
Round Efficient Unconditionally Secure Multiparty

Computation Protocol

Arpita Patra ∗ Ashish Choudhary † C. Pandu Rangan ‡

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai India 600036
Email:{ arpita,ashishc }@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract

In this paper, we propose a round efficient unconditionally secure multiparty computation
(UMPC) protocol in information theoretic model with n > 2t players, in the absence of any
physical broadcast channel, which communicates O(n4) field elements per multiplication and
requires O(n log(n) + D) rounds, even if up to t players are under the control of an active
adversary having unbounded computing power. In the absence of a physical broadcast channel
and with n > 2t players, the best known UMPC protocol with minimum number of rounds,
requires O(n2D) rounds and communicates O(n6) field elements per multiplication, where D
denotes the multiplicative depth of the circuit representing the function to be computed securely.
On the other hand, the best known UMPC protocol with minimum communication complexity
requires communication overhead of O(n2) field elements per multiplication, but has a round
complexity of O(n3 +D) rounds. Hence our UMPC protocol is the most round efficient protocol
so far and ranks second according to communication complexity. To design our protocol, we use
certain new techniques which are of independent interest.

Keywords: Multiparty Computation, Information Theoretic Security, Error Probability.

1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation (MPC) allows a set
of n players to securely compute an agreed function, even if up to t players are under the control
of a centralized adversary. More specifically, assume that the desired functionality can be specified
by a function f : ({0, 1}∗)n → ({0, 1}∗)n and player Pi has input xi ∈ {0, 1}∗. At the end of the
computation of f , Pi gets yi ∈ {0, 1}∗, where (y1, . . . , yn) = f(x1, . . . , xn). The function f has
to be computed securely using a protocol where at the end of the protocol all players (honest)
receive correct outputs and the messages seen by the adversary during the protocol contain no
additional information about the inputs and outputs of the honest players, other than what can be
computed from the inputs and outputs of the corrupted players. In the information theoretic model,
the adversary who actively controls at most t players, is adaptive, rushing [11] and has unbounded
computing power. The function to be computed is represented as an arithmetic circuit over a finite
field F consisting of five type of gates, namely addition, multiplication, random, input and output.
A MPC protocol securely evaluates the circuit gate-by-gate [5, 22, 2, 22, 17, 19, 4].

The MPC problem was first defined and solved by Yao [23] in his seminal work in two-party sce-
nario. The first generic solutions presented in [16, 9, 14] were based on cryptographic intractibility
assumtions. Later, the research on MPC in information theoretic model was initiated by Ben-Or

∗Financial Support from Microsoft Research India Acknowledged
†Financial Support from Infosys Technology India Acknowledged
‡Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and

Computation Sponsored by Department of Information Technology, Govt. of India.

1

et. al. [5] and Chaum et. al. [8] in two different independent work and carried forward by the
works of [22, 2]. Information theoretic security can be achieved by MPC protocols in two flavors
–(a) Perfect: The outcome of the protocol is perfect in the sense that no probability of error is
involved in the computation of the function (b) Unconditional: The outcome of the protocol is
correct except with negligible error probability. While Perfect MPC can be achieved iff t < n/3
[5], unconditional MPC (UMPC) requires only honest majority i.e t < n/2 [22]. In the recent
years, lot of research concentrated on designing communication efficient protocols for both perfect
and unconditional MPC. Perfect MPC protocols with optimal resilience i.e t < n/3 are presented
in [17, 19, 4]. UMPC protocols with non-optimal resilience i.e t < n/3 are presented in [18, 12].
Finally, UMPC protocols with optimal resilience i.e t < n/2 are presented in [11, 3].

Broadcast: Broadcast is a very important primitive and is heavily used in all MPC and UMPC
protocols. Broadcast allows a sender to distribute a value x, such that all the players identically
receive the same value x (even if the sender is faulty). If a physical broadcast channel is available
in the network, then achieving broadcast is very trivial. In such a case, broadcasting ` bits requires
single round and exactly ` bits of communication. But if the broadcast channel is not physically
available in the network, then broadcasting an ` bit(s) message can be simulated by executing
some protocol. In particular, for perfectly (without any error probability) broadcasting ` bits, the
protocol presented in [6, 7] communicates Ω(n2`) bits and requires Ω(n) rounds with t < n/3. For
unconditionally (with negligible error probability) broadcasting ` bits, the protocol presented in
[21] communicates Ω(n2` + n6κ) bits and requires Ω(n) rounds with t < n/2 on the availability
of information theoretic PKI setup (information theoretic pseudo-signature), where κ is the error
parameter. Recently Fitzi et. al. [13] have proposed multi-valued broadcast where broadcast of `
bits requires communication of O(`n + nB(n + κ)) bits, provided there exists a broadcast proto-
col which communicates B(b) bits for broadcasting a b bit message where b < `. Thus using the
broadcast protocol of [21] as black-box, broadcast protocol of [13] communicates O(n` + n7κ) for
broadcasting an ` bit message and requires Ω(n) rounds of communication, where t < n

2 .

Our Motivation: Two important parameters of multiparty computation protocols are communi-
cation complexity and round complexity. These have been the subject of intense study over the past
two decades. Establishing bounds on communication and round complexity of secure multiparty
computation protocols are of fundamental theoretical interest. Moreover, reducing the communi-
cation and round complexity of multiparty computation protocols is crucial, if we ever hope to use
these protocols in practice. But looking at the most recent advancements in the arena of MPC, we
find that round complexity of MPC protocols has been increased to an unacceptable level in order
to reduce communication complexity. For example, the perfect MPC protocol of [4] celebrated
for its best known communication complexity, requires round complexity of O(n2 + D) where D
denotes the multiplicative depth of the circuit. On the other hand, the perfect MPC protocols
achieving best known round complexities such as O(nD) [5] and O(n + D) [1] are far from being
truly communication efficient. In the sequel, we present a table which gives an overview of the
communication complexities and round complexities of perfect and unconditional MPC protocols.
The complexity figures are provided assuming that physical broadcast channel is not available and
hence broadcast is simulated by some protocol (as mentioned earlier). The communication com-
plexities are given in terms of bits where κ represents the bit length of a field element in the case
of perfect MPC and error parameter in the case of unconditional MPC. For simplicity, we assume
that the computed function takes n inputs (one from each player) and gives n outputs. cM and
D denote the number of multiplication gates and multiplicative depth of the circuit, respectively.
Reference Type? Resilience Brodcast Protocol Communication Complexity Round Complexity

[11] Unconditional t < n/2 [13] O((cMn6 + n7)κ) O(n2D)
[17] Perfect t < n/3 [6, 7] O((cMn3 + n4)κ) O(n2 +D)
[3] Unconditional t < n/2 [13] O((cMn2 + n7)κ) O(n3 +D)
[12] Unconditional t < n/3 [6, 7] O((cMn +Dn2 + n4)κ) O(n2 +D)
[4] Perfect t < n/3 [6, 7] O((cMn +Dn2 + n3)κ) O(n2 +D)

If the practical applicability of multiparty protocols are of primary focus, then it is always desirable

2

not to sacrifice one parameter for the other. So it is very essential to design protocol which balances
both the parameters appropriately. Motivated by this, in this work we design an UMPC protocol
which achieves efficiency in both the parameters simultaneously.

Our Network Model: We denote the set of n = 2t + 1 players (parties) involved in the secure
computation by P = {P1, P2, . . . , Pn} where player Pi possesses ci input values. We assume that
all the n players are connected with each other by pairwise secure channels, as assumed in generic
UMPC protocols [3, 11, 22]. Moreover, the system is synchronous and the protocols proceed in
rounds, where in each round a player performs some computations, sends (broadcasts) values to its
neighbors (everybody), receives values from neighbors and may again perform some more compu-
tation, in that order. The function to be computed is specified as an arithmetic circuit over a finite
field F with input, addition, multiplication, random and output gates. We denote the number of
gates of each type by cI , cA, cM , cR and cO, respectively. Note that cI =

∑n
i=1 ci.

We model the distrust in the system by a centralized adversary At, who has unbounded com-
puting power and can actively control at most t players during the protocol execution, where t < n

2 .
To actively control a player means to take full control over it and making it behave arbitrarily.
The adversary is adaptive [11] and hence can corrupt players dynamically during the protocol exe-
cution. Moreover, the choice of the adversary to corrupt a player may depend upon the data seen
so far from the corrupted players. Moreover, the adversary is a rushing adversary [15], who in a
particular round, first collects all the messages addressed to the corrupted players and exploits this
information to decide on what the corrupted players send during the same round. If a player comes
under the control of At, then it remains so throughout the protocol. A player which is not under
the control of At is called honest or uncorrupted. We define two sets C and P ′ where at any point
of time C denotes the set of corrupted players identified so far and P ′ = P \ C. Initially, P ′ = P
and C = ∅. As the protocol proceeds, some players will be detected as corrupted and will be added
to C and removed from P ′. We denote the number of players in P ′ by n′ which is initially equal to
n. The number of players which can be still corrupted from P ′ is denoted by t′ where t′ = t− |C|.
Note that n′ will always maintain the following: n′ ≥ t + 1 + t′ ≥ 2t′ + 1 since t ≥ t′. Also at any
point of time P = P ′ ∪ C.

Our protocol provides unconditional security i.e. information theoretic security with a negligible
error probability of 2−O(κ) for some security parameter κ. To achieve this error probability, all our
computation are done over a finite field F = GF (2κ). Thus each field element can be represented
by κ bits. Notice that, we also assume that n is polynomial in κ. For the ease of exposition, we
always assume that the messages sent through the channels are from the specified domain. Thus
if a player receives a message which is not from the specified domain (or no message at all), he
replaces it with some pre-defined default message from the specified domain.

