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Abstract: We consider the conformal decomposition of Einstein’s constraint equations
introduced by Lichnerowicz and York, on a closed manifold. We establish existence
of non-CMC weak solutions using a combination of a priori estimates for the indi-
vidual Hamiltonian and momentum constraints, barrier constructions and fixed-point
techniques for the Hamiltonian constraint, Riesz-Schauder theory for the momentum
constraint, together with a topological fixed-point argument for the coupled system.
Although we present general existence results for non-CMC weak solutions when the
rescaled background metric is in any of the three Yamabe classes, an important new fea-
ture of the results we present for the positive Yamabe class is the absence of the near-CMC
assumption, if the freely specifiable part of the data given by the traceless-transverse
part of the rescaled extrinsic curvature and the matter fields are sufficiently small, and
if the energy density of matter is not identically zero. In this case, the mean extrinsic
curvature can be taken to be an arbitrary smooth function without restrictions on the
size of its spatial derivatives, so that it can be arbitrarily far from constant, giving what
is apparently the first existence results for non-CMC solutions without the near-CMC
assumption. Using a coupled topological fixed-point argument that avoids near-CMC
conditions, we establish existence of coupled non-CMC weak solutions with (positive)
conformal factor φ ∈ W s,p, where p ∈ (1,∞) and s(p) ∈ (1 + 3/p,∞). In the CMC
case, the regularity can be reduced to p ∈ (1,∞) and s(p) ∈ (3/p,∞)∩ [1,∞). In the
case of s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10], and in
the case p = 2, we reproduce the CMC existence results of Maxwell [33], but with a
proof that goes through the same analysis framework that we use to obtain the non-CMC
results. The non-CMC results on closed manifolds here extend the 1996 non-CMC result
of Isenberg and Moncrief in three ways: (1) the near-CMC assumption is removed in
the case of the positive Yamabe class; (2) regularity is extended down to the maximum
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allowed by the background metric and the matter; and (3) the result holds for all three
Yamabe classes. This last extension was also accomplished recently by Allen, Clausen
and Isenberg, although their result is restricted to the near-CMC case and to smoother
background metrics and data.
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1. Introduction

In this article, we give an analysis of the coupled Hamiltonian and momentum constraints
in the Einstein equations on a 3-dimensional closed manifold. We consider the equa-
tions with matter sources satisfying an energy condition implied by the dominant energy
condition in the 4-dimensional spacetime; the unknowns are a Riemannian three-metric
and a two-index symmetric tensor. The equations form an under-determined system;
therefore, we focus entirely on a standard reformulation used in both mathematical and
numerical general relativity, called the conformal method, introduced by Lichnerowicz
and York [32,49,50]. The conformal method assumes that the unknown metric is known
up to a scalar field called a conformal factor, and also assumes that the trace and a term
proportional to the trace-free divergence-free part of the two-index symmetric tensor is
known, leaving as unknown a term proportional to the traceless symmetrized derivative
of a vector. Therefore, the new unknowns are a scalar and a vector field, transforming
the original under-determined system for a metric and a symmetric tensor into a (poten-
tially) well-posed elliptic system for a scalar and a vector field. See [5] for a recent
review article.

The question of existence of solutions to the Lichnerowicz-York conformally rescaled
Einstein’s constraint equations, for an arbitrarily prescribed mean extrinsic curvature,
has remained an open problem for more than thirty years. The rescaled equations, which
are a coupled nonlinear elliptic system consisting of the scalar Hamiltonian constraint
coupled to the vector momentum constraint, have been studied almost exclusively in
the setting of constant mean extrinsic curvature, known as the CMC case. In the CMC
case the equations decouple, and it has long been known how to establish existence
of solutions. The case of CMC data on closed (compact without boundary) manifolds
was completely resolved by several authors over the last twenty years, with the last
remaining sub-cases resolved and all the CMC sub-cases on closed manifolds summa-
rized by Isenberg in [25]. Over the last ten years, other CMC cases on different types
of manifolds containing various kinds of matter fields were studied and partially or
completely resolved; see the survey [5]. We take a moment to point out just some of
the quite substantial number of works in this area, including: the original work on the
Lichnerowicz equation [32]; the development of the conformal method [49–52]; the ini-
tial solution theory for the Hamiltonian constraint [39–41]; the thin sandwich alternative
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to the conformal method [4,37]; the complete classification of CMC initial data [25] and
the few known non-CMC results [11,26,28]; various technical results on transverse-
traceless tensors and the conformal Killing operator [6,8]; the more recent development
of the conformal thin sandwich formulation [53]; initial data for black holes [7,9]; ini-
tial data for Kerr-like black holes [13,14]; initial data with trapped surface boundaries
[15,34]; rough solution theory for CMC initial data [10,33,35]; and the gluing approach
to generating initial data [12]. A survey of many of these results appears in [5].

On the other hand, the question of existence of solutions to the Einstein constraint
equations for non-constant mean extrinsic curvature (the “non-CMC case”) has remained
largely unanswered, with progress made only in the case that the mean extrinsic cur-
vature is nearly constant (the “near-CMC case”), in the sense that the size of its spatial
derivatives is sufficiently small. The near-CMC condition leaves the constraint equations
coupled, but ensures the coupling is weak. In [26], Isenberg and Moncrief established
the first existence (and uniqueness) result in the near-CMC case, for background metric
having negative Ricci scalar. Their result was based on a fixed-point argument, together
with the use of iteration barriers (sub- and super-solutions) which were shown to be
bounded above and below by fixed positive constants, independent of the iteration. We
note that both the fixed-point argument and the global barrier construction in [26] rely
critically on the near-CMC assumption. All subsequent non-CMC existence results are
based on the framework in [26] and are thus limited to the near-CMC case (see the
survey [5], the non-existence results in [27], and also the newer existence results in [1]
for non-negative Yamabe classes).

This article presents (together with the brief overview in [22]) the first non-CMC exis-
tence results for the Einstein constraints that do not require the near-CMC assumption.
Two recent advances make this possible: A new topological fixed-point argument (estab-
lished here and in [21]) and a new global super-solution construction for the Hamiltonian
constraint (established here and in [22]) that are both free of near-CMC conditions. These
two results allow us to establish existence of non-CMC solutions for conformal back-
ground metrics in the positive Yamabe class, with the freely specifiable part of the data
given by the traceless-transverse part of the rescaled extrinsic curvature and the matter
fields sufficiently small, and with the matter energy density not identically zero. Our
results here and in [21,22] can be viewed as reducing the remaining open questions of
existence of non-CMC (weak and strong) solutions without near-CMC conditions to two
more basic and clearly stated open problems: (1) Existence of near-CMC-free global
super-solutions for the Hamiltonian constraint equation when the background metric is
in the non-positive Yamabe classes and for large data; and (2) existence of near-CMC-
free global sub-solutions for the Hamiltonian constraint equation when the background
metric is in the positive Yamabe class in vacuum (without matter). We will make some
further comments about this later in the paper.

Our results in this article, which can be viewed as pushing forward the rough solu-
tions program that was initiated by Maxwell in [33,35] (see also [10]), further extend
the known solution theory for the Einstein constraint equations on closed manifolds in
several directions:

(i) Far-from-CMC Weak Solutions: We establish the first existence results
(Theorem 1) for the coupled Einstein constraints in the non-CMC setting without
the near-CMC condition. In particular, if the rescaled background metric is in the
positive Yamabe class, if the freely specifiable part of the data given by the trace-
less-transverse part of the rescaled extrinsic curvature and the matter fields are
sufficiently small, and if the energy density of matter is not identically zero, then
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we show existence of non-CMC solutions with mean extrinsic curvature arbitrarily
far from constant. Two advances in the analysis of the Einstein constraint equa-
tions make this result possible: A topological fixed-point argument (Theorems 4
and 5) based on compactness arguments rather than k-contractions that is free of
near-CMC conditions, and constructions of global barriers for the Hamiltonian
constraint that are similarly free of the near-CMC condition (Lemmas 7, 8, 9, 13,
and 14).

(ii) Near-CMC Weak Solutions: We establish existence results (Theorem 2) for non-
CMC solutions to the coupled constraints under the near-CMC condition in the
setting of weaker (rougher) solutions spaces and for more general physical scenar-
ios than appeared previously in [26,1]. In particular, we establish existence of weak
solutions to the coupled Hamiltonian and momentum constraints on closed man-
ifolds for all three Yamabe classes, with (positive) conformal factor in φ ∈ W s,p,
where p ∈ (1,∞) and s(p) ∈ (1+3/p,∞). These results are based on combining
barriers, a priori estimates, and other results for the individual constraints together
with a new type of topological fixed-point argument (Theorems 4 and 5), and are
established in the presence of a weak background metric and data meeting very
low regularity requirements.

(iii) CMC Weak Solutions: In the CMC case, we establish existence (Theorem 3)
of weak solutions to the un-coupled Hamiltonian and momentum constraints on
closed manifolds for all three Yamabe classes, with (positive) conformal factor
φ ∈ W s,p, where p ∈ (1,∞) and s(p) ∈ (3/p,∞) ∩ [1,∞). In the case of
s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10], and in
the case p = 2, we reproduce the CMC existence results of Maxwell [33], but with
a different proof; our CMC proof goes through the same analysis framework that
we use to obtain the non-CMC results (Theorems 4 and 5). Again, these results are
established in the presence of a weak background metric and with data meeting
very low regularity requirements.

(iv) Barrier Constructions: We give constructions (Lemmas 9 and 13) of weak global
sub- and super-solutions (barriers) for the Hamiltonian constraint equation which
are free of the near-CMC condition. The constructions require the assumption
that the freely specifiable part of the data given by the traceless-transverse part
of the rescaled extrinsic curvature and the matter fields are sufficiently small
(required for the super-solution construction in Lemma 9) and if the energy den-
sity of matter is not identically zero (required for the sub-solution in construction
Lemma 13, although we note this can be relaxed using the technique in [1]). While
near-CMC-free sub-solutions are common in the literature, our near-CMC-free
super-solution constructions appear to be the first such results of this type.

(v) Supporting Technical Tools: We assemble a number of new supporting technical
results in the body of the paper and in several appendices, including: topological
fixed-point arguments designed for the Einstein constraints; construction and prop-
erties of general Sobolev classes W s,p and elliptic operators on closed manifolds
with weak metrics; the development of a very weak solution theory for the momen-
tum constraint; a priori L∞-estimates for weak W 1,2-solutions to the Hamiltonian
constraint; Yamabe classification of non-smooth metrics in general Sobolev clas-
ses W s,p; and an analysis of the connection between conformal rescaling and the
near-CMC condition.

The results in this paper imply that the weakest differentiable solutions of the Einstein
constraint equations we have found correspond to CMC and non-CMC hypersurfaces
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with physical spatial metric hab satisfying

hab ∈ W s,p(M), p ∈ (1,∞), s(p) ∈
(

1 + 3
p ,∞

)
. (1.1)

The curvature of such metrics can be computed in a distributional sense, following [17].
In the CMC case, the regularity can be reduced to

hab ∈ W s,p(M), p ∈ (1,∞), s(p) ∈
(

3
p ,∞

)
∩ [1,∞). (1.2)

In the case s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10], and
in the case p = 2, we reproduce the CMC existence results of Maxwell [33], but with
a different proof; our CMC proof goes through the same analysis framework that we
use to obtain the non-CMC results (Theorems 4 and 5). In this paper we do not include
uniqueness statements on CMC solutions, or necessary and sufficient conditions for the
existence of CMC solutions; however, we expect that the techniques used in the above
mentioned works can be adapted to this setting without difficulty.

There are several related motivations for establishing the extensions outlined above.
First, as outlined in [5], new results for the non-CMC case, beyond the case analyzed
in [1,26], are of great interest in both mathematical and numerical relativity. Non-CMC
results that are free of the near-CMC assumption are of particular interest, since the
existence of solutions in this case has been an open question for more than thirty years.
Second, there is currently substantial research activity in rough solutions to the Einstein
evolution equations, which rest on rough/weak solution results for the initial data [30].
Third, the approximation theory for Petrov-Galerkin-type methods (including finite ele-
ment, wavelet, spectral, and other methods) for the constraints and similar systems previ-
ously developed in [20] establishes convergence of numerical solutions in very general
physical situations, but rests on assumptions about the solution theory; the results in
the present paper and in [21], help to complete this approximation theory framework.
Similarly, very recent results on convergence of adaptive methods for the constraints
in [23,24] rest in large part on the collection of results here and in [20,21].

An extended outline of the paper is as follows.
In Sect. 2, we summarize the conformal decomposition of Einstein’s constraint equa-

tions introduced by Lichnerowicz and York, on a closed manifold. We describe the
classical strong formulation of the resulting coupled elliptic system, and then define
weak formulations of the constraint equations that will allow us to develop solution
theories for the constraints in the spaces with the weakest possible regularity.

After setting up the basic notation, we give an overview of our main results in Sect. 3,
summarized in three existence theorems (Theorems 1, 2, and 3) for weak far-from-CMC,
near-CMC, and CMC solutions to the coupled constraints, extending the known solution
theory in several distinct ways as described above. We outline the two recent advances
in the analysis of the Einstein constraint equations that make these results possible. The
first advance is an abstract coupled topological fixed-point result (Theorems 4 and 5), the
proof of which is based directly on compactness rather than on k-contractions. This gives
an analysis framework for weak solutions to the constraint equations that is fundamen-
tally free of the near-CMC assumption; the near-CMC assumption then only potentially
arises in the construction of global barriers as part of the overall fixed-point argument. A
result of this type also makes possible the new non-CMC results for the case of compact
manifolds with boundary appearing in [21]. The second new advance is the construction
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of global super-solutions for the Hamiltonian constraint that are also free of the near-
CMC condition; we give an overview of the main ideas in the constructions, which are
then derived rigorously in Sect. 5.

In Sect. 4 we then develop the necessary results for the individual constraint equations
in order to complete an existence argument for the coupled system based on the abstract
fixed-point argument in Theorems 4 and 5. In particular, in Sect. 4.1, we first develop
some basic technical results for the momentum constraint operator under weak assump-
tions on the problem data, including existence of weak solutions to the momentum
constraint, given the conformal factor as data. In Sect. 4.2, we assume the existence of
barriers (weak sub- and super-solutions) to the Hamiltonian constraint equation forming
a nonempty positive bounded interval, and then derive several properties of the Hamil-
tonian constraint that are needed in the analysis of the coupled system. The results are
established under weak assumptions on the problem data, and for any Yamabe class.

Using order relations on appropriate Banach spaces, we then derive several such com-
patible weak global sub- and super-solutions in Sect. 5, based both on constants and on
more complex non-constant constructions. While the sub-solutions are similar to those
found previously in the literature, some of the super-solutions are new. In particular, we
give two super-solution constructions that do not require the near-CMC condition. The
first is constant, and requires that the scalar curvature be strictly globally positive. The
second is based on a scaled solution to a Yamabe-type problem, and is valid for any
background metric in the positive Yamabe class.

In Sect. 6, we establish the main results by giving the proofs of Theorems 1, 2, and 3.
In particular, using the topological fixed-point argument in Theorem 5, we combine the
global barrier constructions in Sect. 5 with the individual constraint results in Sect. 4 to
establish existence of weak non-CMC solutions. We summarize our results in Sect. 7.
For ease of exposition, various supporting technical results are given in several appen-
dices as follows: Appendix Sect. A.1 – topological fixed-point arguments; Appendix
Sect. A.2 – ordered Banach spaces; Appendix Sect. A.3 – monotone increasing maps;
Appendix Sect. A.4 – construction of fractional order Sobolev spaces of sections of vec-
tor bundles over closed manifolds; Appendix Sect. A.5 – a priori estimates for elliptic
operators; Appendix Sect. A.6 – maximum principles on closed manifolds; Appendix
Sect. A.7 – Yamabe classification of weak metrics; Appendix Sect. A.8 – conformal
covariance of the Hamiltonian constraint; and Appendix Sect. A.9 – conformal rescal-
ing and the near-CMC condition.

2. Preliminary Material

2.1. Notation and conventions. Let M be an n-dimensional smooth closed manifold.
We denote by π : E →M (or simply E →M, or just E) a smooth vector bundle over
M, where the manifold M is called the base space, E is called the total space, and π is
the bundle projection such that for any x ∈M, Ex = π−1(x) is the fiber over x , which
is a vector space of (fiber) dimension mx . If all fibers Ex have dimension mx = m,
we say the fiber dimension of E is m. The manifold M itself can be considered as the
vector bundle E =M× {0} with fiber dimension m = 0. A section of the trivial vector
bundle E =M×R with fiber dimension m = 1 is simply a scalar function on M. Our
primary interest is the case where

E = T r
s M = T M⊗ · · · ⊗ T M︸ ︷︷ ︸

r times

⊗ T ∗M⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s times

,
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the (r, s)-tensor bundle with contravariant order r and covariant order s, giving fiber
dimension m = n(r + s), where T M is the tangent bundle, and T ∗M is the co-tangent
bundle of M. A Ck section of π (or of E) is a Ck map γ :M→ E such that for each
x ∈M, π(γ (x)) = x . These Ck sections form real Banach spaces Ck(E) which arise
naturally in the global linear analysis of partial differential equations on manifolds.

Let hab ∈ C∞(T 0
2 M) be a smooth Riemannian metric on M, (where by convention

Latin indices denote abstract indices as e.g. in [48]), meaning that it is a symmet-
ric, positive definite, covariant, smooth two-index tensor field on M. The combination
(M, hab) is referred to as a (smooth) Riemannian manifold; we will relax the smooth-
ness requirement on hab below. For each x ∈M, the metric hab(x) defines a positive
definite inner product on the tangent space TxM at x . Denote by hab the inverse of hab,
that is, hachbc = δa

b, where δa
b : TxM→ TxM is the identity map. We use the con-

vention that repeated indices, one upper-index and one sub-index, denote contraction.
Indices on tensors will be raised and lowered with hab and hab, respectively. For exam-
ple, given the tensor uab

c we denote uabc = haa1 hbb1 ua1b1 c, and uabc = hcc1 uab
c1 ;

notice that the order of the indices is important in the case that the tensor uabc or uabc is
not symmetric. We say that a tensor is of type m iff it can be transformed into a tensor
ua1···am by lowering appropriate indices (its vector bundle then has fiber dimension mn).

We now give a brief overview of L p and Sobolev spaces of sections of vector bundles
over closed manifolds in order to introduce the notation used throughout the paper. An
overview of the construction of fractional order Sobolev spaces of sections of vector
bundles can be found in Appendix A.4, based on Besov spaces and partitions of unity.
The case of the sections of the trivial bundle of scalars can also be found in [19], and the
case of tensors can also be found in [42]. Let∇a be the Levi-Civita connection associated
with the metric hab, that is, the unique torsion-free connection satisfying ∇ahbc = 0.
Let Rabc

d be the Riemann tensor of the connection ∇a , where the sign convention used
in this article is (∇a∇b−∇b∇a)vc = Rabc

dvd . Denote by Rab := Racb
c the Ricci tensor

and by R := Rabhab the Ricci scalar curvature of this connection.
Integration on M can be defined with the volume form associated with the metric

hab. Given an arbitrary tensor ua1···ar b1···bs of type m = r + s, we define a real-valued
function measuring its magnitude at any point x ∈M as

|u| := (ua1···bs ua1···bs )
1/2. (2.1)

A norm of an arbitrary tensor field ua1···ar b1···bs on M can then be defined for any
1 � p <∞ and for p = ∞ respectively using (2.1) as follows:

‖u‖p :=
(∫

M
|u|p dx

)1/p

, ‖u‖∞ := ess sup
x∈M
|u|. (2.2)

One way to construct the Lebesgue spaces L p(T r
s M) of sections of the (r, s)-tensor

bundle, for 1 � p � ∞, is through the completion of C∞(T r
s M) with respect to the

L p-norm (2.2). The L p spaces are Banach spaces, and the case p = 2 is a Hilbert space
with the inner product and norm given by

(u, v) :=
∫

M
ua1···amv

a1···am dx, ‖u‖ := √(u, u) = ‖u‖2. (2.3)

Denote covariant derivatives of tensor fields as ∇kua1···am := ∇b1 · · · ∇bk ua1···am , where
k denotes the total number of derivatives represented by the tensor indices (b1, . . . , bk).
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Another norm on C∞(T r
s M) is given for any non-negative integer k and for any

1 � p �∞ as follows:

‖u‖k,p :=
k∑

l=0

‖∇lu‖p. (2.4)

The Sobolev spaces W k,p(T r
s M) of sections of the (r, s)-tensor bundle can be defined as

the completion of C∞(T r
s M) with respect to the W k,p-norm (2.4). The Sobolev spaces

W k,p are Banach spaces, and the case p = 2 is a Hilbert space. We have L p = W 0,p

and ‖s‖p = ‖s‖0,p. See Appendix A.4 for a more careful construction that includes real
order Sobolev spaces of sections of vector bundles.

Let C∞+ be the set of nonnegative smooth (scalar) functions on M. Then we can
define order cone

W s,p
+ := {φ ∈ W s,p : 〈φ, ϕ〉 � 0 ∀ϕ ∈ C∞+

}
, (2.5)

with respect to which the Sobolev spaces W s,p = W s,p(M) are ordered Banach spaces.
Here 〈·, ·〉 is the unique extension of the L2-inner product to a bilinear form W s,p ⊗
W−s,p′ → R, with 1

p′ + 1
p = 1. The order relation is then φ � ψ iff φ−ψ ∈ W s,p

+ . We
note that this order cone is normal only for s = 0. See Appendix A.2, where we review
the main properties of ordered Banach spaces.

2.2. The Einstein constraint equations. We give a quick overview of the Einstein con-
straint equations in general relativity, and then define weak formulations that are funda-
mental to both solution theory and the development of approximation theory. Analogous
material for the case of compact manifolds with boundary can be found in [21].

Let (M, gµν) be a 4-dimensional spacetime, that is, M is a 4-dimensional, smooth
manifold, and gµν is a smooth, Lorentzian metric on M with signature (−,+,+,+). Let
∇µ be the Levi-Civita connection associated with the metric gµν . The Einstein equation is

Gµν = κTµν,

where Gµν = Rµν − 1
2 R gµν is the Einstein tensor, Tµν is the stress-energy tensor, and

κ = 8πG/c4, with G the gravitation constant and c the speed of light. The Ricci tensor is
Rµν = Rµσνσ and R = Rµνgµν is the Ricci scalar, where gµν is the inverse of gµν , that
is gµσ gσν = δµν . The Riemann tensor is defined by Rµνσ ρwρ =

(∇µ∇ν − ∇ν∇µ
)
wσ ,

wherewµ is any 1-form on M . The stress energy tensor Tµν is assumed to be symmetric
and to satisfy the condition ∇µTµν = 0 and the dominant energy condition, that is,
the vector−Tµνvν is timelike and future-directed, where vµ is any timelike and future-
directed vector field. In this section Greek indices µ, ν, σ , ρ denote abstract spacetime
indices, that is, tensorial character on the 4-dimensional manifold M . They are raised
and lowered with gµν and gµν , respectively. Latin indices a, b, c, d will denote tensorial
character on a 3-dimensional manifold.

The map t : M → R is a time function iff the function t is differentiable and the
vector field −∇µt is a timelike, future-directed vector field on M . Introduce the hyper-
surface M := {x ∈ M : t (x) = 0}, and denote by nµ the unit 1-form orthogonal to M.
By definition of M the form nµ can be expressed as nµ = −α∇µt , where α, called the
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lapse function, is the positive function such that nµnν gµν = −1. Let ĥµν and k̂µν be
the first and second fundamental forms of M, that is,

ĥµν := gµν − nµnν, k̂µν := −ĥµ
σ∇σnν .

The Einstein constraint equations on M are given by
(
Gµν − κTµν

)
nν = 0.

