in interactive computa-

tions on c-granules is that the computations are based on

physical objects. These physical objects, e.g., control tools

for following some schemes for measurements and objects

which are to be measured, are interacting among them-

selves. These activities take place in the physical world

(i.e., P of Fig. 5). The results of these interactions are

recognized (measured) by a given agent ag using so called

measurable objects, i.e., objects whose states at a given

moment of time t may be measured. The values of mea-

surements are represented as values of attributes (e.g., real

numbers) or degrees of satisfiability of some formulas. This

pertains to the activity of abstract world (cf. Fig. 5). Using

measurable objects the agent may indirectly recognize

properties of other physical objects, which are not-directly

measurable, in a given configuration provided ag has

learned relevant interaction rules to predict changes of

states of such objects on the basis of measurement per-

formed on the measurable objects. Information about states

866 A. Skowron, S. Dutta

123



of non-directly measurable objects to measurable objects is

transmitted through interactions in the considered

configuration.

In Fig. 4 we can see the gray part represents the c-

granule g lying in the ag’s environment env. Over some

time interval ½t � D; t� based on interaction Intg;t;Dðenv; agÞ

between env and ag, a rule, say a;c
b
is learned by ag. We can

consider that the formula c represents the properties of the

structure (e.g., mereology) of g, a describes property of the

interaction process Intg;t;Dðenv; agÞ in ½t � D; t� at a mea-

surable (by ag) part p of g, and b describes expected

property of the interaction process in ½t � D; t� at a non-

measurable (by ag) part q of g (where t[D).

Using the information flow approach by Barwise and

Seligman (1997), in particular using the definition of

infomorphism, one can explain how the abstract part,

related to measurable objects, is conjugated to physical

objects (see Fig. 5). The abstract world is represented by a

set of formulas R [e.g., consisting of boolean combinations

of descriptors over a given set of attributes AT (Pawlak and

Skowron 2007)] and the set U of AT-signatures of objects,

where AT is a set of attributes. The satisfiability relation

�AT is defined by u �AT a iff u occurs in one of the

components of the disjunctive form of a. The abstract

world is defined by a classification ðU;R;�ATÞ (Barwise
and Seligman 1997). P denotes the set of physical objects,

and SP is the set of states of physical objects. Moreover,

State:P! SP. The satisfiability relation for the physical

world is defined by p �State s iff p 2 State�1ðsÞ5 for any

p 2 P and s 2 SP. The physical world is defined by a

classification ðP; SP;�StateÞ (Barwise and Seligman 1997).

A pair of functions ðf̂ ; �f Þ is an infomorphism from the

abstract world to the physical world iff the condition at the

bottom of the figure holds for all p 2 P and a 2 R (Barwise

and Seligman 1997).

The fundamental intuition behind the concept of a

c-granule is the following:

Each of c-granule g has three distinguished architectural

layers:

1. Soft_suit consists of configurations of hunks [i.e.,

physical objects treated as four-dimensional hunks of

matter (Heller 1990)], called information granules, and

it represents the properties of the environment of

activity of g (including the properties of the present,

past, and expected phenomena, as well as expected

properties of interaction plans and/or the results of

some interactions, potentially activated by g).

2. Link_suit consists of links (communication channels)

which transmit the results of interactions among

accessible fragments of the environment of activities

of g and the results of interactions among different

representations of properties in the soft_suit according

to the weight (significance) of the current needs of

g. These links may assign priorities to weights, which

reflect the results of judgment by g.

3. Hard_suit consists of configurations of hunks accessi-

ble by links from the link_suit.

The hard_suits, link_suits, and soft_suits of more com-

pound c-granules are formed by aggregating the relevant

networks of already defined c-granules. The networks may

satisfy some constraints, which can be interpreted as defi-

nitions of types of networks. The link_suits of such more

compound granules are responsible for transmission of

interactions between the hard_suits and soft_suits repre-

sented by the corresponding networks. The results and/or

properties of transmitted interactions are recorded in the

soft_suits.

