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In thermal convection, roughness is often used as a means to enhance heat transport, expressed in Nusselt

number. Yet there is no consensus on whether the Nusselt vs Rayleigh number scaling exponent (Nu ∼ Raβ)

increases or remains unchanged. Here we numerically investigate turbulent Rayleigh-Bénard convection

over rough plates in two dimensions, up to Ra ≈ 1012. Varying the height and wavelength of the roughness

elements with over 200 combinations, we reveal the existence of two universal regimes. In the first regime, the

local effective scaling exponent can reach up to1=2. However, this cannot be explained as the attainment of the

so-called ultimate regime as suggested in previous studies, because a further increase in Ra leads to the second

regime, in which the scaling saturates back to a value close to the smooth wall case. Counterintuitively, the

transition from the first to the second regime corresponds to the competition between bulk and boundary layer

flow: from the bulk-dominated regime back to the classical boundary-layer-controlled regime. Our study

demonstrates that the local 1=2 scaling does not necessarily signal the onset of ultimate turbulence.
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Thermal convection plays an important role in a wide

range of natural and industrial environments and settings.

The paradigmatic representation of thermal convection,

Rayleigh-Bénard (RB) flow, in which a fluid is heated from

below and cooled from above, has received extensive

attention over the past decades [1–3]. One of the major

challenges in the studies of RB convection is to determine

the scaling relation of the Nusselt number (Nu), which is

the dimensionless heat flux, with the Rayleigh number

(Ra), which is the dimensionless temperature difference

between the two plates, expressed as Nu ∼ Raβ.

From similarity theory, Priestley [4] argued that β ¼ 1=3.
Assuming that the heat transport is independent of the cell

height and governed by the viscous boundary layers (BL),

Malkus [5] also derived that β ¼ 1=3. Later, Grossmann

and Lohse [6,7] showed that there is no pure scaling but

smooth transitions from BL to bulk dominated regimes.

However, for large Ra when the BLs have become turbulent,

Kraichnan [8] postulated that the flow reaches the so-

called ultimate regime, in which Nu scales according to

Nu ∼ Ra1=2ðln RaÞ−3=2, with ðln RaÞ−3=2 as the logarithmic

correction term. This ultimate regime was also predicted by

Grossmann and Lohse [9], who modeled this logarithmic

behavior with an effective scaling exponent of β ≈ 0.38, for

Ra around 1014. Experimentally, for Ra ≈ 1014 the onset of

such a regime has been observed [10,11]. The logarithmic

correction term has minor impact for very large Ra. In the

asymptotic ultimate regime β ¼ 1=2, and the heat transport

is independent of viscosity and therefore the scaling can be

extrapolated to arbitrarily large Ra, as suggested for both

geophysical and astrophysical flows. This asymptotic ulti-

mate 1=2 scaling has numerically [12,13] and experimen-

tally [14,15] been observed in the so-called “homogeneous”

or “cavity” RB turbulence, where no BLs are present.

Clearly, the interplay between BL and bulk flow deter-

mines the effective scaling exponent [6]. To better understand

the role of the BLs, it is important to alter the boundaries

to probe how the system responds. Hence, much attention

has been paid to RB turbulence over rough surfaces. Another

motivation is the fact that the underlying surfaces of real-

world applications of thermal convection are always rough.

It is generally agreed that roughness enhances the absolute

value of Nu. However, it has been reported that the scaling

exponent increases with roughness [16–25] or remains

unchanged [26–28] as compared to the smooth counterpart,

depending on the range of Ra explored and the roughness

configurations. For example, Shen et al. [26] found that Nu

increased by 20%, whereas the exponent β did not change

upon using rough surfaces made of regularly spaced pyra-

mids. Roche et al. [18] obtained an increase of β to

approximately 0.51 by implementing V-shaped axis-

symmetrical grooves both on the sidewalls and horizontal

plates. Very recently, simulations of RB with rough walls

were done in the range Ra ¼ ½4 × 106; 3 × 109� and a

roughness induced effective 1=2 scaling was found in the

range Ra ¼ ½108; 3 × 109�. This was explained as the attain-
ment of the ultimate regime [24]. However, it is surprising

that the ultimate regime can be found at such low Ra since

theories predict that the ultimate regime 1=2 scaling can
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only be observed asymptotically when the BLs are highly

turbulent [9].