A well known calculation allows us to express these equations involving tensors on M
as equations involving intrinsic tensors on M. The result is the following equations:

3R̂ + k̂2 − k̂abk̂ab − 2κρ̂ = 0, (2.6)

D̂ak̂ − D̂bk̂ab + κĵa = 0, (2.7)

where tensors ĥab, k̂ab, ĵa and ρ̂ on a 3-dimensional manifold are the pull-backs on M of
the tensors ĥµν , k̂µν , ĵµ and ρ̂ on the 4-dimensional manifold M . We have introduced the
energy density ρ̂ := nµnµTµν and the momentum current density ĵµ := −ĥµνnσ T νσ .
We have denoted by D̂a the Levi-Civita connection associated to ĥab, so (M, ĥab) is
a 3-dimensional Riemannian manifold, with ĥab having signature (+,+,+), and we use
the notation ĥab for the inverse of the metric ĥab. Indices have been raised and lowered
with ĥab and ĥab, respectively. We have also denoted by 3R̂ the Ricci scalar curvature
of the metric ĥab. Finally, recall that the constraint Eqs. (2.6)-(2.7) are indeed equations
on ĥab and k̂ab due to the matter fields satisfying the energy condition −ρ̂2 + ĵa ĵ

a � 0
(with strict inequality holding at points on M, where ρ̂ = 0; see [48]), which is implied
by the dominant energy condition on the stress-energy tensor Tµν in spacetime.

2.3. Conformal transverse traceless decomposition. Let φ denote a positive scalar field
on M, and decompose the extrinsic curvature tensor k̂ab = l̂ab + 1

3 ĥabτ̂ , where τ̂ :=
k̂abĥab is the trace and then l̂ab is the traceless part of the extrinsic curvature tensor.
Then, introduce the following conformal re-scaling:

ĥab =: φ4 hab, l̂ab =: φ−10 lab, τ̂ =: τ,
ĵa =: φ−10 ja, ρ̂ =: φ−8 ρ.

(2.8)

We have introduced the Riemannian metric hab on the 3-dimensional manifold M,
which determines the Levi-Civita connection Da , and so we have that Dahbc = 0. We
have also introduced the symmetric, traceless tensor lab, and the non-physical matter
sources ja and ρ. The different powers of the conformal re-scaling above are carefully
chosen so that the constraint Eqs. (2.6)-(2.7) transform into the following equations:

−8�φ + 3Rφ +
2

3
τ 2φ5 − lablabφ−7 − 2κρφ−3 = 0, (2.9)

−Dblab +
2

3
φ6 Daτ + κ ja = 0, (2.10)

where in the equation above, and from now on, indices of unhatted fields are raised and
lowered with hab and hab respectively. We have also introduced the Laplace-Beltrami
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operator with respect to the metric hab, acting on smooth scalar fields; it is defined as
follows:

�φ := hab Da Dbφ. (2.11)

Equations (2.9)–(2.10) can be obtained by a straightforward albeit long computation. In
order to perform this calculation it is useful to recall that both D̂a and Da are connections
on the manifold M, and so they differ on a tensor field Cab

c, which can be computed
explicitly in terms of φ, and has the form

Cab
c = 4δ(a

c Db) ln(φ)− 2habhcd Dd ln(φ).

We remark that the power four on the re-scaling of the metric ĥab and M being
3-dimensional imply that 3R̂ = φ−5(3Rφ − 8�φ), or in other words, that φ satisfies
the Yamabe-type problem:

− 8�φ + 3Rφ − 3R̂φ5 = 0, φ > 0, (2.12)

where 3R̂ represents the scalar curvature corresponding to the physical metric ĥab =
φ4hab. Note that for any other power in the re-scaling, terms proportional to hab(Daφ)

(Dbφ)/φ
2 appear in the transformation. The set of all metrics on a closed manifold

can be classified into the three disjoint Yamabe classes Y+(M), Y0(M), and Y−(M),
corresponding to whether one can conformally transform the metric into a metric with
strictly positive, zero, or strictly negative scalar curvature, respectively, cf. [31] (see
also Appendix A.7). We note that the Yamabe problem is to determine, for a given
metric hab, whether there exists a conformal transformation φ solving (2.12) such that
3R̂ = const. Arguments similar to those above for φ force the power negative ten on the
re-scaling of the tensor l̂ab and ĵa , so terms proportional to (Daφ)/φ cancel out in (2.10).
Finally, the ratio between the conformal re-scaling powers of ρ̂ and ĵa is chosen such
that the inequality −ρ2 + hab ja jb � 0 implies the inequality −ρ̂2 + ĥabĵ

a ĵb � 0. For
a complete discussion of all possible choices of re-scaling powers, see Appendix A.9.

There is one more step to convert the original constraint equation (2.6)-(2.7) into
a determined elliptic system of equations. This step is the following: Decompose the
symmetric, traceless tensor lab into a divergence-free part σab, and the symmetrized and
traceless gradient of a vector, that is, lab =: σ ab + (Lw)ab, where Daσ

ab = 0 and we
have introduced the conformal Killing operator L acting on smooth vector fields and
defined as follows:

(Lw)ab := Dawb + Dbwa − 2
3 (Dcw

c)hab. (2.13)

Therefore, the constraint Eqs. (2.6)-(2.7) are transformed by the conformal re-scaling
into the following equations:

−8�φ + 3Rφ +
2

3
τ 2φ5 − [σab + (Lw)ab][σ ab + (Lw)ab]φ−7 − 2κρφ−3 = 0, (2.14)

−Db(Lw)ab +
2

3
φ6 Daτ + κ ja = 0. (2.15)

In the next section we interpret these equations above as partial differential equations
for the scalar field φ and the vector field wa , while the rest of the fields are considered
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as given fields. Given a solution φ and wa of Eqs. (2.14)-(2.15), the physical metric ĥab

and extrinsic curvature k̂ab of the hypersurface M are given by

ĥab = φ4hab, k̂ab = φ−10[σ ab + (Lw)ab] + 1

3
φ−4τhab,

while the matter fields are given by Eq (2.8).
From this point forward, for simplicity we will denote the Levi-Civita connection

of the metric hab on the 3-dimensional manifold M as ∇a rather than Da , and the
Ricci scalar of hab will be denoted by R instead of 3R. Let (M, h) be a 3-dimensional
Riemannian manifold, where M is a smooth, compact manifold without boundary, and
h ∈ C∞(T 0

2 M) is a positive definite metric. With the shorthands C∞ = C∞(M× R)

and C∞ = C∞(T M), let L : C∞ → C∞ and L : C∞ → C∞ be the operators with
actions on φ ∈ C∞ and w ∈ C∞ given by

Lφ := −�φ, (2.16)

(Lw)a := −∇b(Lw)ab, (2.17)

where� denotes the Laplace-Beltrami operator defined in (2.11), and where L denotes
the conformal Killing operator defined in (2.13). We will also use the index-free notation
Lw and Lw.

The freely specifiable functions of the problem are a scalar function τ , interpreted as
the trace of the physical extrinsic curvature; a symmetric, traceless, and divergence-free,
contravariant, two index tensor σ ; the non-physical energy density ρ and the non-phys-
ical momentum current density vector j subject to the requirement −ρ2 + j · j � 0. The
term non-physical refers here to a conformal rescaled field, while physical refers to a
conformally non-rescaled term. The requirement on ρ and j mentioned above and the
particular conformal rescaling used in the semi-decoupled decomposition imply that the
same inequality is satisfied by the physical energy and momentum current densities. This
is a necessary condition (although not sufficient) in order that the matter sources in space-
time satisfy the dominant energy condition. The definition of various energy conditions
can be found in [48, p. 219]. Introduce the non-linear operators F : C∞ × C∞ → C∞
and F : C∞ → C∞ given by

F(φ,w) = aτ φ
5 + aRφ − aρφ

−3 − awφ
−7, and F(φ) = bτ φ6 + b j ,

where the coefficient functions are defined as follows:

aτ := 1
12τ

2, aR := 1
8 R, aρ := κ

4ρ,

aw := 1
8 (σ + Lw)ab(σ + Lw)ab, ba

τ := 2
3∇aτ, ba

j := κ ja .
(2.18)

Notice that the scalar coefficients aτ , aw, and aρ are non-negative, while there is no sign
restriction on aR .

With these notations, the classical formulation (or the strong formulation) of the
coupled Einstein constraint equations reads: Given the freely specifiable smooth func-
tions τ , σ , ρ, and j in M, find a scalar field φ and a vector field w in M solution of the
system

Lφ + F(φ,w) = 0 and Lw + F(φ) = 0 in M. (2.19)
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2.4. Formulation in Sobolev spaces. We now outline a formulation of the Einstein con-
straint equations that involves the weakest regularity of the equation coefficients such that
the equation itself is well-defined. So in particular, the operators L and L are no longer
differential operators sending smooth sections to smooth sections. We shall employ
Sobolev spaces to quantify smoothness, cf. Appendix A.4.

Let (M, h) be a 3-dimensional Riemannian manifold, where M is a smooth, com-
pact manifold without boundary, and with p ∈ ( 3

2 ,∞) and s ∈ ( 3
p ,∞) ∩ [1, 2], h ∈

W s,p(T 0
2 M) is a positive definite metric. Note that the restriction s � 2 is only apparent,

since W t,p ↪→ W 2,p for any t > 2. In the formulation of the constraint equations we need
to distinguish the cases s > 2 and s � 2 at least notation-wise, and we choose to present
in this subsection the case s � 2 because this is the case that is considered in the core
existence theory; the higher regularity is obtained by a standard bootstrapping technique.
The general case is discussed in Sects. 4 and 6. Let us define r = r(s, p) = 3p

3+(2−s)p ,

so that the continuous embedding Lr ↪→ W s−2,p holds. Introduce the operators

AL : W s,p → W s−2,p, and AL : W 1,2r → W−1,2r ,

as the unique extensions of the operators L and L in Eqs. (2.16) and (2.17), respectively,
cf. Lemma 31 in Appendix A.5. The boldface letters denote spaces of sections of the
tangent bundle T M, e.g., W 1,2r = W 1,2r (T M).

Fix the source functions

τ ∈ L2r , ρ ∈ W s−2,p
+ , σ ∈ L2r , j ∈ W−1,2r , (2.20)

where σ is symmetric, traceless and divergence-free in the weak sense, the latter mean-
ing that 〈σ,Lω〉 = 0 for all ω ∈ W 1,(2r)′ . Here 1

(2r)′ + 1
2r = 1, and 〈·, ·〉 denotes the

extension of the L2-inner product to W−1,2r ⊗W 1,(2r)′ . We say that the matter fields ρ
and j satisfy the energy condition iff there exist sequences {ρn} ⊂ C∞ and {j n} ⊂ C∞,
respectively converging to ρ and j in the appropriate topology, such that

ρ2
n − j n · j n � 0.

Given any function τ ∈ L2r we have bτ ≡ 2
3∇τ ∈ W−1,2r . The assumptions τ ∈ L2r

and σ ∈ L2r imply that for every w ∈ W 1,2r the functions aτ and aw belong to Lr . For
example, to see that aw ∈ Lr , we proceed as

‖aw‖r = ‖σ + Lw‖2r � 2
(
‖σ‖22r + ‖Lw‖22r

)
� 2

(
‖σ‖22r + c2

L‖w‖21,2r

)
,

where we used the boundedness ‖Lw‖2r � cL‖w‖1,2r . The assumption on the back-
ground metric implies that aR ∈ W s−2,p.

Given any two functions u, v ∈ L∞, and t � 0 and q ∈ [1,∞], define the interval

[u, v]t,q := {φ ∈ W t,q : u � φ � v} ⊂ W t,q ,

see Lemma 1 near the end of Sect. 3. We equip [u, v]t,q with the subspace topology
of W t,q . We will write [u, v]q for [u, v]0,q , and [u, v] for [u, v]∞. Now, assuming that
φ−, φ+ ∈ W s,p and 0 < φ− � φ+ <∞, we introduce the non-linear operators

f : [φ−, φ+]s,p ×W 1,2r → W s−2,p, and f : [φ−, φ+]s,p → W−1,2r ,
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by

f (φ,w) = aτ φ
5 + aRφ − aρφ

−3 − awφ
−7, and f (φ) = bτ φ6 + b j ,

where the pointwise multiplication by an element of W s,p defines a bounded linear map
in W s−2,p and in W−1,2r , cf. Corollary 3(a) in Appendix A.4.

Now, we can formulate the Einstein constraint equations in terms of the above defined
operators: Find elements φ ∈ [φ−, φ+]s,p and w ∈ W 1,2r solutions of

ALφ + f (φ,w) = 0, (2.21)

ALw + f (φ) = 0. (2.22)

In the following, often we treat the two equations separately. The Hamiltonian
constraint equation is the following: Given a function w ∈ W 1,2r , find an element
φ ∈ [φ−, φ+]s,p solution of

ALφ + f (φ,w) = 0. (2.23)

When the Hamiltonian constraint equation is under consideration, the function w is
referred to as the source. To indicate the dependence of the solution φ on the source w,
sometimes we write φ = φw. Let us define the momentum constraint equation: Given
φ ∈ W s,p with φ > 0, find an element w ∈ W 1,2r solution of

ALw + f (φ) = 0. (2.24)

When the momentum constraint equation is under consideration, the function φ is
referred to as the source. To indicate the dependence of the solution w on the source φ,
sometimes we write w = wφ .

3. Overview of the Main Results

In this section, we state our three main theorems (Theorems 1, 2, and 3 below) on the
existence of far-from-CMC, near-CMC, and CMC solutions to the Einstein constraint
equations, and give an outline of the overall structure of the argument that we build in
the paper. The proofs of the main results appear in Sect. 6 toward the end of the paper,
after we develop a number of supporting results in the body of the paper. After we give
an overview of the basic abstract structure of the coupled nonlinear constraint problem,
we prove two abstract topological fixed-point theorems (Theorems 4 and 5) that are the
basis for our analysis of the coupled system; these arguments are also the basis for our
results in [21] on existence of non-CMC solutions to the Einstein constraints on compact
manifolds with boundary. After proving these abstract results, we give an overview of
the technical results that must be established in the remainder of the paper in order to
use the abstract results.

Before stating the main theorems, let us make precise what we mean by near-CMC
condition in this article. We say that the extrinsic mean curvature τ satisfies the near-
CMC condition when the following inequality is satisfied:

‖∇τ‖z < � inf
M
|τ |, (3.1)

where the constant � =
√

3
2C if ρ, σ 2 ∈ L∞, and � =

√
3

2C (
min uv
max uv )

6 otherwise, with the
constant C > 0 as in Corollary 1 and the continuous functions u, v > 0 are as defined in
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(5.14) or in (5.15) on page. Here C depends only on the Riemannian manifold (M, hab),
and not mentioning (M, hab), u and v depend only on ρ, σ 2, and τ . It is important to
note that we always have 0 < min uv

max uv � 1, so that in any case the condition (3.1) is

at least as strong as the same condition with � taken to be equal to
√

3
2C . The condition

depends on the value of z, and that will be inserted through the context.
Recall that the three Yamabe classes Y+(M), Y−(M) and Y0(M) are defined after

Eq. (2.12). See Appendix A.7 for more details.

3.1. Theorem 1: Far-CMC weak solutions. Here is the first of our three main results.
This result does not involve the near-CMC condition, which is one of the main contribu-
tions of this paper. The result is developed in the presence of a weak background metric
hab ∈ W s,p, for p ∈ (1,∞) and s ∈ (1 + 3

p ,∞), with the weakest possible assumptions
on the data that allows for avoiding the near-CMC condition.

Theorem 1 (Far-CMC W s,p solutions, p ∈ (1,∞), s ∈ (1 + 3
p ,∞)). Let (M, hab)

be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p admit no conformal
Killing field and be in Y+(M), where p ∈ (1,∞) and s ∈ (1 + 3

p ,∞) are given. Select
q and e to satisfy:

• 1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p ,

3+p
3p ],

• e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3q + s − 3

p − 1, 3
q + s − 3

p ].
Assume that the data satisfies:

• τ ∈ W e−1,q if e � 2, and τ ∈ W 1,z otherwise, with z = 3q
3+max{0,2−e}q ,

• σ ∈ W e−1,q , with ‖σ 2‖∞ sufficiently small,
• ρ ∈ W s−2,p

+ ∩ L∞ \ {0}, with ‖ρ‖∞ sufficiently small,
• j ∈ W e−2,q , with ‖j‖e−2,q sufficiently small.
Then there exist φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein constraint
equations.

Proof. The proof will be given in Sect. 6. See Fig. 1 for clarification of the conditions
on e and q. ��
Remark 1. The above result avoids the near-CMC condition (3.1); however, one should
be aware of the various smallness conditions involved in the above theorem. More pre-
cisely, the mean curvature τ can be chosen to be an arbitrary function from a suitable
function space, and afterwards, one has to choose σ , ρ, and j satisfying smallness con-
ditions that depend on the chosen τ . Nevertheless, the novelty of this result is that τ can
be specified freely, whereas the condition (3.1) is not satisfied for arbitrary τ .

3.2. Theorem 2: Near-CMC weak solutions. Here is the second of our three main results;
this result requires the near-CMC condition, but still extends the known near-CMC results
to situations with weaker assumptions on metric and on the data. In particular, the result
is developed in the presence of a weak background metric hab ∈ W s,p, for p ∈ (1,∞)
and s ∈ (1 + 3

p ,∞), and with the weakest possible assumptions on the data.

Theorem 2 (Near-CMC W s,p solutions, p ∈ (1,∞), s ∈ (1 + 3
p ,∞)). Let (M, hab)

be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p admit no conformal
Killing field, where p ∈ (1,∞) and s ∈ (1 + 3

p ,∞) are given. Select q, e and z to
satisfy:
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Fig. 1. Range of e and q in Theorems 1 and 2, with d = s − 3
p > 1

• 1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p ,

3+p
3p ] .

• e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3q + s − 3

p − 1, 3
q + s − 3

p ] .
• z = 3q

3+max{0,2−e}q .

Assume that τ satisfies the near-CMC condition (3.1) with z as above, and that the data
satisfies:

• τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z if e � 2,
• σ ∈ W e−1,q ,
• ρ ∈ W s−2,p

+ ,
• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab is in Y−(M); the metric hab is conformally equivalent to a metric with scalar
curvature (−τ 2);

(b) hab is in Y0(M) or in Y+(M); either ρ ≡ 0 and τ ≡ 0 or τ ∈ L∞ and infM σ 2

is sufficiently large.

Then there exist φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein constraint
equations.

Proof. The proof will be given in Sect. 6. See Fig. 1 for clarification of the conditions
on e and q. ��

3.3. Theorem 3: CMC weak solutions. Here is the last of our three main results; it cov-
ers specifically the CMC case, and allows for lower regularity of the background metric
than the non-CMC case. In particular, the result is developed with a weak background
metric hab ∈ W s,p, for p ∈ (1,∞) and s ∈ ( 3

p ,∞) ∩ [1,∞). In the case of s = 2, we
reproduce the CMC existence results of Choquet-Bruhat [10], and in the case p = 2,
we reproduce the CMC existence results of Maxwell [33], but with a different proof;
our CMC proof goes through the same analysis framework that we use to obtain the
non-CMC results (Theorems 4 and 5).
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Theorem 3 (CMC W s,p solutions, p ∈ (1,∞), s ∈ ( 3
p ,∞) ∩ [1,∞)). Let (M, hab)

be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p admit no conformal
Killing field, where p ∈ (1,∞) and s ∈ ( 3

p ,∞) ∩ [1,∞) are given. With d := s − 3
p ,

select q and e to satisfy:

• 1
q ∈ (0, 1) ∩ [ 3−p

3p ,
3+p
3p ] ∩ [ 1−d

3 ,
3+sp
6p ),

• e ∈ [1,∞) ∩ [s − 1, s] ∩ [ 3q + d − 1, 3
q + d] ∩ ( 3

q + d
2 ,∞).

Assume τ = const (CMC) and that the data satisfies:

• σ ∈ W e−1,q ,
• ρ ∈ W s−2,p

+ ,
• j ∈ W e−2,q .

In addition, let one of the following sets of conditions hold:

(a) hab is in Y−(M); τ = 0;
(b) hab is in Y+(M); ρ = 0 or σ = 0;
(c) hab is in Y0(M); τ = 0; ρ = 0 or σ = 0;
(d) hab is in Y0(M); τ = ρ = σ = 0; j = 0.

Then there exist φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the Einstein constraint
equations.

Proof. The proof will be given in Sect. 6. See Fig. 2 for clarification of the conditions
on e and q. ��

3.4. A coupled topological fixed-point argument. In Theorems 4 and 5 below (see
also [21]) we give some abstract fixed-point results which form the basic framework
for our analysis of the coupled constraints. These topological fixed-point theorems will
be the main tool by which we shall establish Theorems 1, 2, and 3 above. They have the
important feature that the required properties of the abstract fixed-point operators S and
T appearing in Theorems 4 and 5 below can be established in the case of the Einstein

Fig. 2. Range of e and q in Theorem 3. Recall that d = s − 3
p > 0
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constraints without using the near-CMC condition; this is not the case for fixed-point
arguments for the constraints based on k-contractions (cf. [1,26]) which require near-
CMC conditions. The bulk of the paper then involves establishing the required properties
of S and T without using the near-CMC condition, and finding suitable global barri-
ers φ− and φ+ for defining the required set U that are similarly free of the near-CMC
condition (when possible).

We now set up the basic abstract framework. Let X and Y be Banach spaces, let
f : X ×Y → X∗ and f : X → Y ∗ be (generally nonlinear) operators, let AL : Y → Y ∗
be a linear invertible operator, and let AL : X → X∗ be a linear invertible operator satis-
fying the maximum principle, meaning that ALu � ALv ⇒ u � v. The order structure
on X for interpreting the maximum principle will be inherited from an ordered Banach
space Z (see Appendices A.2, A.3, and A.6, and also cf. [54]) through the compact
embedding X ↪→ Z , which will also make available compactness arguments.

The coupled Hamiltonian and momentum constraints can be viewed abstractly as
coupled operator equations of the form:

ALφ + f (φ,w) = 0, (3.2)

ALw + f (φ) = 0, (3.3)

or equivalently as the coupled fixed-point equations

φ = T (φ,w), (3.4)

w = S(φ), (3.5)

for appropriately defined fixed-point maps T : X × Y → X and S : X → Y . The
obvious choice for S is the Picard map for (3.3),

S(φ) = −A−1
L

f (φ), (3.6)

which also happens to be the solution map for (3.3). On the other hand, there are a
number of distinct possibilities for T , ranging from the solution map for (3.2), to the
Picard map for (3.2), which inverts only the linear part of the operator in (3.2):

T (φ,w) = −A−1
L f (φ,w). (3.7)

Assume now that T is as in (3.7), and (for fixed w ∈ Y ) that φ− and φ+ are sub- and
super-solutions of the semi-linear operator equation (3.2) in the sense that

ALφ− + f (φ−, w) � 0, ALφ+ + f (φ+, w) � 0.

The assumptions on AL imply (see Lemma 26 in Appendix A.3) that for fixed w ∈ Y ,
φ− and φ+ are also sub- and super-solutions of the equivalent fixed-point equation:

φ− � T (φ−, w), φ+ � T (φ+, w).

For developing results on fixed-point iterations in ordered Banach spaces, it is convenient
to work with maps which are monotone increasing in φ, for fixed w ∈ Y :

φ1 � φ2 �⇒ T (φ1, w) � T (φ2, w).

The map T that arises as the Picard map for a semi-linear problem will generally not be
monotone increasing; however, if there exists a continuous linear monotone increasing
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map J : X → X∗, then one can always introduce a positive shift s into the operator
equation

As
Lφ + f s(φ,w) = 0,

with As
L = AL + s J and f s(φ,w) = f (φ,w)− s Jφ. (Throughout this paper, the spaces

we encounter for X typically fit into a Gelfand triple X ↪→ H ↪→ X∗, where the “pivot”
space H is Hilbert space, and the continuous map between X and X∗ is a composition of
the two inclusion maps.) Since s > 0 the shifted operator As

L retains the maximum prin-
ciple property of AL , and if s is chosen sufficiently large then f s is monotone decreasing
in φ. Under the additional condition on J and s that As

L is invertible (see also [21]), the
shifted Picard map

T s(φ,w) = −(As
L)
−1 f s(φ,w)

is now monotone increasing in φ.
We now give two abstract existence results for systems of the form (3.4)–(3.5).

Theorem 4 (Coupled Fixed-Point Principle A). Let X and Y be Banach spaces, and let
Z be a Banach space with compact embedding X ↪→ Z. Let U ⊂ Z be a non-empty,
convex, closed, bounded subset, and let

S : U → R(S) ⊂ Y, T : U ×R(S)→ U ∩ X,

be continuous maps. Then there exist φ ∈ U ∩ X and w ∈ R(S) such that

φ = T (φ,w) and w = S(φ).