In any c-granule, the interactions, which take place in

the hard_suit, are transmitted through link_suit to the

soft_suit, and these are recorded in the soft_suit. This is

typical for sensory measurement. On the other hand, a

α
β

g

env

ag

q p

Fig. 4 Learning interaction rule

Fig. 5 Infomorphism from the abstract world to the physical world

5 To simplify notation we write State�1ðsÞ instead State�1ðfsgÞ:
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c-granule may cause some interactions in its hard_suit by

transmitting some interactions from the soft_suit through

its link_suit. However, the c-granule may perceive the

results (or properties) of such interactions, caused in the

hard_suit, only by using the soft_suit. This is done on the

basis of the transmitted results (or properties) of these

caused in the hard_suit interactions in the hard_suit by

transmitting them back through the link_suit to the soft_-

suit. These results (or properties) may be different from the

predicted ones, which are a priori stored in soft_suit. This

is typical for performing of actions initiated by c-granules.

C-granules are generated by an agent ag depending on

the specific configurations of spatio–temporal portions of

physical matter [called hunks (Heller 1990)] related to the

ag. It should be noted that any typical active c-granule is a

dynamically changing entity. It means that all components

of c-granules (i.e., soft_suit, link_suit and hard_suit) are

usually subject to continuous changes.

6.3 Open information systems and dynamic
networks of information systems
in modeling of c-granules

It is worthwhile mentioning that the considered informa-

tion systems (decision systems) should be considered not as

closed objects; rather in the context of c-granules they

interact with the environment. This means that these sys-

tems should be treated as open information systems.

Moreover, developing methods for concept approximation,

based on networks of information systems changing with

time, is needed. One of the important departures, in such

information systems is that instead of value sets of attri-

butes relational structures over the value sets together with

set of formulas interpreted over such structures (Skowron

and Dutta 2017) are considered. This makes the process of

modeling relevant granules in searching for relevant com-

putational building blocks (patterns) for the complex vague

concept approximations challenging. These concepts are

used as guards for initiating actions performed by agents

(Jankowski 2017; Skowron and Dutta 2017).

Let us illustrate a formal way of introducing a kind of

adaptive information system. From general perspective, the

ground for an adaptive information system is as follows.

On the basis of interactions of an agent with the environ-

ment, using some control parameters, information systems

(decision systems) are created. In particular, control

parameters are used to perform some actions or plans on

some distinguished physical objects for predicting different

values of parameters about the physical objects. This pro-

cess of controlling the schemes for obtaining values of

attributes by fixing control parameters may be called as an

agent’s control. In general, by fixing the control parame-

ters, e.g., space-time location, position of sensors or/and

actuators etc., the agent prepares the ground for obtaining

an information system describing the properties of real

physical objects. These real physical objects along with the

set-up of the control tools (i.e., space-time-angle of sensors

or cameras) generates a complex granule (c-granule, for

short) (Jankowski 2017; Skowron and Jankowski 2016b).

These c-granules, parts of c-granules, relationships among

them, features of parts of the c-granules, and links of c-

granules all together help to transmit the results of inter-

actions with objects to the so called information tables (see

Fig. 6). The complex c-granule lying in the reality repre-

sents the physical world, denoted as P in Fig. 5. On the

other hand, the information tables basically represent the

states of the measurable physical objects lying in the c-

granules in terms of values of attributes; this is part of the

abstract world, information about which is represented by

some formulas (cf. R in Fig. 5).

6.4 Adaptive rough sets and adaptive reasoning

Following the already existing literature it is well known

that vague concepts cannot be approximated with a satis-

factory quality by static constructs such as induced mem-

bership/inclusion functions, or models that are derived

from a sample. Understanding of vague concepts can only

be realized in a process in which the induced models are

adaptively matching the concepts in a dynamically

changing environment. This conclusion seems to have

important consequences for further development of rough

set theory, in combination with fuzzy sets and other soft

computing paradigms, towards adaptive approximate rea-

soning. For further details readers are referred to Skowron

(2005) and Skowron and Swiniarski (2005). Due to dif-

ferent aspects of changes, an agent’s perception about a

vague concept gets adapted with dynamically changing

environment and time. Thus, we obtain a family of lower

approximations, upper approximations and boundary

regions of a considered vague concept in accordance with

changing time (see Fig. 7).

From the above considerations it follows that for dealing

with higher order vagueness one should consider all the

above possibilities in the formal definition of rough sets.

