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Abstract. We propose a distributed key generation protocol for discrete
logarithm problem based threshold cryptosystems by introducing an ef-
ficient (publicly) verifiable encryption scheme from any homomorphic
encryption with a non-interactive proof of fairness. Previous construc-
tions of the same kind are either only based on a narrow definition of
homomorphism or only a unique encryption scheme is considered. Our
construction generalizes the scope of such design to a broader range of en-
cryption schemes with efficient constructions of proofs of fairness. Since
the protocol is round optimal (one-round) in the distributed fashion,
adaptive adversary is not different from a static adversary, thus a simpli-
fied protocol design is possible. Our scheme is extremely capable for an
environment with already built public key infrastructure. The verifiable
encryption with fairness developed here can be used as building blocks
of a variety of cryptographical applications like publicly verifiable secret
sharing (PVSS), e-voting and auction schemes.

1 Introduction

A threshold cryptosystem distributes secret information among a set S of servers
to build a fault-tolerant system, where there is a common public key pk and a
number of secret key shares {ski}i∈S held by players in the group respectively.
The players can cooperate to reconstruct the secret key, or even without it, sign
messages or decrypt a ciphertext encrypted by pk, so that partial malfunctioning
of total users will not affect the correctness of the output. A great proportion
of solutions to multiparty protocols turns out to be a crux of threshold cryp-
tosystem scheme in constructing a distributed TTP: key recovery [24], signature
escrow [15,23], contract signing [27], fair exchange of digital signatures [2], e-
voting [9,19] and auction [6] schemes.

One of the toughest tasks in constructing such fault-tolerant systems is the
distributed key generation. A centralized server acting as a Trusted Party often
becomes the target of attackers. A distributed key generation, i.e., each server
contributes to the random secret key, is more important and desirable. Previ-
ous schemes of such threshold key generation have often adopted a multiparty-
computation-fashioned protocol to distribute secret key shares among players
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against so-called adaptive adversaries. However, these schemes need intricate
design techniques with inborn complexity in communication rounds: in a shar-
ing phase the shares are sent to share holders via fully connected pair-wise se-
cure channels and an additional complaining phase is needed to detect cheaters
among a dealer and share holders via a broadcast channel. Shares’ secrecy can
be protected by secure channels, however, the cheater somehow survives even
after the key generation, when some player accuses the dealer, a third player
cannot distinguish between these two facts:

– The dealer has distributed a false share.
– The share holder lies on a good share.

In this paper, we try to solve this problem by proposing a non-interactive key
generation under general computational assumption, where the share holder has
no chance to misbehave.

1.1 Related Work

Threshold cryptosystems have been studied in [10,11,31,8,22], one common prop-
erty of these schemes is that they work only with an honest majority. In [10,
11] Desmedt et al. define the concept of threshold schemes and propose the first
implementation. However, this yields no provably secure solution. The first prov-
able secure practical scheme is proposed by Shoup and Gennaro in [31] based
on the Diffie-Hellman problem [12] in the Random Oracle model [13,4], which
is resilient against a static adversary. Later research has focused on stronger
attack model: in [21], Lysyanskaya et al. propose two new models of security for
this kind of attacks namely the concurrent adversary and the rushing adversary.
They further improve the result resisting an erasure-free adversary for signature
schemes and encryption scheme [22], in which (1) an adversary corrupts servers
at any point of the protocol depending on its entire view of the computation;
(2) when corrupted, the players have to hand over the adversary their entire
computation history; i.e., nothing can be erased.

The first distributed key generation of discrete logarithm problem based
threshold cryptosystems is proposed in [26] by Pedersen, but later in [16] a flaw
of their scheme has been found by Gennaro et al. that the key is not uniformly
generated in the key space with some adversary and also a solution is given to
deal with such type of adversary. In [8], Canetti et al. improve their results to
resist adaptive adversary.