Proof. The proof will be through a standard variation of the Schauder Fixed-Point
Theorem, reviewed as Theorem 9 in Appendix A.1. The proof is divided into several
steps.
Step 1. Construction of a non-empty, convex, closed, bounded subset U ⊂ Z. By assump-
tion we have that U ⊂ Z is non-empty, convex (involving the vector space structure of
Z ), closed (involving the topology on Z ), and bounded (involving the metric given by
the norm on Z ).
Step 2. Continuity of a mapping G : U ⊂ Z → U ∩ X ⊂ X. Define the composite
operator

G := T ◦ S : U ⊂ Z → U ∩ X ⊂ X.

The mapping G is continuous, since it is a composition of the continuous operators
S : U ⊂ Z → R(S) ⊂ Y and T : U ⊂ Z ×R(S)→ U ∩ X ⊂ X .
Step 3. Compactness of a mapping F : U ⊂ Z → U ⊂ Z. The compact embedding
assumption X ↪→ Z implies that the canonical injection operator i : X → Z is com-
pact. Since the composition of compact and continuous operators is compact, we have
the composition F := i ◦ G : U ⊂ Z → U ⊂ Z is compact.
Step 4. Invoking the Schauder Theorem. Therefore, by a standard variant of the Schauder
Theorem (see Theorem 9 in Appendix A.1), there exists a fixed-point φ ∈ U such that
φ = F(φ) = T (φ, S(φ)). Since R(T ) = U ∩ X , in fact φ ∈ U ∩ X . We now take
w = S(φ) ⊂ R(S) and we have the result. ��
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The assumption in Theorem 4 that the mapping T is invariant on the non-empty,
closed, convex, bounded subset U can be established using a priori estimates if T is
the solution mapping, but if there are multiple fixed-points then continuity of T will not
hold. Fixed-point theory for set-valued maps could still potentially be used (cf. [54]).
On the other hand, if T is chosen to be the Picard map, then it is typically easier to
establish continuity of T even with multiple fixed-points, but more difficult to establish
the invariance property without additional conditions on T . In our setting, we wish to
allow for non-uniqueness in the Hamiltonian constraint (for example see [21] for possi-
ble non-uniqueness in the case of compact manifolds with boundary), so will generally
focus on the Picard map for the Hamiltonian constraint in our fixed-point framework
for the coupled constraints. The following special case of Theorem 4 gives some simple
sufficient conditions on T to establish the invariance using barriers in an ordered Banach
space (for a review of ordered Banach spaces, see Appendix A.2 or [54]).

Theorem 5 (Coupled Fixed-Point Principle B). Let X and Y be Banach spaces, and
let Z be a real ordered Banach space having the compact embedding X ↪→ Z. Let
[φ−, φ+] ⊂ Z be a nonempty interval which is closed in the topology of Z, and set
U = [φ−, φ+] ∩ B M ⊂ Z, where B M is the closed ball of finite radius M > 0 in Z
about the origin. Assume U is nonempty, and let the maps

S : U → R(S) ⊂ Y, T : U ×R(S)→ U ∩ X,

be continuous maps. Then there exist φ ∈ U ∩ X and w ∈ R(S) such that

φ = T (φ,w) and w = S(φ).

Proof. By choosing the set U to be the non-empty intersection of the interval [φ−, φ+]
with a bounded set in Z , we have U bounded in Z . We also have that U is convex with
respect to the vector space structure of Z , since it is the intersection of two convex sets
[φ−, φ+] and B M . Since U is the intersection of the interval [φ−, φ+], which by assump-
tion is closed in the topology of Z , with the closed ball B M in Z , U is also closed. In
summary, we have that U is non-empty as a subset of Z , closed in the topology of Z ,
convex with respect to the vector space structure of Z , and bounded with respect to the
metric (via normed) space structure of Z . Therefore, the assumptions of Theorem 4 hold
and the result then follows. ��

We make some final remarks about Theorems 4 and 5. If the ordered Banach space
Z in Theorem 5 had a normal order cone, then the closed interval [φ−, φ+] would auto-
matically be bounded in the norm of Z (see Lemma 20 in Appendix A.2 or [54] for
this result). The interval by itself is also non-empty and closed by assumption, and triv-
ially convex (see Appendix A.2), so that Theorem 5 would follow immediately from
Theorem 4 by simply taking U = [φ−, φ+]. Second, the closed ball B M in Theorem 5
can be replaced with any non-empty, convex, closed, and bounded subset of Z having
non-trivial intersection with the interval [φ−, φ+]. Third, in the case that T in Theorem 5
arises as the Picard map (3.7) of the semi-linear problem (3.2), we can always ensure
that T is invariant on U in Theorem 5 by: (1) obtaining sub- and super-solutions to the
semi-linear operator equation and using these for φ− and φ+, since these will also be sub-
and super-solutions for the fixed-point equation involving the Picard map; (2) introduc-
ing a shift into the nonlinearity to ensure T is monotone increasing; and (3) obtaining a
priori norm bounds on Picard iterates. As noted earlier, (1) and (2) will ensure

φ− � T (φ−, w) � T (φ,w) � T (φ+, w) � φ+, (3.8)
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for all φ ∈ [φ−, φ+], and w ∈ R(S), whereas (3) ensures that

‖T (φ,w)‖X � M, ∀φ ∈ [φ−, φ+], ∀w ∈ R(S), (3.9)

which together ensure T : U × R(S) → U ∩ X , where U = [φ−, φ+] ∩ B M ⊂ Z .
Again, if Z has a normal order cone structure, then ensuring (3.8) holds will automati-
cally guarantee that (3.9) also holds, so it is not necessary to establish (3.9) separately
in the case of a normal order cone.

Finally, note that Theorem 5 also allows one to choose the solution map (or any other
fixed-point map) for T together with a priori order cone and norm estimates to ensure
the conditions (3.8) and (3.9) hold (as long as continuity for T can be shown). Even if
a priori order-cone estimates cannot be shown to hold directly for this choice of T , as
long as the map can be “bracketed” in the interval [φ−, φ+] by two auxiliary monotone
increasing maps, then it can be shown that (3.8) holds. This allows one to use the Picard
map even if it is not monotone increasing, without having to introduce the shift into the
Picard map.

The overall argument we use to prove the non-CMC results in Theorems 1, 2, and 3
using Theorems 4 and 5 involves the following steps:

Step 1. The choice of function spaces. We will choose the spaces for use of Theorem 5
as follows:
– X = W s,p, with p ∈ (1,∞), and s(p) ∈ (1 + 3

p ,∞). In the CMC case in

Theorem 3, we can lower s to s(p) ∈ ( 3
p ,∞) ∩ [1,∞).

– Y = W e,q , with e and q as given in the theorem statements.
– Z = W s̃,p, s̃ ∈ ( 3

p , s), so that X = W s,p ↪→ W s̃,p = Z is compact.

– U = [φ−, φ+]s̃,p ∩ B M ⊂ W s̃,p = Z , with φ− and φ+ global barriers (sub-
and super-solutions, respectively) for the Hamiltonian constraint equation
which satisfy the compatibility condition: 0 < φ− � φ+ <∞.

Step 2. Construction of the mapping S. Assuming the existence of “global” weak sub-
and super-solutions φ− and φ+, and assuming the fixed function φ ∈ U =
[φ−, φ+]s̃,p∩ B M ⊂ W s̃,p = Z is taken as data in the momentum constraint, we
establish continuity and related properties of the momentum constraint solution
map S : U → R(S) ⊂ W e,q = Y (Sect. 4.1).

Step 3. Construction of the mapping T . Again assuming existence of “global” weak
sub- and super-solutions φ− and φ+, with fixed w ∈ R(S) ⊂ W e,q = Y taken
as data in the Hamiltonian constraint, we establish continuity and related prop-
erties of the Picard map T : U × R(S) → U ∩ W s,p. Invariance of T on
U = [φ−, φ+]s̃,p ∩ B M ⊂ W s̃,p is established using a combination of a priori
order cone bounds and norm bounds (Sect. 4.2).

Step 4. Barrier construction. Global weak sub- and super-solutions φ− and φ+ for the
Hamiltonian constraint are explicitly constructed to build a nonempty, convex,
closed, and bounded subset U = [φ−, φ+]s̃,p ∩ B M ⊂ W s̃,p, which is a strictly
positive interval. These include variations of known barrier constructions which
require the near-CMC condition, and also some new barrier constructions which
are free of the near-CMC condition (Sect. 5). Note: This is the only place in the
argument where near-CMC conditions may potentially arise.

Step 5. Application of fixed-point theorem. The global barriers and continuity properties
are used together with the abstract topological fixed-point result (Theorem 5) to
establish existence of solutions φ ∈ U ∩ W s,p and w ∈ W e,q to the coupled
system: w = S(φ), φ = T (φ,w) (Sect. 6).
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Step 6. Bootstrap. The above application of a fixed-point theorem is actually performed
for some low regularity spaces, i.e., for s � 2 and e � 2, and a bootstrap argu-
ment is then given to extend the results to the range of s and p given in the
statement of the theorem (Sect. 6).

The ordered Banach space Z plays a central role in Theorem 5. We will use Z = W t,q ,
t � 0, 1 � q �∞, with order cone defined as in (2.5). Given such an order cone, one
can define the closed interval

[φ−, φ+]t,q = {φ ∈ W t,q : φ− � φ � φ+} ⊂ W t,q ,

which as noted earlier is denoted more simply as [φ−, φ+]q when t = 0, and as sim-
ply [φ−, φ+] when t = 0, q = ∞. When t = 0, the W t,q order cone is normal for
1 � q � ∞, meaning that closed intervals [φ−, φ+]q ⊂ Lq = W 0,q are automatically
bounded in the metric given by the norm on Lq .

If we consider the interval U = [φ−, φ+]t,q ⊂ W t,q = Z defined using this order
structure, it will be critically important to establish that U is convex (with respect to the
vector space structure of Z ), closed (in the topology of Z ), and (when possible) bounded
(in the metric given by the norm on Z ). It will also be important that U be nonempty as
a subset of Z ; this will involve choosing compatible φ− and φ+. Regarding convexity,
closure, and boundedness, we have the following lemma.

Lemma 1 (Order cone intervals in W t,q ). For t � 0, 1 � q �∞, the set

U = [φ−, φ+]t,q = {φ ∈ W t,q : φ− � φ � φ+} ⊂ W t,q

is convex with respect to the vector space structure of W t,q and closed in the topology
of W t,q . For t = 0, 1 � q � ∞, the set U is also bounded with respect to the metric
space structure of Lq = W 0,q .

Proof. That U is convex for t � 0, 1 � q �∞, follows from the fact that any interval
built using order cones is convex. That U is closed in the case of t = 0, 1 � q � ∞
follows from the fact that norm convergence in Lq for 1 � q � ∞ implies pointwise
subsequential convergence almost everywhere (see Theorem 3.12 in [44]). That U is
bounded when t = 0, 1 � q �∞ follows from the fact that the order cone Lq

+ is normal
(see Appendix A.2).

What remains is to show that U is closed in the case of t > 0, 1 � q � ∞. The
argument is as follows. Let {uk}∞k=1 be a Cauchy sequence in U ⊂ W t,q ⊂ Lq , with
t > 0, 1 � q � ∞. From completeness of W t,q there exists limk→∞ uk = u ∈ W t,q .
From the continuous embedding W t,q ↪→ Lq for t > 0, we have that

‖uk − ul‖q � C‖uk − ul‖t,q
so that uk is also Cauchy in Lq . Moreover, the continuous embedding also implies that
u is also the limit of uk as a sequence in Lq . Since [φ−, φ+]0,q is closed in Lq , we have
u ∈ [φ−, φ+]0,q , and so u ∈ U = [φ−, φ+]t,q = [φ−, φ+]0,q ∩W t,q . ��
Remark 2. We indicate now how the far-CMC result outlined in [22] can be recovered
using Theorem 4 above. The framework is constructed by taking X = W 2,p, Y = W 2,p,
and Z = L∞, with p > 3, giving the compact embedding W 2,p ↪→ L∞. The coefficients
are assumed to satisfy τ ∈ W 1,p and σ 2, ja, ρ ∈ L p as well as the assumptions for the
construction of a near-CMC-free global super-solution (presented in [22] as Theorem 1,
analogous to Lemma 9 in this paper), and for the construction of a near-CMC-free global
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sub-solution (presented in [22] as Theorem 2, analogous to Lemma 13 in this paper).
One then takes U = [φ−, φ+] ⊂ Z = L∞, where the compatible 0 < φ− � φ+ are
these near-CMC-free barriers. Since Z = L∞ is an ordered Banach space with normal
order cone, we have (by Lemma 1 in this paper) that U is non-empty, convex, closed and
bounded as a subset of Z . The invariance of the Picard mapping on the interval [φ−, φ+]
is proven using a monotone shift (cf. Lemma 4 in this paper) and a barrier argument
(cf. Lemma 5 in this paper). The main result in [22] (stated in [22] as Theorem 4), now
follows from Theorem 4 in this paper (stated in [22] as Lemma 1).

4. Weak Solution Results for the Individual Constraints

4.1. The momentum constraint and the solution map S. In this section we fix a partic-
ular scalar function φ ∈ W s,p with sp > 3, and consider separately the momentum
constraint equation (2.24) to be solved for the vector valued function w. The result is
a linear elliptic system of equations for this variable w = wφ . For convenience, we
reformulate the problem here in a self-contained manner. Note that the problem (4.2)
below is identical to (2.24) provided the functions bτ and b j are defined accordingly.
Our goal is not only to develop some existence results for the momentum constraint, but
also to derive the estimates for the momentum constraint solution map S that we will
need later in our analysis of the coupled system. We note that a complete weak solution
theory for the momentum constraint on compact manifolds with boundary, using both
variational methods and Riesz-Schauder Theory, is developed in [21].

Let (M, h) be a 3-dimensional Riemannian manifold, where M is a smooth, com-
pact manifold without boundary, and with p ∈ (1,∞) and s ∈ ( 3

p ,∞), h ∈ W s,p is a
positive definite metric. With

q ∈ (1,∞), and e ∈ (2− s, s] ∩
(
−s + 3

p − 1 + 3
q , s − 3

p + 3
q

]
,

introduce the bounded linear operator

AL : W e,q → W e−2,q ,

as the unique extension of the operator L in (2.17), cf. Lemmata 31 and 32 in Appen-
dix A.5. Fix the source terms bτ , b j ∈ W e−2,q . Fix a function φ ∈ W s,p, and define

fφ ∈ W s−2,q , fφ := bτ φ6 + b j . (4.1)

We used the subscript φ in fφ to emphasize that φ is not a variable (but the “source”) of
the problem. Note that the above conditions on q and e are sufficient for the pointwise
multiplication by an element of W s,p to be a bounded map in W e−2,q , cf. Corollary 3(a)
in Appendix A.4.

The momentum constraint equation is the following: find an element w ∈ W e,q

solution of

ALw + fφ = 0. (4.2)

We sketch here a proof of existence of weak solutions of the momentum constraint
equation (4.2).
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Theorem 6 (Momentum constraint). Let e and q be as above. Then there exists a solu-
tion w ∈ W e,q to the momentum constraint equation (4.2) if and only if fφ(v) = 0 for

all v ∈ W 2−e,q ′ satisfying A∗
L
v = 0. The solution is unique if and only if the kernel of A∗

L

is trivial. Moreover, if a solution exists at all in W e,q , for any given closed linear space
K ⊆ W e,q such that W e,q = ker AL ⊕ K , there is a unique solution satisfying w ∈ K ,
and for this solution, we have

‖w‖e,q � C ‖fφ‖e−2,q , (4.3)

with some constant C > 0 not depending on w.

Proof. By Lemma 34 in Appendix A.5, the operator AL is semi-Fredholm, and more-
over since AL is formally self-adjoint, it is Fredholm. The formal self-adjointness also
implies that when the metric is smooth, index of AL is zero independent of e and q. Now
we can approximate the metric h by smooth metrics so that AL is sufficiently close to a
Fredholm operator with index zero. Since the set of Fredholm operators with constant
index is open, we conclude that the index of AL is zero, and the theorem follows. ��

In the later sections we need to bound the coefficient aw in the Hamiltonian constraint
equation, which can be obtained by using the following observation.

Corollary 1. Let p ∈ (1,∞) and s ∈ (1 + 3
p ,∞). In addition, let q ∈ (3,∞) and

e ∈ (1, s] ∩ (1 + 3
q , s− 3

p + 3
q ] ∩ (1, 2], and with z = 3q

3+(2−e)q , let bτ ∈ Lz . Assume that
the momentum constraint equation has a solution w ∈ W e,q . Then, we have

‖Lw‖∞ � C ‖φ‖6∞‖bτ‖z + C ‖b j‖e−2,q , (4.4)

with C > 0 not depending on w. Moreover, if the solution is unique, the norm ‖w‖e,q
can be bounded by the same expression.

Proof. Since the kernel of AL is finite dimensional, we can write W e,q = ker AL ⊕ K
with a closed linear space K ⊆ W e,q . We have the splitting w = w0 + w1 such that
w0 ∈ ker AL = ker L and w1 ∈ K , implying that

‖Lw‖∞ = ‖Lw1‖∞ � c ‖w1‖1,∞ � c′ ‖w1‖e,q ,
the latter inequality by W e,q ↪→ W 1,∞. We note that demanding W e,q ↪→ W 1,∞ gives
us the lower bound e > 1 + 3

q , and this in turn implies s > 1 + 3
p if the range of e is to be

nonempty. To complete the proof, we note that w1 is also a solution of the momentum
constraint, and taking into account Lz ↪→ W e−2,q , we apply Theorem 6 to bound the
norm ‖w1‖e,q . Note that the latter embedding requires e � 2, and combining this with
e > 1 + 3

q , we need q > 3. ��
We now establish some properties of the momentum constraint solution map S that

we will need later for our analysis of the coupled system. Suppose that the conditions
for Theorem 6 hold, so that the momentum constraint is uniquely solvable. Then for any
fixed φ+ ∈ W s,p with φ+ > 0, there exists a mapping

S : [0, φ+] ∩W s,p → W e,q (4.5)

that sends the source φ to the corresponding solution w of the momentum constraint
equation. Since the momentum constraint is linear, it follows easily that S is Lipschitz
continuous as stated in the following lemma.
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Lemma 2 (Properties of the map S). In addition to the conditions imposed in the begin-
ning of this section, let s � 1. Let e ∈ [1, 3] and 1

q ∈ ( e−1
2 δ, 1 − 3−e

2 δ), where

δ = max{0, 1
p − s−1

3 }. Assume that the momentum constraint (4.2) is uniquely solvable
in W e,q . With some φ+ ∈ W s,p satisfying φ+ > 0, let w1 and w2 be the solutions to the
momentum constraint with the source functions φ1 and φ2 from the set [0, φ+] ∩ W s,p,
respectively. Then,

‖w1 − w2‖e,q � C ‖φ+‖5∞‖bτ‖e−2,q ‖φ1 − φ2‖s,p. (4.6)

Proof. The functions φ1 and φ2 pointwise satisfy the following inequalities:

φn
2 − φn

1 =
(

n−1∑
j=0

φ
j
2φ

n−1− j
1

)
(φ2 − φ1) � n (φ+)

n−1 |φ2 − φ1|,

− [φ−n
2 − φ−n

1

] = φn
2−φn

1
(φ2φ1)n

� n (φ+)
n−1

(φ−)2n |φ2 − φ1|,
(4.7)

for any integer n > 0. Since Eq. (4.2) is linear, applying Theorem 6 with the right-hand
side f := fφ1

− fφ2
, and by using Lemma 29 in Appendix, we obtain

‖w1 − w2‖e,q � ‖bτ‖e−2,q ‖φ6
1 − φ6

2‖s,p � 6‖φ+‖5∞‖bτ‖e−2,q ‖φ1 − φ2‖s,p.
��

4.2. The Hamiltonian constraint and the Picard map T . In this section we fix a particular
function aw in an appropriate space and we then separately look for weak solutions of the
Hamiltonian constraint equation (2.23). For convenience, we reformulate the problem
here in a self-contained manner. Note that the problem (4.9) below is identical to (2.23),
provided the functionals aτ and aρ are defined accordingly. Our goal here is primarily
to establish some properties and derive some estimates for a Hamiltonian constraint
fixed-point map T that we will need later in our analysis of the coupled system, and also
for the analysis of the Hamiltonian constraint alone in the CMC setting. We remark that a
complete weak solution theory for the Hamiltonian constraint on compact manifolds with
boundary, using both variational methods and fixed-point arguments based on monotone
increasing maps, combined with sub- and super-solutions, is developed in [21].

Let (M, h) be a 3-dimensional Riemannian manifold, where M is a smooth, compact
manifold without boundary, and with p ∈ (1,∞) and s ∈ ( 3

p ,∞) ∩ [1,∞), h ∈ W s,p

is a positive definite metric. Introduce the operator

AL : W s,p → W s−2,p,

as the unique extension of the Laplace-Beltrami operator L = −�, cf. Lemma 31 in
Appendix A.5. Fix the source functions

aτ , aρ, aw ∈ W s−2,p
+ , and aR = 1

8 R ∈ W s−2,p,

where R is the scalar curvature of the metric h. (By Corollary 3(b) in Appendix A.4, we
know hab ∈ W s,p implies R ∈ W s−2,p.) Given any two functions φ−, φ+ ∈ W s,p with
0 < φ− � φ+, introduce the nonlinear operator

fw : [φ−, φ+]s,p → W s−2,p, fw(φ) = aτ φ
5 + aRφ − aρφ

−3 − awφ
−7, (4.8)
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where the pointwise multiplication by an element of W s,p defines a bounded linear map
in W s−2,p since s − 2 � −s and 2(s − 3

p ) > 0 > 2− 3, cf. Corollary 3(a) in Appendix
A.4. In case the coupled system is under consideration, the dependence of fw on w is
hidden in the fact that the coefficient aw depends on w, cf. (2.18). For generality, in the
following we will view that the operator fw depends on aw.

We now formulate the Hamiltonian constraint equation as follows: find an element
φ ∈ [φ−, φ+]s,p solution of

ALφ + fw(φ) = 0. (4.9)

To establish existence results for weak solutions to the Hamiltonian constraint equation
using fixed-point arguments, we will rely on the existence of generalized (weak) sub-
and super-solutions (sometimes called barriers) which will be derived later in Sect. 5.
Let us recall the definition of sub- and super-solutions in the following, in a slightly
generalized form that will be necessary in our study of the coupled system.

A function φ− ∈ (0,∞) ∩ W s,p is called a sub-solution of (2.23) iff the function
φ− satisfies the inequality

ALφ− + fw(φ−) � 0, (4.10)

for some aw ∈ W s−2,p. A function φ+ ∈ (0,∞) ∩ W s,p is called a super-solution of
(2.23) iff the function φ+ satisfies the inequality

ALφ+ + fw(φ+) � 0, (4.11)

for some aw ∈ W s−2,p. We say a pair of sub- and super-solutions is compatible if they
satisfy

0 < φ− � φ+ <∞, (4.12)

so that the interval [φ−, φ+] ∩W s,p is both nonempty and bounded.
We now turn to the construction of the fixed-point mapping T : U × R(S) → X

for the Hamiltonian constraint and its properties. There are a number of possibilities for
defining T ; the requirements are (1) that every fixed-point of T must be a solution to the
Hamiltonian constraint; (2) T must be a continuous map from its domain to its range;
and (3) T must be invariant on a non-empty, convex, closed, bounded subset U of an
ordered Banach space Z , with X ↪→ Z compact. It will be sufficient to define T using a
variation of the Picard iteration as follows. Due to the presence of the non-trivial kernel
of the operator AL , which is a consequence of working with a closed manifold, we must
introduce a shift into the Hamiltonian constraint equation in order to construct T with
the required properties.

Lemma 3 (Properties of the map T ). In the above described setting, assume that p ∈
( 3

2 ,∞) and s ∈ ( 3
p ,∞) ∩ [1, 3]. With a0 ∈ W s−2,p

+ satisfying a0 = 0, and ψ ∈ W s,p
+ ,

let as = a0 + awψ ∈ W s−2,p. Fix the functions φ−, φ+ ∈ W s,p such that 0 < φ− � φ+,
and define the shifted operators

As
L : W s,p → W s−2,p, As

Lφ := ALφ + asφ, (4.13)

f s
w : [φ−, φ+]s,p → W s−2,p, f s

w(φ) := fw(φ)− asφ. (4.14)

Let, for φ ∈ [φ−, φ+]s,p and aw ∈ W s−2,p,

T s(φ, aw) := −(As
L)
−1 f s

w(φ). (4.15)
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Then, the map T s : [φ−, φ+]s,p × W s−2,p → W s,p is continuous in both arguments.
Moreover, there exist s̃ ∈ ( 3

p , s) and a constant C such that

‖T (φ, aw)‖s,p � C
(
1 + ‖aw‖s−2,p

) ‖φ‖s̃,p, (4.16)

for all φ ∈ [φ−, φ+]s,p and aw ∈ W s−2,p.