This also concerns the definition of information systems. In

the following sequel we take an attempt to throw light on

the issues regarding how to extend the present notion of

information systems. We focus on the aspects that different

perspectives of a concept may come due to viewing a set of

objects with respect to different sets of attributes, or per-

ceiving the same concept with respect to different sets of

objects as well as attributes, or having change of perception

with the appearance of new objects along the progress of

time. Though we admit the phenomenon of higher order

vagueness, we need to still fix the approximate
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understanding of a concept at some level, and for that we

need to have different strategies for aggregating different

perspectives of a vague concept. In order to aggregate

information available at different information systems, a

notion of interaction between information systems, math-

ematically which may be called infomorphism following

(Barwise and Seligman 1997), will play an important role.

The control of an agent is responsible for predicting

values of parameters necessary for constructing the rele-

vant current information system. This prediction is per-

formed on the basis of knowledge accumulated in the

memory of control. The aim of the control of an agent is to

satisfy the needs of the agent by controlling computations

on c-granules. The algorithms, called classifiers (or

regressors), for predicting the values of parameters are

induced on the basis of information dynamically accumu-

lated by the agent in the form of interactive information

(decision) systems. These systems are dynamically

changing with time due to interactions of the control with

the environment. The process of inducing classifiers (or

regressors) is often supported using hierarchical learning

(e.g., Bazan 2008; Jankowski 2017; Skowron and Szczuka

2009).

Moreover, we would like to emphasize the necessity of

developing adaptive strategies on the basis of the history/

memory of control, which can guide how the information is

gathered in such interactive systems, as well as how the

structures of classifiers (regressors) are used in the past for

predicting values of parameters. All these are inducing the

high quality classifiers (regressors) for predicting values of

the parameters for the current situation. The challenge is to

develop methods for learning classifiers (regressors) for

predicting adaptation of parameters based on what the

agent already learnt about the perceived changes

Fig. 6 An illustrative fragment of the control of agent ag for

acquiring values va; vb; vc of attributes a, b, c using interactions of the

control of ag with the c-granule gt created by ag at the local time t of

ag; gt—c-granule created (or updated) at time t by ag for computing

values of attributes a, b, c; va; vb; vc—values representing states at

time t of objects oa; ob; oc obtained by aggregation of information

delivered by links; confa; confb; confc—configurations of physical

objects in gt related to attributes a, b, c; LINKS—set of links for

transmitting results of interactions in configurations

confa; confb; confc to the measurable objects oa; ob; oc of ag; link

with gt is responsible for storing values va; vb; vc of attributes a, b, c
corresponding to the states of objects oa; ob; oc at time t; x is a

symbolic representation of gt together with a pointer to its physical

implementation

�me 
1RS 2RS 3RS 4RS 5RS ...

adap�ve strategy 

Fig. 7 Adaptive rough sets
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in situations and in the classifiers (regressors). The induced

classifiers (regressors) can be treated as the temporary

approximations of the decision functions (see Skowron

et al. 2018; Skowron and Nguyen 2013).

The imprecise nature of a concept is often caused due to

the unavailability of the information about all possible

objects of the discourse. An agent at some point of time t

may become able to gauge some part of the reality by

accessing some objects, lying in the real world, and certain

properties of them. Thus, at time t the agent only becomes

able to describe the nature of the real world by a vague/

imprecise concept. At some further point of time t0 the

agent may manage to access some more objects relevant to

the concerned fragment of the reality, and learn about their

properties. This helps the agent to have a better description

of the vague concept, fitting to the reality. The following

quote by Noë (2004) regarding having a vague perception

about reality and thereby generating vague concepts, may

be proper here.

Think of a blind person tap-tipping his or her way

around a cluttered space, perceiving that space by

touch, not all at once, but through time, by skillful

probing and movement. This is or ought to be, our

paradigm of what perceiving is.

Keeping this in mind, we outline a set-up for departing

from the notion of information system (Orłowska and

Pawlak 1981; Pawlak 1973a, b, 1981, 1991; Pawlak and

Skowron 2007) to a notion of Adaptive Information System

(AIS). In order to do so, below, we first present an intuitive

background of the proposed formalism.

In Fig. 8 we present an illustrative basic cycle of the

control of agent ag.

First the value of function ep is computed on the basis of

the agent’s knowledge base state kb, valuation of decision

attributes dec, and valuation val of conditional attributes

from AT. The predicted valuation valp of conditional

attributes from AT is provided by ep. The gray box in Fig. 8

illustrates the process of construction (by operation Int
�!