Our Contribution: In this paper, we propose a new UMPC protocol which communicates O(n4)
field elements per multiplication and requires O(n log(n)+D) rounds over a point-to-point network
(in the absence of physical broadcast channel) with n = 2t+1 players. This result is to be compared
with the UMPC protocol of [11] which provides so far best known round complexity of O(n2D)
(and communicates O(n6) field elements per multiplication) and with UMPC protocol of [3] which
achieves the best known communication complexity of O(n2) field elements per multiplication (but
consumes O(n3 + D) rounds). Hence our protocol is the most round efficient protocol so far and
ranks second according to communication complexity. We introduce a new technique called Rapid
Player Elimination (RPE) which is used in the preprocessing stage of our proposed UMPC protocol.
Loosely speaking, RPE works as follows: The preprocessing stage of our UMPC protocol may fail
several times due to the (mis)behavior of certain number of corrupted players whose corruptions
are identified. RPE creates a win-win situation, where the adversary must reveal the identities of
2i new corrupted players at the ith step. Otherwise, the preprocessing stage will not fail. Thus
RPE ensures that preprocessing stage may fail at most dlog(t)e times.

3

2 Unconditionally Secure MPC Protocol with n = 2t + 1

In this section, we present an UMPC protocol with n = 2t + 1. Prior to that we present a
number of sub-protocols each solving a specific task. Some of the sub-protocols are based on few
existing techniques while some are proposed by us for the first time. We describe all our sub-
protocols in the following settings: P ′ denotes the set of players involved in the execution of the
sub-protocols where |P ′| = n′, the number of corrupted players present in P ′ is t′ and n′ = t+1+t′.
During the execution of the sub-protocols, some more corrupted players may be detected as faulty
and wil be removed from P ′. Accordingly n′ and t′ will change (without affecting the equality
n′ = t+1+ t′). Thus it is clear that at any stage P ′ will always contain all the t+1 honest players.
For simplicity, we assume that P ′ always contains the first n′ players (P1, . . . , Pn′) from the set
P. For convenience, we provide analysis of the communication and round complexities of our sub-
protocols and protocols assuming that physical broadcast channel is available in the system. At the
end we give the complete communication and round complexity figure for our general multiparty
computation protocol, assuming that the broadcast has to be simulated by protocol of [13]. Notice
that a physical broadcast channel enables all the players from P to receive the broadcasted message.
Since our sub-protocols are executed among the players in P ′ and P ′ ⊆ P, a broadcast step in our
sub-protocol should allow only the players of P ′ to get the broadcasted information. But notice that
all the broadcast steps will be finally replaced by protocols (say from [13]) where only players from
P ′ are allowed to participate. Thus without loss of generality, we may interpret all the broadcasts
steps in our sub-protocols as the broadcast to the restricted set P ′.

2.1 Information Checking

Information Checking (IC) and IC Signatures [11, 22]: IC is an information theoretically
secure method for authenticating data and is used to generate IC signatures. When a player
INT ∈ P ′ receives an IC signature from a dealer D ∈ P ′ on some secret value(s) S, then INT can
later produce the signature and have the players in P ′ verify that it is in fact a valid signature of
D on S. An IC scheme consists of a sequence of three protocols:

1. Distr(D, INT,P ′, S) is initiated by the dealer D, who hands secret S = [s(1) . . . s(`)] ∈ F`,
where ` ≥ 1 to intermediary INT . In addition, D hands some authentication information to
INT and verification information to individual players in P ′, also called as receivers.

2. AuthVal(D, INT,P ′, S) is initiated by INT to ensure that in protocol RevealVal, secret S
held by INT will be accepted by all the (honest) players (receivers) in P ′.
3. RevealVal(D, INT,P ′, S) is carried out by INT and the receivers in P ′, where INT produces
S, along with authentication information and the individual receivers in P ′ produce verifica-
tion information. Depending upon the values produced by INT and the receivers, either S is
accepted or rejected by all the players/receivers.

The authentication information, along with S, which is held by INT at the end of AuthVal
is called D’s IC signature on S, obtained by INT . The IC signature must satisfy the following
properties:

1. If D and INT are uncorrupted, then S will be accepted in RevealVal.

2. If INT is uncorrupted, then at the end of AuthVal, INT possesses secret(s), say S′, which will
be accepted in RevealVal, except with probability at most 2−O(κ).

3. If D is uncorrupted, then during RevealVal, with probability at least 1− 2−O(κ), every S′ 6= S
produced by a corrupted INT will be rejected.

4. If D and INT are uncorrupted, then at the end of AuthVal, S is information theoretically
secure from At.

We now describe an IC protocol which is a slight modification of the IC protocol described in [11].

4

The protocol allows D to sign on a single field element s ∈ F (i.e. ` = 1; S = s). In the protocol,
Distr takes single round (Round 1), AuthVal takes threes rounds (Round 2, 3 and Round 4),
while RevealVal takes two rounds (Round 1 and Round 2). The protocol is given in Table 1.
Before describing the protocol, we recall the following definition from [11].

Definition 1 (1α-consistent [11]) A vector (x, y, z)∈ F3 is 1α-consistent if there exists a degree
one polynomial w over F such that w(0) = x, w(1) = y and w(α) = z.

Lemma 1 Protocol IC correctly generates IC signatures on a single secret (i.e. ` = 1) by com-
municating O(nκ) bits and broadcasting O(nκ) bits. The protocol satisfies all the properties of IC
signature with an error probability of at most 2−O(κ).

Proof: The proof is similar to the proof of the properties of generalized IC protocol of [11] (see
Lemma 1, Page 318-319). 2

Protocol IC(D, INT,P ′, s)
Distr(D, INT,P ′, s) Round 1: Corresponding to each receiver Pi ∈ P ′, D chooses a random value αi ∈ F −
{0, 1} and additional random values yi, zi ∈ F, such that the three tuple (s, yi, zi) is 1αi -consistent. In addition,
corresponding to each Pi ∈ P ′, D chooses another random 1αi -consistent vector (s′i, y

′
i, z

′
i). D sends s, yi, s

′
i and y′i to

INT and αi, zi, z
′
i to the receiver Pi. The n′ tuple [y1 y2 . . . yn′] held by INT is called authentication information.

The two n′ tuples [y′1 y′2 . . . y′n′] and [s′1 s′2 . . . , s′n′] held by INT are called as auxiliary information, where as
the tuple (αi, zi) held by receiver Pi is called verification information.

AuthVal(D, INT,P ′, s): Round 2: INT randomly selects n′ random elements di, 1 ≤ i ≤ n′ from F − {0} and

broadcasts the tuples (di, s
′
i + dis, y

′
i + diyi).

Round 3: In response to INT ’s broadcast in Round 2, D checks the correctness of the broadcasted information
and also checks whether (s′i + dis, y

′
i + diyi, z

′
i + dizi) is 1αi -consistent for 1 ≤ i ≤ n′. D broadcasts s, along with the

n′ tuple [y1 y2 . . . yn′] if he finds any inconsistency. Each Pi ∈ P ′ accordingly adjusts his verification information
(αi, zi), such that (s, yi, zi) is 1αi -consistent and the protocol ends here.
Parallely, Pi ∈ P ′ checks if (s′i + dis, y

′
i + diyi, z

′
i + dizi) is 1αi -consistent and broadcasts ”Accept” or ”Reject”,

depending upon whether (s′i + dis, y
′
i + diyi, z

′
i + dizi) is 1αi -consistent or not.

Now the value s and the n′ tuple [y1 y2 . . . yn′] possessed by INT is called the IC-Signature on s given by D to
INT , which is denoted by ICSigs(D, INT).

Round 4: If D has not broadcasted s, along with the tuple [y1 y2 . . . yn′] in the previous round, then D broadcasts
(αi, zi) corresponding to all receivers Pi ∈ P ′, whose response was “Reject” in the previous round. Accordingly INT
will adjust his yi so that (s, yi, zi) becomes 1αi -consistent.

RevealVal(D, INT,P ′, s): Round 1: INT broadcasts s and [y1 y2 . . . yn′]; Round 2: Each Pi ∈ P ′ broadcasts
(αi, zi). If there exists at least t + 1 distinct j’s such that (s, yj , zj) is 1αj -consistent then D’s signature on s is
”valid”. Otherwise the signature is ”invalid”.

Table 1: An IC Protocol to Sign on a Single Field Element

We now present an IC protocol, called EfficientIC, which allows D to sign on an ` length
secret S ∈ F` simultaneously, with ` ≥ 1, by communicating O((` + n)κ) bits and broadcasting
O((` + n)κ) bits, where n′ = t + 1 + t′. Let S = (s(1), . . . , s(`)) ∈ F`. The idea of this protocol is
taken from [20]. The protocol EfficientIC is given in Table 2.

Lemma 2 Protocol EfficientIC correctly generates IC signature on ` field elements (each of size
κ bits) at once by communicating O((` + n)κ) bits and broadcasting O((` + n)κ) bits. The protocol
satisfies the properties of IC signature with an error probability of at most 2−O(κ).

Proof: The proof is similar to the proof of the IC protocol given in [20] and hence is omitted. 2

Linearity of Protocol IC and EfficientIC: Protocol IC and EfficientIC satisfies the linearity
property as specified by the following lemmas:

Lemma 3 (Linearity of Protocol IC [11]) Let ICSigs1(D, INT) and ICSigs2(D, INT) de-
notes the IC signature on two different secrets s1 and s2, generated by D using protocol IC.

5

Moreover, let D uses the same set of α1, α2, . . . , αn′ to give his IC signature on s1 and s2. Let
r1, r2 be two random public constants from F. Then INT can generate ICSig(r1s1+r2s2)(D, INT)
from ICSigs1(D, INT) and ICSigs2(D, INT) without any further communication. Similarly, the
receivers in P ′ can obtain the verification information corresponding to ICSig(r1s1+r2s2)(D, INT)
from the verification information corresponding to ICSigs1(D, INT) and ICSigs2(D, INT) with-
out doing any communication.