Proof. In this proof, we denote by C a generic constant that may have different values at
its different occurrences. By applying Lemma 29 from the Appendix, for any s̃ ∈ ( 3

p , s],
s − 2 ∈ [−1, 1] and 1

p ∈ ( s−1
2 δ, 1− 3−s

2 δ) with δ = 1
p − s̃−1

3 , we have

‖ f s
w(φ)‖s−2,p � C

(
‖aτ‖s−2,p ‖φ4

+‖∞ + ‖aρ‖s−2,p ‖φ−4− ‖∞
+ ‖aw‖s−2,p (‖φ−8− ‖∞ + ‖ψ‖s̃,p) + ‖aR + a0‖s−2,p

)
‖φ‖s̃,p.

Let us verify if 1
p is indeed in the prescribed range. First, we have δ = 1

3 + 1
p − s̃

3 <
1
3

since s̃
3 − 1

p > 0, and taking into account s � 1, we infer 1− 3−s
2 δ � 1− 3−1

2
1
3 = 2

3 .

This shows 1
p < 1− 3−s

2 δ for p > 3
2 , which is not sharp, but will be sufficient for our

analysis. For the other bound, we need 1
p <

s−1
2 δ = s−1

2p − (s−1)(s̃−1)
6 , or in other words,

(s−1)(s̃−1)
6 > s−3

2p . Since s ∈ [1, 3], it is possible to choose s̃ ∈ ( 3
p , s] satisfying this

inequality.
To finalize the proof of (4.16), we note that by Lemma 36 in Appendix A.6, the

operator As
L is invertible, since the function as is positive, and that by Corollary 5 also

in that appendix, the inverse (As
L)
−1 : W s−2,p → W s,p is bounded.

The continuity of the mapping f s
w : [φ−, φ+]s,p → W s−2,p for any aw ∈ W s−2,p is

obtained similarly, and the continuity of aw �→ fw(φ) for fixed φ ∈ [φ−, φ+]s,p is obvi-
ous. Being the composition of continuous maps, (φ, aw) �→ T s

w(φ) is also continuous.
��

The following lemma shows that by choosing the shift sufficiently large, we can
make the map T s monotone increasing. This result is important for ensuring that the
Picard map T for the Hamiltonian constraint is invariant on the interval [φ−, φ+] defined
by sub- and super-solutions. There is an obstruction that the scalar curvature should be
continuous, which will be handled in the general case by conformally transforming the
metric to a metric with continuous scalar curvature and using the conformal covariance
of the Hamiltonian constraint, cf. Sect. 6.1.

Lemma 4 (Monotone increasing property of T ). In addition to the conditions of Lemma
3, let aR be continuous and define the shift function as by

as = max{1, aR} + 3
φ2

+

φ6−
aρ + 5φ4

+aτ + 7
φ6

+

φ14−
aw.

Then, for any fixed aw ∈ W s−2,p, the map φ �→ T s(φ, aw) : [φ−, φ+]s,p → W s,p is
monotone increasing.
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Proof. The shifted operator As
L satisfies the maximum principle, hence the inverse

(As
L)
−1 : W s−2,p → W s,p is monotone increasing.

Now we will show that the operator f s
w is monotone decreasing. Given any two

functions φ2, φ1 ∈ [φ−, φ+]s,p with φ2 � φ1, we have

f s
w(φ2)− f s

w(φ1) = fw(φ2)− fw(φ1)− as[φ2 − φ1]
= aτ

[
φ5

2 − φ5
1

]
+ aR[φ2 − φ1] − as[φ2 − φ1] − aρ

[
φ−3

2 − φ−3
1

]

−aw

[
φ−7

2 − φ−7
1

]
.

The inequalities (4.7), the condition 0 < φ1 � φ2, and the choice of as imply

f s
w(φ2)− f s

w(φ1) � 0,

which establishes that f s
w is monotone decreasing.

Both the operator (As
L)
−1 and the map − f s

w are monotone increasing, therefore the
operator T s(·, aw) is also monotone increasing. ��
Lemma 5 (Barriers for T and the Hamiltonian constraint). Let the conditions of Lemma
4 hold, with φ− and φ+ sub- and super-solutions of the Hamiltonian constraint equation
(4.9), respectively. Then, we have T s(φ+, aw) � φ+ and T s(φ−, aw) � φ−.

Proof. We have

φ+ − T s(φ+, aw) = (As
L)
−1 [As

Lφ+ + f s
w(φ+)

]
,

which is nonnegative since φ+ is a super-solution and (As
L)
−1 is linear and monotone

increasing. The proof of the other inequality is completely analogous. ��
Since we are no longer using normal order cones, our non-empty, convex, closed

interval [φ−, φ+]s,p is not necessarily bounded as a subset of W s,p. Therefore, we also
need a priori bounds in the norm on W s,p to ensure the Picard iterates stay inside the
intersection of the interval with the closed ball B M in W s,p of radius M , centered at the
origin. We first establish a lemma to this effect that will be useful for both the non-CMC
and CMC cases.

Lemma 6 (Invariance of T on the ball B M ). Let the conditions of Lemma 3 hold, and
let aw ∈ W s−2,p. Then, for any s̃ ∈ ( 3

p , s] and for some t ∈ ( 3
p , s̃) there exists a closed

ball B M ⊂ W s̃,p of radius M = O ([1 + ‖aw‖s−2,p]s̃/(s̃−t)
)
, such that

φ ∈ [φ−, φ+]s̃,p ∩ B M ⇒ T s(φ, aw) ∈ B M .

Proof. From Lemma 3, there exist t ∈ ( 3
p , s̃) and K > 0 such that

‖T s(φ, aw)‖s̃,p � K (1 + ‖aw‖s−2,p)‖φ‖t,p, ∀φ ∈ [φ−, φ+]s̃,p.
For any ε > 0, the norm ‖φ‖t,p can be bounded by the interpolation estimate

‖φ‖t,p � ε‖φ‖s̃,p + Cε−t/(s̃−t)‖φ‖p,
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where C is a constant independent of ε. Since φ is bounded from above by φ+, ‖φ‖p is
bounded uniformly, and now demanding that φ ∈ B M , we get

‖T s(φ, aw)‖s̃,p � K [1 + ‖aw‖s−2,p]
(

Mε + Cε−t/(s̃−t)
)
, (4.17)

with possibly different constant C . Choosing ε such that 2εK [1 + ‖aw‖s−2,p] = 1 and
setting M = 2K C[1 + ‖aw‖s−2,p]ε−t/(s̃−t), we can ensure that the right-hand side of
(4.17) is bounded by M . ��

5. Barriers for the Hamiltonian Constraint

The results developed in Sect. 4.2 for a particular fixed-point map T for analyzing
the Hamiltonian constraint equation and the coupled system rely on the existence of
generalized (weak) sub- and super-solutions, or barriers. There, the Hamiltonian con-
straint was studied in isolation from the momentum constraint, and these generalized
barriers only needed to satisfy the conditions given at the beginning of Sect. 4.2 for a
given fixed function w appearing as a source term in the nonlinearity of the Hamiltonian
constraint. Therefore, these types of barriers are sometimes referred to as local barri-
ers, in that the coupling to the momentum constraint is ignored. In order to establish
existence results for the coupled system in the non-CMC case, it will be critical that the
sub- and super-solutions satisfy one additional property that now reflects the coupling,
giving rise to the term global barriers. It will be useful now to define this global property
precisely.

Definition 1. A sub-solution φ− is called global iff it is a sub-solution of (2.23) for all
vector fields wφ solution of (2.24) with source function φ ∈ [φ−,∞) ∩W s,p. A super-
solution φ+ is called global iff it is a super-solution of (2.23) for all vector fields wφ
solution of (2.24) with source function φ ∈ (0, φ+] ∩W s,p. A pair φ− � φ+ of sub- and
super-solutions is called an admissible pair if φ− and φ+ are sub- and super-solutions
of (2.23) for all vector fields wφ of (2.24) with source function φ ∈ [φ−, φ+] ∩W s,p.

It is obvious that if φ− and φ+ are respectively global sub- and super-solutions, then
the pair φ−, φ+ is admissible in the sense above, provided they satisfy the compatibility
condition (4.12).

Below we give a number of (local and global) sub- and super-solution constructions
for closed manifolds; analogous constructions for compact manifolds with boundary are
given in [21]. These constructions are based on generalizing known constant sub- and
super-solution constructions given previously in the literature for closed manifolds. On
one hand, the generalized global sub-solution constructions appearing here and in [21] do
not require the near-CMC condition, inheriting this property from the known sub-solu-
tions from literature on which they are based. However, on the other hand, all previously
known global super-solutions for the Hamiltonian constraint equation have required the
near-CMC condition.

Here and in [21,22], one of our primary interests is in developing existence results
for weak (and strong) non-CMC solutions to the coupled system which are free of the
near-CMC assumption. This assumption had appeared in two distinct places in all prior
literature on this problem [1,26]; the first assumption appears in the construction of a
fixed-point argument based on strict k-contractions, and the second assumption appears
in the construction of global super-solutions. Here and in [21,22], an alternative fixed-
point framework based on compactness arguments rather than k-contractions is used
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to remove the first of these near-CMC assumptions. In this section, we give some new
constructions of global super-solutions that are free of the near-CMC assumption, along
with some compatible sub-solutions. These sub- and super-solution constructions are
needed (without their global property) for the existence result for the Hamiltonian con-
straint (Theorem 3), and they are also needed (now with their global property) for the
general fixed-point result for the coupled system (Theorem 5), leading to our two main
non-CMC results (Theorems 1 and Theorem 2). The super-solutions in Lemmata 7(b)
and 9 appear to be the first such near-CMC-free constructions, and provide the second
key piece of the puzzle we need in order to establish non-CMC results through Theorem 5
without the near-CMC condition.

Throughout this section, we will assume that the background metric h belongs to
W s,p with p ∈ (1,∞) and s ∈ ( 3

p ,∞) ∩ (1, 2]. Recall that r = 3p
3+(2−s)p , so that

the continuous embedding Lr ↪→ W s−2,p holds. Given a symmetric two-index tensor
σ ∈ L2r and a vector field w ∈ W 1,2r , introduce the functions aσ = 1

8σ
2 ∈ Lr and

aLw = 1
8 (Lw)2 ∈ Lr . Note that under these conditions aw belongs to Lr ↪→ W s−2,2,

and that if aσ , aLw ∈ L∞ we have the pointwise estimate

a∧w � 2a∧σ + 2a∧Lw.

Here and in what follows, given any scalar function u ∈ L∞, we use the notation

u∧ := ess sup u, u∨ := ess inf u.

In some places we will assume that when the vector field w ∈ W 1,2r is given by the
solution of the momentum constraint equation (2.24) (or (4.2)) with the source term
φ ∈ W s,p,

a∧Lw � k(φ) := k1 ‖φ‖12∞ + k2, (5.1)

with some positive constants k1 and k2. We can verify this assumption e.g. when the
conditions of Corollary 1 are satisfied, since from Corollary 1 we would get

a∧Lw = ‖Lw‖2∞ � C2
(
‖φ‖6∞‖bτ‖z + ‖b j‖e−2,q

)2
,

giving the bound (5.1) with the constants

k1 = 2C2‖bτ‖2z , and k2 = 2C2‖b j‖2e−2,q . (5.2)

5.1. Constant barriers. Now we will present some global sub- and super-solutions for
the Hamiltonian constraint equation (2.23) which are constant functions. The proofs
essentially follow the arguments in [21] for the case of compact manifolds with boundary.

Lemma 7 (Global super-solution). Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h ∈ W s,p. Assume that the estimate (5.1) holds for
the solution of the momentum constraint equation, and assume that aρ, aσ ∈ L∞ and
that aR is uniformly bounded from below. With the parameter ε > 0 to be chosen later,
define the rational polynomial

qε(χ) = (a∨τ − K1ε) χ
5 + a∨R χ − a∧ρ χ

−3 − K2εχ
−7,

where K1ε := (1 + 1
ε
)k1 and K2ε := (1 + ε)a∧σ + (1 + 1

ε
)k2. We distinguish the following

two cases:
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(a) In case k1 < a∨τ , choose ε >
k1

a∨τ − k1
. If qε has a root, let φ+ = φ1(a∨τ −

K1ε, a∨R , a∧ρ,K2ε) be the largest positive root of q, and if q has no positive roots,
let φ+ = 1. Now, the constant φ+ is a global super-solution of the Hamiltonian
constraint equation (2.23).

(b) In case k1 � a∨τ , choose ε > 0. In addition, assume that a∨R > 0 and that both a∧ρ
and K2ε are sufficiently small, such that q has two positive roots. Then, the largest
root φ+ = φ2(a∨τ − K1ε, a∨R , a∧ρ,K2ε) of q is a super-solution of the Hamiltonian
constraint equation (2.23).

Proof. We look for a super-solution among the constant functions. Let χ be any positive
constant. Then we have

f (χ,w) = aτ χ5 + aRχ − aρχ−3 − awχ
−7 � a∨τ χ

5 + a∨Rχ − a∧ρχ
−3 − a∧wχ

−7.

Given any ε > 0, the inequality 2|σab(Lw)ab| � εσ 2 + 1
ε
(Lw)2 implies that

8aw = σ 2 + (Lw)2 + 2σab(Lw)ab � (1 + ε) σ 2 + (1 + 1
ε
) (Lw)2,

hence, taking into account (5.1), for any w ∈ W 1,2r that is a solution of the momentum
constraint equation (2.24) with any source term φ ∈ (0, χ ], the constant a∧w must fulfill
the inequality

a∧w � (1 + ε)a∧σ + (1 + 1
ε
)a∧Lw � K1ε‖φ‖12∞ + K2ε. (5.3)

Thus, for any constant χ > 0 and all φ ∈ (0, χ ], it holds that

f (χ,wφ) � a∨τ χ
5 + a∨Rχ − a∧ρχ

−3 −
(
K1ε ‖φ‖12∞ + K2ε

)
χ−7

� Bεχ
5 + a∨Rχ − a∧ρχ

−3 − K2εχ
−7,

where Bε := a∨τ − K1ε. Introduce the rational polynomial on χ given by

qε(χ) := Bεχ
5 + a∨Rχ − a∧ρχ

−3 − K2εχ
−7. (5.4)

We calculate the first and second derivative of qε as

q ′ε(χ) = 5Bεχ4 + a∨R + 3a∧ρχ
−4 + 7K2εχ

−8,

q ′′ε (χ) = 20Bεχ3 − 12a∧ρχ
−5 − 56K2εχ

−9.
(5.5)

Consider the case (a). In this case, because of the choice ε > k1
a∨τ −k1

, we have Bε > 0,
and so qε(χ) > 0 for sufficiently large χ , and qε is increasing. The function qε has no
positive root only if a∧ρ = K2ε = 0. So if qε has no positive root, qε(χ) � 0 for all χ � 0.
If qε has at least one positive root, denoting by φ1 the largest positive root, q(χ) � 0
for all χ � φ1. Recalling now that any constant χ satisfies ALχ = 0, we conclude that

ALχ + f (χ,wφ) � 0 ∀χ � φ1, ∀φ ∈ (0, χ ],
implying that φ+ is a global super-solution of the Hamiltonian constraint (2.21).

For the case (b), since Bε < 0 and a∧ρ and K2ε are nonnegative, the first derivative
q ′ε(χ) is strictly decreasing for χ > 0, and since q ′ε(φ) > 0 for sufficiently small χ > 0
and q ′ε(χ) < 0 for sufficiently large χ > 0, the derivative q ′ε has a unique positive root,
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at which the polynomial qε attains its maximum over (0,∞). This maximum is positive
if both a∧ρ and K2ε are sufficiently small, and hence the polynomial qε has two positive
roots φ1 � φ2. Similarly to the above we conclude that

ALχ + f (χ,wφ) � 0 ∀χ ∈ [φ1, φ2], ∀φ ∈ (0, χ ],
implying that φ+ is a global super-solution of the Hamiltonian constraint (2.21). ��

Case (a) of the above lemma has the condition k1 < a∨τ , which is the near-CMC
condition. This condition seems to be present in all non-CMC results to date. The above
condition also requires that the extrinsic mean curvature τ is nowhere zero. Noting that
there are solutions even for τ ≡ 0 in some cases (cf. [25]), the condition inf τ > 0
appears as a rather strong restriction. We see that case (b) of the above lemma removes
this restriction, in exchange for the smallness conditions on ρ, j , and σ . We also need the
scalar curvature to be strictly positive, which condition is relaxed in the next subsection
to allow any metric in the positive Yamabe class.

In the following lemma, we list some constant sub-solutions. They impose consider-
able restrictions on the allowable data, which is the main reason to consider non-constant
sub-solutions in the next subsection.

Lemma 8 (Global sub-solution). Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h ∈ W s,p. Assume that aτ ∈ L∞ and that aR is
uniformly bounded from above. We distinguish the following three cases:

(a) If a∧R < 0, then the unique positive root of the polynomial

q(χ) = a∧τ χ
4 + a∧R ,

is a global sub-solution of (2.23).
(b) If a∨ρ > 0, then the unique positive root of the polynomial

qρ(χ) = a∧τ χ
8 + max{1, a∧R}χ4 − a∨ρ,

is a global sub-solution of (2.23).
(c) Let φ+ > 0 be a global super-solution of the Hamiltonian constraint. Let a∨σ >

k(φ+), where k is as in (5.1). Then, with some ε ∈ (k(φ+)/a∨σ , 1), the unique
positive root φ+ of the polynomial

qσ (χ) = a∧τ χ
12 + max{1, a∧R}χ8 − Kε,

where Kε := (1− ε)a∨σ −
( 1
ε
− 1
)
k(φ+), is a global sub-solution of (2.23).

Proof. For the proof of (a,b), see e.g. [21]. We give a proof of (c) here.
Let χ > 0 be any constant function, and let w ∈ W 1,2r . Then we have

f (χ,w) = aτ χ
5 + aRχ − aρχ

−3 − awχ
−7 � a∧τ χ

5 + a∧Rχ − a∨wχ
−7

� a∧τ χ
5 + Cχ − a∨wχ

−7, (5.6)

where we have used that aρ is nonnegative, and introduced the constant C = max{1, a∧R}.
Given any ε > 0, the inequality 2|σab(Lw)ab| � εσ 2 + 1

ε
(Lw)2 implies that

8aw = σ 2 + (Lw)2 + 2σab(Lw)ab � (1− ε) σ 2 − ( 1
ε
− 1) (Lw)2,
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hence, taking into account (5.1), for any w ∈ W 1,2r that is a solution of the momentum
constraint equation (2.24) with any source term φ ∈ (0, φ+], the constant a∨w must fulfill
the inequality

a∨w � (1− ε)a∨σ − ( 1
ε
− 1)a∧Lw � (1− ε)a∨σ − ( 1

ε
− 1)k(φ+) =: Kε.

We use the above estimate in (5.6) to get, for any w ∈ W 1,2r that is a solution of the
momentum constraint equation (2.24) with any source term φ ∈ (0, φ+],

f (χ,w) � a∧τ χ
5 + Cχ − Kεχ−7.

Because of the choice k(φ+)/a∨σ < ε < 1, we have Kε > 0. So with the unique positive
root χ∗ of

qσ (χ) := a∧τ χ
5 + C χ − Kε χ−7,

we have qσ (χ) � 0 for any constant χ ∈ (0, χ∗], establishing the proof. ��

5.2. Non-constant barriers. All global super-solutions found to date appear to require
the near-CMC condition; Lemma 7(b) avoids the near-CMC condition, but it requires
the scalar curvature to be strictly positive. The following lemma extends this result to
arbitrary metrics in the positive Yamabe class Y+(M).

Lemma 9 (Global super-solution h ∈ Y+). Let (M, h) be a 3-dimensional, smooth,
closed Riemannian manifold with metric h ∈ W s,p in Y+(M). Assume there exist con-
tinuous positive functions u,� ∈ W s,p that together satisfy:

−�u + 1
8 Ru = � > 0, u > 0. (5.7)

Let 0 < k3 := u∧/u∨ < ∞, which is a trivially satisfied Harnack-type inequality.
Assume that the estimate (5.1) is satisfied for the solution of the momentum constraint
equation for two positive constants k1 and k2, and assume that aρ, aσ ∈ L∞. If the
constants a∧ρ , a∧σ , and k2 are sufficiently small, then

φ+ = βu, β =
[

�∨

2k1k12
3 (u

∧)5

]1/4

> 0, (5.8)

is a positive global super-solution to the Hamiltonian constraint equation.

Proof. Taking φ = βu with a constant β > 0 in (5.7), gives

−�φ + aRφ = β(−�u + 1
8 Ru) = β�. (5.9)

Then for any ϕ ∈ C∞+ , by using (5.3) with K1 := 2k1 and K2 := 2a∧σ + 2k2, we infer

〈ALφ + f (φ,w), ϕ〉 = 〈∇φ,∇ϕ〉 + 〈aRφ + aτ φ
5 − aρφ

−3 − awφ
−7, ϕ〉

� 〈β� + a∨τ φ
5 − [K1(φ

∧)12 + K2]φ−7 − a∧ρφ
−3, ϕ〉

� 〈β� + [a∨τ − K1k
12
3 ]φ5 − K2φ

−7 − a∧ρφ
−3, ϕ〉

� 〈βG(β,K2, aρ), ϕ〉,
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where

G(β,K2, aρ) := �∨ − K1k
12
3 β

4(u∧)5 − K2β
−8(u∧)−7 − a∧ρβ

−4(u∧)−3,

and where we have used the fact that φ∧/φ∨ = u∧/u∨ = k3. Therefore, to ensure φ is
a super-solution we must now pick arguments ensuring G(β,K2, aρ) � 0. We first pick
β as in (5.8) giving

1
2�

∨ = �∨ − K1k12
3 (u

∧)5β4 > 0.

For this fixed β, we then pick K2 and a∨ρ , each sufficiently small, so that

1
2�

∨ − K2β
−8(u∧)−7 − a∧ρβ

−4(u∧)−3 � 0.

The result then follows. ��
Remark 3. We now make some remarks about the existence of a pair of positive functions
(u,�)which satisfy the hypotheses of Lemma 9. Let the background metric hab ∈ W s,p

be in the positive Yamabe class. Then in Theorem 11 in Appendix A.7, for the sub-crit-
ical range 1 � q < 5 we establish the existence of a positive u ∈ W s,p and a constant
µq > 0 satisfying

−8�u + Ru = µquq .

So the pair (u, 1
8µquq) readily satisfies (5.7). In a sense the simplest construction of

the near-CMC-free global super-solution in Lemma 9 arises by taking q = 1; one is
then simply using the first eigenfunction of the conformal Laplacian to build the global
super-solution.

Alternatively, one can consider a solution to the Yamabe problem

−8�u + Ru = u5, u > 0,

which exists for sufficiently smooth metrics in the positive Yamabe class, cf. [31]. This
approach is taken for simplicity in [22].

In any case, note that the function u > 0 that satisfies (5.7) is the conformal factor
which transforms hab into a metric with scalar curvature Ru = 8�u−5 > 0.

We remark that without the near-CMC condition, the only potentially strictly positive
term appearing in the nonlinearity of the Hamiltonian constraint is the term involving the
scalar curvature R. Therefore, global super-solution constructions based on the approach
in Lemma 9 are restricted to data in Y+(M). We extend this observation in the next
lemma, which essentially says that in a nonpositive Yamabe class, there is no way to
build a positive global super-solution without the near-CMC condition as long as we use
a global estimate of type (5.1).

Lemma 10 (Near-CMC condition and aw bounds). Let (M, h) be a 3-dimensional,
smooth, closed Riemannian manifold with metric h ∈ W s,p in a nonpositive Yamabe
class, and let aτ be continuous. Let φ+ ∈ W s,p with φ+ > 0 be a global super-solution
to the Hamiltonian constraint equation. We assume that any vector field w ∈ W 1,2r that
is a solution of the momentum constraint equation with a source φ � φ+ satisfies the
estimate

aw � K1‖φ+‖12∞ + K2, (5.10)
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with some positive constants K1 and K2. Moreover, we assume that this estimate is sharp
in the sense that for any x ∈M there exist an open neighborhood U � x and a vector
field w ∈ W 1,2r a solution of the momentum constraint equation with a source φ � φ+,
such that

aw = K1‖φ+‖12∞ + K2 in U. (5.11)

Then, we have K1 � supM aτ .

