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Investigations of Surface Enhanced Raman Scattering (SERS) of pyridine
adsorbed on the silver electrode of different roughness have been performed.
The obtained results indicate that the micro- and the atomic scale roughness
influence the intensity of SERS signal. This proves for the electromagnetic
and charge transfer origin of the enhancement in the SERS phenomenon.

PACS numbers: 78.30.-j, 81.60.Bn, 82.65.Pa

1. Introduction

The Surface Enhanced Raman Scattering (SERS) phenomenon was discov-
ered in 1974 by Fleischman et al. [1]. The authors investigated the Raman scatter-
ing of laser light by pyridine molecules adsorbed on the surface of silver electrode
activated by the oxidation-reduction procedure. The obtained results were rather
spectacular. The intensity of Raman scattered light appeared to be about 10 6 times
larger than one could expect from the number of eXcited molecules. Thus, one can
assume the existence of surface mechanisms, which amplify the Raman scattered
light intensity. The study of these mechanisms was the subject of great number of
both experimental and theoretical works [2-6]. Numerous theoretical models have
been proposed, however, no one of them could explain that effect individually and
completely [7]. It was experimentally confirmed that the surface roughness plays
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a cucial role in the SERS phenomenon. The strong SERS signal is produced only
by molecules adsorbed on rough surfaces. At present most of investigators agree
that SERS is a result of two mutual complementary roughness-based mechanisms,
which can be explained by electromagnetic (EM) and charge transfer (CT) mod-
els [6]. The EM model assumes that the experimentally observed enhancement
of Raman scattering is a result of the electric field enhancement of both incident
and scattered light on the rough surface. The initially smooth surface, submitted
to roughness procedure, acquires bumps, which can be approximated to spheres,
hemispheres and prolate spheroids. From the solution of electrodynamic equations
it follows that the electric field of the incident and scattered light is enhanced
inside the microobjects [3, 8]. The magnitude of this enhancement depends on the
size and shape of microobjects at the surface and on the imaginary part of the
dielectric function of metal surface. The giant gain is theoretically expected when:
1) microstructures are of small sizes, i.e. the semi-axis of microobjects are smaller
than 10 nm; 2) microobjects at the surface are prolongated, i.e. α/b is large, where
a, b are the semi-axis perpendicular and parallel to the metal macrosurface, re-
spectively; 3) the imaginary part of the dielectric function of the metal for the
frequency of exciting light is small (the largest enhancement is obtained when
the frequency of the exciting light is equal to the frequency of the localized sur-
face plasmon). The strong SERS signals are mainly observed on rough surfaces
and colloidal particles of silver, gold and copper. Silver shows a small value of
the imaginary part of the dielectric function in the whole range of visible region,
whereas gold and copper in the red region only [9]. To observe the SERS phe-
nomenon on the silver surface one can use the exciting light in the whole visible
region. For gold and copper it is necessary to use red light in order to obtain de-
tectable signal. These experimental facts seem to confirm partially the EM model.
The observed signal enhancement, however, is larger than that predicted by EM
model. One may then expect that another mechanism exists, which is responsible
for the additional enhancement. This can be explained by charge transfer (CT)
called the "adatom" or the "active sites" model [2-6, 10, 11]. In this model the
existence of adatoms at the surface (i.e. atomic scale roughness) plays an impor-
tant role. Adatoms have dimensions much smaller than microstructures needed
for EM model. They are represented by single metal atoms or clusters, which can
form chemical bonds with the adsorbed molecules. The CT model assumes that: 1.
The incident light causes a transfer of an electron from the metal to the adsorbed
molecule; 2. The electron comes back to the metal, the photon is emitted and
the molecule remains in the vibrationally excited state. The probability of these
electron transitions is extremely large when the molecules are adsorbed at sites
of the atomic scale roughness (i.e. when the adatoms exist at the surface) [3]. It
is now generally accepted that both the EM and CT mechanisms determine the
experimentally observed signal and that the signal produced by CT mechanism
comes from the top of EM stucture.