Fouque and Stern has noticed that a one-round key sharing protocol [14]
can make the adaptive adversary meaningless, in the sense that it achieves
nothing more than what a static adversary achieves. They have equipped a
non-interactive proof of verifiable encryption discrete logarithm in the Paillier
cryptosystem [25] in place of a complaining phase of key generation. However,
in their scheme one can do nothing but choose Paillier cryptosystem as the only
tool to construct the secret channel. On the other hand, to distribute discrete
logarithm problem based key shares, one must manage keys of extra Paillier
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cryptosystems, which may be based on composite degree residuosity assump-
tions: these degrade the security of the whole system by introducing with new
keys of public key cryptosystems under different mathematical assumptions, re-
sulting in a more challenging key management.

1.2 Our Results

We shall focus on one round distributed key generation of discrete logarithm
based threshold schemes. Compared to previous schemes, our scheme enjoys
following features:

Optimistic execution. First, we note that the servers should not always mal-
function. In fact, in a real implementation, we can expect a much optimistic
scenario. Previous solutions often make use of both broadcast channels and pri-
vate channels in sharing phase, however, we notice that a private channel hides
the adversary in such a way that if there should arouse a dispute a third party
cannot tell whether the sender or the receiver is lying. So a special complaining
phase is needed to correctly share a secret without a trusted dealer [26].

Theoretical results in [18,5,28] have already shown the possibility that given
fully connected pair-wise secure channels, any multiparty computation (includ-
ing the distributed key generation) can be performed provided that the number
of dishonest players t < n/3 and given a broadcast channel together with pair-
wise private channels, can be secure against a static adversary corrupts up to
t < n/2 players. However, complexity of their protocols prevents their applica-
tion in practical use. Besides, since we are to construct a public key scheme, a
private channel that guarantees information-theoretic secrecy is too luxury. A
broadcast channel plus a public key encryption cryptosystem with “checkability”
seems enough for this task. The concurrent adversary and adaptive erasure-free
adversary as defined by [21] is of no significance in a one-round non-interactive
protocol and a rushing attack will make no harm if we take the advantage of a
synchronous network.

Robustness and efficiency. Our protocol provides security against dishonest
majority cheaters, namely t < n, because the cheaters can be identified and
eliminated in the end, while previous multiple-round protocols can work only
with t < n/2 in the key generation phase thus in the whole protocol. Moreover,
there is only a broadcast channel necessary while both broadcast channel and
pairwise secret channel are used in [26,8]. We emphasize on the efficiency of our
protocol. There are totally n2 shares and each user broadcasts O(ln) data where
l is the security parameter, the whole data flow over the network is O(ln2).
Considering the hidden coefficient in previous schemes and multiple rounds of
communication, the complexity is acceptable for a network with low density and
it can be further improved in an optimistic sense by using batch encryption
techniques. A basic hypothesis here is that in practice a decryption server which
stores the secret key share can process a large amount of parallel computations
while the communication costs can be neglected.
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User preference and flexibility on keys. Since each server may have already
set up their encryption keys, introduction of additional Paillier cryptosystem
may increase the amount of secret keys in the whole system. Our scheme works
best for a situation that every player has his preference on keys. In previous
schemes, if the public-secret key pairs of Paillier encryption have not been set
up, there must be another auxiliary protocol executed to do the overhead. In
our scheme, users have more flexibility.

Generalized design techniques. Another contribution of this work is a gener-
alized template for designing non-interactive protocols. If a multiparty protocol
can be simulated as information transmitted from a trusted party to all players
then it can be designed using our template. The technique introduced here can
be applied to other multiparty protocols as building blocks.

Smallest set of assumptions. A theoretical result of our protocol actually
implies that a distributed discrete logarithm key generation protocol can only be
based on discrete logarithm problem and existence of a broadcast channel, while
previous protocols rely more assumptions beyond, like additional pairwise private
channels [26] or other mathematical problem, e.g., deterministic residuosity [25,
14].

2 Preliminary

2.1 Basic Models

There are mainly two types of threshold cryptosystems in practice, namely, those
based on the RSA problem and those on the discrete logarithm problem. We shall
limit our scope to threshold cryptosystems based on intractability of the discrete
logarithm problem because RSA based distributed key generation cannot be
made one-round since a primality test is necessary for secret prime factors of
public modulus, while discrete logarithm type is more amiable for the selection
of secret keys. Let p and q denote large primes such that q divides p− 1, Zq is a
subgroup of Z∗

p of order q, the secret key is an element x, such that public key
is y = gx mod p. Also in self-evident context, we also write x = logy

g modp as
x = DL(y).