Extending the above lemma for an arbitrary length secret, we can state the following lemma:

Lemma 4 (Linearity of Protocol EfficientIC) The IC signature generated by EfficientIC sat-
isfies linearity property. In particular, INT can compute ICSig((r1s(1,1)+r2s(2,1)),...,(r1s(1,`)+r2s(2,`)))(D, INT)
from ICSig(s(1,1),s(1,2)...,s(1,`))(D, INT) and ICSig(s(2,1),s(2,2)...,s(2,`))(D, INT) and receivers can com-
pute verification information corresponding to ICSig((r1s(1,1)+r2s(2,1)),...,(r1s(1,`)+r2s(2,`)))(D, INT).

EfficientIC(D, INT,P ′, `, s(1), . . . , s(`))

EfficientDistr(D, INT,P ′, `, s(1), . . . , s(`)): Round 1: D selects a random ` + t′ − 1 degree polynomial F (x)

over F, whose lower order ` coefficients are s(1), . . . , s(`). In addition, D selects another random ` + t′ − 1 degree
polynomial R(x), over F, which is independent of F (x). D selects n′ distinct random elements α1, α2, . . . , αn′ from
F such that each αi ∈ F − {0, 1, . . . , n′ − 1}. D privately gives F (x) and R(x) to INT . To receiver Pi ∈ P ′, D
privately gives αi, vi and ri, where vi = F (αi) and ri = R(αi). The polynomial R(x) is called authentication
information, while for 1 ≤ i ≤ n′, the values αi, vi and ri are called verification information.

EfficientAuthVal(D, INT,P ′, `, s(1), . . . , s(`)): Round 2: INT chooses a random d ∈ F \ {0} and broadcasts
d, B(x) = dF (x) + R(x).

Round 3: For 1 ≤ j ≤ n′, D checks dvj + rj
?
= B(αj). If D finds any inconsistency, he broadcasts F (x). Parallely,

receiver Pi broadcasts ”Accept” or ”Reject”, depending upon whether dvi + ri = B(αi) or not.

Local Computation (by each player): if F (x) is broadcasted in Round 3 then accept the lower order ` coeffi-

cients of F (x) as D’s secret and terminate. else construct an n′ length bit vector V Sh, where the jth, 1 ≤ j ≤ n′

bit is 1(0), if Pj ∈ P ′ has broadcasted ”Accept” (”Reject”) during Round 3. The vector V Sh is public, as it is
constructed using broadcasted information. If V Sh does not contain n′ − t′ 1’s, then D fails to give any signature to
INT and IC protocol terminates here.

If F (x) is not broadcasted during Round 3, then (F (x), R(x)) is called D’s IC signature on S = (s(1), . . . , s(`))
given to INT , which is denoted by ICSig(s(1),...,s(`))(D, INT).

EfficientRevealVal(D, INT,P ′, `, s(1), . . . , s(`)): (a) Round 1: INT broadcasts F (x), R(x); (b) Round 2: Pi

broadcasts αi, vi and ri.

Local Computation (by each player): For the polynomial F (x) broadcasted by INT , construct an n′ length

vector V Rec
F (x) whose jth bit contains 1 if vj = F (αj), else 0. Similarly, construct the vector V Rec

R(x) corresponding

to R(x). Finally compute V Rec
FR = V Rec

F (x) ⊗ V Rec
R(x), where ⊗ denotes bit wise AND. Since broadcasted information

is public, each player (honest) will compute the same vectors V Rec
F (x) and V Rec

R(x) and hence V Rec
FR . If V Rec

FR and V Sh

matches at least at t + 1 locations (irrespective of bit value at these locations), then accept the lower order `
coefficients of F (x) as S = (s(1), . . . , s(`)). In this case, we say that D’s signature on S is correct. Else reject F (x)
broadcasted by INT and we say that INT has failed to produce D’s signature.

Table 2: An IC Protocol to Sign ` Length Secret where n′ = t + 1 + t′

2.2 Unconditional Verifiable Secret Sharing and Reconstruction

Definition 2 t′-1D-Sharing: We say that a value s is correctly t′-1D-shared among the players
in P ′ if every honest player Pi ∈ P ′ is holding a share si of s, such that there exists a degree t′

polynomial f(x) over F with f(0) = s and f(j) = sj for every Pj ∈ P ′. The vector (s1, s2, . . . , sn′)
of shares is called a t′-sharing of s and is denoted by [s]t′. We may skip the subscript t′ when it is
clear from the context. A set of shares (possibly incomplete) is called t′-consistent if these shares
lie on a t′ degree polynomial.

6

Definition 3 t′-2D-sharing:[3] We say that a value s is correctly t′-2D-shared among the players
in P ′ if there exists t′ degree polynomials f, f1, f2 . . . , fn′ with f(0) = s and for i = 1, . . . , n′,
f i(0) = f(i). Moreover, every player Pi ∈ P ′ holds a share si = f(i) of s, the polynomial f i(x)
for sharing si and a share-share sji = f j(i) of the share sj of every player Pj ∈ P ′. We denote
t′-2D-sharing of s as [[s]]t′.

Definition 4 t′-2D(+)-sharing: We say that a value s is correctly t′-2D(+)-shared among the
players in P ′ if there exists t′ degree polynomials f, f1, f2 . . . , fn′ with f(0) = s and for i = 1, . . . , n′,
f i(0) = f(i). Moreover, every player Pi ∈ P ′ holds a share si = f(i) of s, the polynomial f i(x) for
sharing si and Pj’s IC Signature on share-share sji = f j(i) of Pj’s share sj, i.e. ICSigsji(Pj , Pi)
for every player Pj ∈ P ′. We denote the t′-2D(+)-sharing of s as 〈〈s〉〉t′. Note that in [3], the
authors called this sharing as 2D∗-sharing.

Definition 5 t′-2D(+,`)-sharing: We say that a set of values s(1), . . . , s(`) are correctly t′-2D(+,`)-
shared among the players in P ′ if every secret s(l) is individually t′-2D(+)-shared. But now instead
of Pi holding separate IC-signatures for each of the share-shares s

(l)
ji for l = 1 . . . , ` from Pj (i.e.

ICSig
s
(l)
ji

(Pj , Pi) for l = 1 . . . , `), a single IC-signature on s
(1)
ji , . . . , s

(`)
ji is given by Pj to Pi (i.e.

ICSig
(s

(1)
ji ,...,s

(`)
ji)

(Pj , Pi)). We denote the t′-2D(+,`)-sharing of ` values as 〈〈s1, . . . , s`〉〉t′.

If a secret s is t′-1D-shared/t′-2D-shared/t′-2D(+)-shared by a dealer D ∈ P ′ (any player from P ′
may perform the role of a dealer), then we denote the sharing by [s]Dt′ /[[s]]Dt′ /〈〈s〉〉Dt′ . Similarly
if a set of ` secrets s(1), . . . , s(`) are t′-2D(+,`)-shared by player D, we denote it by 〈〈s1, . . . , s`〉〉Dt′ .
Notice that when a secret s is t′-2D(+)-shared, then s is also t′-1D-Shared and t′-2D-shared by
default. Hence t′-2D(+)-sharing is the strongest sharings among t′-1D-sharing, t′-2D-sharing and
t′-2D(+)-sharing. In some sense, t′-2D(+,`)-sharing is the extension of t′-2D(+)-sharing for ` secrets.
If a dealer D∈ P ′ is honest, then he will always correctly t′-1D-share/t′-2D-share/t′-2D(+)-share
a secret s. Among these three types of sharings, t′-2D(+)-sharing of a secret s allows efficient
reconstruction of the secret with n′ players. However, a corrupted D may perform sharing in an
incorrect way. To achieve parallelism, in the sequel, we describe a protocol called 2D(+,`)Share
which allows a dealer D∈ P ′ to verifiably t′-2D(+,`)-share ` ≥ 1 length secret [s(1), s(2), . . . , s(`)].
Verifiably t′-2D(+,`)-sharing ensures correct t′-2D(+,`)-sharing even for a corrupted D. The protocol
2D(+,`)Share is given in Table 3. The goal of the protocol is as follows: (a) If D is honest then
he correctly generates t′-2D(+,`)-sharing of the secret [s(1), s(2), . . . , s(`)], such that all the honest
players publicly verify that D has correctly generated the sharing. Also when D is honest, then
the secret will be information theoretically secure from the adversary At. (b) If D is corrupted and
has not generated correct t′-2D(+,`)-sharing, then with very high probability, everybody will detect
it and protocol will terminate. The idea of the protocol is taken from [11], but instead of using the
IC protocol of [11], we employ the EfficientIC protocol proposed in this paper, which provides us
with higher efficiency.

Lemma 5 In protocol 2D(+,`)Share, D generates correct t′-2D(+,`)-sharing of ` field elements
(each of size κ bits), with overwhelming probability. 2D(+,`)Share is a ten round protocol which
communicates O((`n2 + n3)κ) bits and broadcasts O((`n2 + n3)κ) bits.

Proof (Sketch): For every l ∈ {1, . . . , `}, secret s(l) is t′-1D-shared by t′ degree polynomial
g
(l)
0 (y) i.e g

(l)
0 (0) = s(l). Also t′ degree polynomials f

(l)
1 (x), . . . , f (l)

n′ (x) are such that g
(l)
0 (i) = f

(l)
i (0)

for i = 1, . . . , n′. Hence, every secret s(l) is t′-2D-shared by t′ degree polynomials g
(l)
0 (y) and

f
(l)
1 (x), . . . , f (l)

n′ (x). Hence player Pi (implicitly) holds ith share of g
(l)
0 (y) and polynomial f

(l)
i (x) for

all l ∈ {1, . . . , `}. In addition to that, player Pi possesses correct ICSig
(f

(1)
j (i),f

(2)
j (i),...,f

(`)
j (i))

(Pj , Pi)

for every player Pj ∈ P ′, with very high probability (from the properties of our EfficientIC
protocol). Hence it is clear that D has generated correct t′-2D(+,`)-sharing of ` length secret with

7

very probability. Round complexity of 2D(+,`)Share is easy to verify. Since in sum at most 4(n′)2

instances of EfficientDistr and EfficientAuthVal of Protocol EfficientIC are executed, Protocol
2D(+,`)Share communicates and broadcasts O((`n2 + n3)κ) bits. 2

Remark: When an ` length secret [s(1), . . . , s(`)] is t′-2D(+,`)-shared, then implicitly the individual
secrets are t′-1D-shared by polynomials g

(1)
0 (y), . . . , g(`)

0 (y). Also note that given 〈〈a(1), . . . , a(`)〉〉t′
and 〈〈b(1), . . . , b(`)〉〉t′ , the players in P ′ can compute 〈〈c(1), . . . , c(`)〉〉t′ where for l = 1, . . . , `, c(l) =
F(a(l), b(l)) and F denotes any linear combination. This is due to the linearity property of our
EfficientIC protocol presented in subsection 2.1.