In this work we present the results of investigation of the influence of the
electrode potential and the state of surface roughness on SERS signal from pyridine
adsorbed on silver electrode. We interpret the obtained results on the basis of EM
and CT models.
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2. Experimental

SERS investigations were performed in three-electrode electrochemical cell.
A scheme of our experimental set-up is presented in Fig. 1. A polished polycrys-
talline silver disc of 6 mm diameter was used as a working electrode and placed
in the centre of the cylindrical pyrex-glass cell. The circular Pt-wire, placed op-
posite to the working electrode, was used as a counter electrode. All potentials
were referred to the saturated calomel electrode (SCE) located in the proximity
of working electrode. The exposed surface of the working electrode was polished
to the mirror finish with emery paper and alumina powder and rinsed in acetone
and distilled water. The 0.1 M aqueous solution of KCl containing 0.05 M pyridine
was used as electrolyte. The latter one was deoxigenated by bubbling argon into
the cell. Prior to SERS measurements the silver electrode was roughened by a few
oxidation—reduction cycles (ORCs). The potential during the ORC was changed
from +0.15 to —1.20 V. The SERS spectra were excited with ILA 120-1 Ar+ ion
laser (514.5 nm line). The power of the laser beam was equal to 200 mW. Laser
light after passing the filter removing the plasma light was focused on the surface
of working electrode at the incident angle equal to 60°. The light scattered on the
electrode was focused on the entrance slit of a double grating monochromator. The
effective band pass of the monochromator slits was 4 cm -1 . The cooled photomul-
tiplier (M12 FQ51) and the photon counting system was used for SERS spectra
detection.
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3. Results and discussion

Figure 2 presents a typical voltammogram recorded during the ORC at a
sweep rate of 5 mVs -1 . Figure 3 shows the SERS spectrum of pyridine adsorbed
on Ag electrode the potential of which was equal to -0.6 V. This spectum was

recorded after performing 5 ORCs at the sweep rate of 5 mVs -1 . We performed the
investigations of the dependence of SERS signal on the electrode potential for all
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separate bands. Results of this measurements as socalled volt-Ramanograms are
plotted in Fig. 4. This figure presents also the volt-Ramanogram of the 1025 cm-1

band which is not shown in Fig. 3, since it appears in the range of the poten-
tial from about -0.1 to about -0.4 V only. The complete spectrum in the above
mentioned range contains three close bands 1008, 1025 and 1035 cm -1 . As follows
from the presented volt-Ramanograms the SERS signal strongly depends on the
electrode potential and on the direction of the potential sweep. It is related to
the processes occurring on the electrode surface, when the potential is changed.
For potentials, at which the current is positive (see Fig. 2), the oxidation of the
electrode occurs (Ag → Ag+ e— ) and Ag surface becomes partially covered by
AgCl layer. Next, when the current becomes negative, the reduction of AgCl layer
(Ag+ e