Network and players. We shall assume a synchronous network in all our dis-
cussion. Synchronous network can be constructed with GPS (Global Positioning
System) [20] in practice. The players in the protocol should be connected with
a broadcast channel which sends the same information to every player. There is
no need to maintain any pairwise secure channels.

2.2 Security Definitions

Distributed secret key generation of threshold schemes. Assume n play-
ers over a synchronous open network are fully connected. A (t, n) distributed
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threshold secret key generation is a protocol run among these players, who each
chooses a secret number and shares it among all the players. Finally, honest
players can decide a unique public key and corresponding secret key shares, such
that if t + 1 or more players decrypt a ciphertext or issue signatures jointly,
while t or less players can computationally have no information on the secret
keys assuming that the discrete logarithm problem is intractable.

Possible adversarial behaviors. We follow [22] to describe the capabilities
of the adversary. We assume the existence of n parties communicating over a
synchronous broadcast channel with rushing, where up to a threshold l parties
may be corrupted. Lysyanskaya et al in [22] describe a scheme to deal with such
adversary, however, their protocol require interaction in the Share phase. An
adaptive adversary can depend on the protocol history to schedule his attack
while static adversary cannot. An adaptive adversary makes no difference from
a static adversary if the protocol has only one round. Moreover, the underlying
encryption scheme used here need not have chosen ciphertext security. Through-
out this paper, the adversary is considered to be passive, whose attack strategy
can be assumed to be fixed at the beginning of the protocol.

In our protocol, we permit any adversarial behavior trying to deviate the
protocol from its correct execution, namely, an adversary may do any of the
following:

– The adversary chooses to at most t players to corrupt. Once corrupted, the
players have to hand all their data to the adversary and all their actions are
controlled by the adversary.

– Each player chooses a random number and shares it using a public verifi-
able encryption via broadcast channel, while corrupted player may response
correctly or not.

– The adversary can launch pre-scheduled attack during the execution, make
arbitrary deviations from the protocol.

Security of distributed secret key generation for threshold cryptosys-
tem. The security of the distributed secret key generation protocol is defined in
terms of correctness and confidentiality. By correctness, we mean the following:
1. Each subset of at least t + 1 shares defines the same secret key x. t is called

the threshold.
2. All honest parties have the same public key y = gx. This should not be

disturbed by a malicious adversary.
3. The secret key is uniformly distributed in the key space. That is, every ele-

ment of subgroup will be chosen as the secret key with equivalent probability.

Confidentiality property requires that any PPT adversary should not learn any
information on the secret key by corrupting at most t players. Furthermore, this
can be expressed by simulatability. If a PPT adversary corrupts at most t servers
which is erasure-free during the key generation, then the view of the adversary
in the real execution shouldn’t be distinguishable from the output of a program
called a simulator, which is executed in expected polynomial time.
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2.3 Homomorphic Encryption Schemes

Definition 1 (Public key encryption). A public key encryption scheme is a
3-tuple algorithm: (K, E, D), where K is the probabilistic key generation algo-
rithm; E, maybe probabilistic, is the encryption algorithm which maps a plain-
text m to a ciphertext c; D is a deterministic algorithm, which on input c recovers
m.

Definition 2 (Homomorphic encryption). A function F : G → H maps
from group G to group H is called a homomorphism of G into H if F preserves
the operation of G. If ∗ and ◦ are polynomial time computable operations of
G and H, respectively, then F preserves the operation of G if for all a, b ∈ G:
F (a ∗ b) = F (a) ◦ E(b). If an encryption scheme maps plaintext and ciphertext
as above relations, we call it a homomorphic encryption scheme.

Remark 1. A homomorphic encryption must be malleable, which will not be
IND-CCA secure [3]: given E(M), the adversary can compute easily E(M ∗k). We
emphasize here that we are designing a non-interactive protocol, all encryption
will be only be performed once, then discussions on adaptive security (chosen
ciphertext security) can be omitted.