Proof. Since the metric is in a nonpositive Yamabe class, there exists ϕ̃ ∈ W 2−s,p′
+ such

that 〈∇φ+,∇ϕ̃〉+ 〈aRφ+, ϕ̃〉 � 0. The collection of all neighborhoods in (5.11) will form
an open cover of M, and let {Ui } be one of its finite subcovers. Let {µi } be a partition
of unity subordinate to {Ui }. Then, by writing ϕ̃ =∑i µi ϕ̃, we can expand the expres-
sion 〈∇φ+,∇ϕ̃〉 + 〈aRφ+, ϕ̃〉 into a finite sum, which has at least one non-positive term.
Without loss of generality, let us assume 〈∇φ+,∇ϕ〉 + 〈aRφ+, ϕ〉 � 0 with ϕ = µi ϕ̃.
With w ∈ W 1,2r being a vector field that satisfies (5.11) with respect to U := Ui , we
have

0 � 〈∇φ+,∇ϕ〉 + 〈aRφ+ + aτ φ
5
+ − awφ

−7
+ − aρφ

−3
+ , ϕ〉

� 〈aτ φ5
+ − awφ

−7
+ − aρφ

−3
+ , ϕ〉

= 〈aτ φ5
+ − [K1(φ

∧
+)

12 + K2]φ−7
+ − aρφ

−3
+ , ϕ〉

� ([aτ − K1(φ
∧
+/φ+)

12]φ5
+, ϕ).

Using partitions of unity we can make the support of ϕ arbitrarily small, from which we
conclude that aτ � K1(φ

∧
+/φ+)

12 � K1 at some x ∈M. ��
All of the subsequent barrier constructions below are more or less known. A number

of the more technically sophisticated construction techniques we employ below were
pioneered by Maxwell in [33]. For completeness, we first construct local super-solutions
and then global super-solutions for the near-CMC case.

Lemma 11 (Local super-solution). Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h ∈ W s,p. Let aτ , aρ, aw ∈ W s−2,p

+ , and let one
of the following conditions hold:

(a) The metric h is in a non-negative Yamabe class, aτ = 0, and aρ + aw = 0.
(b) The metric h is in the positive Yamabe class, and aρ + aw = 0.
(c) The metric h is conformally equivalent to a metric with scalar curvature−aτ = 0,

thus in particular the metric is in the negative Yamabe class.

Then, there is a positive (local) super-solution φ+ ∈ W s,p of the Hamiltonian constraint
equation (2.23).

Proof. First we prove (a) and (b). Let u ∈ W s,p be a (weak) solution to

−�u + 1
8 Ru = λu, u > 0,

with a constant λ � 0, which exists by Theorem 11 in Appendix A.7, and let v ∈ W s,p

be the solution to

〈u2∇v,∇ϕ〉 + 〈λu2v + aτ v, ϕ〉 = 〈aρ + aw, ϕ〉, ∀ϕ ∈ C∞. (5.12)
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Since aτ , aρ, aw ∈ W s−2,p
+ with sp > 3, we have v ∈ W s,p ↪→ L∞, and since

λu2 + aτ = 0 and aρ + aw = 0, Lemma 35 (maximum principle) in Appendix A.6
implies that v > 0. Let us define φ = βuv ∈ W s,p for a constant β > 0. Then for any
ϕ ∈ C∞+ we have

〈ALφ + f (φ,w), uϕ〉 = 〈∇φ,∇(uϕ)〉 + 〈aτ φ5 + aRφ − aρφ
−3 − awφ

−7, uϕ〉
= β〈u2∇v,∇ϕ〉 + 〈βλu2v + aτuφ5 − aρuφ−3 − awuφ−7, ϕ〉
= 〈aτ [β5u6v5 − βv], ϕ〉 + 〈aρ[β − β−3u−2v−3], ϕ〉

+ 〈aw[β − β−7u−6v−7], ϕ〉,
where the second line is obtained by

〈ALφ + aRφ, uϕ〉 = β〈∇(uv),∇(uϕ)〉 + β
8 〈Ruv, uϕ〉

= β〈∇u,∇(uvϕ)〉 + β
8 〈Ru, uvϕ〉 + β〈u∇v, u∇ϕ〉 (5.13)

= β〈λu, uvϕ〉 + β〈u2∇v,∇ϕ〉,
and the third line is from (5.12). Now, choosingβ>0 sufficiently large, so thatβ4u6v5−v
� 0, 1−β−4u−2v−3 � 0 and 1−β−8u−6v−7 � 0, we ensure that φ is a super-solution.

Now, let us consider (c). Let u > 0 be the conformal factor which transforms h into
a metric with scalar curvature λ = −8aτ , i.e., let u ∈ W s,p be a weak solution to

−�u + 1
8 Ru + aτu5 = 0, u > 0.

If aρ = aw = 0, the Hamiltonian constraint equation reduces to the above equation
and we can take u as a super-solution (it is even a solution). So we can assume in the
following that aρ + aw = 0. Let v ∈ W s,p be the solution to

〈u2∇v,∇ϕ〉 + 〈aτ v, ϕ〉 = 〈aρ + aw, ϕ〉, ∀ϕ ∈ C∞.

Defining φ = βuv ∈ W s,p for a constant β > 0, the rest of the proof proceeds superfi-
cially in the same way as the above case. ��
Lemma 12 (Near-CMC global super-solution) Let (M, h) be a 3-dimensional,
smooth, closed Riemannian manifold with metric h ∈ W s,p. Let aτ , aρ ∈ W s−2,p

+
and aσ ∈ L∞+ , and let one of the following conditions hold:

(a) The metric h is in a non-negative Yamabe class, aτ = 0, and aρ + aσ = 0. Let
u ∈ W s,p and v ∈ W s,p be the solutions to

−�u + 1
8 Ru = λu,

−∇(u2∇v) + (λu2 + aτ )v = aρ + aσ
(5.14)

with a constant λ � 0.
(b) The metric h is conformally equivalent to a metric with scalar curvature−aτ = 0,

thus in particular the metric is in the negative Yamabe class. Let u ∈ W s,p and
v ∈ W s,p be the solutions to

−�u + 1
8 Ru + aτu5 = 0,

−∇(u2∇v) + aτ v = aρ + aσ .
(5.15)
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Assume that the estimate (5.1) holds for the momentum constraint equation, and let
k1 < a∨τ (

min uv
max uv )

12. Then, for any sufficiently large constant β > 0, φ+ = βuv is a
global super-solution of the Hamiltonian constraint equation (2.23).

Proof. We give a proof of (a). The proof of (b) is similar. Proceeding as in the proof of
the preceding lemma, for any ϕ ∈ C∞+ we have

〈ALφ + f (φ,w), uϕ〉 = 〈∇φ,∇(uϕ)〉 + 〈aτ φ5 + aRφ − aρφ
−3 − awφ

−7, uϕ〉
= β〈u2∇v,∇ϕ〉 + 〈βλu2v + aτuφ5 − aρuφ−3 − awuφ−7, ϕ〉
� β〈u2∇v,∇ϕ〉 + 〈βλu2v + aτuφ5 − aρuφ−3 − 2[aσ + aLw]uφ−7, ϕ〉
= 〈aρ[β − β−3u−2v−3], ϕ〉 + 〈aσ [β − 2β−7u−6v−7], ϕ〉

+〈aτ [β5u6v5 − βv] − 2aLwuφ−7, ϕ〉.
Then, choosing β sufficiently large, and by using (5.1), with θ = uv we infer

ALφ + f (φ,w) � [a∨τ (θ∨)5 − 2k1(θ
∧)12(θ∨)−7]β5 − p(β),

where p(β) = aτ (v∧/u∨)β+2k2(θ
∨)−7β−7. Now, if we have k1 <

1
2 a∨τ (θ

∨/θ∧)12, then
choosing β large enough, we ensure that φ is a super-solution. If we proceeded as in the
proof of Lemma 7, we could remove the factor 1

2 from the conditionk1 <
1
2 a∨τ (θ

∨/θ∧)12;
however, we omit it for clarity. ��

We now also give some examples of non-constant global sub-solutions φ− which are
compatible with φ+ above in the sense that 0 < φ− � φ+. Such a pair of compatible
sub- and super-solutions are needed to establish existence of solutions to the individual
Hamiltonian constraint (Theorem 3), and are also needed again to establish existence of
solutions to the coupled system (Theorems 1 and 2).

Lemma 13 (Global sub-solution h ∈ Y−, ρ ≡ 0). Let (M, h) be a 3-dimensional,
smooth, closed Riemannian manifold with metric h ∈ W s,p in a non-negative Yamabe
class. Let aρ, aτ ∈ W s−2,p

+ \{0}. Then, there exists a positive scalarφ− ∈ W s,p such that
for any constant β ∈ (0, 1], βφ− is a global sub-solution of the Hamiltonian constraint
equation.

Proof. Let u ∈ W s,p be a (weak) solution to

−�u + 1
8 Ru = λu, u > 0,

with a constant λ � 0, which exists by Theorem 11 in Appendix A.7, and let v ∈ W s,p

be the solution to

〈u2∇v,∇ϕ〉 + 〈λu2v + aτ v, ϕ〉 = 〈aρ, ϕ〉, ∀ϕ ∈ C∞. (5.16)

Since aρ, aτ ∈ W s−2,p
+ with sp > 3, we have v ∈ W s,p ↪→ L∞, and Lemma 35 (max-

imum principle) in Appendix A.6 implies that v > 0. Let us define φ = βuv ∈ W s,p

for a constant β > 0. Then for any ϕ ∈ C∞+ we have

〈ALφ + f (φ,w), uϕ〉 � 〈ALφ, uϕ〉 + 〈aτ φ5 + aRφ − aρφ
−3, uϕ〉

= β〈u2∇v,∇ϕ〉 + 〈βλu2v + aτu6(βv)5 − aρu−2(βv)−3, ϕ〉
= β〈aρ[1− u−2v−3β−4], ϕ〉 + β〈aτ [u6v5β4 − 1], ϕ〉,
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where the second line is obtained by (5.13), and the third line is from (5.16). Now,
choosing β > 0 sufficiently small, so that 1− u−2v−3β−4 � 0 and (βv)4 − 1 � 0, we
ensure that φ is a sub-solution. ��

The following lemma extends Lemma 8(a) to all reasonable metrics in the negative
Yamabe class.

Lemma 14 (Global sub-solution h ∈ Y−). Let (M, h) be a 3-dimensional, smooth,
closed Riemannian manifold with metric h ∈ W s,p in Y−(M). In addition, let
aτ ∈ W s−2,p, and let the metric h be conformally equivalent to a metric with scalar
curvature (−aτ ). Then, there exists a positive scalar function φ− ∈ W s,p such that for
any β ∈ (0, 1], βφ− is a global sub-solution of the Hamiltonian constraint equation.

Proof. Let u > 0 be the conformal factor which transforms h into a metric with scalar
curvature λ = −8 aτ , i.e., let u ∈ W s−2,p be a weak solution to

−�u + 1
8 Ru + aτu5 = 0, u > 0.

Taking φ = βu with a constant β > 0, we have

ALφ + f (φ,w) � ALφ + aτ φ
5 + aRφ = −β�u + aτ (βu)5 + β

8 Ru

= βaτu5(β4 − 1).

By choosing β ∈ (0, 1], we get the sub-solution. ��
The following lemma shows that the additional condition on the metric appearing in

Lemma 14 is indeed not restrictive. It is worth noting that this next result can be viewed
as an apparently new non-existence result in the context of the non-CMC constraints,
which is interesting in its own right. This result was first proved in [33] for the case of
p = 2; we just need to reinterpret it here in our setting. It states that for there to be a
(CMC or non-CMC) solution to the Hamiltonian constraint, the background metric hab
must be conformally equivalent to a metric with scalar curvature equal to (−aτ ).

Lemma 15 (Non-existence h ∈ Y−). Let (M, h) be a 3-dimensional, smooth, closed
Riemannian manifold with metric h ∈ W s,p in Y−(M). Let aτ ∈ W s−2,p, and let there
exist a solution to the Hamiltonian constraint equation. Then, the metric h is conformally
equivalent to a metric with scalar curvature (−aτ ).

Proof. It suffices to show that the equation

−�ψ + 1
8 Rψ + aτψ5 = 0, (5.17)

has a solution ψ > 0. Since the above equation is just a Hamiltonian constraint equa-
tion with aρ = aw = 0, Theorem 3 establishes the proof upon constructing sub- and
super-solutions to (5.17).

Let φ > 0 be a solution to the (general) Hamiltonian constraint equation. Then, since
both aρ and aw are non-negative, we have

−�φ + 1
8 Rφ + aτ φ5 � 0,

which means that φ is a super-solution to (5.17).
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Let u ∈ W s,p be a solution to

−�u + 1
8 Ru = −λu, u > 0,

with a constant λ > 0, which exists by Theorem 11 in Appendix A.7, and with a real
parameter ε, let vε ∈ W s,p be the solution to

〈u2∇vε,∇ϕ〉 + 〈λu2vε, ϕ〉 = 〈λu2 − aτ ε, ϕ〉, ∀ϕ ∈ C∞.

We have vε ≡ 1 for ε = 0, and we have vε ∈ W s,p ↪→ L∞, so as ε goes to 0, vε tends
to 1 uniformly. Let us fix ε > 0 such that vε � 1

2 . By taking ψ = βuvε with a constant
β > 0, and using (5.13), it holds for any ϕ ∈ C∞+ that

〈∇ψ,∇(uϕ)〉 +

〈
1

8
Rψ + aτψ

5, uϕ

〉
= β〈u2∇vε,∇ϕ〉 + 〈aτu6(βvε)

5 − βλu2vε, ϕ〉
= β〈aτ (u6v5

εβ
4 − ε), ϕ〉 + βλ〈u6(1− 2vε), ϕ〉.

Now, by choosing β > 0 small enough, we can ensure thatψ is a sub-solution of (5.17).
��

5.3. A priori L∞ bounds on W 1,2 solutions. We now establish some related a priori
L∞-bounds on any W 1,2-solution to the Hamiltonian constraint equation. Although such
results are standard for semi-linear scalar problems with monotone nonlinearities (for
example, see [29]), the nonlinearity appearing in the Hamiltonian constraint becomes
non-monotone when R becomes negative. Nonetheless, we are able to obtain a priori
L∞-bounds on solutions to the Hamiltonian constraint in all cases including the non-
monotone case. See [21] for an analogue of this result in the case of compact manifolds
with boundary; in that case a more general result is possible.

Lemma 16 ((Pointwise a priori bounds). Let φ ∈ W 1,2 be any non-constant positive
solution of the Hamiltonian constraint equation (2.23).

(a) Let a∨τ R := ess inf (aτ + aR) > 0, and let a∧ρ and a∧w be finite. Then, φ satisfies the a
priori bound

φ4 � max

{
1,

a∧ρ + a∧w
a∨τ R

}
.

(b) Let a∨τ > 0 and let a∧ρ and a∧w be finite. Then, φ satisfies the a priori bound

φ4 � max

⎧
⎨
⎩1,

√
(a∨R)2 + a∨τ (a

∧
ρ + a∧w)− a∨R

a∨τ

⎫
⎬
⎭ .

(c) Let a∨ρw := ess inf (aρ + aw) > 0, and let a∧τ be finite. Then, φ satisfies the a priori
bound

φ4 �
a∨ρw

max{a∨ρw, a∧τ + a∧R}
.
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Proof. We will only prove (a) since the other cases can be proven similarly.
Let χ ∈ W 1,2 be any function with χ � 1. Then for ϕ ∈ C∞+ we have

〈 fw(χ), ϕ〉 � (χ∨)5〈aτ , ϕ〉 + χ∨〈aR, ϕ〉 − (χ∨)−3(aρ, ϕ)− (χ∨)−7(aw, ϕ)

�
(

a∨τ R χ
∨ − (χ∨)−3[a∧ρ + a∧w]

)
‖ϕ‖1.

So we conclude that

〈 fw(χ), ϕ〉 � 0 ∀χ � φ∧, χ ∈ W 1,2, ∀ϕ ∈ C∞+ ,

where (φ∧)4 = max
{

1,
a∧ρ +a∧w

a∨τ R

}
.

Now, suppose that φ ∈ W 1,2 is a solution of the Hamiltonian constraint equation,
such that φ � φ∧. Denoting by (φ − φ∧)+ the positive part of φ − φ∧ (cf. Appendix
A.6), then we have

0 � −〈 fw(φ), (φ − φ∧)+〉 = (∇φ,∇(φ − φ∧)+) = (∇(φ − φ∧)+,∇(φ − φ∧)+)
� c‖(φ − φ∧)+ − (φ − φ∧)+‖22,

where c > 0, and (φ − φ∧)+ is the integral average of (φ − φ∧)+. This implies that φ is
constant, leading to a contradiction. ��

6. Proof of the Main Results

It is convenient to prove Theorem 2 first, which is the most general of the three; the proofs
of Theorem 1 and Theorem 3 involve minor modifications of the proof of Theorem 2.

6.1. Proof of Theorem 2. Our strategy will be to prove the theorem first for the case
s � 2, and then to bootstrap to include the higher regularity cases.
Step 1. The choice of function spaces. We have the (reflexive) Banach spaces X = W s,p

and Y = W e,q , where p, q ∈ (3,∞), s = s(p) ∈ (1 + 3
p , 2], and e = e(p, s, q) ∈

(1, s]∩(1+ 3
q , s− 3

p + 3
q ]. We have the ordered Banach space Z = W s̃,p with the compact

embedding X = W s,p ↪→ W s̃,p = Z , for s̃ ∈ ( 3
p , s). The interval [φ−, φ+]s̃,p is non-

empty (by compatibility of the barriers we will choose below), and by Lemma 1 at the end
of Sect. 3 it is also convex with respect to the vector space structure of W s̃,p and closed
with respect to the norm topology of W s̃,p. We then take U = [φ−, φ+]s̃,p ∩ B M for
sufficiently large M (to be determined below), where B M is the closed ball in Z = W s̃,p

of radius M about the origin, ensuring that U is non-empty, convex, closed, and bounded
as a subset of Z = W s̃,p.
Step 2. Construction of the mapping S. We have b j ∈ W e−2,q , and bτ ∈ Lz with
z = 3q

3+(2−e)q so that Lz ↪→ W e−2,q . Moreover, since the metric admits no conformal
Killing field, by Lemma 6 the momentum constraint equation is uniquely solvable for
any “source” φ ∈ [φ−, φ+]s̃,p. The ranges for the exponents ensure that Lemma 2 holds,
so that the momentum constraint solution map

S : [φ−, φ+]s̃,p → W e,q = Y,

is continuous.
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Step 3. Construction of the mapping T . Define r = 3p
3+(2−s)p , so that the continuous

embedding Lr ↪→ W s−2,p holds. Since the pointwise multiplication is bounded on
L2r ⊗ L2r → Lr , and w ∈ W e,q ↪→ W 1,2r , we have aw ∈ W s−2,p by σ ∈ L2r . The em-
beddings W 1,z ↪→ W e−1,q ↪→ L2r also guarantee that aτ = 1

12τ
2 ∈ W s−2,p . We have

the scalar curvature R ∈ W s−2,p , and these considerations show that the Hamiltonian
constraint equation is well defined with [φ−, φ+]s,p as the space of solutions.

Suppose for the moment that the scalar curvature R of the background metric h is
continuous, and by using the map T s introduced in Lemma 3, define the map T by
T (φ,w) = T s(φ, aw), where aw is now considered as an expression depending on w.
Then Lemma 3 implies that the map T : [φ−, φ+]s̃,p ×W e,q → W s,p is continuous for
any reasonable shift as , which, by Lemma 4, can be chosen so that T is monotone in
the first variable. Combining the monotonicity with Lemma 5, we infer that the interval
[φ−, φ+]s̃,p is invariant under T (·, aw) if w ∈ S([φ−, φ+]s̃,p). Since Lz ↪→ W e−2,q ,
from Theorem 6 we have

‖w‖e,q � C ‖bτ φ6 + b j‖e−2,q � C ‖φ+‖6∞‖bτ‖z + C ‖b j‖e−2,q

for any w ∈ S([φ−, φ+]s̃,p). In view of Lemma 6, this shows that there exists a closed
ball B M ⊂ W s̃,p such that

φ ∈ [φ−, φ+]s̃,p ∩ B M , w ∈ S([φ−, φ+]s̃,p ∩ B M ) ⇒ T (φ,w) ∈ B M .

Under the conditions in the above displayed formula, from the invariance of the interval
[φ−, φ+]s̃,p, we indeed have T (φ,w) ∈ U = [φ−, φ+]s̃,p ∩ B M .

However, the scalar curvature of h may be not continuous, and in general it is not
clear how to introduce a shift so that the resulting operator is monotone. Nevertheless,
we can conformally transform the metric into a metric with continuous scalar curva-
ture, cf. Theorem 12, and by using the conformal covariance of the Hamiltonian con-
straint, we will be able to construct an appropriate mapping T . Let h̃ = θ4h be a
metric with continuous scalar curvature, where θ ∈ W s,p is the (positive) conformal
factor of the scaling. Let T̃ s be the mapping introduced in Lemma 3, corresponding
to the Hamiltonian constraint equation with the background metric h̃, and the coeffi-
cients ãτ = aτ , and ãρ = θ−8aρ . With ãw = θ−12aw, this scaled Hamiltonian con-
straint equation has sub- and super-solutions θ−1φ− and θ−1φ+, respectively, as long as
φ− and φ+ are sub- and super-solutions respectively of the original Hamiltonian con-
straint equation, cf. Appendix A.8. We choose the shift in T̃ s so that it is monotone
in [θ−1φ−, θ−1φ+]s̃,p. Then by the monotonicity and the above mentioned sub- and
super-solution property under conformal scaling, for w ∈ S([φ−, φ+]s̃,p), T̃ s(·, θ−12aw)

is invariant on [θ−1φ−, θ−1φ+]s̃,p. Finally, we define

T (φ,w) = θ T̃ s(θ−1φ, θ−12aw),

where, as before, aw is considered as an expression depending on w. From the pointwise
multiplication properties of θ and θ−1, the map T : [φ−, φ+]s̃,p × W e,q → W s,p is
continuous, and from the monotonicity and Lemma 6 , T (·,w) is invariant on U =
[φ−, φ+]s̃,p ∩ B M for w ∈ S(U ), where M is taken to be sufficiently large. Moreover, if
the fixed point equation

φ = θ T̃ s(θ−1φ, θ−12aw),
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is satisfied, then θ−1φ is a solution to the scaled Hamiltonian constraint equation with
ãw = θ−12aw, and so by conformal covariance,φ is a solution to the original Hamiltonian
constraint equation, cf. Appendix A.8.
Step 4. Barrier choices and application of the fixed point theorem. At this point, Theorem
5 implies the Main Theorem 2, provided that we have an admissible pair of barriers for
the Hamiltonian constraint. The ranges for the exponents ensure through Corollary 1
that we can use the estimate (5.1); see the discussion following the estimate at the begin-
ning of Sect. 5. We will separate into the two cases in the theorem, depending on which
Yamabe class we are in:

(a) hab is in Y−(M): We use the global constant super-solution from Lemma 7(a) or
the non-constant super-solution from Lemma 12 depending on whether ρ and σ
are both in L∞, and the global sub-solution from Lemma 14.

(b) hab is in Y0(M) or in Y+: We use the global constant super-solution from Lemma
7(a) or the non-constant super-solution from Lemma 12 depending on whether ρ
and σ are both in L∞, and the global sub-solution from Lemma 13 or Lemma 8(c).