—

→ Ag 0 ) begins. The reduced Ag0 atoms called adatoms are surrounded
and immobilized by the adsorbed Cl— anions, water and pyridine molecules. During
the reduction process the number of adatoms increases and as it is shown in Fig.
4 the SERS signal increases as well. The SERS intensity for the bands 623, 1008,
1035, 1215 and 1594 cm -1 is maximal for potentials from -0.6 to -0.7 V. SERS
intensity for the 1025 cm -1 band is maximal in the potential range from -0.2 to
—0.3 V. In accordance with [12] the existence of the 1025 cm -1 band is caused by
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the molecules of pyridine chemisorbed on silver via nitrogen atom (C5H5 N-Ag).
Bands 1008, 1035, 623, 1215 and 1594 cm -1 are similar in frequency to those in
aqueous solution. From this fact one can suppose that these bands are ascribed to
Py-H2O complexes with hydrogen bond (C5H5N-H . . . O-H) rather than to pyri-
dine and that this complex is adsorbed on the surface of silver electrode. The SERS
intensity is a function of both the concentration of the adsorbate on the surface
and the number of Ag0 adatoms. In the range of potentials from -0.2 to -0.3 V
the concentration of adatoms as well as pyridine molecules adsorbed via nitrogen
atom is large. Changing the potentials toward the more negative ones, pyridine
molecules adsorbed via nitrogen atom are desorbed more rapidly than those ad-
sorbed via water. Therefore, the 1025 cm -1 band disappears, although the adatoms
concentration is large. In the potential range from -0.6 to -0.7 V there is a large
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concentration of adatoms and pyridine molecules adsorbed via water. For this
reason the intensity of SERS bands is maximal. The physical situation at the Ag
electrode/electrolyte interface in the above range of potential is schematically pre-
sented in Fig. 5(a). Decreasing the potentials toward more negative ones, the
anions and molecules are desorbed, which allows the Ag0 adatoms to diffuse and
to be incorporated into the metal (Fig. 5(b)). As a consequence of desorption and
absence of adatoms the SERS signal decreases. Applying less negative potentials
the pyridine molecules are readsorbed, but the number of Ag0 adatoms becomes
small (Fig. 5(c)) and therefore the SERS signal recorded during the increasing po-
tential is much lower than that for the opposite potential sweep. To obtain again
the strong SERS signal one has to perform the next oxidation and reduction cycle
during which the adatoms will appear again. Volt-Ramanograms presented here
proves that the atomic scale roughness, i.e. existence of adatoms at the surface, is
very important in SERS phenomenon. From these volt-Ramanograms follows that
(for the electrode potential when the pyridine concentration at the surface is the
largest), the SERS signal recorded during the decreasing potential (large number
of adatoms) is at least one order of magnitude larger than that recorded during
the increasing potential (small number of adatoms).

Figure 6 presents the dependence of SERS signal on the number of ORCs
and on the sweep rate of potential during ORCs. From this figure it follows that:
1) only a few cycles of ORC are necessary to obtain the maximal SERS signal; 2)
the magnitude of the potential sweep rate during ORC is of essential importance.
For the slowest sweep we obtain the strongest SERS signal. We suggest that this
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is caused by the largest microscopic roughness. We assume that during the slow-
est sweep the most prolongated (large α/b) bumps are produced on the surface,
because in such conditions the largest number of Ag layers are oxidized and next
reduced. Accordingly to the EM model we should then obtain the strongest signal.
We performed also qualitative investigations of the microroughness of electrodes.
Figure 7 presents the angle distribution of the intensity of light elastically scattered
on the investigated electrodes. From comparison of Figs. 6 and 7 it follows that the
least rough surface (small α/b) gives the weakest SERS signal, whereas the most
rough surface (large α/b) gives the strongest SERS signal. Dependencies presented
in Fig. 6 seem to confirm the EM model satisfactorily. It is possible, that SERS
signal variations presented in Fig. 6 are caused by the change of both the micro
and atomic scale roughness. Namely, when the ORC is performed slowly a large
number of Ag layers is oxidized and consequently during the reduction process the
prolongated microobjects as well as the large number of adatoms appears. .

In Fig. 6 one can find that after performing a few ORCs we obtain for a
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given sweep rate a maximal value of SERS signal. The next O Cs do not generate
an increase of the signal, in contrary, we observe even a small decrease of it. We
ascribe this decrease to heating effects [13, 14] caused by laser beam irradiation
of the electrode during ORCs. Thus, the adatoms could faster diffuse and become
incorporated into the lattice.

4. Conclusion

We present the results of investigations of the dependence of SERS signal on
the silver electrode potential as well as on the sweep rate and on the number of
ORCs used to roughen the electrode surface. The presented dependencies prove
that the micro and atomic scale roughness determine the magnitude of the in-
tensity of SERS light. Results presented in Fig. 6, i.e. dependence of SERS signal
on the number and sweep rate of ORCs, prove that the microroughness has an
essential influence on the value of SERS light intensity. This confirms the validity
of EM model. On the other hand results presented in Fig. 4, i.e. the SERS signal
dependence on the value of the potential and sweep direction after the termination
of reduction process (when atomic scale roughness alters only), prove that the CT
mechanism produces an additional enhancement of intensity of the Raman scat-
tered light. From our experimental results presented in Fig. 4 follows that the
intensity of SERS produced by both CT and EM mechanisms is at 1east one order
of magnitude larger than that produced by the EM mechanism only.
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