〈〈s(1), . . . , s(`)〉〉Dt′ = 2D(+,`)Share(D,P ′, t′, `, s(1), . . . , s(`))
1. For every l = 1, . . . , `, D picks a random bivariate polynomial H(l)(x, y) of degree t′ in both the variables,

with H(l)(0, 0) = s(l). Let f
(l)
i (x) = H(l)(x, i) and g

(l)
i (y) = H(l)(i, y). Now D wants to hand over n′ values on

f
(l)
i (x) and g

(l)
i (y) for l = 1, . . . , ` to Pi with his IC signature on them. For that D executes EfficientDistr and

EfficientAuthVal of EfficientIC(D, Pi,P ′, `, f (1)
i (j), f

(2)
i (j), . . . , f

(`)
i (j)) for for all j ∈ {1, . . . , n′}. Similarly D

executes EfficientDistr and EfficientAuthVal of EfficientIC(D, Pi,P ′, `, g(1)
i (j), g

(2)
i (j), . . . , g

(`)
i (j)) .

2. For l = 1, . . . , ` player Pi checks whether the two sets f
(l)
i (1), . . . , f

(l)
i (n′) and g

(l)
i (1), . . . , g

(l)
i (n′)

are t′-consistent. If the values are not t′-consistent, for some l ∈ {1, . . . , `} then Pi along

with all players in P ′ invoke EfficientRevealVal(D, Pi,P ′, `, f (1)
i (j), f

(2)
i (j), . . . , f

(`)
i (j)) and

EfficientRevealVal(D, Pi,P ′, `, g(1)
i (j), g

(2)
i (j), . . . , g

(`)
i (j)) for all j ∈ {1, . . . , n′}. If the signatures pro-

duced by Pi are valid and for some l ∈ {1, . . . , `} either one of the two sets f
(l)
i (1), . . . , f

(l)
i (n′) or g

(l)
i (1), . . . , g

(l)
i (n′)

is not t′-consistent, then the protocol terminates here without generating the desired output.

3. For every pair of players Pi and Pj from P ′ the following will be executed:

(a) Ideally for Pi and Pj the following should hold: f
(l)
i (j) = g

(l)
j (i) and g

(l)
i (j) = f

(l)
j (i) for l = 1, . . . , `. Pi

as a dealer executes EfficientDistr and EfficientAuthVal of EfficientIC(Pi, Pj ,P ′, `, f (1)
i (j), . . . , f

(`)
i (j))

to give his IC signature on f
(1)
i (j), . . . , f

(`)
i (j) to Pj . Upon receiving the signature, Pj checks whether

f
(l)
i (j)

?
= g

(l)
j (i) for l = 1, . . . , `. If there is an inconsistency then Pj along with all players in P ′ invoke

EfficientRevealVal(D, Pj ,P ′, `, g(1)
j (i), g

(2)
j (i), . . . , g

(`)
j (i)).

(b) If Pj fails to produce valid signature in the previous step, then all the players from P ′ ignore the
IC signatures received from Pj in previous step. Otherwise, if Pj is able to produce valid signa-

ture then g
(1)
j (i), g

(2)
j (i), . . . , g

(`)
j (i) become public. Using the public values Pi checks whether f

(l)
i (j)

?
=

g
(l)
j (i) for l = 1, . . . , `. If he finds any inconsistency, then Pi along with all players in P ′ invoke

EfficientRevealVal(D, Pi,P ′, `, f (1)
i (j), f

(2)
i (j), . . . , f

(`)
i (j)).

(c) If Pi fails to produce valid signature in the previous step, then all the players from P ′ ignore the IC signa-
tures received from Pi in step 3(a). Otherwise, if Pi is able to produce valid signature, then all the values

f
(1)
i (j), f

(2)
i (j), . . . , f

(`)
i (j) become public. Every player then verifies whether f

(l)
i (j)

?
= g

(l)
j (i) for l = 1, . . . , `.

If f
(l)
i (j) 6= g

(l)
j (i) for some l ∈ {1, . . . , `} then the protocol terminates here without generating the desired

output.

Table 3: A Ten Round Protocol for Verifiably t′-2D(+,`)-share ` Length Secret.
Conversion From a t′-2D(+,`)-sharing to ` t′-2D+-sharings: Given t′-2D(+,`)-sharing of ` se-
crets, we present a protocol Convert2D(+,`)to2D+ which converts the t′-2D(+,`)-sharing of the ` se-
crets to ` t′-2D+-sharings of the individual ` secrets. Thus given 〈〈s(1), s(2), . . . , s(`)〉〉t′ , Convert2D(+,`)to2D+

produces 〈〈s(l)〉〉t′ for l = 1, . . . , `. Note that 〈〈s(1), s(2), . . . , s(`)〉〉t′ could have been generated di-
rectly by Protocol 2D(+,`)Share or it could be linear combination of a number of t′-2D(+,`)-sharings
generated by different instances of Protocol 2D(+,`)Share.

Lemma 6 Protocol Convert2D(+,`)to2D+ takes five rounds and communicates O((`n3 + n4)κ)
bits and broadcasts O((`n3 + n4)κ) bits.

Reconstruction of a t′-2D+-shared secret: Let 〈〈s〉〉t′ be a t′-2D+-sharing, which is shared
using the polynomials H(x, y), fi(x), gi(y), 1 ≤ i ≤ n′ among the players in P ′. We may assume
〈〈s〉〉t′ as one of the ` outcomes of Protocol Convert2D(+,`)to2D+. We now present a protocol
2D+Recons which allows the (honest) players to correctly recover s with very high probability.

8

(〈〈s(1)〉〉t′ , . . . , 〈〈s(`)〉〉t′) = Convert2D(+,`)to2D+(P ′, t′, `, 〈〈s(1), s(2), . . . , s(`)〉〉t′)
Let f

(l)
i (x), 1 ≤ i ≤ n′, 1 ≤ l ≤ ` be the polynomials used for generating 〈〈s(1) . . . , s(`)〉〉t′ . For every pair of players

Pi and Pj from P ′, the following is done:

1. Player Pi as a dealer executes Distr and AuthVal of IC(Pi, Pj ,P, f
(l)
i (j)) for all l ∈ {1, . . . , `} to give

ICSig
f
(l)
i (j)

(Pi, Pj) to Pj for all l ∈ {1, . . . , `}. Since 〈〈s(1), . . . , s(`)〉〉t′ is generated using 2D(+,`)Share, it implies that

either Pj already holds a combined signature on f
(1)
i (j), . . . , f

(`)
i (j) from Pi, i.e. ICSig

(f
(1)
i (j),f

(2)
i (j),...,f

(`)
i (j))

(Pi, Pj)

or it may also happen that every player from P ′ has ignored Pi’s signature. In the later case, players in P ′ will again
ignore Pi’s signature. Otherwise Pj can now check if Pi has given signature on the same individual values.

2. Upon receiving the signatures on say f̄
(1)
i (j), . . . , f̄

(`)
i (j) (i.e ICSig

f̄
(l)
i (j)

(Pi, Pj) for l = 1, . . . , `) , Pj checks

f
(l)
i (j)

?
= f̄

(l)
i (i). If there is inconsistency for some l ∈ {1, . . . , `} then Pj along with all players in P ′ invoke

EfficientRevealVal(Pi, Pj ,P ′, `, f (1)
i (j), f

(2)
i (j), . . . , f

(`)
i (j)) and RevealVal(Pi, Pj ,P ′, f̄ (l)

i (j)) for all l ∈ {1, . . . , `}.
3. In the previous step, if Pj is not able to produce the signature that he received from Pi, then all the players from P ′
ignore the IC signatures received from Pj during step 1. Otherwise if the signatures are valid then f

(1)
i (j), . . . , f

(`)
i (j)

and f̄
(1)
i (j), . . . , f̄

(`)
i (j) are public. All players in P ′ check f

(l)
i (j)

?
= f̄

(l)
i (j) for l = 1, . . . , `. If the test fails for some l,

then all the players in P ′ ignore the values received from Pi during first step. Otherwise the signature produced by
Pj will be ignored by all the players in P ′.

s = 2D+Recons(P ′, t′, 〈〈s〉〉t′)
For all Pj ∈ P ′ such that Pj ’s IC signatures are not ignored by the players in P ′, player Pi sends ICSigfj(i)(Pj , Pi)
to every player Pk in P ′. Player Pk ∈ P ′ checks the validity of ICSigfj(i)(Pj , Pi) with respect to his own verification
information. If the verification passes then Pk accepts ICSigfj(i)(Pj , Pi). Now if for all Pj ∈ P ′, Pk accepts
ICSigfj(i)(Pj , Pi) (which he receives from Pi) then Pk checks whether fj(i)s are t′-consistent (ideally fj(i) = gi(j)
for all Pj ∈ P ′; so fj(i)s will lie on t′ degree polynomial gi(y)). If yes then Pk adds Pi to his CORE set and let the
t′ degree polynomial (on which fj(i)s lie on) be gi(y). Player Pk takes all the gi(y) polynomials corresponding to the
players in his CORE and interpolates the bivariate polynomial H(x, y) and finally sets the secret s = H(0, 0). It is
easy to check that all honest players from P ′ recovers the same secret s.

Lemma 7 Protocol 2D+Recons takes one round and privately communicates O(n3κ) bits.