In this study, wewill unify these different views. For this,

we perform direct numerical simulations (DNS) of turbulent

RB convection over sinusoidally rough plates in two

dimensions (2D), adopting the same roughness configura-

tion as in Ref. [24]. The effects of roughness on heat

transport are presented by varying the heights h and wave-

lengths λ of the rough elements independently.We note that,

for the smooth case, 2D RB differs from three dimensional

(3D) RB in terms of (a) integral quantities for finite Pr

[29,30], (b) scaling arguments (the asymptotic exponent β is

1=2 in 3D [31,32], but 5=12 in 2D [33]), and (c) BL stability

[34]. However, for the rough case, 2D and 3D have the

same aysmptotic scaling exponent 1=2 [35]. Moreover, 2D

simulations are much less time consuming than 3D and can

help us push forward to Ra ≈ 1012 and Nu ∼Oð103Þ with
roughness. This key extension to large Ra unravels the

physical origin of the 1=2 regimes observed in Ref. [24].

The simulations were performed using a second-order

finite-difference code [36,37], in combination with an

immersed-boundary method [38] to track the rough ele-

ments. No-slip conditions were used for the velocity,

constant temperature boundary conditions for rough bot-

tom and top plates, and periodic boundary conditions for

the horizontal sidewalls. The control parameters are

Ra¼αgΔðL−hÞ3=ðνκÞ and the Prandtl number Pr¼ν=κ,
where α is the thermal expansion coefficient, g the gravi-

tational acceleration, Δ the temperature difference between

the two plates, L the height of the domain without rough-

ness, h the height of the roughness element, ν the kinematic

viscosity, and κ the thermal diffusivity. The reason to choose

L − h for the rough cases as the characteristic length is that

it resembles the height between the two smooth plates

where the same volume of fluid occupies. The other flow

quantities are nondimensionalized by the temperature differ-

ence Δ and the free fall velocity U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αgΔðL − hÞ
p

. In all

simulations, Pr ¼ 1 and the aspect ratio Γ ¼ D=L ¼ 2,

where D is the width of the domain. With this Γ, the heat

flux approximates the heat flux at an infinite aspect ratio

[39]. Three roughness heights were chosen, h=L ¼ 0.05,

0.1, and 0.15. For each height, the wavelength of roughness

λ=L was varied from 0.05 to 0.7. For each combination of

wavelength and height, we performed simulations in the

range of Ra ¼ ½108; 1012�. Adequate resolution was ensured

for all cases and the statistics were averaged over 200 free

fall time units. At Ra ¼ 7.3 × 1011 with λ ¼ h ¼ 0.1L,
14 336 × 7168 grid points were used. Nu is calculated from

Nu ¼
ffiffiffiffiffiffiffiffiffiffiffi

Ra Pr
p

huzθiA − h∂zθiA, where uz denotes the verti-
cal velocity, θ the temperature, and h� � �iA the average over

time and any horizontal plane.

We begin by comparing the temperature field with

increasing Ra (see Fig. 1), for a fixed set of roughness

parameters (λ=L ¼ 0.1 and h=L ¼ 0.1). Here we stress

the plume morphology inside the cavity regions between

the rough elements. For the two smaller Ra ¼ 2.2 × 108

and Ra ¼ 2.2 × 109, thermal plumes are mainly generated

from the tips of the rough elements and are detached

towards the directions of the large scale rolls, while in the

cavity regions the flow is viscosity dominated. Note that

below Ra ¼ 2.2 × 108, roughness elements are submerged

inside the thermal boundary layer. In comparison, at

Ra ¼ 7.3 × 1011, plumes are not only generated at the tips

but also at the sloping surfaces of the rough elements.

Inside the cavities, the detached plumes mix the fluid

vigorously, making the flow there more turbulent. These

observations suggest that even after the rough elements

protrude beyond the thermal BL, the flow structure is

essentially similar for one decade of Ra while it changes

drastically when further increasing Ra so that the flow

inside the cavities becomes turbulent.