This concludes the proof for the case s � 2.
Step 5: Bootstrap. Now suppose that s > 2. First of all we need to show that the equa-
tions are well defined in the sense that the involved operators are bounded in appropriate
spaces. All other conditions being obviously satisfied, we will show that aτ ∈ W s−2,p,
and aw ∈ W s−2,p for any w ∈ W e,q . Since τ , σ and Lw belong to W e−1,q , it suffices to
show that the pointwise multiplication is bounded on W e−1,q⊗W e−1,q → W s−2,p , and
by employing Corollary 3(b) in the Appendix, we are done as long as s−2 � e−1 � 0,
s − 2 − 3

p < 2(e − 1 − 3
q ), and s − 2 − 3

p � e − 1 − 3
q . After a rearrangement these

conditions read: e � 1, e � s − 1, e > 3
q + d

2 , and e � 3
q + d − 1, with the shorthand

d = s− 3
p > 1, the latter inequality by the hypothesis of the theorem. We have d−1 > d

2

for d > 2, and 1 � d
2 for d � 2, meaning that the condition e > 3

q + d
2 is implied by the

hypotheses e � 3
q + d − 1 and e > 1 + 3

q . So we conclude that the constraint equations
are well defined.

Next, we will treat the equations as equations defined with s = e = 2 and with p
and q appropriately chosen. This is possible, since if the quadruple (p, s, q, e) satisfies
the hypotheses of the theorem, then ( p̃, s̃ = 2, q̃, ẽ = 2) satisfies the hypotheses too,
provided that 2− 3

p̃ � s− 3
p , and 1 < 2− 3

q̃ � e− 3
q . Since the latter conditions reflect

the Sobolev embeddings W s,p ↪→ W 2, p̃ and W e,q ↪→ W 2,q̃ ↪→ W 1,∞, the coefficients
of the equations can also be shown to satisfy sufficient conditions for posing the problem
for ( p̃, 2, q̃, 2). Finally, we have τ ∈ W e−1,q ↪→ W 1,q̃ = W 1,z since z = q̃ by ẽ = 2
for this new formulation. Now, by the special case s � 2 of this theorem that is proven in
the above steps, under the remaining hypotheses including the conditions on the metric
and the near-CMC condition, we have φ ∈ W 2, p̃ with φ > 0 and w ∈ W 2,q̃ solution to
the coupled system.

To complete the proof we only need to show that these solutions indeed satisfy φ ∈
W s,p and w ∈ W e,q . Suppose thatφ ∈ W s1,p1 and w ∈ W e1,q1 , with 1 < s1− 3

p1
� s− 3

p ,

1 < e1 − 3
q1

� e − 3
q , max{2, s − 2} � s1 � s, and max{2, e − 2} � e1 � min{e, s}.

Then we have bτ φ6 + b j ∈ W e−2,q , and so Corollary 5 from Appendix A.5 implies that
w ∈ W e,q . This implies that aw ∈ W s−2,p , and by employing Corollary 5 once again,
we get φ ∈ W s,p. The proof is completed by induction. ��
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6.2. Proof of Theorem 1. The proof is identical to the proof of Theorem 2, except for
the particular barriers used. In the proof of Theorem 2, the near-CMC condition is used
to construct global barriers satisfying

0 < φ− � φ+ <∞,
for all three Yamabe classes, and then the supporting results for the operators S and T
established in Sect. 4.1 and Sect. 4.2 are used to reduce the proof to invoking Theorem 5.
The construction of φ+ is in fact the only place in the proof of Theorem 2 that requires the
near-CMC condition. Here, the proof is identical, except that the additional conditions
made on the background metric hab (that it be in Y+(M)), and on the data (the smallness
conditions on σ , ρ, and j) allow us to make use of the alternative construction of a global
super-solution given in Lemma 9, together with compatible global sub-solution given in
Lemma 13, properly scaled for compatibility with the super-solution. Theorem 1 now
follows from Theorem 5, without the use of near-CMC conditions. ��
6.3. Proof of Theorem 3. The CMC result in this theorem can be proved using the same
analysis framework used for the proofs of the two non-CMC results in Theorem 1 and
Theorem 2 above. Therefore, the proof follows the same general outline of the proof of
Theorem 2, with slightly different spaces and supporting results. The main difference is
that we can avoid having to construct “global” barriers and getting uniform bounds on
the solution to the momentum constraint, since it is solved only once a priori and then
is input as data into the nonlinearity of the Hamiltonian constraint.

The case (d) follows from the Yamabe classification, cf. Appendix A.7.
Since otherwise we can use the conformal covariance of the Hamiltonian constraint

as in Sect. 6.1, for simplicity, assume that the scalar curvature of the background metric
is continuous. Also assume that s � 2, and let us look at the hypotheses of Theorem 5.
We have the (reflexive) Banach spaces X = W s,p and Y = W 1,2r , where p ∈ ( 3

2 ,∞),
s = s(p) ∈ ( 3

p ,∞) ∩ [1, 2], and r = r(s, p) = 3p
3+(2−s)p . On the diagram in Fig. 2,

for s � 2 the space W 1,2r corresponds to the lower right corner of the shaded parallel-
ogram, and so W 1,2r contains all the spaces W e,q which are represented by the points
in the shaded parallelogram. In fact, W 1,2r is outside of this parallelogram, because of
the strict inequality relating e and q in order to have the boundedness of the pointwise
multiplication on W e−1,q ⊗ W e−1,q → W s−2,p by using Corollary 3(b). However, the
conditions of Corollary 3(b) are not necessary conditions when some of the smoothness
indices are integers, for example, in our case the pointwise multiplication is bounded on
L2r⊗L2r → Lr , even though these spaces do not satisfy the conditions of the corollary.
As a consequence, as we have seen e.g. in Sect. 2.4, the constraint equations are well
defined for these spaces.

We have the ordered Banach space Z = W s̃,p with the compact embedding X =
W s,p ↪→ W s̃,p = Z , for s̃ ∈ ( 3

p , s). The interval [φ−, φ+]s̃,p is nonempty (by compati-
bility of the barriers we will choose below), and by Lemma 1 at the end of Sect. 3 it is
also convex with respect to the vector space structure of W s̃,p and closed with respect to
the norm topology of W s̃,p. We then take U = [φ−, φ+]s̃,p ∩ B M for sufficiently large
M (to be determined below), where B M is the closed ball in Z = W s̃,p of radius M
about the origin, ensuring that U is non-empty, convex, closed, and bounded as a subset
of Z = W s̃,p.

We take as T the shifted Picard mapping T s having as its fixed-point a solution to the
Hamiltonian constraint, and we take S(φ) = w = −A−1

L
b j ∈ W 1,2r , which is indepen-
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dent of φ, since the momentum equation decouples from the Hamiltonian constraint in
this case. The map S, which is constant as a function of φ due to the CMC de-coupling, is
trivially continuous as a map S : U → W 1,2r = Y . We now consider properties we have
for T . By Lemma 3, T : U ×R(S)→ W s,p = X is a continuous map. By Lemma 4,
T is invariant on the closed interval [φ−, φ+]s̃,p, and by Lemma 6, T is invariant on
U = [φ−, φ+]s̃,p ∩ B M . To summarize, T is invariant on the non-empty, closed, convex,
bounded set U .

Finally, Theorem 5 implies the Main Theorem 3, as long as we have an admissible
pair of barriers for the Hamiltonian constraint. That is when we need to separate into the
three remaining cases in the theorem, depending on which Yamabe class we are in:

(a) hab is in Y−(M); τ = 0: We take the super-solution from Lemma 11(c), and we
take the sub-solution from Lemma 14. These lemmata require that the metric hab
is conformally equivalent to a metric with scalar curvature (−aτ ), and we shall
verify this condition. By conformal invariance, it suffices to verify the condition
for metrics with continuous and negative scalar curvature, meaning that we have
to solve Eq. (5.17) with R < 0 continuous and aτ > 0 constant. Indeed, this
equation has a positive solution ψ ∈ W s,p as the constants ψ− = (min |R|

8aτ
)1/4 and

ψ+ = (max |R|
8aτ

)1/4 are respectively sub- and super-solutions of (5.17).
(b) hab is in Y+(M); ρ = 0 or σ = 0: We take the super-solution from Lemma 11(b),

and we take the sub-solution from Lemma 13. For the case ρ = 0 and σ = 0, a
local sub-solution can easily be constructed following the approach in the proof of
Lemma 13.

(c) hab is in Y0(M); τ = 0; ρ = 0 or σ = 0: We take the super-solution from
Lemma 11(a), and we take the sub-solution from Lemma 13. The case ρ = 0 and
σ = 0 is treated as above.

To complete the proof one can bootstrap as in Sect. 6.1. ��

7. Summary

We began in Sect. 2 by summarizing the conformal decomposition of Einstein’s con-
straint equations introduced by Lichnerowicz and York, on a closed manifold. After this
setting up of the notation, we gave an overview of our main results in Sect. 3, represented
by three new weak solution existence results for the Einstein constraint equations in the
far-from-CMC, near-CMC, and CMC cases. In Sect. 4 we then developed the necessary
results we need for the individual constraint equations in order to analyze the coupled
system. In particular, in Sect. 4.1, we first developed some basic technical results for the
momentum constraint operator under weak assumptions on the problem data. We also
established the properties we need for the momentum constraint solution mapping S
appearing in the analysis of the coupled system. In Sect. 4.2, we assumed the existence
of barriers φ− and φ+ (weak sub- and super-solutions) to the Hamiltonian constraint
equation, forming a nonempty positive bounded interval, and then established the prop-
erties we need for the Hamiltonian constraint Picard mapping T appearing in the analysis
of the coupled system. We then derived several weak global sub- and super-solutions
in Sect. 5, based both on constants and on more complex non-constant constructions.
While the sub-solutions are similar to those found previously in the literature, some of
the super-solutions were new. In particular, we gave two super-solution constructions
that do not require the near-CMC condition. The first was constant, and requires that the
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scalar curvature be strictly globally positive. The second was based on a scaled solu-
tion to a Yamabe-type problem, and is valid for any background metric in the positive
Yamabe class.

In Sect. 6, we proved the main results. In particular, using topological fixed-point argu-
ments and global barrier constructions, we combined the results for the individual con-
straints and the global barriers to establish existence of coupled non-CMC weak solutions
with (positive) conformal factor φ ∈ W s,p, where p ∈ (1,∞) and s(p) ∈ (1+ 3

p ,∞). In

the CMC case, the regularity can be reduced to p ∈ (1,∞) and s(p) ∈ ( 3
p ,∞)∩[1,∞).

In the case of s = 2, we reproduce the CMC existence results of Choquet-Bruhat [10],
and in the case p = 2, we reproduce the CMC existence results of Maxwell [33], but
with a different proof; our CMC proof goes through the same analysis framework that
we use to obtain the non-CMC results (Theorems 4 and 5). We also assembled a number
of new supporting technical results in the body of the paper and in several appendices,
including: topological fixed-point arguments designed for the Einstein constraints; con-
struction and properties of general Sobolev classes W s,p and elliptic operators on closed
manifolds with weak metrics; the development of a very weak solution theory for the
momentum constraint; a priori L∞-estimates for weak W 1,2-solutions to the Hamilto-
nian constraint; Yamabe classification of non-smooth metrics in general Sobolev classes
W s,p; and a discussion and analysis of conformal covariance and the connection between
conformal rescaling and the near-CMC condition.

An important feature of the results we presented here is the absence of the near-CMC
assumption in the case of the rescaled background metric in the positive Yamabe class,
as long as the freely specifiable part of the data given by the matter fields (if present)
and the traceless-transverse part of the rescaled extrinsic curvature are taken to be suf-
ficiently small. In this case, the mean extrinsic curvature can be taken to be an arbitrary
smooth function without restrictions on the size of its spatial derivatives, so that it can be
arbitrarily far from constant. Under these conditions, we have the first existence result for
non-CMC solutions without the near-CMC condition. The two advances in the analysis
of the Einstein constraint equations that make these results possible were: A topological
fixed-point theorem based on compactness arguments that is free of the near-CMC con-
dition (Theorems 4 and 5 and in [21]), and a new construction of global super-solutions
for the Hamiltonian constraint that is similarly free of the near-CMC condition (Lemma 7
and Lemma 9). We note that the near-CMC-free constructions based on scaled solutions
to a Yamabe-like problem also work for compact manifolds with boundary and other
cases; see e.g. [21].

Finally, we point out that our results here and in [21,22] can be viewed as reducing the
remaining open questions of existence of non-CMC (weak and strong) solutions without
near-CMC conditions to two more basic and clearly stated open problems: (1) Existence
of near-CMC-free global super-solutions for the Hamiltonian constraint equation when
the background metric is in the non-positive Yamabe classes and for large data; and (2)
existence of near-CMC-free global sub-solutions for the Hamiltonian constraint equa-
tion when the background metric is in the positive Yamabe class in vacuum (without
matter). However, an important new development, which occurred a few months after
the first draft of this article was made available, is that Maxwell has now shown [36]
how a related topological fixed-point argument can be constructed so that a global sub-
solution is not needed, as long as the global super-solution is available; this allows for
the extension of the far-CMC results in this article to the vacuum case without having
to solve problem (2).
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A. Some Key Technical Tools and Some Supporting Results

A.1. Topological fixed-point theorems. In this Appendix, we give a brief review of some
standard topological fixed-point theorems in Banach spaces that provide the framework
for our analysis of the coupled constraint equations. The analysis framework that was
developed earlier in [26] for analyzing the coupled constraints was based on k-contrac-
tive mappings, and as a result required the near-CMC condition in order to establish
k-contractivity. All subsequent non-CMC results (see e.g. [1]) are based on the frame-
work from [26], and as a result remain limited to the near-CMC case. Our interest here
is on more general topological fixed-point arguments that will allow us to avoid the
near-CMC condition.
Brouwer, Schauder, and Leray-Schauder Fixed-Point Theorems. To establish the main
abstract results we will need, we first give a brief overview of some standard results on
topological fixed-point arguments involving compactness.

Theorem 7 (Brouwer Theorem). Let U ⊂ R
n be a non-empty, convex, compact subset,

with n � 1. If T : U → U is a continuous mapping, then there exists a fixed-point
u ∈ U such that u = T (u).

Proof. See Proposition 2.6 in [54]; a short proof can be based on homotopy-invariance
of topological degree. ��
Theorem 8 (Schauder Theorem). Let X be a Banach space, and let U ⊂ X be a non-
empty, convex, compact subset. If T : U → U is a continuous operator, then there exists
a fixed-point u ∈ U such that u = T (u).

Proof. This is a direct extension of the Brouwer Fixed-Point Theorem from R
n to

X ; see Corollary 2.13 in [54]. The short proof involves a simple finite-dimensional
approximation algorithm and a limiting argument, extending the Brouwer Fixed-Point
Theorem (itself generally having a more complicated proof) from R

n to X . ��
Theorem 9 (Schauder Theorem B). Let X be a Banach space, and let U ⊂ X be a
non-empty, convex, closed, bounded subset. If T : U → U is a compact operator, then
there exists a fixed-point u ∈ U such that u = T (u).

Proof. See Theorem 2.A in [54]; the proof is a simple consequence of Theorem 8 above.
��

A.2. Ordered Banach spaces. These notes follow the main ideas and definitions given
in Chap. 7.1, p. 275, in [54], while some examples were taken from [2 and 16]. Let X
be a Banach space, R+ be the non-negative real numbers. A subset C ⊂ X is a cone iff
given any x ∈ C and a ∈ R+ the element ax ∈ C . A subset X+ ⊂ X is an order cone
iff the following properties hold:

(i) The set X+ is non-empty, closed, and X+ = {0};
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(ii) Given any a, b ∈ R+ and x , x ∈ X+ then ax + bx ∈ X+;
(iii) If x ∈ X+ and −x ∈ X+, then x = 0.

The second property above says that every order cone is in fact a cone, and that the set
X+ is convex. The space X = R

2 is a convenient Banach space to picture non-trivial
examples of cones and order cones, as can be seen in Fig. 3. A pair X , X+ is called
an ordered Banach space iff X is a Banach space and X+ ⊂ X is an order cone. The
reason for this name is that the order cone X+ defines several relations on elements in
X , called order relations, as follows:

u � v iff u − v ∈ X+, u > v iff u � v and u = v,
u � v iff u − v ∈ int(X+), u � v iff u � v is false;

finally the notations u � v, u < v, and u � v are used to mean v � u, v > u, v � u,
respectively. A simple example of an ordered Banach space is R with the usual order.
Another example can be constructed when this order on R is transported into C0(M),
the set of scalar-valued functions on a set M ⊂ R

n , with n � 1. An order on C0(M)

is the following: the functions u, v ∈ C0(M) satisfy u � v iff u(x) � v(x) for all
x ∈ M. The following lemmas summarize the main properties of order relations in
Banach spaces.

Lemma 17. Let X, X+ be an ordered Banach space. Then, for all elements u, v,w ∈ X,
hold: (i) u � u; (ii) If u � v and v � u, then u = v; (iii) If u � v and v � w, then
u � w.

Proof. The property that u − u = 0 ∈ X+ implies that u � u. If u � v and v � u then
u− v ∈ X+ and−(u− v) ∈ X+, therefore u− v = 0. Finally, if u � v and v � w, then
u − v ∈ X+ and v −w ∈ X+, which means that u −w = (u − v) + (v −w) ∈ X+. ��

Furthermore, the order relation is compatible with the vector space structure and with
the limits of sequences.

Lemma 18. Let X, X+ be an ordered Banach space. Then, for all u, û, v, v̂,w ∈ X, and
a, b ∈ R, the following hold:

(i) If u � v and a � b � 0, then au � bv;
(ii) If u � v and û � v̂, then u + û � v + v̂;

(iii) If un � vn for all n ∈ N, then limn→∞ un � limn→∞ vn.

Proof. The first two properties are straightforward to prove, and we do not do it here.
The third property holds because the order cone is a closed set. Indeed, un � vn means
that un−vn ∈ X+ for all n ∈ N, and then limn→∞(un−vn) ∈ X+ because X+ is closed,
then Property (iii) follows. ��

The remaining order relations have some other interesting properties.

Lemma 19. Let X, X+ be an ordered Banach space. Then, for all u, v, w ∈ X, and
a ∈ R, the following hold:: (i ) If u � v and v � w, then u � w; (ii) If u � v and
v � w, then u � w; (iii) If u � v and v � w, then u � w; (iv) If u � v and a > 0,
then au � av.

The proof of Lemma 19 is similar to the previous lemma, and is not reproduced here.
Given an ordered Banach space X , X+, and two elements u � v, introduce the intervals

[v, u] := {w ∈ X : v � w � u}, (v, u) := {w ∈ X : v � w � u}.
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[v,u]

R
2

R
2

+

u

v

Fig. 3. The shaded regions in the first picture represent an order cone, while the second picture represents a
cone that is not an order cone. The shaded region between u and v in the third picture represents the closed
interval [v, u], constructed with the order cone R

2
+, which is also represented by a shaded region

Analogously, introduce the intervals [v, u) and (v, u]. See Fig. 3 for an example in
X = R

2. Useful order cones for solving PDE are those that define an order structure in
the Banach space which is related with the norm and the notion of boundedness. These
types of order cones are called normal. More precisely, an order cone X+ in a Banach
space X is called a normal order cone iff there exists 0 < a ∈ R such that for all u,
v ∈ X with 0 � v � u holds ‖v‖ � a ‖u‖.
Lemma 20. If X, X+ is an ordered Banach space with normal order cone X+, then every
closed interval in X is bounded.

Proof. Let w ∈ [v, u], then v � w � u, and so 0 � w− v � u − v. Since the cone X+
is normal, this implies that there exists a > 0 such that ‖w− v‖ � a ‖u− v‖. Then, the
inequalities ‖w‖ � ‖w − v‖ + ‖v‖ � a ‖u − v‖ + ‖v‖, which hold for all w ∈ [v, u],
establish the lemma. ��

Not every order cone is normal. For example, consider the Sobolev spaces W k,p of
scalar-valued functions on an n-dimensional, closed manifold M (or a compact manifold
with Lipschitz continuous boundary), where k is a non-negative integer, and p > 1 is a
real number. An order cone in W k,p is defined translating the order on the real numbers,
almost everywhere in M, that is,

W k,p
+ := {u ∈ W k,p : u � 0 a.e. in M}.

In the case k = 0, that is, we have W 0,p = L p, the order cone above is a normal cone
[2,54]. However, in the case k � 1 the cone above cannot be normal, since on the one
hand, the cone definition involves information only of the values of u(x) and not of its
derivatives; on the other hand, the norm in W k,p contains information of both the values
of u(x) and its derivatives. In the case of a compact manifold with boundary, since there
are no boundary conditions on ∂M in the definition of W k,p, there is no way to relate
the values of a function in M with the values of its derivatives. (In other words, there is
no Poincaré inequality for elements in W k,p, with k � 1.)

An order cone X+ ⊂ X is generating iff Span(X+) = X . An order cone X+ ⊂ X
is called total iff Span(X+) is dense in X . Total order cones are important because the
order structure associated with them can be translated from the space X into its dual
space X∗.
Lemma 21. Let X, X+ be an ordered Banach space. If X+ is a total order cone, then an
order cone in X∗ is given by the set X∗+ ⊂ X∗ defined as

X∗+ := {u∗ ∈ X∗ : u∗(v) � 0 ∀ v ∈ X+}.
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Proof. We check the three properties in the definition of the order cone. The first prop-
erty is satisfied because X+ is an order cone, so there exists v = 0 in X+, and then
there exists u∗ = 0 in X∗ such that u∗(v) = 1 � 0, so X∗+ is non-empty. Trivially,
0 ∈ X∗+. Finally, X∗+ is closed because the order relation � for real numbers is used in
its definition. The second property of an order cone is satisfied, because given any u∗,
v∗ ∈ X∗+ and any non-negative a, b ∈ R, then for all u ∈ X+,

(au∗ + bv∗)(u) = au∗(u) + bv∗(u) � 0

holds since each term is non-negative. This implies that (au∗ + bv∗) ∈ X∗+. The third
property is satisfied because the order cone X+ is total. Suppose that the element u∗ ∈ X∗+
and −u∗ ∈ X∗+, then for all u ∈ X+ it holds that u∗(u) � 0 and −u∗(u) � 0, which
implies that u∗(u) = 0 for all u ∈ X+. Therefore, u∗ ∈ X◦+ ⊂ X∗, where the super-
script ◦ in X◦+ means the Banach annihilator of the set X+, which is a subset of the
space X∗. Therefore, we conclude that u∗ ∈ [Span(X+)

]◦. Since the order cone is total,
Span(X+) = X , that implies

[
Span(X+)

]◦ = {0}, so u∗ = 0. This establishes the lemma.
��

An order cone X+ in a Banach space X is called a solid cone iff X+ has non-empty
interior. The following result asserts that solid order is generating. We remark that the
converse is not true. In the examples below we present function spaces frequently used
in solving PDE with order cones having empty interior which are indeed generating.

Lemma 22. Let X, X+ be an order Banach space. If X+ is a solid cone, then X+ is
generating.

Proof. The cone X+ has a non-empty interior, so there exists x0 ∈ int(X+) and x0 = 0.
This means that given any x ∈ X there exists 0 < a ∈ R small enough such that both
x+ := x0 + ax and x− := x0 − ax belong to int(X+). But then, x = (x+ − x−)/(2a), so
x ∈ Span(X+). This establishes the lemma. ��

Here is a list of examples of several order cones used in function spaces. All these
examples use order cones obtained from the usual order in R. In particular, they refer
to scalar-valued functions on an n- dimensional, closed manifold M (or a compact
manifold with Lipschitz boundary).

• Introduce on Ck the cone Ck
+ := {u ∈ Ck : u(x) � 0 ∀x ∈M}. This is an order

cone for all non-negative integers k. The cone is a normal cone in the particular case
k = 0. The cone is solid for all k � 0, therefore it is a generating cone.

• Introduce on L∞ the cone L∞+ := {u ∈ L∞ : u � 0 a.e. in M}. This is a normal,
order cone. It is a solid cone, therefore it is generating.

• Introduce on W k,∞ the cone W k,∞
+ := {u ∈ W k,∞ : u � 0 a.e. in M}. This is an

order cone. It is not normal for k � 1. The cone is solid, therefore it is generating.
• Introduce on L p the cone L p

+ := {u ∈ L p : u � 0 a.e. in M}. This is a normal,
order cone for every real number p � 1. The cone is not solid, however it is a
generating cone.