2.3 Generating Random t′-2D(+,`)-Sharing

We now present protocol Random(P ′, t′, `) which allows the players in P ′ to jointly generate a
random t′-2D(+,`)-sharing, 〈〈r(1), . . . , r(`)〉〉t′ , where each r(l) is a random element from F.

〈〈r(1), . . . , r(`)〉〉t′ = Random(P ′, t′, `)
Every player Pi ∈ P ′ invokes 2D(+,`)Share(Pi,P ′, t′, `, r(1,Pi), . . . , r(`,Pi)) to generate 〈〈r(1,Pi), . . . , r(`,Pi)〉〉Pi

t′ ,

where r(1,Pi), . . . , r(`,Pi) are randomly selected from F. Let Pass denotes the set of players Pi in P ′ such that
t′-2D(+,`)Share(Pi,P ′, t′, `, r(1,Pi), . . . , r(`,Pi)) is executed successfully. Now all the players in P ′ jointly computes
〈〈r(1), . . . , r(`)〉〉t′ =

∑
Pi∈Pass〈〈r(1,Pi), . . . , r(`,Pi)〉〉Pi

t′ .

Lemma 8 With overwhelming probability, protocol Random generates a random t′-2D(+,`)-sharing
〈〈r(1), . . . , r(`)〉〉t′ in eight rounds and privately communicates and broadcasts O((`n3 + n4)κ) bits.

2.4 Proving c = ab

Definition 6 t′-1D(+)-sharing: We say that a value s is correctly t′-1D(+)-shared among the
players in P ′ if there exists t′ degree polynomial f(x) held by D with f(0) = s. Every player Pi ∈ P ′
holds a share si = f(i) of s with an IC signature on it from the dealer D (i.e. ICSigsi(D, Pi)).
We denote the t′-1D(+)-sharing of a secret s by 〈s〉t′.
Definition 7 t′-1D(+,`)-sharing: We say that a set of secrets s(1), . . . , s(`) are correctly t′-1D(+,`)-
shared among the players in P ′ if there exists t′ degree polynomials f (1), . . . , f (`) held by D, with
f (l)(0) = s(l) for l = 1, . . . , `. Every player Pi ∈ P ′ holds shares s

(1)
i = f (1)(i), . . . , s(`)

i = f (`)(i) of
s(1), . . . , s(`) along with a single IC signature on them from the dealer D (i.e. ICSig

(s
(1)
i ,...,s

(`)
i)

(D, Pi))).

We denote the t′-1D(+,`)-sharing of ` length secret by 〈s1, . . . , s`〉t′.

9

If a secret s is t′-1D(+)-shared by a player D ∈ P ′, then we denote it as 〈s〉Dt′ . Similarly if `
secrets s(1), . . . , s(`) are t′-1D(+,`)-shared by player D, we denote it by 〈s1, . . . , s`〉Dt′ . Notice that
if s(1), . . . , s(`) is t′-2D(+,`)-shared, i.e. 〈〈s(1), . . . , s(`)〉〉t′ , then the ith shares of the secrets, namely
s
(1)
i , . . . , s

(`)
i will be automatically t′-1D(+,`)-shared by player Pi, i.e 〈s(1)

i , . . . , s
(`)
i 〉Pi

t′ .
Now let D∈ P ′ holds ` pairs of values (a(1), b(1)), . . . , (a(`), b(`)) such that D has already correctly

t′-1D(+,`)-shared a(1), . . . , a(`) and b(1), . . . , b(`) among the players in P ′. Now D wants to correctly
t′-2D(+,`)-share c(1), . . . , c(`) without leaking any additional information about a(l), b(l) and c(l),
such that every (honest) player in P ′ knows that c(l) = a(l)b(l) for l = 1, . . . , `. We propose a
protocol ProveCeqAB to achieve this task. The idea of the protocol is inspired from [11] with the
following modification: we make use of our protocol 2D(+,`)-Share, which provides us with high
efficiency.

We try to explain the idea of the protocol with a single pair (a, b). Thus D has already t′-1D(+)-
shared a and b using polynomials, say fa(x) and fb(x). Now he wants to generate t′-2D(+)-sharing
of c, where c = ab, without leaking any additional information about a, b and c. For this, he first
selects a random non-zero β ∈ F and generates t′-2D(+)-sharing of c, β and βb. Let fc(x), fβ(x)
and fβb(x) are polynomials implicitly used for sharing c, β and βb. All the players in P ′ then
jointly generate a random value r. D then broadcasts the polynomial F1(x) = rfa(x) + fβ(x).
Every player locally checks whether the appropriate linear combination of his shares lies on the
broadcasted polynomial F1(x). If it does not then the player broadcasts D’s signature on the shares
of a and β. If the signature is valid and indeed the player’s value does not lie on F1(x), then all
the players will conclude that D fails to prove c = ab.

Otherwise, D again broadcasts F2(x) = F1(0)fb(x) − fβb(x) − rfc(x). As before every players
locally checks whether the appropriate linear combination of his shares lies on the broadcasted
polynomial F2(x). If it does not then the player broadcasts D’s signature on the shares of b and βb
and c. If the signature is valid and indeed the player’s value does not lie on F2(x), then all players
will conclude that D fails to prove c = ab. Otherwise every player checks whether F2(0) ?= 0. If so
the everybody accepts the t′-2D(+)-sharing of c as valid t′-2D(+)-sharing of ab.

The error probability of the protocol is negligible because of the random r which is jointly
generated by all the players. Specifically, a corrupted D might have shared β 6= β, βb 6= βb or c 6= c
but still F2(0) can be zero and this will happen iff fβb(x) + rfc(x) = fβb(x) + rfc(x). However this
equation is satisfied by only one value of r. Since r is randomly generated, independent of D, the
probability that the equality will hold is 1

|F| which is negligibly small. Now we can extend the above

idea parallely for each of the ` pairs (a(l), b(l)). The secrecy follows from the fact that the broadcasted
polynomials F1(x) and F2(x) are randomly distributed with the constant coefficient of F2(x) as zero.

10

〈〈c(1), . . . , c(`)〉〉Dt′ =ProveCeqAB(D,P ′, t′, `, 〈a(1), . . . , a(`)〉Dt′ , 〈b(1), . . . , b(`)〉Dt′)
1. D randomly generates a random non-zero ` length tuple (β(1), . . . , β(`)) ∈ F`. D
then invokes 2D(+,`)Share(D,P ′, t′, `, c(1), . . . , c(`)), 2D(+,`)Share(D,P ′, t′, `, β(1), . . . , β(`)) and
2D(+,`)Share(D,P ′, t′, `, b(1)β(1), . . . , b(`)β(`)) to verifiably t′-2D(+,`)-share (c(1), . . . , c(`)), (β(1), . . . , β(`))
and (b(1)β(1), . . . , b(`)β(`)) respectively. If any of the Share protocol fails, then D fails and the protocol terminates.

For l = 1, . . . , `, let a(l), b(l), c(l), β(l) and β(l)b(l) are implicitly shared using polynomials fa(l)
(x), fb(l)

(x), fc(l)
(x),

fβ(l)
(x) and fβ(l)b(l)

(x) respectively.

2. Now all the players in P ′ jointly generate a random number r. This is done as follows: first the players in P exe-
cute the protocol Random(P ′, t′, 1) to generate 〈〈r〉〉t′ . Then the players compute r = 2D+Recons(P ′, t′, 〈〈r〉〉t′).
3. Now D broadcasts the polynomials F (l)(x) = rfa(l)

(x) + fβ(l)
(x) for l = 1 . . . , `.

4. Player Pi ∈ P ′ checks whether F (l)(i)
?
= rfa(l)

(i) + fβ(l)
(i) for l = 1, . . . , `. If the test fails

for at least one l, then Pi and all players invoke EfficientRevealVal(D, Pi,P ′, `, fa(1)
(i), . . . , fa(`)

(i))

and EfficientRevealVal(D, Pi,P ′, `, fβ(1)
(i), . . . , fβ(`)

(i)) to reveal ICSig
(fa(1)

(i),...,fa(`)
(i))

(D, Pi) and

ICSig
(fβ(1)

(i),...,fβ(`)
(i))

(D, Pi). If the signature is invalid, ignore Pi’s complaints. Otherwise all the values

(fa(1)
(i), . . . , fa(`)

(i)) and (fβ(1)
(i), . . . , fβ(`)

(i)) become public. Using these values all players publicly checks

whether F (l)(i)
?
= rfa(l)

(i)+ fβ(l)
(i) for l = 1, . . . , `. If the test fails for at least one l, then D fails and the protocol

terminates here.

5. Now D broadcasts the polynomials G(l)(x) = F (l)(0)fb(l)
(x)− fβ(l)b(l)

(x)− rfc(l)
(x) for l = 1 . . . , `.

6. Player Pi ∈ P ′ checks whether G(l)(i)
?
= F (l)(0)fb(l)

(i) − fβ(l)b(l)
(i) − rfc(l)

(i) for l = 1, . . . , `. If the test

fails for at least one l, then Pi and all players in P ′ invoke EfficientRevealVal(D, Pi,P ′, `, f b(1)(i), . . . , f b(`)
(i)),

EfficientRevealVal(D, Pi,P ′, `, fβ(1)b(1)(i), . . . , fβ(`)b(`)
(i)) and EfficientRevealVal(D, Pi,P ′, `, fc(1)(i), . . . , fc(`)

(i))
to reveal ICSig

(fb(1) (i),...,fb(`)
(i))

(D, Pi), ICSig
(fβ(1)b(1) (i),...,fβ(`)b(`)

(i))
(D, Pi) and ICSig

(fc(1) (i),...,fc(`)
(i))

(D, Pi).

7. If the signature is invalid, ignore Pi’s complaint. Otherwise all the values (fb(1)(i), . . . , f b(`)
(i)),

(fβ(1)b(1)(i), . . . , fβ(`)b(`)
(i)) and (fc(1)(i), . . . , fc(`)

(i)) become public. Using these values all players pub-

licly checks whether G(l)(i)
?
= F (l)(0)fb(l)

(i)− fβ(l)b(l)
(i)− rfc(l)

(i) for l = 1, . . . , `. If the test fails for at least one
l, then D fails and protocol terminates here.