3 Previous Schemes

In this section, we briefly review some related protocols designed for distributed
discrete logarithm key generation.

3.1 Pedersen’s Scheme

Pedersen’s scheme was the first attempt to eliminate the trusted dealer to con-
struct a threshold key cryptosystem with shares generated from Shamir’s secret
sharing scheme [30]. He ingeniously used the homomorphic property of discrete
logarithm. Each player acts as the dealer to use a broadcast channel to distribute
his public key shares and public checksum and pair-wise private channels are
used to distribute the secret share, finally the broadcast channel is used again
to identify possible misbehavior.

A player Pi chooses xi ∈R Zq at random. He also picks t random numbers
ai,k in Zq. For fi(X) =

∑t
k=0 ai,kXk where ai,0 = xi, he privately sends a

secret share si,j = fi(j) mod q to another player Pj with the private channel
and broadcasts public information yi,j(= gsi,j mod p) and Ai,k(= gai,k mod p)
for k = 0, 1, .., t. Each player Pj receives his secret share and the signature of Pi

on the share and check if:

yi,j =
t∏

k=0

Ajk

i,k mod p
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If si,j is not the discrete logarithm of yi,j participant Pj broadcasts a com-
plaint against Pi. If more than n/2 players complain against player Pi, then it
is clear that player Pi is cheating and he will be disqualified. Otherwise, if less
than n/2 players complained, Pi will reveal the secret key share si,j and the
signature on it for player Pj who has made the complaint. If he fails to reply
any of the equation yi,j = gsi,j , he will be disqualified. Otherwise he can still be
qualified. Later a set of qualified players Q can be decided. The public key will
be y =

∏
i∈Q yi, where yi = Ai,0 = yxi .

Since after the complaining phase revealment of the secret key shares are
performed, a flaw was indicated in [16] that the adversary can create a bias
in the distribution of the last bit of the public key with probability 3/4 rather
than 1/2. A second complaining phase is necessary for the identification of the
cheaters and all players have to manage both a broadcast channel and private
channels. However, this scheme is simple, no need to maintain other secret key
of different cryptosystems.

3.2 Fouque and Stern’s Scheme

By noticing the aftereffect of the private channel, Fouque and Stern propose a
scheme using only public channel [14]: p′

j , q
′
j are large primes and Nj = p′

jq
′
j is

the modulus in Paillier cryptosystem. Gj is an element in Z∗
n2of order a multiple

of Nj . Let λ to be the Carmichael lambda fucntion λ(N). The public key is
PKj = (N, G) and the secret key is SKj = λ.

For a non-interactive proof of fair encryption of discrete logarithm, Player Pi

generates a random secret si,0, sets ai,0 = si,0 and chooses ai,k at random from
Zq for 1 ≤ k ≤ t. Number ai,0, ..., ai,t jointly define the polynomial fi(X) =
∑t

k=0 ai,kXk ∈ Zp[X]. Then he computes si,j = fi(j) mod p. He broadcasts: for
k = 0, ..., t, Ai,k = gai,k mod p and yi,j = gsi,j mod p, Yi,j = Gsi,j u

Nj

i,j mod N2
j ,

and a proof (ei,j , zi,j , wi,j) ∈ [0, B[×[0, A[×[0, Nj [, where ei,j = H(g, G, yi,j ,
Yi,j , g

ry
−ei,j

i,j mod p, Gzi,j wNj Y
−ei,j

i,j mod N2
j ), and yq

i,j = 1 mod p, where |A| ≥
|B| ◦ |S|+ k, k is the security parameter.

For each 1 ≤ i, j ≤ n, the players verify that:

t∏

k=0

Ajk

i,k =
t∏

k=0

g
∑t

k=o
ai,kjk

= gfi(j) mod p

and check whether gfi(j) mod p is equal to yi,j in order to verify that the dis-
tribution is correct. The players also verify the proofs (ei,j , wi,j , zi,j): if e =
H(g, G, yi,j , Yi,j , g

zi,j g−ei,j mod p, Gzi,j wNj Y
−ei,j

i,j mod N2
j ), and yp

i,j = 1 mod p
for 1 ≤ i, j ≤ n.