We now systematically explore the heat transport as a

function of Ra, covering more than four decades. The

FIG. 1. The instantaneous temperature fields for λ=L ¼ 0.10

and h=L ¼ 0.10 at (a) Ra ¼ 2.2 × 108, (b) Ra ¼ 2.2 × 109, and

(c) Ra ¼ 7.3 × 1011, where λ is the wavelength and h the height

of the roughness. The three plots share the same color map.
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resulting NuðRaÞ dependences with the same roughness

aspect ratio λ=h ≈ 1 for different roughness heights are

displayed in Fig. 2. The smooth case follows an effective

scaling exponent β ¼ 0.29, in very good agreement with

previous studies [30,40]. With the introduction of roughness,

two universal regimes can be identified.When the roughness

elements protrude the thermal BL, heat transport is enhanced

dramatically and the local effective scaling exponent is close

to 1=2, extending more than one decade, similar to the one

obtained previously [24]. We call this regime I, the enhanced

exponent regime. This scaling exponent is robust as it does

not change when altering the roughness height in the range

[0.05, 0.15]. The higher the roughness is, the earlier the

system steps into regime I. However, further increasing Ra

does not result in an extension of regime I. Instead, the scaling

exponent saturates back to the effectivevalueβ ≈ 0.33, which

is the typical Malkus exponent in the classical regime where

the BL is of laminar type [5–7]. We call this regime II, the

saturated exponent regime. Remarkably, the heat transport

follows exactly the same line in this regime for different

roughness height. The heat transfer increases 3.05 times

while the wet surface area augment is 2.30 times, suggesting

that the heat transfer enhancement is mainly due to the

enlarged surface area while strong plume ejections in the

cavities contribute the remaining part.

Next, we vary the roughness wavelength λ, focusing on

the effective scaling exponent β, up to Ra ≈ 1012. A similar

approach was employed in Refs. [24,41], and now we

extend to the two regimes and different heights of rough-

ness. No matter what λ is, we still identify the regime I

where the effective exponent increases and regime II where

it saturates back to a value close to 0.33. Figure 3(a)

demonstrates the scaling exponents in regime I. For each

roughness height, there is always an optimal λ which

maximizes the effective scaling exponent to 1=2.
However, for each h, the optimal λ is different. A better

parameter to describe the effects of roughness on the

scaling exponent is the roughness aspect ratio λ=h, as

shown in Figs. 3(b) and 3(c) for regime I and regime II,

respectively. Interestingly, all the data collapse into one

line and specifically for the optimum we find λ=h ≈ 1,

irrespective of the roughness height.

The various studies reported in the literature fall into

either of the two regimes we revealed here. Namely, the

regime where the effective scaling increases up to Ra1=2

[18,24] or the regimewhere the scaling is similar [26–28] to

the smooth case. These seemingly contradictory viewpoints

have caused some confusion in the interpretation of the data

on RB convection with roughness. The present study has

bridged the gap between the two views by studying a

sufficiently large regime in Ra and also various roughness

characteristics. The clear conclusion is that the observed

local effective 1=2 scaling in regime I should not be

interpreted as the attainment of the so-called ultimate

regime as suggested in previous studies [24], but rather

as a crossover regime in which the roughness elements

start to perturb the thermal BL. Only once the BLs become

turbulent does the transition to the ultimate regime really

occur [1,9] and the asymptotic 1=2 scaling might be seen.

This provides a consistent and plausible explanation for the

FIG. 2. Nu(Ra) for rough cases of aspect ratio λ=h ≈ 1 at h=L ¼
0.05, 0.10 and 0.15, in comparison to the smooth case, for which

the scaling exponent is β ¼ 0.29� 0.01. For the rough cases, two

regimes can be identified: regime I, β ¼ 0.50� 0.02 and regime II,

β ¼ 0.33� 0.01. The inset shows the compensated plot and the

plateau demonstrates the robustness of 1=2 scaling in regime I.

Clearly, a single power law cannot hold for thewhole extent of data.

FIG. 3. The Nu vs Ra effective scaling exponents β in regime I and regime II as a function of (a) roughness wavelength λ in regime I,

and (b),(c) aspect ratio λ=h in regime I and II, respectively. Note that both λ ¼ 0 and λ ¼ ∞ correspond to the smooth plate case

(dashed line).
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observed scatter in the reported values of β with the presence

of roughness in prior studies [16,17,19–23], where different

combinations of h and λwere chosen. We show that tuning h
and λ can lead to big variations of β, especially in regime I

(Fig. 3), presumably causing the scattered effective scaling

exponents. We note that the optimal λ=h ≈ 1 reported here is

different compared to previous studies, namely λ=h ≈ 5 in

Ref. [20] and λ=h ≈ 0.25 in Ref. [25]. However, we also note

that the roughness shapes and layouts are different among

these studies. Only by doing DNS in one-to-one compar-

isons with these experiments can we ultimately resolve the

origins of these differences.