8. Every player checks whether G(l) ?
= 0 for l = 1, . . . , `. If the test fails for at least one l, then D fails and protocol

terminates here. Otherwise D has proved that c(l) = a(l)b(l) for l = 1, . . . , `.

Lemma 9 In protocol ProveCeqAB, if D does not fail, then with overwhelming probability, every
(a(l), b(l)), c(l) satisfies c(l) = a(l)b(l) for l = 1, . . . , `. ProveCeqAB takes twenty five rounds and
communicates O((`n2 + n4)κ) bits and broadcasts O((`n2 + n4)κ) bits. Moreover, if D is honest
then At learns no information about a(l), b(l) and c(l), for 1 ≤ l ≤ `.

2.5 Multiplication

Let two sets of ` values a(1), . . . , a(`) and b(1), . . . , b(`) are correctly t′-2D(+,`)-shared among the
players in P ′, i.e. 〈〈a(1), . . . , a(`)〉〉t′ and 〈〈b(1), . . . , b(`)〉〉t′ . We now present a protocol called Mult,
which allows the players to compute t′-2D(+,`)-sharing 〈〈c(1), . . . , c(`)〉〉t′ such that c(l) = a(l)b(l)

for l = 1, . . . , `. Our protocol is based on the technique used in [11] with the following difference:
we make use of our protocol ProveCeqAB, which provides us with high efficiency. We explain
the idea with only one pair, say (a, b). Given that a and b are correctly t′-2D(+)-shared among
the players in P ′, it implies that implicitly Pi holds ai and bi where ai and bi are the ith share
of a and b respectively. Now multiplying ai and bi, Pi obtains ith share ei = aibi of c where
(e1, . . . , en′) is 2t′-1D-sharing of c. This is not what we desire. We want Pi to hold ci such that ci

is the ith share of t′-1D-sharing of c. For this, each player Pi t′-2D(+)-shares the value ei = aibi

with the proof that ei is indeed the multiplication of ai and bi. Now, all the players jointly hold
〈〈e1〉〉t′ , . . . , 〈〈en′〉〉t′ . Since e1, . . . , en′ are n′ points on a 2t′ degree polynomial, say C(x) whose con-
stant term is c, by Lagrange interpolation formula [10], c can be computed as c =

∑n
i=1 riei where

ri =
∏n′

j=1,j 6=i
x−j
i−j . The vector (r1, . . . , rn′) is called recombination vector [10] which is public and

known to every player. So for shorthand notation, we write c = Lagrange(e1, . . . , en′) =
∑n′

i=1 riei.
Now all players compute 〈〈c〉〉t′ = Lagrange(〈〈e1〉〉t′ , . . . , 〈〈en′〉〉t′), to obtain the desired output.
But notice that c is the constant term of a 2t′ degree polynomial C(x). So we need to have

11

2t′ + 1 of the n′ t′-2D(+)-shared values 〈〈e1〉〉t′ , . . . , 〈〈en′〉〉t′). The reason is that any 2t′ degree
polynomial needs at least 2t′ + 1 points for its interpolation. So if t′ = t and n′ = 2t + 1, then
c can not be computed even if at least one player fails to t′-2D(+)-share his e value. In general,
to fail Protocol Mult at least n′ − (2t′ + 1) + 1 = n′ − 2t′ players must fail to t′-2D(+)-share
their corresponding e values. All such players will be removed from P ′ and will be added to C.

〈〈c(1), . . . , c(`)〉〉t′ = Mult(P ′, `, 〈〈a(1), . . . , a(`)〉〉t′ , 〈〈b(1), . . . , b(`)〉〉t′)
1. Given 〈〈a(1), . . . , a(`)〉〉t′ , it implies that ith shares of a(1), . . . , a(`) are t′-1D(+)-shared by Pi i.e.

〈a(1)
i , . . . , a

(`)
i 〉Pi

t′ for Pi ∈ P ′. Similarly given 〈〈b(1), . . . , b(`)〉〉t′ , we have 〈b(1)
i , . . . , b

(`)
i 〉Pi

t′ for Pi ∈ P ′.
2. Player Pi in P ′ invokes ProveCeqAB(Pi,P ′, t′, `, 〈a(1)

i , . . . , a
(`)
i 〉Pi

t′ , 〈b(1)
i , . . . , b

(`)
i 〉Pi

t′) to generate

〈〈c(1)
i , . . . , c

(`)
i 〉〉Pi

t′ .

3. If at least n′ − 2t′ players fails in executing ProveCeqAB, then remove them from P ′, adjust t′ and
terminate the protocol without generating the expected result. Otherwise for simplicity assume that the
first 2t′ + 1 players are successful in executing ProveCeqAB.

4. All the players compute: 〈〈c(1), . . . , c(`)〉〉t′ =
∑2t′+1

i=1 ri〈〈c(1)
i , . . . , c

(`)
i 〉〉Pi

t′ , where (r1, . . . , r2t′+1) represents
the recombination vector.

Lemma 10 With overwhelming probability, protocol Mult produces 〈〈c(1), . . . , c(`)〉〉t′ from 〈〈a(1), . . . , a(`)〉〉t′
and 〈〈b(1), . . . , b(`)〉〉t′ such that c(l) = a(l)b(l) if less then n′−2t′ players are added to C. Mult takes
twenty five rounds and communicates O((`n3 + n5)κ) bits and broadcasts O((`n3 + n5)κ) bits.
Moreover, At learns nothing about c(l), a(l) and b(l), for 1 ≤ l ≤ `.

2.6 Proving a=b

Consider the following scenario: Let D∈ P ′ has t′-1D(+,`)-shared ` values a(1), . . . , a(`) among the
players in P ′. Now some more computation has been carried out after the sharing done by D and
during the computation some players have been detected as faulty and removed from P ′. Let us
denote the snapshot of P ′ before and after the computation by P1 and P2 respectively. Also assume
|P1| = n1 and the number of corrupted players in P1 is t1 with n1 ≥ t + 1 + t1. Similarly |P2| = n2

and the number of corrupted players in P2 is t2 with n2 ≥ t + 1 + t2, t1 > t2. Now D wants to
correctly t2-2D(+,`)-share b(1), . . . , b(`) among the players of P2 such that b(l) = a(l), without leaking
any additional information about a(l). We propose a protocol ProveAeqB to achieve this task.
We try to explain the idea of the protocol with a single value a. D has already t1-1D(+)-shared a
among the players in P1 by implicitly using polynomial say fa(x). Now he wants to t2-2D(+)-share
a among the players in P2. For this, he first generates t2-2D(+)-sharing of b with b = a. Let
fb(x) be the polynomial implicitly used for sharing b. D then selects a random element c ∈ F and
(t1 − 1)-2D(+)-shares c among the players in P2. Let fc(x) be the polynomial implicitly used for
sharing c. Now to prove that fa(x) and fb(x) share the same value a, D broadcasts the polynomial
F (x) = fa(x) + xfc(x)− fb(x). Every player from P2 locally checks whether the appropriate linear
combination of his shares lies on the broadcasted polynomial F (x). If not then the player broadcasts
D’s signature on the shares of a, b and c. If the signature is valid and indeed the player’s value does
not lie on F (x) then all players will conclude that D has failed to prove b = a. Otherwise every
player checks whether F (0) ?= 0. If so then everybody accepts the t2-2D(+)-sharing of b as valid
t2-2D(+)-sharing of a. Our protocol ProveAeqB achieves this task for ` values simultaneously.
The secrecy follows from the fact that F (x) is randomly distributed with F (0) = 0.
Lemma 11 In protocol ProveAeqB, if D does not fail, then with overwhelming probability, every
(a(l), b(l)) satisfies a(l) = b(l). ProveAeqB takes thirteen rounds and communicates and broadcasts
O((`n2+n3)κ) bits. Moreover, if D is honest then At learns no information about a(l), for 1 ≤ l ≤ `.

2.7 Resharing

As described in previous section, consider the time-stamps before and after some computation
where before and after the computation, P ′ is denoted by P1 and P2 respectively. Let the players
in P1 holds a t1-2D(+,`)-sharing of ` values s(1), . . . , s(`) i.e. 〈〈s(1), . . . , s(`)〉〉t1 . Now the players
want to jointly generate t2-2D(+,`)-sharings of same values i.e 〈〈s(1), . . . , s(`)〉〉t2 among the players

12

〈〈a(1), . . . , a(`)〉〉Dt2 = ProveAeqB(D,P2, t1, t2, `, 〈a(1), . . . , a(`)〉Dt1)
1. D invokes 2D(+,`)Share(D,P2, t2, `, a

(1), . . . , a(`)) to verifiably t2-2D(+,`)-share (a(1), . . . , a(`)). D selects
a random ` length tuple (c(1), . . . , c(`)) ∈ F` and invokes 2D(+,`)Share(D,P2, t1 − 1, `, c(1), . . . , c(`)). If
protocol 2D(+,`)Share fails then D fails here and the protocol terminates here. Otherwise for convenience
we say that D has t2-2D(+,`)-shared (b(1), . . . , b(`)). For an honest D, a(l) = b(l) for l = 1, . . . , `.

2. For l = 1, . . . , `, let a(l), b(l) and c(l) are implicitly shared using polynomials fa(l)
(x) (degree t1), fb(l)

(x)

(degree t2) and fc(l)
(x) (degree t1−1) respectively. Now D broadcasts the polynomials F (l)(x) = fa(l)

(x)+

xfc(l)
(x)− fb(l)

(x) for l = 1 . . . , `.

3. Player Pi ∈ P2 checks whether F (l)(i)
?
= fa(l)

(i) + ifc(l)
(i) − fb(l)

(i) for l = 1, . . . , `.