) of

c-granule g, in particular on the basis of the values of

decision attributes (control parameters). It also shows in the

c-granule g, using the link for transmission of interactions

(operation Int
 �

) from hard_suit to soft_suit, that the (real)

evaluation valr of conditional attributes (which can be

different from the predicted ones) is realized. This box is

related to the Vapnik (1998) remark:

[…] further study of this [learning] phenomenon

requires analysis that goes beyond pure mathematical

models…

Next valuations valp; valr (i.e., functions defined on

conditional attributes with values in the value sets of these

attributes) are compared by operation Sim, and as a result

a degree of similarity between valp and valr is obtained.

This degree together with the valuations of conditional

attributes valp; valr, valuation of control parameters dec,

and the control state of knowledge base kb, are used to

adapt the values of decision parameters (decision attri-

butes) by operation ed . As a result the revised valuation

dec0 of control parameters is obtained. The computed

entities are next used to update the contents of knowledge

base, and the new state kb0 is obtained. This cycle

illustrates an idea of adaptation of control parameters.

We would like to emphasize two basic problems related

to the discussed adaptation.

Functions presented in Fig. 8 such as

ep; er; Sim;UPDATE; ed should be learned by the agent.

They can be learned on the basis of partial information

about these functions stored in the knowledge base. For

each of these functions, such information has usually a

form of a decision system. Hence, the agent should have

strategies to learn from such partial information the models

of the functions, making it possible to compute their values

for new situations, which are not yet stored in the decision

systems.

In the case of the gray area, the agent should be ready to

learn the rules of interactions, allowing her/him to perceive

if the c-granule g has been properly constructed, and pre-

dict the results of interactions (at least in typical situations)

transmitted by g. These results are transformed into values

of conditional attributes. Note that the obtained values

depend also on the state of the environment env which can

be changed in an unpredictable way. Hence, the conclu-

sions obtained by using interaction rules may be treated

only as hypotheses. The interaction rules are related to the

above mentioned point view of Vapnik (1998) about

necessity of the second component of learning consisting

of:

The physical side that describes laws which are valid

for our specific world, the world where we have to

solve our applied tasks.

6.5 Adaptive judgment in reasoning
about interactive granular computations

Rough set theory has contributed to some extent to various

kinds of deductive reasoning. Particularly, various kinds of

logics based on the rough set approach have been investi-

gated, rough set methodology has contributed essentially to

modal logics, many-valued logics (especially different

types of 3-valued logics), intuitionistic logics, paraconsis-

tent logics and others [see e.g., references in book

(Skowron and Suraj 2013) and in articles (Pawlak and

Skowron 2007)].
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There are numerous issues related to approximate rea-

soning under uncertainty including inductive reasoning,

abduction, analogy based reasoning and common sense

reasoning.

We would like to stress that still much more work

should be done to develop approximate reasoning methods

about complex vague concepts for making progress in

development of IS or CAS. It is worthwhile to refer here to

an extension of the citation, presented before, by Valiant

(http://people.seas.harvard.edu/*valiant/researchinterests.

htm):

A fundamental question for artificial intelligence is to

characterize the computational building blocks that

are necessary for cognition. A specific challenge is to

build on the success of machine learning so as to

cover broader issues in intelligence. […] This

requires, in particular a reconciliation between two

contradictory characteristics – the apparent logical

nature of reasoning and the statistical nature of

learning.

Here, two more views are also very relevant. The first one

is by Professor Lotfi A. Zadeh, the founder of fuzzy sets

and the computing with words paradigm (see Zadeh 1999

and also http://www.cs.berkeley.edu/*zadeh/presenta

tions.html):

Manipulation of perceptions plays a key role in

human recognition, decision and execution processes.

As a methodology, computing with words provides a

foundation for a computational theory of perceptions

- a theory which may have an important bearing on

how humans make- and machines might make -

perception-based rational decisions in an environ-

ment of imprecision, uncertainty and partial truth.

[…] computing with words, or CW for short, is a

methodology in which the objects of computation are

words and propositions drawn from a natural

language.