• Introduce on W k,p the cone W k,p
+ := {u ∈ W k,p : u � 0 a.e. in M}. This is an

order cone for every real number p � 1. The cone is not normal for k � 1. The
cone is not solid for kp � n, and it is solid for kp > n. In both cases, the cone is
generating.
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A key concept that becomes possible in ordered Banach spaces is that of an opera-
tor satisfying a maximum principle. We have not seen in the literature an approach to
maximum principles on ordered Banach spaces in the generality we now present. Let X ,
X+ and Y , Y+ be ordered Banach spaces. An operator A : DA ⊂ X → Y satisfies the
maximum principle iff for every u, v ∈ DA such that Au− Av ∈ Y+, u−v ∈ X+ holds.
In the particular case that the operator A is linear, then it satisfies the maximum principle
iff for all u ∈ X such that Au ∈ Y+, u ∈ X+ holds. The main example is the Laplace
operator acting on scalar-valued functions defined on different domains. It is shown later
on in this Appendix that the inverse of an operator that satisfies the maximum principle
is monotone increasing. The following result gives a simple sufficient condition for an
operator to satisfy the maximum principle. This result is useful on weak formulations
of PDE.

Lemma 23. Let X, X+ be an ordered Banach space, and A : X → X∗ be a linear and
coercive map. Assume that X+ is a generating order cone, and that for all u ∈ X such
that Au ∈ X∗+ there exists a decomposition u = u+ − u− with u+, u− ∈ X+ that also
satisfies Au+(u−) = 0. Then, the operator A satisfies the maximum principle.

Proof. Since the order cone X+ is generating, the space X∗ is also an ordered Banach
space. Denote its order cone by X∗+. The assumption that the order cone X+ is generating
also implies that for any element u ∈ X there exists a decomposition u = u+ − u−
with u+, u− ∈ X+. By hypothesis, there exists at least one decomposition with the extra
property that Au+(u−) = 0. Now, by definition of the order in the space X∗ we have
that

Au ∈ X∗+ ⇔ Au(u) � 0 ∀ u ∈ X+.

Pick as a test function u = u−. Then,

0 � Au(u−) = A(u+ − u−)(u−) = Au+(u−)− Au−(u−) = −Au−(u−),

where the last equality comes from the condition Au+(u−) = 0. Therefore, we have

Au−(u−) � 0 ⇒ u− = 0,

because A is coercive. So we showed that u = u+ ∈ X+. This establishes the lemma.
��

An example is the weak form of the shifted Laplace-Beltrami operator�+s on scalar
functions on a closed manifold M, where s > 0. Consider the case X = W 1,2, with
Y = X∗ = W−1,2, and X+ = W 1,2

+ , while Y+ = W−1,2
+ . The Laplace operator in this

case is given by A : X → X∗ with action Au(v) := (∇u,∇v). It is not difficult to
check that this operator satisfies the hypothesis in Lemma 23. Therefore, this operator
satisfies the maximum principle, that is, Au ∈ W−1,2

+ implies u ∈ W 1,2
+ , that is, u � 0

a.e. in the manifold M.

A.3. Monotone increasing maps. Let X , X+ and Y , Y+ be two ordered Banach spaces. An
operator F : X → Y is monotone increasing iff for all x , x ∈ X such that x − x ∈ X+,
F(x) − F(x) ∈ Y+ holds. An operator F : X → Y is monotone decreasing iff for all
x , x ∈ X such that x − x ∈ X+ it holds that − [F(x)− F(x)

] ∈ Y+. The main result
for these types of maps is the following; it can be found as Theorem 7.A in [54], p. 283,
and Corollary 7.18 on p. 284. We reproduce it here for completeness, without the proof.
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Theorem 10 (Fixed point for increasing operators). Let X be an ordered Banach space,
with a normal order cone X+. Let T : [x−, x+] ⊂ X → X be a monotone increasing,
compact map. If − [x− − T (x−)

] ∈ X+ and x+ − T (x+) ∈ X+, then the iterations

xn+1 := T (xn), x0 = x−,
x̂n+1 := T (x̂n), x̂0 = x+,

converge to x and x̂ ∈ [x−, x+], respectively, and the following estimate holds:

x− � xn � x � x̂ � x̂n � x+, ∀n = N. (A.1)

We are interested in the following class of nonlinear problems: Find an element x ∈ X
which solves the equation

Ax + F(x) = 0, (A.2)

where the principal part involves an invertible linear operator A : X → Y satisfy-
ing the maximum principle, and the non-principal part involves a nonlinear operator
F : X → Y which has monotonicity properties. We now establish some basic results for
this class of problems. The first two results relate linear, invertible operators that satisfy
the maximum principle with monotone increasing (decreasing) operators.

Lemma 24. Let X, X+ and Y , Y+ be two ordered Banach spaces. Let A : X → Y be a
linear, invertible operator satisfying the maximum principle. Then, the inverse operator
A−1 : Y → X is monotone increasing.

Proof. Let y, y ∈ Y be such that y − y ∈ Y+. Then,

A
(

A−1(y − y)
)
∈ Y+ ⇒ A−1(y − y) ∈ X+ ⇔ A−1 y − A−1 y ∈ X+.

This establishes that the operator A−1 is monotone increasing. ��
Lemma 25. Let X, X+ and Y , Y+ be two ordered Banach spaces. Let A : X → Y be
a linear, invertible operator satisfying the maximum principle. Let F : X → Y be a
monotone decreasing (increasing) operator. Then, the operator T : X → X given by
T := −A−1 F is monotone increasing (decreasing).

Proof. Assume first that the operator F is monotone decreasing. So, given any x , x ∈ X
such that x − x ∈ X+, the following inequalities hold:

x − x ∈ X+ ⇒ − [F(x)− F(x)
] ∈ Y+,

⇔ A
(
−A−1 [F(x)− F(x)

]) ∈ Y+,

⇒ −A−1 [F(x)− F(x)
] ∈ X+,

⇔ −
[

A−1 F(x)− A−1 F(x)
]
∈ X+,

⇔ T (x)− T (x) ∈ X+,

which establishes that the operator T is monotone increasing. In the case that the operator
F is monotone increasing, then the first line in the proof above changed into x− x ∈ X+
implies that F(x) − F(x) ∈ Y+, and then all the remaining inequalities in the proof
above are reverted. This establishes the lemma. ��
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The next result translates the inequalities that satisfy sub- and super-solutions to the
equation Ax + F(x) = 0, into inequalities for the operator T = −A−1 F .

Lemma 26. Assume the hypothesis in Lemma 25.
If there exists an element x+ ∈ X such that Ax+ + F(x+) ∈ Y+, then this element

satisfies that x+ − T (x+) ∈ X+.
If there exists an element x− ∈ X such that− [Ax− + F(x−)

] ∈ Y+, then this element
satisfies that − [x− − T (x−)

] ∈ X+.

Proof. The first statement in the lemma can be shown as follows:

Ax+ + F(x+) ∈ Y+ ⇔ A
(

x+ + A−1 F(x+)
)
∈ Y+

⇒ x+ + A−1 F(x+) ∈ X+,

which then establishes that x+ − T (x+) ∈ X+. In a similar way, the second statement in
the lemma can be shown as follows:

− [Ax− + F(x−)
] ∈ Y+ ⇔ A

(
−x− − A−1 F(x−)

)
∈ Y+

⇒ −x− − A−1 F(x−) ∈ X+,

which then establishes that − [x− − T (x−)
] ∈ X+. This establishes the lemma. ��

For nonlinear problems of the form (A.2), one can use Theorem 10 for monotone
nonlinearities to conclude the following.

Corollary 2. (Semi-linear equations with sub-/super-solutions) Let X, X+ and Y , Y+ be
two ordered Banach spaces where X+ is a normal order cone. Let A : X → Y be a
linear, invertible operator satisfying the maximum principle. Let x+, x− ∈ X be elements
such that (x+ − x−) ∈ X+, and then assume that the operator F : [x−, x+] ⊂ X → Y
is monotone decreasing and compact. If the elements x− and x+ satisfy the relations

− [Ax− + F(x−)
] ∈ Y+, Ax+ + F(x+) ∈ Y+, (A.3)

then there exists a solution x ∈ [x−, x+] ⊂ X of the equation Ax + F(x) = 0.

Proof. The operator A is invertible, then rewrite the equation Ax + F(x) = 0 as a
fixed-point equation,

x = −A−1 F(x) =: T (x). (A.4)

By Lemma 25, we know that the map T : X → X is monotone increasing. More-
over, this operator T is compact, since it is the composition of the continuous mapping
−A−1 and the compact map F . The elements x− and x+ satisfy Eq. (A.3), therefore, by
Lemma 26, they are also sub- and super-solutions for the fixed-point equation involving
the map T . It follows from Theorem 10 that there exists an element x ∈ X solution to
the fixed-point equation (A.4), and this solution satisfies the bounds x− � x � x+. ��



598 M. Holst, G. Nagy, G. Tsogtgerel

A.4. Sobolev spaces on closed manifolds. In this Appendix we will recall some proper-
ties of Sobolev spaces of sections of vector bundles over closed manifolds. The following
definition makes precise what we mean by fractional order Sobolev spaces. We expect
that without much difficulty all the results in this paper can be modified to reflect other
smoothness classes such as Bessel potential spaces or general Besov spaces.

Definition 2. For s � 0 and 1 � p � ∞, we denote by W s,p(Rn) the space of all
distributions u defined in R

n, such that

(a) when s = m is an integer,

‖u‖m,p =
∑
|ν|�m

‖∂νu‖p <∞,

where ‖ · ‖p is the standard L p-norm in R
n;

(b) and when s = m + σ with m (nonnegative) integer and σ ∈ (0, 1),

‖u‖s,p = ‖u‖m,p +
∑
|ν|=m

‖∂νu‖σ,p <∞,

where

‖u‖σ,p =
(∫∫

Rn×Rn

|u(x)− u(y)|p
|x − y|n+σ p

dxdy

) 1
p

, for 1 � p <∞,

and

‖u‖σ,∞ = ess supx,y∈Rn
|u(x)− u(y)|
|x − y|σ .

For s < 0 and 1 < p < ∞, W s,p(Rn) denotes the topological dual of W−s,p′(Rn),
where 1

p + 1
p′ = 1.

These well known spaces are Banach spaces with corresponding norms, and become
Hilbert spaces when p = 2. We refer to [18,46] and references therein for further
properties.

Now we will define analogous spaces on closed manifolds. Let M be an n-dimen-
sional smooth closed manifold, and let {(Ui , ϕi )} be a collection of charts such that
{Ui } forms a finite cover of M. Then for any distribution u ∈ C∞0 (Ui )

∗, the pull-back
ϕ∗i (u) ∈ C∞0 (ϕi (Ui ))

∗ is defined by ϕ∗i (u)(v) = u(v ◦ ϕi ) for all v ∈ C∞0 (ϕi (Ui )).
Extending ϕ∗i (u) by zero outside ϕi (Ui ), in the following we treat it as a distribution on
R

n . Let {χi } be a smooth partition of unity subordinate to {Ui }.
Definition 3. For s ∈ R and p ∈ (1,∞), we denote by W s,p(M) the space of all
distributions u defined in M, such that

‖u‖s,p =
∑

i

‖ϕ∗i (χi u)‖s,p <∞, (A.5)

where the norm under the sum is the W s,p(Rn)-norm. In case s � 0, these Sobolev
spaces can also be defined for p = 1 and p = ∞.



Rough Solutions of the Einstein Constraints on Closed Manifolds 599

We collect the most basic properties of these spaces in the following lemma. Recall
that a Riemannian metric on M induces a volume form on M, so that L p spaces can be
defined on M (cf. [43]).

Lemma 27. Either let s � 0 and p ∈ [1,∞] or let s < 0 and p ∈ (1,∞). Then
the space W s,p(M) is a Banach space. It is independent of the choice of the covering
charts {(Ui , ϕi )} and the partition of unity {χi }. In particular, the different norms (A.5)
are equivalent. Moreover, the following are true when M is equipped with a smooth
Riemannian metric.

(a) Let ∇ be the Levi-Civita connection associated to the Riemannian metric. Then for
any nonnegative integer m,

‖u‖′m,p =
m∑

i=0

‖∇ i u‖p,

is an equivalent norm on W m,p(M). In particular, we have W 0,p(M) = L p(M).
(b) Identifying C∞(M)as a subspace of distributions via the L2-inner product, C∞(M)

is densely embedded in W s,p(M) for any s ∈ R and p ∈ (1,∞).
(c) Let s ∈ R and p ∈ (1,∞). Then the L2-inner product on C∞(M) extends uniquely

to a continuous bilinear pairing W s,p(M)⊗W−s,p′(M)→ R, where 1
p + 1

p′ = 1.

Moreover, the pairing induces a topological isomorphism between W−s,p′(M) and
the topological dual space of W s,p(M).

Proof. See for example [3,19,43,45]. ��
A main goal of this subsection is to extend the previous lemma to the case when the

Riemannian metric is not smooth. The following result will be of importance.

Lemma 28. Let si � s with s1 + s2 � 0, and 1 � p, pi �∞ (i = 1, 2) be real numbers
satisfying

si − s � n

(
1

pi
− 1

p

)
, s1 + s2 − s > n

(
1

p1
+

1

p2
− 1

p

)
,

where the strictness of the inequalities can be interchanged if s ∈ N0. In case
min(s1, s2) < 0, in addition let 1 < p, pi <∞, and let

s1 + s2 � n

(
1

p1
+

1

p2
− 1

)
.

Then, the pointwise multiplication of functions extends uniquely to a continuous bilinear
map

W s1,p1(M)⊗W s2,p2(M)→ W s,p(M).

Proof. A proof is given in [55] for the case s � 0, and by using a duality argument one
can easily extend the proof to negative values of s. ��

Some important special cases are considered in the following corollary:
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Corollary 3. (a) If p ∈ (1,∞) and s ∈ ( n
p ,∞), then W s,p is a Banach algebra. More-

over, if in addition q ∈ (1,∞) and σ ∈ [−s, s] satisfy σ − n
q ∈ [−n − s + n

p , s − n
p ],

then the pointwise multiplication is bounded as a map W s,p ⊗W σ,q → W σ,q .
(b) Let 1 < p, q <∞ and σ � s � 0 satisfy σ − n

q < 2(s− n
p ) and σ − n

q � s− n
p .

Then the pointwise multiplication is bounded as a map W s,p ⊗W s,p → W σ,q .

The following lemma is proved in [33] for the case p = q = 2. With the help of
Lemma 28, the proof can easily be adapted to the following general case.

Lemma 29. Let p ∈ (1,∞) and s ∈ ( n
p ,∞), and let u ∈ W s,p. Let σ ∈ [−1, 1]

and 1
q ∈ ( 1+σ

2 δ, 1 − 1−σ
2 δ), and let v ∈ W σ,q , where δ = 1

p − s−1
n . Moreover, let

f : [inf u, sup u] → R be a smooth function. Then, we have

‖v( f ◦ u)‖σ,q � C ‖v‖σ,q
(‖ f ◦ u‖∞ + ‖ f ′ ◦ u‖∞‖u‖s,p

)
,

where the constant C does not depend on u, v or f .

Proof. We consider the case σ = 1 first. Choosing a smooth Riemannian metric on M,
we have

‖v( f ◦ u)‖1,q � C
(‖v( f ◦ u)‖q + ‖∇[v( f ◦ u)]‖q

)

� C
(‖v( f ◦ u)‖q + ‖(∇v)( f ◦ u)‖q + ‖v( f ′ ◦ u)∇u‖q

)

� C
(‖v‖q‖ f ◦ u‖∞ + ‖v‖1,q‖ f ◦ u‖∞ + ‖ f ′ ◦ u‖∞‖v∇u‖q

)
.

By Lemma 28, for 1
q � δ, the last term can be bounded as

‖v∇u‖q � C‖v‖1,q‖∇u‖s−1,p � C‖v‖1,q‖u‖s,p,
proving the lemma for the case σ = 1. By using duality one proves the case σ = −1
and 1

q � 1− δ, and the lemma follows from interpolation. ��
Let M be an n-dimensional smooth closed manifold, and let E →M be a smooth

vector bundle over M. Analogously to Definition 3, we define the Sobolev space
W s,p(E) of sections of E by utilizing a finite trivializing cover of coordinate charts,
a partition of unity subordinate to the cover, and the space [W s,p(Rn)]k of vector func-
tions, where k is the fiber dimension of E . Then, Lemma 27 holds for these spaces with
obvious modifications. When there is no risk of confusion, we will omit the explicit
specification of the vector bundle E from the notation W s,p(E).

In the following lemma we consider nonsmooth Riemannian structures on E and
nonsmooth volume forms on M.

Lemma 30. Let γ ∈ (1,∞) and α ∈ ( n
γ
,∞). Fix on M a volume form of class Wα,γ ,

and on E a Riemannian structure of class Wα,γ .

(a) Let p ∈ (1,∞) and s � min{α, α + n( 1
p − 1

γ
)}. Then identifying the space C∞(E)

of smooth sections of E as a subspace of distributions via the L2-inner product,
C∞(E) is densely embedded in W s,p(E).

(b) Let s ∈ [−α, α], p ∈ (1,∞), and s − n
p ∈ [−n − α + n

γ
, α − n

γ
]. Then the

L2-inner product on C∞(E) extends uniquely to a continuous bilinear pairing
W s,p(E)⊗ W−s,p′(E)→ R, where 1

p + 1
p′ = 1. Moreover, the pairing induces a

topological isomorphism [W s,p(E)]∗ ∼= W−s,p′(E).
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Proof. We will prove the lemma for scalar functions on M, i.e., for the trivial bundle
E =M× R. The general case is only more technical.

Fixing a smooth volume form on M and denoting the associated L2-inner prod-
uct by (·, ·)∗, the L2-inner product associated to the nonsmooth volume form (and the
nonsmooth metric on M× R) satisfies

(u, v)L2 = (hu, v)∗, u, v ∈ C∞(M),

with some strictly positive function h ∈ Wα,γ . From Lemma 28, we have that mul-
tiplication by h is continuous on W s,p for s ∈ [−α, α], p ∈ (1,∞), and s − n

p ∈
[−n − α + n

γ
, α − n

γ
]. Since h > 0 this operation is invertible hence a homeomorphism

on W s,p. Now by using Lemma 27 we complete the proof. ��
Corollary 4. Let γ ∈ (1,∞) and α ∈ ( n

γ
,∞). Fix on M a volume form of class Wα,γ ,

and on E a Riemannian structure of class Wα,γ . With s ∈ [−α, α], p ∈ (1,∞), and
s − n

p ∈ [−n − α + n
γ
, α − n

γ
], let A : L p → W s,p be a bounded linear operator and

let A∗ be its formal L2-adjoint, i.e., let

(Au, v)L2 = (u, A∗v)L2 , for u, v ∈ C∞(E).

Then, A∗ extends uniquely to a bounded linear map A∗ : W−s,p′ → L p′ , and we have

〈Au, v〉 = 〈u, A∗v〉, for u ∈ L p(E), v ∈ W−s,p′(E),

where 〈·, ·〉 denotes the extension of the L2-inner product.

Proof. This is an application of Lemma 30. ��

A.5. Elliptic operators on closed manifolds. In this Appendix we will state a priori esti-
mates for general elliptic operators in some Sobolev spaces. Let M be an n-dimensional
smooth closed manifold, and let E →M be a smooth vector bundle over M.

Let C−∞(E) be the topological dual of the space C∞(E) of smooth sections of
E . Then for m ∈ N, α ∈ R, and γ ∈ [1,∞], we define Dα,γ

m (E) to be the space of
differential operators A : C∞(E)→ C−∞(E) that can be written in local coordinates
(trivializing E) as

A =
∑
|ν|�m

aν∂ν with aν ∈ Wα−m+|ν|,γ (Rn,Rk×k), |ν| � m,

where k is the fiber dimension of E .
One can easily verify that if the metric of a Riemannian manifold is in Wα,γ with

αγ > n, then both the Laplace-Beltrami operator and vector Laplacian defined in (2.17)
are in the classes Dα,γ

2 (M× R) and Dα,γ
2 (T M), respectively.

Lemma 31. Let A be a differential operator of class Dα,γ
m (E). Then, A can be extended

to a bounded linear map

A : W s,q(E)→ W σ,q(E),



602 M. Holst, G. Nagy, G. Tsogtgerel

for q ∈ (1,∞), s � m − α, and σ satisfying

σ � min{s, α} − m, σ < s − m + α − n

γ
,

σ − n

q
� α − n

γ
− m, and s − n

q
� m − n − α +

n

γ
.

Proof. This is a straightforward application of Lemma 28. ��
The Laplace-Beltrami operator and vector Laplacian are elliptic operators. We now

consider local a priori estimates for general elliptic operators. For any subset U ⊂M,
the W s,p(U )-norm is denoted by ‖ · ‖s,p,U .

Lemma 32. Let A ∈ Dα,γ
m (E) be an elliptic operator with α − n

γ
> max{0, m−n

2 }. Let
q ∈ (1,∞), s ∈ (m−α, α], and s− n

q ∈ (m− n−α + n
γ
, α− n

γ
]. Then for any y ∈M,

there exists a constant c > 0 and open neighborhoods K ⊂ U ⊂M of y such that

c‖χu‖s,q � ‖Au‖s−m,q + ‖u‖s−1,q,U , (A.6)

for any u ∈ W s,q(E) and χ ∈ C∞0 (K ) with χ � 0.

Proof. We work in a local chart containing y, which trivializes E . Let K be the open ball
of radius r centered at y contained in the domain of the chart and extend the coefficients
of A outside K so that the resulting operator is still in Dν,γ

m , with appropriate vector
fields over R

n . We make the decomposition A = L + R + B, where L is the highest
order term of A with coefficients frozen at y, and R is what remains in the highest order
terms, i.e.,

L =
∑
|ν|=m

aν(y)∂ν, R =
∑
|ν|=m

[aν − aν(y)]∂ν.

Obviously B = A − L − R are the lower order terms. Let u ∈ W s,q with supp u ⊂ K .
From the theory of constant coefficient elliptic operators, we infer the existence of a
constant c > 0 such that for any u ∈ W s,q(E) with supp u ⊂ K ,

c‖u‖s,q � ‖Lu‖s−m,q + ‖u‖s−m,q

� ‖Au‖s−m,q + ‖Ru‖s−m,q + ‖Bu‖s−m,q + ‖u‖s−m,q .

Since α > n
γ

, without loss of generality we can assume for |ν| = m that aν ∈ C0,h for
some h > 0, so

‖Ru‖s−m,q � Crh‖u‖s,q ,
where C is a constant depending only on A. By choosing r so small that Crh � c

2 , we
have

c

2
‖u‖s,q � ‖Au‖s−m,q + ‖Bu‖s−m,q + ‖u‖s−m,q .

Now we will work with the lower order term. Choose δ ∈ (0, α − n
γ
) such that

δ � min{1, s +α−m, s− n
q +α− n

γ
+ n−m}. We have B ∈ Dα−1,γ

m−1 , so by Lemma 31,
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B : W s−δ,γ → W s−m,γ is bounded. Then using a well known interpolation inequality,
we get

‖Bu‖s−m,q � C‖u‖s−δ,q � Cε‖u‖s,q + C ′ε−(m−δ)/δ‖u‖s−m,q ,

for any ε > 0. Choosing ε > 0 sufficiently small, we conclude that

c‖u‖s,q � ‖Au‖s−m,q + ‖u‖s−m,q , ∀u ∈ W s,q(E), supp u ⊂ K .

We apply this inequality to χu, and then observing that [A, χ ] is in Dα,γ
m−1(M), we

obtain (A.6). ��
We can easily globalize the above result as follows:

Corollary 5. Let the conditions of Lemma 32 hold. Then there exists a constant c > 0
such that

c‖u‖s,q � ‖Au‖s−m,q + ‖u‖s−m,q , ∀u ∈ W s,q(E). (A.7)

Proof. We first cover M by open neighborhoods K by applying Lemma 32 to every
point y ∈M, and then choose a finite subcover of the resulting cover. Then a partition
of unity argument gives (A.7) with the term ‖u‖s−m,q replaced by ‖u‖s−1,q , and finally
one can use an interpolation inequality to get the conclusion. ��

Let us recall the following well known results from functional analysis.

Lemma 33. Let X and Y be Banach spaces with continuous embedding X ↪→ Y . Let
A : X → Y be a continuous linear map. Then

(a) A necessary and sufficient condition that the graph of A be closed in X × Y is that
there exists a constant c > 0 such that c‖u‖X � ‖Au‖Y + ‖u‖Y for all u ∈ X.

(b) If in addition the embedding X ↪→ Y is compact then the range of A is closed and
the kernel of A is finite-dimensional.

As an immediate consequence, we obtain the following result.