If the test fails for at least one l, EfficientRevealVal(D, Pi,P1, `, f
a(1)

(i), . . . , fa(`)
(i)),

EfficientRevealVal(D, Pi,P2, `, f
b(1)(i), . . . , f b(`)

(i)) and EfficientRevealVal(D, Pi,P2, `, f
c(1)(i), . . . ,

fc(`)
(i)) are invoked to reveal signature of D on (fa(1)

(i), . . . , fa(`)
(i)), (fb(1)(i), . . . , f b(`)

(i)) and

(fc(1)(i), . . . , fc(`)
(i)) respectively.

4. If the signatures are invalid, then ignore Pi’s complaints. Otherwise all the values (fa(1)
(i), . . . , fa(`)

(i)),

(fb(1)(i), . . . , f b(`)
(i)) and (fc(1)(i), . . . , fc(`)

(i)) become public. Using these values all players publicly

checks whether F (l)(i)
?
= fa(l)

+ ifc(l)
(i)− fb(l)

(i) for l = 1, . . . , `. If the test fails for at least one l, then
D fails and protocol terminates here.

5. Every player checks whether F (l)(0)
?
= 0 for l = 1, . . . , `. If the test fails for at least one l, then D fails and

protocol terminates here. Otherwise D has proved that a(l) = b(l).

in P2 where t2 < t1. Since n2 ≥ t + 1 + t2, generating t2-2D(+,`)-sharing among the players in
P2 does not cause any loss of secrecy. We now present a protocol Reshare to perform this task.

〈〈a(1), . . . , a(`)〉〉t2 = Reshare(P ′, t1, t2, `, 〈〈a(1), . . . , a(`)〉〉t1)
1. Given 〈〈a(1), . . . , a(`)〉〉t1 , it implies that the ith shares of a(1), . . . , a(`) are already t1-1D(+,`)-shared by Pi,

i.e. 〈a(1)
i , . . . , a

(`)
i 〉Pi

t1
for Pi ∈ P1. Player Pi in P2 invokes ProveAeqB(Pi,P2, t1, t2, `, 〈a(1)

i , . . . , a
(`)
i 〉Pi

t1
) to

generate 〈〈a(1)
i , . . . , a

(`)
i 〉〉Pi

t2
. For simplicity assume that first t1 + 1 players are successful in ProveAeqB.

Since n2 = t + 1 + t2 and t > t1, at least t + 1 ≥ t1 + 1 honest players will always be successful.

2. All the players compute: 〈〈a(1), . . . , a(`)〉〉t2 =
∑t1+1

i=1 ri〈〈a(1)
i , . . . , a

(`)
i 〉〉Pi

t2
, where (r1, . . . , rt1+1) represents

the recombination vector.

Lemma 12 With overwhelming probability, protocol Reshare produces t2-2D(+,`)-sharing 〈〈a(1), . . . , a(`)〉〉t2
from 〈〈a(1), . . . , a(`)〉〉t1 with t2 < t1. Reshare takes thirteen rounds and communicates O((`n3 +
n4)κ) bits and broadcasts O((`n3+n4)κ) bits. Moreover, At learns nothing about a(l), for 1 ≤ l ≤ `.

2.8 Preparation Phase

We call a triple (a, b, c) as a multiplication triple if c = ab. The goal of the preparation phase is
to generate correct d-2D+-sharings of (cM + cR) secret multiplication triples where d denotes the
number of corrupted players still present in P ′ at the end of preparation phase. So in total there
will be cM + cR multiplication triples (a(i), b(i), c(i)) such that c(i) = a(i)b(i) for i = 1, . . . , (cM + cR).
The generation of cM + cR multiplication triples is divided into dlog(t)e segments, wherein each
segment is responsible for generating d-2D(+,`)-sharings of ` = d cM+cR

log t e triples. Here we use a
novel technique called rapid player elimination (RPE) which works in the following way: The com-
putation of a segment is non-robust i.e. a segment may fail due to the (mis)behavior of certain
number of corrupted players who reveal their identity during the execution of the segment. At
the beginning of preparation phase we set the counter for keeping track the number of (segment)
failures to zero i.e f = 0. We create a win-win situation, where if a segment fails, then it must be
due to the revelation/detection of at least 2f new corrupted players. After removing the corrupted
players from P ′, a fresh execution of the same segment will be started with f incremented by 1.
This ensures that total dlog(t)e−1 failures can occur (i.e f ≤ dlog(t)e−1) since dlog(t)e−1 failures
are enough to reveal all the t corrupted players. Once all the t corrupted players are revealed, rest
of the computation can run without occurrence of any failure. Specifically, in every segment one

13

of the following occurs: (a) t1-2D(+,`)-sharings of ` = d cM+cR
log t e secret multiplication triples will

be generated, where t1 denotes the number of corrupted players present in P ′ (t1 = t − |C|) at
the beginning of the segment’s execution; (b) the segment fails with at least 2f corrupted players
being eliminated from P ′ (and added to C), where f denotes the number of failures occurred so
far. But there are two problems here. We want all the triples to be d-2D+-shared. But since
the number of corrupted players in P ′ may change dynamically after every failure, the sharings
produced in different segment may be of different degree. Also the sharing produced by segments
are t1-2D(+,`)-sharings where t1 may vary segment to segment. So, to achieve our goal, we first use
protocol Reshare to obtain uniform d-2D(+,`)-sharings for all the segments. Then, we use Pro-
tocol Convert2D(+,`)to2D+ to produce d-2D+-sharings from d-2D(+,`)-sharings. By using this
approach, we can efficiently generate the triples with less communication overhead. Note that we
could directly generate d-2D+-sharings of the triples instead of generating them from d-2D(+,`)-
sharing. But this would require more communication overhead. So by first generating d-2D(+,`)-
sharings and then converting them into d-2D+-sharings, we require less communication overhead.

Preparation Phase

1. Let P ′ = P, n′ = n, ` = d cM+cR
log t

e and t′ = t. Let f = 0. /* The counter for counting the number of failures */

2. For every segment k = 1, . . . , dlog(t)e, do the following:

(a) Set P1 = P ′, n1 = n′ and t1 = t′.

(b) Invoke Random(P1, t1, `) twice in parallel to generate 〈〈a(1)
k , . . . , a

(`)
k 〉〉t1 and 〈〈b(1)

k , . . . , b
(`)
k 〉〉t1 .

(c) Invoke Mult(P1, `, 〈〈a(1)
k , . . . , a

(`)
k 〉〉t1 , 〈〈b(1)

k , . . . , b
(`)
k 〉〉t1) to generate 〈〈c(1)

k , . . . , c
(`)
k 〉〉t1 such that c

(l)
k = a

(l)
k b

(l)
k .

(d) If Mult fails to produce 〈〈c(1)
k , . . . , c

(`)
k 〉〉t1 , then it must have removed 2f new corrupted players from P ′ (i.e

|P1| − |P ′| = n1 − n′ ≥ 2f). Thus repeat this segment with f = f + 1. Else increment k.

3. Now let P2 = P ′, n2 = n′ and d = t′. For every segment k = 1, . . . , dlog(t)e, check whether c
(1)
k , . . . , c

(`)
k are d-

2D(+,`)-shared. If c
(1)
k , . . . , c

(`)
k are α-2D(+,`)-shared with α > d then invoke Reshare(P2, α, d, `, 〈〈a(1)

k , . . . , a
(`)
k 〉〉α),

Reshare(P2, α, d, `, 〈〈b(1)
k , . . . , b

(`)
k 〉〉α) and Reshare(P2, α, d, `, 〈〈c(1)

k , . . . , c
(`)
k 〉〉α) to generate 〈〈a(1)

k , . . . , a
(`)
k 〉〉d,

〈〈b(1)
k , . . . , b

(`)
k 〉〉d and 〈〈c(1)

k , . . . , c
(`)
k 〉〉d.

4. For every segment k = 1, . . . , dlog(t)e, invoke Convert2D(+,`)to2D+(P2, d, `, 〈〈a(1)
k , . . . , a

(`)
k 〉〉d),

Convert2D(+,`)to2D+(P2, d, `, 〈〈b(1)
k , . . . , b

(`)
k 〉〉d) and Convert2D(+,`)to2D+(P2, d, `, 〈〈c(1)

k , . . . , c
(`)
k 〉〉d) to obtain

〈〈a(1)
k 〉〉d, . . . , 〈〈a(`)

k 〉〉d, 〈〈b(1)
k 〉〉d, . . . , 〈〈b(`)

k 〉〉d and 〈〈c(1)
k 〉〉d, . . . , 〈〈c(`)

k 〉〉d.

Now we explain why in the f th failure 2f corrupted player must have revealed their identity.
Initially n′ = n = 2t+1 and t′ = t and f = 0. So in protocol Mult all the 2t′+1 = 2t+1 players must
be able to execute ProveCeqAB successfully (recall Protocol Mult). If a single (2f = 20 = 1)
player fails to do so, then Mult will fail and so the segment. So the parameters will be updated to
n′ = 2t, t′ = t−1 and f = 1. Now the same segment will be executed with the changed parameters.
This time Mult requires at least 2t′ + 1 = 2(t − 1) + 1 = 2t − 1 players to successfully execute
ProveCeqAB. Since there are n′ = 2t players, at least 2t− (2t−1)+1 = 2 = 21 = 2f players must
fail to execute ProveCeqAB to fail Mult and hence the segment. Now the parameters will be
updated to n′ = 2t− 2, t′ = t− 3 and f = 2. The same segment will be executed with the changed
parameters. This time Mult requires at least 2t′ + 1 = 2(t− 3) + 1 = 2t− 5 players to successfully
execute ProveCeqAB. Since there are n′ = 2t−2 players, at least 2t−2−(2t−5)+1 = 4 = 22 = 2f

players must fail to execute ProveCeqAB to fail Mult and hence the segment. Like this a segment
may fail dlog(t)e − 1 times. But after the last failure, all the t faults will be revealed.

Lemma 13 With overwhelming probability, protocol Preparation Phase produces correct d-2D+-
sharings of (cM + cR) secret multiplication triples. Preparation Phase takes O(log(t)) rounds
and communicates O((cM +cR)n3 +n4)κ bits and broadcasts O((cM + cR)n3 +n4)κ bits. Moreover,
At learns nothing about (a(i), b(i), c(i)) for 1 ≤ i ≤ `.