The players which do not follow the protocol are disqualified. The set of
qualified players decide the public key y in the same way as in [26]. And the
players will have correct secret key shares distributed. The public key will be
the computed using Lagrangian interpolation polynomial. Thus secret key shares
of discrete logarithm has been generated for a (t, n) threshold cryptosystem.
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Remark 2. In fact, the proof system used in Fouque and Stern scheme based on
Paillier encryption scheme is a specially “good” kind of homomorphic encryp-
tion schemes where E(M1 + M2) = E(M1)×E(M2) and E(M1× k) = E(M1)k.
An earlier work can even be found in Schnorr signature scheme [29]. We ar-
gue that e.g. the Nacacche-Stern encryption scheme and Okamoto-Uchiyama
encryption scheme holding similar property and proof system can be formed
analogously. However, not all the encryption schemes have such ideal proper-
ties, which may appear likely to be the following (e.g. RSA): E(M1 ×M2) =
E(M1)× E(M2) and E(Mk

1 ) = E(M1)k.

4 Publicly Verifiable Encryption with Proof of Fairness

4.1 A One-Round Model for Threshold Cryptosystem

A trick is played here: a tag is attached to the ciphertext which allows everyone
be able to check the validity of the ciphertext without decrypting it. Via a public
channel, each player broadcasts a public commitment and verifiable encryption
of all his shares. The secret key share to player Pj is encrypted under Pj ’s public
key together with a tag so that everyone may check the correctness of the secret
share while having no idea of what it is. So a cheating dealer can be detected
and disqualified immediately in the key generation phase. If there is one honest
player, the resulting public key and secret key will be distributed uniformly in
the key space.

The construction of such a tag can in fact using general zero-knowledge for
NP language combined with any encryption scheme to provide the encrypted
plaintext is in fact the discrete logarithm of a publicly known value. However,
to emphasize the efficiency of practical use, we construct a verifiable encryption
of discrete logarithm over any homomorphic encryption schemes. Note that our
definition of homomorphism is much broader.

4.2 Publicly Verifiable Encryption of Discrete Logarithm

The key idea of our publicly verifiable encryption is in fact a non-interactive
publicly verifiable encryption, where with a public input y a prover proves a ci-
phertext c encrypts x under a public key PK (typically belongs to a third party),
such that (x, y) ∈ R, where R is a binary relation varying from applications. In
the discrete logarithm key generation, R refers to the discrete logarithm, i.e., x
is the discrete logarithm of a public value y to the base g. Our protocol differs
from the one in [7] is that our underlying encryption scheme is homomorphic,
while the one in [7], used in a verifiable signature escrow context, should avoid
homomorphic property to maintain chosen ciphertext security. Our scheme ap-
parently may be more efficient than theirs. Abe in [1] has also designed checkable
encryption schemes based on various underlying encryption in the random oracle
model. However, the construction there is aiming at chosen ciphertext security
and actually only proves whether the ciphertext sender knows the corresponding
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plaintext. In our key generation protocol, we require not only that the ciphertext
is formed validly, but also it should be discrete logarithm of some publicly known
value, in other words, the relation R should be verified at the same time. Let’s
fist look at some examples with typical encryption schemes:

Example 1: ElGamal encryption. This scheme is observed to first appear in
[32]. It is a combination of ElGamal encryption scheme and Schnorr signature
assuming double exponent exists in a subgroup of prime order. The system
assumes to be secure if DDH problem is hard in the subgroup. Let G be a
probabilistic polynomial-time algorithm that in (p, q, g) the DDH problem is
hard. Here g is a generator of the group defined by p of prime order q.

– Key generation: (p, q, h, z) ← G(1k), where h is a generator of Zq in Z∗
q ,

z ∈R Zp. Then the secret key is z and the public key is v(= hz mod p), p, q
and a hash function H : {0, 1}∗ → {0, 1}l (l is the security parameter, where
2−l is negligible).

– Encryption: To verifiably encrypt x satisfying y = gx, set C = (A, B)
as standard ElGamal encryption, where a ∈R Zq, A = ha, B = x−1 · va,
a proof of fairness can be constructed as follows: select r1, ..., rl ∈R Zq,
for 1 ≤ i ≤ l, compute w1i = hri mod p and w2i = gvri . Denote c =
H(v, h, g, p, q, A, B, w11, w21, ..., w1l, w2l).