Lemma 34. Let A ∈ Dα,γ
m (E) be an elliptic operator with α − n

γ
> max{0, m−n

2 }. Let
q ∈ (1,∞), s ∈ (m − α, α], and s − n

q ∈ (m − n − α + n
γ
, α − n

γ
]. Then, the operator

A : W s,q(E) → W s−m,q(E) is semi-Fredholm, i.e., its range is closed and the kernel
is finite-dimensional.

A.6. Maximum principles on closed manifolds. In this Appendix, we present maximum
principles for the operators of the form−∇ · (u∇) with positive function u, followed by
a simple application. These types of results are well known, but nevertheless we state
them here for completeness.

It is convenient at times when working with barriers and maximum principle argu-
ments to split real valued functions into positive and negative parts; we will use the
following notation for these concepts:

φ+ := max{φ, 0}, φ− := −min{φ, 0},
whenever they make sense. In the proof of the following lemma we will use the fact that
for φ ∈ W 1,p, φ+ ∈ W 1,p holds, and so φ− ∈ W 1,p, cf. [38].
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Lemma 35. Let p ∈ (1,∞) and s ∈ ( n
p ,∞)∩[1,∞), and let (M, hab) be an n-dimen-

sional, smooth, closed manifold with a Riemannian metric hab ∈ W s,p. Moreover, let
u ∈ W s,p be a function with u > 0 and let f ∈ W s−2,p. Let φ ∈ W s,p be such that

〈u∇φ,∇ϕ〉 + 〈 f, φϕ〉 � 0, for all ϕ ∈ C∞+ . (A.8)

(a) If f = 0 and 〈 f, ϕ〉 � 0 for all ϕ ∈ C∞+ , then φ � 0.
(b) If M is connected and φ � 0, then either φ ≡ 0 or φ > 0 everywhere.

Proof. For (a), we will follow the proof of [33, Lemma 2.9]. Since φ ∈ W 1,n , we have
φ− ∈ W 1,n

+ and −φφ− ∈ W 1,n
+ . Note that W 1,n ↪→ (W s−2,p)∗ by n � 2. Now, using

the positivity of f and the property (A.8), by density we get

0 � 〈 f, φφ−〉 � −〈u∇φ,∇φ−〉 = 〈u∇φ−,∇φ−〉,
implying that φ− = const. So if φ < 0, it would have to be a negative constant. But prop-
erty (A.8) gives 〈 f, ϕ〉 � 0 for all ϕ ∈ C∞+ , which, in combination with the positivity,
implies f = 0. This contradicts the hypothesis f = 0 and proves (a).

Now we will prove (b). Since φ is continuous, the level set φ−1(0) ⊂M is closed.
Following the proof of [35, Lemma 5.3], we apply the weak Harnack inequality [47,
Theorem 5.2] to show that φ−1(0) is also open. Then by connectedness of M we will
have the proof.

The weak Harnack inequality [47, Theorem 5.2] can be applied to second order
elliptic operators of the form

Lφ = ∂i (a
i j∂ jφ + aiφ) + b j∂ jφ + aφ,

where ai j are continuous, and ai , b j ∈ L2t , and a ∈ Lt for some t > n
2 . The first term

in (A.8) satisfies these conditions, and the second term can be cast into a form satisfying
the conditions (details can be found in the proof of [35, Lemma 5.3]). Now suppose that
φ(x) = 0 for some x ∈ M, and let us work in local coordinates around x . Then the
weak Harnack inequality says that for sufficiently small R > 0, and for some p > t ′,

‖φ‖L p(B(x,2R)) � C R
n
p inf

B(x,R)
φ,

where B(x, R) denotes the open ball of radius R (in the background flat metric) centered
at x , and C is a constant that depends only on t , p, and the differential operator. Since
φ(x) = 0 and φ is nonnegative, the infimum is zero and the inequality implies that
φ ≡ 0 in a neighborhood of x . Hence the set φ−1(0) is open. ��
Lemma 36. Let the hypotheses of Lemma 35 (b) hold, and define the operator L :
W s,p → W s−2,p by

〈Lφ, ϕ〉 = 〈u∇φ,∇ϕ〉 + 〈 f, φϕ〉, φ ∈ W s,p, ϕ ∈ C∞.
Then, L is bounded and invertible.

Proof. By Lemma 34, the operator L is semi-Fredholm, and moreover since L is for-
mally self-adjoint, it is Fredholm. It is well known that when the metric is smooth, the
index of L is zero independent of s and p. We can approximate the metric h by smooth
metrics so that L is arbitrarily close to a Fredholm operator with index zero. Since the
level sets of index as a function on Fredholm operators are open, we conclude that the
index of L is zero. The injectivity of L follows from Lemma 35(a), for if φ1 and φ2
are two solutions of Lφ = g, then the above lemma implies that φ1 − φ2 � 0 and
φ2 − φ1 � 0. ��
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A.7. The Yamabe classification of nonsmooth metrics. Let M be a smooth, closed, con-
nected n-dimensional Riemannian manifold with a smooth metric h, where we assume
throughout this section that n � 3. With a positive scalar ϕ, let h̃ be related to h by
the conformal transformation h̃ = ϕ2�−2h, where 2� = 2n

n−2 . We say that h̃ and h are
conformally equivalent, and this defines an equivalence relation on the space of metrics.
The equivalence class containing h will be denoted by [h]; e.g., h̃ ∈ [h]. It is well known
that any smooth Riemannian metric h on a given closed connected manifold M satisfies
one and only one of the following three conditions:

Y+: There is a metric in [h] with strictly positive scalar curvature;
Y0: There is a metric in [h] with vanishing scalar curvature;
Y−: There is a metric in [h] with strictly negative scalar curvature.

These conditions define three disjoint classes in the space of metrics: they are referred
to as the Yamabe classes.

We will extend the above classification to metrics in the Sobolev spaces W s,p under
rather mild conditions on s and p. Since the case p = 2 is treated in [33] and the argument
there easily extends to our slightly general setting, we shall only sketch the proof here.
Given a Riemannian metric h ∈ W s,p, let us consider the functional E : W 1,2 → R

defined by

E(ϕ) = (a∇ϕ,∇ϕ) + 〈R, ϕ2〉,
where a = 4 n−1

n−2 . By Corollary 3, the pointwise multiplication is bounded on W 1,2 ⊗
W 1,2 → W σ,q for σ � 1 and σ − n

q < 2 − n. Putting σ = 2 − s and q = p′, these
conditions read as 2 − s − n

p′ = 2 − n − s + n
p < 2 − n or s − n

p > 0, and s � 1.

So if sp > n and s � 1, ϕ2 ∈ W 2−s,p′ for ϕ ∈ W 1,2, meaning that the second term is
bounded in W 1,2.

By using the functional E , we define the quantity

µq = µq(h) = inf
ϕ∈Bq

E(ϕ), where Bq = {ϕ ∈ W 1,2 : ‖ϕ‖q = 1}.

Under the conditions sp > n and s � 1, one can show that µq is finite for q � 2, and
moreover that µ2� is a conformal invariant, i.e., µ2� (h) = µ2� (h̃) for any two metrics
h̃ ∈ [h], now allowing W s,p functions for the conformal factor. We refer toµ2� (h) as the
Yamabe invariant of the metric h, and we will see that the Yamabe classes correspond
to the signs of the Yamabe invariant.

Theorem 11. Let (M, h) be a smooth, closed, connected Riemannian manifold with
dimension n � 3 and with a metric h ∈ W s,p, where we assume sp > n and s � 1. Let
q ∈ [2, 2�). Then, there exists φ ∈ W s,p, φ > 0 in M, such that

− a�φ + Rφ = µqφ
q−1, and ‖φ‖q = 1, (A.9)

where µq = µq(h) is as defined above.

Proof. The above equation is the Euler-Lagrange equation for the functional E , so it
suffices to show that E attains its infimum µq over Bq at a positive function φ ∈ W s,p.
Let {φi } ⊂ Bq be a sequence satisfying E(φi )→ µq . From the continuity of the embed-
ding Lq ↪→ L2, we have {φi } is bounded in L2. It is the content of [33, Lemma 3.1]
that

E(ϕ) � C1‖ϕ‖21,2 − C2‖ϕ‖22, ϕ ∈ W 1,2,
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for metrics in W s,2 with s > n
2 . The proof works verbatim for our case, and since µq

is finite, from this we conclude that {φi } is bounded in W 1,2. By the reflexivity of W 1,2

and the compactness of W 1,2 ↪→ Lq , there exist an element φ ∈ W 1,2 and a subse-
quence {φ′i } ⊂ {φi } such that φ′i ⇀ φ in W 1,2 and φ′i → φ in Lq . The latter implies
φ ∈ Bq . It is not difficult to show that E is weakly lower semi-continuous, and it fol-
lows that E(φ) = µq , so φ satisfies (A.9). Bootstrapping with Corollary 5 implies that
φ ∈ W s,p ↪→ W 1,n , so that |φ| ∈ W 1,n . Since E(|φ|) = E(φ), after replacing φ by
|φ|, we can assume that φ � 0. Finally, bootstrapping again gives φ ∈ W s,p, and since
φ = 0 as φ ∈ Bq , by Lemma 35 we have φ > 0. ��

Under the conformal scaling h̃ = ϕ2�−2h, the scalar curvature transforms as

R̃ = ϕ1−2� (−a�ϕ + Rϕ),

so assuming the conditions of the above theorem we infer that any given metric h ∈ W s,p

can be transformed to the metric h̃ = φ2�−2h with the continuous scalar curvature
R̃ = µqφ

q−2� , where the conformal factor φ is as in the theorem. In other words, given
any metric hab ∈ W s,p, there exist continuous functions φ ∈ W s,p with φ > 0 and
R̃ ∈ W s,p having constant sign, such that

− a�φ + Rφ = R̃φ2�−1. (A.10)

We will prove below that the conformal class of the metric h completely determines the
sign of R̃, giving rise to the Yamabe classification of metrics in W s,p.

In the class of smooth metrics there is a stronger result known as the Yamabe theorem:
each conformal class of smooth metrics contains a metric with constant scalar curvature.
The Yamabe theorem is a non-trivial extension of the above theorem to the critical case
q = 2�, and we see that for smooth metrics the sign of the Yamabe invariant determines
which Yamabe class the metric is in. A proof of the Yamabe theorem requires more
delicate techniques since we lose the compactness of the embedding W 1,2 ↪→ Lq , see
e.g. [31] for a treatment of smooth metrics. As far as we know there has not appeared
in the literature an explicit proof of the Yamabe theorem for nonsmooth metrics such as
the ones considered in this paper, although it is generally expected to be true. We will
not pursue this issue here; however, the following simpler result justifies the Yamabe
classification of nonsmooth metrics.

Theorem 12. Let (M, h) be a smooth, closed, connected Riemannian manifold with
dimension n � 3 and with a metric h ∈ W s,p, where we assume sp > n and s � 1.
Then, the following hold:

• µ2� > 0 iff there is a metric in [h] with continuous positive scalar curvature.
• µ2� = 0 iff there is a metric in [h] with vanishing scalar curvature.
• µ2� < 0 iff there is a metric in [h] with continuous negative scalar curvature.

In particular, two conformally equivalent metrics cannot have scalar curvatures with
distinct signs.

Proof. We begin by proving that if there is a metric in [h] with continuous scalar cur-
vature of constant sign, then µ2� has the corresponding sign. Since µ2� is a conformal
invariant, we can assume that the scalar curvature R of h is continuous and has con-
stant sign. If R < 0, then E(ϕ) < 0 for constant test functions ϕ = const and there
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is a constant function in B2� , so we have µ2� < 0. If R � 0, then E(ϕ) � 0 for any
ϕ ∈ W 1,2, so µ2� � 0. Taking constant test functions, we infer that R = 0 implies
µ2� = 0. Now, if R > 0 then E(ϕ) defines an equivalent norm on W 1,2, and we have
1 = ‖ϕ‖2� � C‖ϕ‖1,2 for ϕ ∈ B2� , so µ2� > 0.

Next, we will prove that there is a metric in [h]with continuous scalar curvature with
the same sign as that ofµ2� . To this end, for any q ∈ [2, 2�), we shall show that the sign of
µ2� determines the sign ofµq , so that the proof is completed by Theorem 11. Ifµ2� < 0,
then E(ϕ) < 0 for some ϕ ∈ B2� , and since E(kϕ) = k2 E(ϕ) for k ∈ R, there is some
kϕ ∈ Bq such that E(kϕ) < 0, so µq < 0. If µs� � 0, then E(ϕ) � 0 for all ϕ ∈ B2� ,
and for any ψ ∈ Bq there is k such that kψ ∈ B2� , so µq � 0. All such k are uniformly
bounded since k = 1/‖ψ‖2� � C/‖ψ‖q = C by the continuity estimate ‖·‖1 � C‖·‖2� .
From this we have for all ψ ∈ Bq , E(ψ) = E(kψ)/k2 � µ2�/k2 � µ2�/C2, meaning
that µ2� > 0 implies µq > 0. A similar scaling argument gives that if µ2� = 0 then
µq = 0. ��

A.8. Conformal covariance of the Hamiltonian constraint. Let M be a smooth, closed,
connected n-dimensional manifold equipped with a Riemannian metric h ∈ W s,p, where
we assume throughout this section that p ∈ (1,∞), s ∈ ( n

p ,∞)∩[1,∞) and that n � 3.
We consider the Hamiltonian constraint

H(φ) := −�φ + 1
r(n−1) Rφ + aτ φr+1 − awφ

−r−3 − aρφ−t = 0,

where r = 4
n−2 , t ∈ R are constants, R ∈ W s−2,p is the scalar curvature of the metric

h, and the other coefficients satisfy aτ , aw, aρ ∈ W s−2,p
+ . In this Appendix, we will be

interested in the transformation properties of H under the conformal change h̃ = θr h
of the metric with the conformal factor θ ∈ W s,p satisfying θ > 0. To this end, we
consider

H̃(ψ) := −�̃ψ + 1
r(n−1) R̃ψ + ãτψr+1 − ãwψ

−r−3 − ãρψ−t = 0,

where �̃ is the Laplace-Beltrami operator associated to the metric h̃, R̃ ∈ W s−2,p is
the scalar curvature of h̃, and at the moment we do not impose any conditions on the
remaining coefficients other than that they satisfy ãτ , ãw, ãρ ∈ W s−2,p

+ . One can derive
the following relations:

R̃ = θ−r R − r(n − 1)θ−r−1�θ,

�̃ψ = θ−r�ψ + 2θ−r−1∇aθ∇aψ.

Combining these relations with

�(θψ) = θ�ψ + ψ�θ + 2∇aθ∇aψ,

we obtain

−�̃ψ + 1
r(n−1) R̃ψ = θ−r−1

(
−�(θψ) + 1

r(n−1) Rθψ
)
,

which in turn implies that

H̃(ψ) = θ−r−1 H(θψ),



608 M. Holst, G. Nagy, G. Tsogtgerel

provided in the definition of H̃ that ãτ = aτ , ãw = θ−2r−4aw, and ãρ = θ−t−r−1aρ .
We have proved the following well known result.

Lemma 37. Assume the above setting, so in particular, ãτ = aτ , ãw = θ−2r−4aw, and
ãρ = θ−t−r−1aρ . Then we have

H̃(ψ) = 0 ⇔ H(θψ) = 0,

H̃(ψ) � 0 ⇔ H(θψ) � 0,

H̃(ψ) � 0 ⇔ H(θψ) � 0.

A.9. General conformal rescaling and the near-CMC condition. In this article we
focused on the standard conformal method to produce the particular coupled elliptic
PDE system that we analyzed. Here we examine briefly other decompositions to see if
it is possible to remove the near-CMC obstacle for non-CMC existence that still seems
to remain for the non-positive Yamabe classes and for the positive Yamabe class with
large data.

The key question here is whether or not the standard conformal method essentially
hard-wires the near-CMC assumption into the coupled system in order to get a domain of
attraction for fixed-point iterations. If this is the case, then there remains the possibility
that one can reverse-engineer a formulation, different from the conformal method, that
gives a domain of attraction (preferably a contraction so that we also get uniqueness)
without use of near-CMC conditions. Unfortunately, the answer appears to be negative,
as we demonstrate below. In particular, it seems that the near-CMC obstacle is present
in all possible formulations based on conformal transformations, if the estimate (5.1) is
used.

To begin, recall that the objects (M, ĥab, k̂ab, ρ̂, ĵa) form an n-dimensional initial
data set for Einstein’s equations iff M is a n-dimensional smooth manifold, the tensor
ĥab is a Riemannian metric on M, the tensor k̂ab is a symmetric tensor field on M, the
fields ρ̂ and ĵa are a non-negative scalar and a tensor field on M, respectively, satisfying
the condition −ρ̂2 + ĵa ĵ a < 0, and the following equations hold:

R̂ + k̂2 − k̂abk̂ab − 2κρ̂ = 0, (A.11)

−∇̂ak̂ab + ∇̂bk̂ + κ ĵ b = 0, (A.12)

where ∇̂a is the Levi-Civita connection of the metric ĥab, the scalar field R̂ is the Ricci
scalar of the connection ∇̂a , the scalar k̂ = k̂abĥab is the trace of the tensor k̂ab, and the
constant κ = 8π in units where both the gravitation constant G and the speed of light c
have value one. The initial data set for Einstein’s equations describe an instant of time
in the physical world if we choose the number n = 3. Nevertheless, in the calculations
that follow we keep the number n as a general positive integer.

Introduce the decomposition of the two-index tensor kab into trace-free and trace
parts, as follows:

k̂ab = ŝab + 1
n k̂ ĥab,

where ŝabĥab = 0. Introduce the following conformal rescaling:

ĥab = φr hab, ŝab = φs sab, k̂ = φt k, (A.13)



Rough Solutions of the Einstein Constraints on Closed Manifolds 609

where the integers r , s, and t are arbitrary, and we have introduced the Riemannian
metric hab, a symmetric tensor sab, and a scalar field k. Introduce ∇a , the Levi-Civita
connection of the metric hab, which satisfies the equation ∇ahbc = 0, and denote by
R the Ricci scalar of this connection ∇a . The rescaling above induces the following
equations:

ĥab = φ−r hab, ŝab = φ(2r+s) sab,

where ĥab is the inverse tensor of ĥab, and hab is the inverse tensor of hab. We use the
convention that indices in all other hatted tensors are raised and lowered with the tensors
ĥab and ĥab, respectively, while indices on unhatted tensors are raised and lowered with
the tensors hab and hab, respectively. For example:

ŝab = ĥacĥbd ŝcd = φr hac φ
r hbd φ

sscd = φ(2r+s)sab.

The rescaling introduced in Eq. (A.13) implies that the tensor field k̂ab transforms as
follows:

k̂ab = φs sab + 1
n φ

(t−r) khab ⇔ k̂ab = φ(2r+s)sab + 1
n φ

(t+r) khab.

The connections ∇̂a and ∇a differ in a tensor field Cab
c, in the sense that for any tensor

field va ,

∇̂avb = ∇avb − Cab
cvc holds.

The tensor field Cab
c depends on the scalar field φ and the number r as follows:

Cab
c = r δ(ac∇b) ln(φ)− r

2 habhcd∇d ln(φ). (A.14)

This expression implies the contractions

habCab
c = − r

2 (n − 2)hcd∇d ln(φ), Cab
b = nr

2 ∇a ln(φ).

Given any two connections ∇̂a and∇a related by a tensor field Cab
c, the Riemann, Ricci,

and Ricci scalar fields associated with these two connections are related by the following
expressions:

R̂abc
d = Rabc

d − 2∇[aCb]cd + 2Cc[aeCb]ed ,

R̂ac = Rac −∇aCcb
b + ∇bCac

b + Cca
eCeb

b − Ccb
eCae

b,

R̂ = φ−r
[

R −∇aCab
b + ∇b(h

acCac
b) + hacCca

eCeb
b − hacCcb

eCae
b
]
,

where indices between square brackets mean anti-symmetrization, that is, given any
tensor uab we define u[ab] := (uab − uba)/2. In the case that the tensor Cab

c is given
by Eq. (A.14), the Ricci scalars R̂ and R satisfy the equation

R̂ = φ−(r+1)
[
φR − r(n − 1)�φ − r

4φ (n − 1)[r(n − 2)− 4](∇aφ)(∇aφ)
]
.

Introduce the Hamiltonian and momentum fields,

Ĥ := R̂ + k̂2 − k̂abk̂ab,

M̂b := −∇̂ak̂ab + ∇̂bk̂,
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then the conformal rescaling given in Eq. (A.13) implies the following equations:

Ĥ = φ−(r+1)
[
φR − r(n − 1)�φ − r

4φ (n − 1)[r(n − 2)− 4](∇aφ)(∇aφ)
]

+
n − 1

n
φ2t k2 − φ2(r+s)sabsab,

M̂b = −φ(r+s)∇asb
a +

n − 1

n
φt ∇bk −

(rn

2
+ r + s

)
φ(r+s)sb

a∇a ln(φ)

+
n − 1

n
t φt k∇b ln(φ).

It is convenient to reorder the terms in these equations in such a way that the equation
for the Hamiltonian field is given by

−r(n − 1)�φ − r

4φ
(n − 1)[r(n − 2)− 4](∇aφ)(∇aφ)

+Rφ +
(n − 1)

n
k2 φ(2t+r+1) − sabsab φ(3r+2s+1) = φ(r+1) Ĥ ,

and the equation for the momentum field is given by

−∇asb
a −

(
(n + 2)

2
r + s

)
sb

a∇a ln(φ)

= φ−(r+s)M̂b − (n − 1)

n
φ(t−r−s)∇bk − (n − 1)

n
tφ(t−r−s−1)k∇bφ.

There are many interesting particular cases of the equations above. The first case is
to keep the dimension n � 3 arbitrary, and choose:

r = 4
n−2 , s = − (n+2)

2 r, t = 0,

then, introducing the number 2∗ := 2n/(n − 2), we conclude that the n-dimensional
vacuum Einstein constraint equations (H = 0, Mb = 0) can be written as follows:

−4(n − 1)

(n − 2)
�φ + Rφ +

(n − 1)

n
k2 φ(2

∗−1) − sabsab φ−(2∗+1) = 0,

−∇asb
a +

(n − 1)

n
φ2∗∇bk = 0.

In the case that the manifold M is 3-dimensional, we have the number 2∗ = 6, and
the equation for the Hamiltonian field is given by

−2r�φ − r

2φ
(r − 4)(∇aφ)(∇aφ)

+Rφ +
2

3
k2 φ(2t+r+1) − sabsab φ(3r+2s+1) = φ(r+1) Ĥ , (A.15)

and the equation for the momentum field is given by

−∇asb
a −

(
3r

2
+ r + s

)
sb

a∇a ln(φ)

= φ−(r+s)M̂b − 2

3
φ(t−r−s)∇bk − 2

3
t φ(t−r−s−1)k∇bφ. (A.16)
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The semi-decoupling decomposition in the case of the vacuum Einstein constraint
equations (H = 0, Mb = 0) is obtained from Eqs. (A.15)-(A.16) in the particular case
of r = 4, s = −10, and t = 0, that is,

−8�φ + Rφ +
2

3
k2φ(2

∗−1) − sabsabφ−(2∗+1) = 0,

−∇asb
a +

2

3
φ2∗∇bk = 0.

The conformally covariant decomposition, in the case of the vacuum Einstein con-
straint equations (H = 0, Mb = 0) and in the case that the transverse, traceless part of
the tensor kab vanishes, is obtained from Eqs. (A.15)-(A.16) with the particular choice
of r = 4, s = −4, and t = 0, that is,

−8�φ + Rφ +

(
2

3
k2 − sabsab

)
φ(2

∗−1) = 0,

−∇asb
a − 6 sb

a∇a ln(φ) +
2

3
∇bk = 0.

As a final example, it is interesting to write down the rescaled equations above in the
case r = 4, s = −10, t arbitrary:

−8�φ + Rφ +
2

3
φ(2t+5) k2 − φ−7sabsab = φ5 Ĥ ,

−∇asb
a = φ6 M̂b − 2

3
φ(t+6)∇bk − 2

3
t φ(t+5)k ∇bφ.

Since the leading power in each equation scales exactly as the conformal method, the
same argument leading to the negative result for the conformal method in Lemma 10
will apply here. Therefore, it appears that the different conformal rescalings produce
coupled systems leading to precisely the same form of the near-CMC condition to estab-
lish non-CMC existence, in the case of both the non-positive Yamabe classes and the
positive Yamabe class for large data.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.
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