2.9 Input Phase

Once Preparation Phase is complete, the execution of Input Phase begins. The goal of the input
phase is to generate d-2D+-sharings of cI inputs. Assume that player Pi ∈ P has ci inputs. Thus

14

cI =
∑n

i=1 ci. We stress that though some players from P might have failed and removed during
preparation phase, we still allow them to feed their input. Recall that at the end of preparation
phase, P2 = P ′. So once all the players in P feed their input, the rest of the computation will
be performed among the players in P2. For this, each input sharing is then reshared among the
players in P2. Also if some player Pi fails to correctly share their input, then everybody accepts a
default d− 2D(+,ci) sharing on behalf of that player.

Input Phase

1. Every player Pi ∈ P with ci inputs s
(1)
i , s

(2)
i , . . . , s

(ci)
i , invokes 2D(+,ci)Share(Pi,P, t, ci, s

(1)
i , s

(2)
i , . . . , s

(ci)
i)

to generate 〈〈s(1)
i , . . . , s

(ci)
i 〉〉t.

2. For every Pi, invoke Reshare(P2, t, d, ci, 〈〈s(1)
i , . . . , s

(ci)
i 〉〉t) to generate 〈〈s(1)

i , . . . , s
(ci)
i 〉〉d provided d < t.

3. For every player Pi, invoke Convert2D(+,ci)to2D+(P2, d, ci, 〈〈s(1)
i , . . . , s

(ci)
i 〉〉d) to obtain

〈〈s(1)
i 〉〉d, . . . , 〈〈s(ci)

i 〉〉d.

Lemma 14 With overwhelming probability, protocol Input Phase produces correct d-2D+-sharings
of cI inputs. Input Phase takes twenty eight rounds and communicates O(cIn

3 + n5)κ bits and
broadcasts O(cIn

3 + n5)κ bits.

2.10 Computation Phase

Once Preparation Phase and Input Phase are over, the computation of the circuit (of the
agreed upon function f) proceeds gate-by-gate. First, to every random and every multiplication
gate, a prepared d-2D+-shared random triple is assigned. And a d-2D+-shared input is assigned
to the corresponding input gates. A gate (except output gate) g is said to be computed if a d-
2D+-sharings 〈〈xg〉〉d is computed for the gate. Note that all the random and input gates will be
computed as soon as we assign d-2D+-shared random triples (generated in Preparation Phase)
and d-2D+-shared inputs (generated in Input Phase) to them respectively. A gate is said to be in
ready state, when all its fanin gates have been computed. In the Computation Phase, the circuit
evaluation proceeds in rounds wherein each round all the ready gates will be computed parallely.
Evaluation of input, random and addition gates do not require any communication. Evaluation of
multiplication and output gate requires 2 and 1 call to Protocol 2D+Recons respectively. So the
individual gates in the circuit are evaluated as shown in the table given in the sequel.

The correctness of the steps described for multiplication gate follows from [1] which intro-
duced the technique called Circuit Randomization. So the Circuit Randomization [1] allows to
evaluate a multiplication gate at the cost of two public reconstructions, given a preprocessed ran-
dom multiplication triple. The trick is as follows: Let z = xy. Now z can be expressed as
z = ((x − a) + a)((y − b) + b) = (α + a)(β + b), where (a, b, c) is a multiplication triple. So given
(〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d), 〈〈z〉〉d can be computed as 〈〈z〉〉d = αβ + α〈〈b〉〉d + β〈〈a〉〉d + 〈〈c〉〉d after
reconstructing α and β publicly. The security follows from the fact that α and β are random and
independent of x and y for a random multiplication triple (a, b, c).

15

Computation Phase
Input Gate: 〈〈s〉〉d = IGate(〈〈s〉〉d)

1. Assign a d-2D+-sharing of an input, say 〈〈s〉〉d.

Random Gate: 〈〈a〉〉d = RGate(〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d)

1. Assign a d-2D+-sharing of a multiplication triple, say (〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d), where only the first component
is used.

Addition Gate: 〈〈z〉〉d = AGate(〈〈x〉〉d, 〈〈y〉〉d)

1. If 〈〈x〉〉d and 〈〈y〉〉d are the inputs to the addition gate, all players in P2 compute 〈〈z〉〉d = 〈〈x〉〉d + 〈〈y〉〉d
with 〈〈z〉〉d as the output of the gate.

Multiplication Gate: 〈〈z〉〉d = MGate(〈〈x〉〉d, 〈〈y〉〉d, (〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d))

1. Let 〈〈x〉〉d and 〈〈y〉〉d are the inputs to the multiplication gate and (〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d) is the random
multiplication triple assigned to it. Then all players in P2 compute the output 〈〈z〉〉d) in the following way.

2. All players in P2 compute 〈〈α〉〉d = 〈〈x〉〉d − 〈〈a〉〉d and 〈〈β〉〉d = 〈〈y〉〉d − 〈〈b〉〉d.

3. All players in P2 invoke 2D+Recons(P2, d, 〈〈α〉〉d) and 2D+Recons(P2, d, 〈〈β〉〉d) to reconstruct α and β.

4. All players in P2 compute 〈〈z〉〉d = αβ + α〈〈b〉〉d + β〈〈a〉〉d + 〈〈c〉〉d.

Output Gate: x = OGate(〈〈x〉〉d)

1. If 〈〈x〉〉d is the input to the output gate, all players in P2 compute x = 2D+Recons(P2, d, 〈〈x〉〉d).

Lemma 15 With overwhelming probability, protocol Computation Phase evaluates the circuit
gate-by-gate in a shared fashion and outputs the desired outputs. Computation Phase takes D
rounds and communicates O((cM + cO)n3κ) bits.

2.11 New UMPC Protocol

Now our new UMPC protocol for evaluating function f is: (1). Invoke Preparation Phase (2).
Invoke Input Phase (3). Invoke Computation Phase.

Theorem 1 With overwhelming probability, our new UMPC protocol can evaluate an agreed upon
function securely against an active adaptive rushing adversary At with t < n/2 and requires
O(log(t) +D) rounds and communicates O(((cI + cR + cM + cO)n3)κ) bits and broadcasts O((cI +
cM + cR)n3 + n5)κ bits.

Using the protocol of [13] to simulate the broadcasts, the communication complexity and round
complexity of our UMPC protocol is stated in the following theorem.

Theorem 2 With overwhelming probability, our new UMPC protocol requires O(n log(t) + D)
rounds and communicates O(((cI + cM + cR + cO)n4 + n7)κ) bits.

3 Conclusion

In this paper, we have proposed a new UMPC protocol which is the most round efficient UMPC
protocol so far and ranks second according to the communication complexity. To design the protocol
we have proposed several new techniques and sub-protocols which are first of their kind. It would
be interesting to further reduce the communication complexity and round complexity of our UPMC
protocol.

References

[1] D. Beaver. Efficient multiparty protocols using circuit randomization. In Proc. of CRYPTO
1991, volume 576 of LNCS, pages 420–432. Springer Verlag, 1991.

[2] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a
faulty minority. Journal of Cryptology, 4(4):75–122, 1991.

16

[3] Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control.
In Proc. of TCC, pages 305–328, 2006.

[4] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication com-
plexity. In Proc. of TCC 2008, volume 4948 of LNCS, pages 213–230. Springer Verlag, 2008.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages
1–10, 1988.

[6] P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consensus. In Computer
Science Research, pages 313–322, 1992. Preliminary version appeared in STOC 89.

[7] L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and
System Sciences (JCSS), 18(4):143–154, 1979. Preliminary version appeared in STOC 77.

[8] D. Chaum, C. Crpeau, and I. Damg̊ard. Multiparty unconditionally secure protocols (extended
abstract). In Proc. of FOCS 1988, pages 11–19, 1988.

[9] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty computations ensuring privacy of
each party’s input and correctness of the result. In CRYPTO 1987, LNCS, 1987.

[10] R. Cramer and I. Damg̊ard. Multiparty Computation, an Introduction. Contemporary Cryp-
tography. Birkhuser Basel, 2005.

[11] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty compu-
tations secure against an adaptive adversary. In Proc. of EUROCRYPT 1999, volume 1592 of
LNCS, pages 311–326. Springer Verlag, 1999.

[12] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation.
In Proc. of CRYPTO, volume 4622 of LNCS, pages 572–590. Springer Verlag, 2007.

[13] Matthias Fitzi and Martin Hirt. Optimally Efficient Multi-Valued Byzantine Agreement. In
Proc. of PODC 2006, pages 163–168. ACM, 2006.

[14] Z. Galil, S. Haber, and M. Yung. Cryptograpic computation: Secure fault-tolerant protocols
and the public-key model. In CRYPTO 1987, LNCS, 1987.

[15] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of
verifiable secret sharing and secure multicast. In STOC, pages 580–589, 2001.

[16] O. Golderich, S. Micali, and A. Wigderson. How to play a mental game– a completeness
theorem for protocols with honest majority. In STOC 1987, pages 218–229, 1987.

[17] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multiparty computation. In Proc. of
ASIACRYPT 2000, volume 1976 of LNCS, pages 143–161. Springer Verlag, 2000.

[18] M. Hirt and U. M. Maurer. Robustness for free in unconditional multi-party computation. In
Proc. of CRYPTO 2001, LNCS, 2001.

[19] J. Katz and C. Y. Koo. Round-efficient secure computation in point-to-point networks. In
Proc. of EUROCRYPT 2007, volume 4515 of LNCS, pages 311–328. Springer Verlag, 2007.

[20] Arpita Patra, Ashish Choudhary, AshwinKumar B.V, and C. Pandu Rangan. On Round
Complexity of Unconditional VSS. Cryptology ePrint Archive, Report 2008/172, 2008.

[21] B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and byzantine agree-
ment for t ≥ n/3. Technical report, IBM Research, 1996.

17

[22] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

[23] A. C. Yao. Protocols for secure computations. In Proc. of 23rd IEEE FOCS, pages 160–164,
1982.

18