– Validity test: Verifier checks if c
?= H(v, h, g, p, q, A, B, w11, w21, ...,

w1l, w2l). Let ci denotes the ith bit of c = H(v, h, g, p, q, A, B, w11, w21, ...,

w1l, w2l), then for 1 ≤ i ≤ l, bi = ri − ci · a, check if wi1
?= hbiAci , and

wi2
?= g(vbi ) if ci = 0, or wi2

?= y(B·vri ) if ci = 1.
– Decryption: For a valid ciphertext that passes the above test, output x =

Az/B as plaintext.

Example 2: RSA encryption. RSA encryption operates in the group Z∗
N ,

where N = p′q′, p′ and q′ are large primes. It is trivial that p′, q′, p, q must be
distinct to maintain the system secure.

– Key generation: (p′, q′) ← G(1k), N = p′q′, and φ(N) = (p′ − 1)(q′ − 1),
so that Zp is a subgroup of Z∗

N and Zq is a subgroup of Z∗
p of order q. e is a

small prime and select private key d = e−1 mod φ(N). Publish public key as
e, N and a hash function H : {0, 1}∗ → {0, 1}l (l is the security parameter,
where 2−l is negligible) as public encryption key.

– Encryption: B = xe mod N , y = gx, a proof of fairness can be constructed
as follows: r1, ..., rl ∈R Zq, for 0 ≤ i ≤ l, Ai = re

i mod N . let ci denote ith
bit of c = H(e, N, B, A1, A2, ..., Al, b1, ..., bl), bi = xci · rl mod N . Then the
ciphertext is B and the proof is (A1, ..., Al, b1, ..., bl).

– Validity test: First check if c
?= H(e, N, B, A1, A2, ..., Al, b1, ..., bl). For 1 ≤

i ≤ l, let ci denote the ith bit of c = H(e, N, B, A1, A2, ..., Al, b1, ..., bl), verify
be
i

?= Ai if ci = 0, or bi = B ·Ai if ci = 1.
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– Decryption: For a valid ciphertext that passes the above test, output x =
cd mod N as plaintext.

Remark 3. In these schemes the total data size broadcast expands with a factor
of l, the security parameter, however, the probability error is exponentially small
(2−l) in these construction. Note these are not to perform frequently.

5 Generalization to Arbitrary Homomorphic Encryption

In this section, we show the above results can be generalized to arbitrary ho-
momorphic encryption / decryption schemes. As shown above, any encryption
scheme that maps a plaintext from the input domain G to a ciphertext in the
output domain H preserving operations can be expressed as:

E(M1 ∗M2) = E(M1) ◦ E(M2)

Without loss of generality, assume ∗, ◦, � are three operations (e.g. +, ×,
exponentiation in finite field) defined in ascending order of priority in both G
and H. For a homomorphic encryption maps preserved operations in G and in
H, the homomorphic properties can be written as:

∗ → ◦ (1)
◦ → � (2)
◦ → ◦ (3)
�→ � (4)

For example, (1) shows that ∗ operation in G (plaintext space) is preserved
as ∗ in H (ciphertext space). Since encryption scheme must at least be oneway
for it must be infeasible for anyone to infer the ciphertext to the plaintext, then
above mappings must hold oneway, which infers that it is possible to open some
masked value on the right side while maintaining secret on the left side. For the
relation to prove and underlying encryption scheme: either the same operation
preserved in G and H, or an operation in G by relation R is preserved in H by
the encryption scheme. If two such pairs can be found to hold for the relation
and the encryption scheme, a proof system can then be constructed.

Case 1: The same operation is preserved in the domain for the relation R and
the encryption E, e.g., the pair (1,2) for which ◦ is preserved in both G and H
holds for both the relation and the homomorphic encryption scheme. The proof
system can be constructed efficiently using Fiat-Shamir heuristic [13]. In such
case, a challenge of the first homomorphism relation can be easily turned to the
second one, then a zero-knowledge proof can be constructed proving the R(x, y)
under PK.