Another view is by Judea Pearl (the 2011 winner of the

ACM Turing Award, ‘‘for fundamental contributions to

artificial intelligence through the development of a calculus

for probabilistic and causal reasoning’’) (Pearl 2009):

Traditional statistics is strong in devising ways of

describing data and inferring distributional parame-

ters from sample. Causal inference requires two

additional ingredients: a science-friendly language

for articulating causal knowledge, and a mathemati-

cal machinery for processing that knowledge, com-

bining it with data and drawing new causal

conclusions about a phenomenon.

The question arises about the logic relevant for the

above mentioned tasks. First let us observe that the satis-

fiability relations in the IRGrC framework can be treated as

tools for constructing new information granules. If fact, for

a given satisfiability relation, the semantics of formulas

relative to this relation is defined. In this way the candi-

dates for new relevant information granules are obtained.

We would like to emphasize a very important feature that

the relevant satisfiability relation for the considered prob-

lems is not given but it should be induced (discovered) on

the basis of a partial information encoded in information

(decision) systems. For real-life problems, it is often nec-

essary to discover a hierarchy of satisfiability relations
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before we reach to the relevant target level. Information

granules, constructed at different levels of this hierarchy,

finally lead to relevant ones for approximation of complex

vague concepts related to complex information granules

expressed using natural language (see Fig. 9). The rea-

soning should also concern about how to derive relevant

information granules for solutions of the target tasks, and

that kind of reasoning is called adaptive judgment.

Deduction, induction, abduction as well as analogy based

reasoning all are involved in adaptive judgment. Among

the different aspects, the following ones are a few which

one needs to address as different subtasks in order to do

reasoning with adaptive judgment.

• searching for relevant approximation spaces,

• discovery of new features,

• selection of relevant features,

• rule induction,

• discovery of inclusion measures,

• strategies for conflict resolution,

• adaptation of measures based on the minimum descrip-

tion length principle,

• reasoning about changes,

• perception (action and sensory) attributes selection,

• adaptation of quality measures over computations

relative to agents,

• adaptation of object structures,

• discovery of relevant contexts,

• strategies for knowledge representation and interaction

with knowledge bases,

• ontology acquisition and approximation,

• learning in dialogue of inclusion measures between

information granules from different languages (e.g., the

formal language of the system and the user natural

language),

• strategies for adaptation of existing models,

• strategies for development and evolution of communi-

cation language among agents in distributed

environments,

• strategies for risk management in distributed computa-

tional systems.

The discussed concepts such as interactive computation

and adaptive judgment are some among the basic ingredi-

ents of the Wisdom Technology (WisTech) (Jankowski and

Skowron 2007; Jankowski 2017). Let us mention here the

WisTech meta-equation, which is wisdom = interac-

tions ? adaptive judgment ? knowledge. In particular,

extension of the rough set approach to interactive compu-

tations is one of the current challenges.

Let us consider one more example of reasoning related

to interactive computations on granules. In Fig. 8, one can

see that iteration of the basic cycle leads to histories. A

partial information about histories (e.g., in a form of time

windows, or sequences of such windows) may be stored in

knowledge base in the form of decision tables which can be

used for inducing more advanced forms of adaptation of

decision valuations (or function). The new decisions may

depend not only on the current values of decisions but also

on decisions contained in histories which are treated as

objects in these more advanced decision systems. In this

way modeling process of perception adjoined with actions

mentioned before in the citation from Noë (2004) can be
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from them, which consist of rule
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realized. One may observe that this process is related to

hierarchical modeling and hierarchical learning, and it may

be modeled using networks of information systems analo-

gous to the Barwise–Seligman approach (Barwise and

Seligman 1997). This process is also based on adaptive

judgment (Jankowski 2017; Jankowski et al. 2014b, 2015;

Skowron and Jankowski 2016a, b, c; Skowron et al.

2012a, 2016) with roots not only in logic, but also in

psychology and phenomenology (Martin 2006) (see

Fig. 10).

Definitely, the reasoning for adaptation should allow

agents to base their reasoning on experience, what is the

main concept of phenomenology. Hence, it is necessary to

have good understanding of this concept for implementa-

tion in IS or CAS. This reasoning should allow agents to

discover relevant patterns of behavior of other agents or

objects, what is the subject of studies in psychology.

One can observe that this kind of reasoning is crucial for

tasks, mentioned above by Vapnik (1998), in the sentence:

To be successful, learning machines must use struc-

tures on the set of functions that are appropriate for

problems of our world.