To disentangle the mechanisms leading to the two

regimes, in Fig. 4 we show the temperature profiles as

well as the local flow structures inside the cavities for

λ=h ¼ 1.00 and h=L ¼ 0.10 at different Ra. We observe

secondary vortices induced by large scale rolls. In regime I,

the weak secondary vortices cannot efficiently mix the fluid

in the cavities and thus the flow there is still viscosity

dominated. Therefore, the temperature profile in the cavity

is rather linear. In regime II, secondary vortices are strong

enough to induce smaller vortices, which further induce

even smaller vortices down to the centers of the valleys,

forming a cascade of vortices. Because of the strong mixing

of this process, the roughness elements are covered by a

thin thermal BL which is uniformly distributed along the

rough surfaces, effectively mimicking an enlarged surface

area. As a result, the mean velocity profile is steep only at

the center of the valleys and otherwise becomes very

similar to the smooth case. The findings here also suggest

that for even larger Ra, the scaling exponent in the rough

case might finally become the same as in the smooth case.

Inside the cavities, in regime I, the viscosity dominated

flow decreases the BL contribution to the total thermal

energy dissipation, while in regime II, the restoration of the

uniformly distributed BL brings back the BL contribution

to the total thermal energy dissipation. For the thermal

energy dissipation, it has been well known that if the bulk

contribution is dominant, the scaling exponent is close to

1=2 and if the BL contribution dominates, the scaling

exponent is close to 1=3, i.e., in the classical regime where

the BL is of laminar type [6,7]. Here, due to the effective

scaling, regime I seems to be the bulk dominated regime

whereas regime II seems to be the classical BL-controlled

regime. This is counterintuitive since one would expect the

opposite with increasing Ra for the smooth RB, i.e. the

system becomes more bulk dominated with increasing Ra

[6,7,9]. In Fig. 5 we show the mean thermal energy

dissipation rate along the height. Indeed, in regime I, the

thermal dissipation inside the cavity is negligible, whereas

in regime II, the thermal dissipation inside the cavity is

dominated, supporting the above interpretation on the

reverse role of BL and bulk in the presence of roughness.

In conclusion, the present study has demonstrated that

the local effective β ¼ 1=2 scaling in RB with roughness

does not necessarily indicate the start of the ultimate regime

as claimed in previous studies [24]. Instead, its observation

is fortuitous because by tuning the height and wavelength

of roughness elements simultaneously, β can be tuned

between 0.29 and 0.5 locally. This regime I is just a

crossover regime where the bulk is dominated, as has been

speculated in Refs. [1,20,25]. Further increasing Ra brings

back the thin BL inside the cavities and restores the

classical BL-controlled regime, causing the scaling satu-

ration and recovering the classical RB scaling exponent.

Only at even higher Ra the real transition to the ultimate

scaling might be seen.

Finally, we note that for Taylor-Couette (TC) flow

with roughness which aligns with the azimuthal direction,

FIG. 4. The dimensionless mean temperature profiles ðθ − θtÞ=
Δ for λ=h ¼ 1.00 and h=L ¼ 0.10 at (a) the start of regime I

(Ra ¼ 2.2 × 108), (b) the end of regime I (Ra ¼ 2.2 × 109), and

(c) regime II (Ra ¼ 7.3 × 1011), where θt is the temperature of the

top plate. The insets show the temperature fields, superposed by

the velocity vectors in the cavity regions. In regime I, one roll is

inside the cavity, whereas in regime II, there are multiple. The two

black lines indicate where the tips of the roughness elements are.

FIG. 5. The dimensionless mean thermal energy dissipation

rate ϵθ=ðκΔ2L−2Þ across the height of the domain for λ=h ¼ 1.00,

h=L ¼ 0.10 at (a) the start of regime I (Ra ¼ 2.2 × 108),

(b) the end of regime I (Ra ¼ 2.2 × 109), and (c) regime II

(Ra ¼ 7.3 × 1011). The two black lines indicate where the tips of

the roughness elements are.
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DNS showed that for the angular velocity transfer scaling

Nuω ∼ Taβ, both regime I where β increases up to 1=2 and

regime II where β saturates back were also observed [42].

Here, Ta is the dimensionless angular velocity difference

which plays the equivalent role to Ra in RB. Thus, there is

strong evidence that the two systems are not only analogous

with each other in the smooth case [11,43–45] but also in

the rough case. However, for TC flow with roughness

which inhibits the azimuthal flow, this analogy might break

down. In that case, the main contribution to the angular

velocity transfer originates from the pressure forces rather

than the viscous forces. In contrast, in RB, the temperature

is a scalar and there is nothing similar to the effects of

pressure which could contribute to the heat transfer [46].
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