Many advanced tasks, concerning complex systems may

be classified as control tasks, performed by agents aiming

at achieving the high quality computational trajectories of

c-granules relative to the considered quality measures over

the trajectories. Here, new challenges are to develop

strategies to control, predict, and bound the behavior of the

system. We propose to investigate these challenges using

the IGrC framework.

Thanks to c-granules, it is possible to register both the

results of sensory measures and their hierarchical aggre-

gations, which are performed to discover new c-granules.

The hierarchical c-granules discovered in this manner may

ensure a deeper understanding of a perceived situation (see

Bazan 2008). The statement above about the aggregation of

c-granules (representing hierarchical aggregations of the

results of sensory measures) refers to the main, according

to Valiant,6 AI challenge, which is the characterization of

‘‘computational building blocks’’ for perception.

The key role in the proposed approach is played by the

techniques of adaptive and interactive discovery of

c-granules (through interactions with the environment) and

their further use. It turns out that in order to perform

computations on c-granules, ecorithms, as understood by

Valiant (2013), should be used instead of classical algo-

rithms. Apart from the analogy to Valiant’s ecorithms, the

IGrC-based proposed algorithms display a number of other

features, which correspond to the motivations of scientific

research in other domains (e.g., learning systems, CAS,

soft-computing, multi-agent systems, natural computa-

tions). The Wistech IGrC model is also related to the very

foundations of AI, in particular, to the understanding of the

essence of machine learning.

In particular, in Complex Systems Engineering (CSE)

(Jankowski 2017), the design and implementation of a

complex project may be seen as the process of discovering,

learning, processing (including communicating), and

developing concepts (represented as c-granules), which are

necessary to deal with a given project. The key to success

in managing any complex project is a skillful approxima-

tion of complex vague concepts, represented by c-granules,

and a skillful use of c-granules by those, who are in charge

of a given project. Such approximations are responsible,

e.g., for initiation of actions performed by agents (Jan-

kowski 2017) (see Fig. 11) in complex-games.

Figure 12 illustrates reasoning in a process of changing

the current configuration of c-granules on the basis of

actions. This is realized on the basis of satisfiability of

concepts responsible for triggering actions in the complex

game. The actions are corresponding to predicted control

(ADAPTIVE) JUDGMENT

DEDUCTION

INDUCTION

ABDUCTION

…

figures in:

explanation of behavior,  

inference, 

experience.

Hence the theory of 

judgment has a place in: 

psychology, 

logic, 

phenomenology.

Wayne M. Mar�n: Theories of Judgment. Psychology, Logic, 

Phenomenology. Cambridge Univ. Press (2006).

Fig. 10 (Adaptive) judgment

ac�ons ini�ated on the basis of judgment about

sa�sfiability (to a degree) of their guards

. . .

ac�on guards: complex vague concepts on different

levels of hierarchies

Fig. 11 Complex games

6 http://www.seas.harvard.edu/directory/valiant.
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parameters (decisions) transferred to the control. On this

basis, control operations modify the current configuration

of c-granules into a new one. The prediction of control

parameters may also depend on the history of the past

decisions and values of other attributes available to control.

The control parameters are predicted on the basis of sat-

isfiability of the complex vague concepts, denoted by

C1;C2; . . .;Ck in the figure. These concepts are approxi-

mated by the aggregation schemata S1; S2; . . .; Sk.

It is worthwhile mentioning that networks of informa-

tion systems play an important role in configuration of c-

granules presented in Fig. 12. They make it possible to

gather data received from the environment, as a result of

interaction of physical objects in the spatio–temporal

scopes of c-granules, as well as to aggregate already con-

structed information systems into the new ones in hierar-

chical modeling (see aggregation schemata S1; S2; . . .; Sk in

Fig. 12) toward searching for relevant computational

building blocks (patterns). These computational building

blocks are used for approximation of complex concepts,

which help to predict decisions (control parameters). On

the basis of that, the control performs actions (ac1; . . .; ack)
resulting in a new configuration of c-granules and initiating

interactions among them.

7 Conclusions

In this paper, we have discussed some issues related to the

development of rough sets over 35 years, together with

some challenges for the rough set approach, especially in

the environment where computations are progressing due

to interactions between physical and abstract (information)

granules, and where they can be controlled by performing

actions activated on the basis of satisfiability (to a degree)

of complex vague concepts, modeled by approximations.
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