Case 2: The same operation is preserved in different domains G and H re-
spectively. E.g. (1,2) for the relation and (3,4) for the homomorphic encryption,
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which form the proof system for verifiable RSA encryption of discrete logarithm
in Example 2. In such case since there is no direct way bridging over the chal-
lenge of the first one to the second one, however, a cut-and-choose methodology
can be executed sequentially by mapping (1) (with respect to (2)) in G to (3)
(with respect to (4)) in H. In such cases, the error probability is exponentially
small after sequential repeated executions.

Generally, we have the following theorem on Case 1:

Theorem 1. Proofs from Case 1 based on homomorphic encryption can be made
zero-knowledge efficiently.

Proof. We shall first make the construction and then prove that it satisfies
the requirements of zero-knowledge. For definitions and precise model of zero-
knowledge proof please refer to [17]. There are three operations in all. For relation
R, assume M1 ∗M2 → M1 ◦M2, M1 ◦ k → M1 � k and homomorphic encryp-
tion schemes: E(M1 ∗M2) = E(M1) ◦ E(M2) and E(M1 ◦ k) = E(M1) � k. The
prover chooses a random element r from G and compute E(r) in H as a com-
mitment. Such commitment by the encryption scheme is unconditionally binding
(guaranteed by deterministic property of a public key encryption scheme) and
computationally concealing. Then from a public random source (for simplicity,
consider a random oracle), a random reference c is derived and the prover uses
the two pairs of relations, E(r ∗ x)→ E(r) ◦ E(x) and E(c ◦ x)→ E(x) � c. He
then sends w = r ∗ x ◦ c, E(r), E(x) to the verifier, who verifies the two pairs of
relations: by E(w) = E(r) ◦ E(x) � c.

First, it is easily seen that an honest prover will always be able to construct
such proof. Second, assume that a cheating prover doesn’t know x and is able to
compute such proofs. Since c is a public random source accessible by both the
prover and verifier, in other words, c is fixed once chosen, then having the ability
to find x′ �= x from the output E(r∗x′◦c) = E(r∗x◦c) contradicts the determin-
istic property of the underlying assumption of the encryption schemes. Third,
given w and E(x), the verifier can easily simulates all the information gained in
the protocol, by obtaining a random c′ from the random public accessible source,
calculate x′ from w′ = r′ ∗x′ ◦ c′ and construct E(r′ ∗x′ ◦ c′) = E(r′) ◦E(x′) � c′.

Case 2 is a little cumbersome, since no direct operation is preserved in
both encryption scheme and fairness of an relation (here discrete logarithm
of a public value). Now the relation (here for example discrete logarithm)
maps M1 ∗M2 → M1 ◦M2, however, the homomorphic encryption only maps
E(M1 ◦ M2) to E(M1) ◦ E(M2) and E(M1 � k) to E(M1) � k. Since there is
no direct method to obtain E(M1) � k in general, we cannot proceed except for
some special cases where an efficient operation can be achieved for one bit (e.g.
homomorphic relation M � 0 → 1 or M � 1 → M hold for discrete logarithm),
we can then base the proof on cut-and-choose methodology.

For 1 ≤ i ≤ l, the prover chooses ri randomly from G. Let the public random
source output a challenge bit ci. The prover computes E(ri) and wi = ri ∗
x ◦ ci, and together with E(x) sends them to the verifier. The verifier opens
every commitment by verifying E(wi) = E(ri) ◦ E(x) � 0 = E(ri), if ci = 0;
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E(wi) = E(ri) ◦ E(x) � 1 = E(ri) ◦ E(x) if ci = 1. Fortunately, most of finite
field arithmetics satisfy this principle. We base our construction on the following
theorem:

Theorem 2. The construction for Case 2 is a secure zero-knowledge proof with
error probability exponentially small.

Proof. Again, the commitment by using public key encryption is again uncon-
ditionally binding and computationally concealing. First, completeness is clear
that an honest prover can construct such proof. Second, this is a standard “cut-
and-choose” argument, that an honest verifier can only be cheated is roughly
2−l, if the l-bit string is chosen uniformly from the public random source. Third,
for 1 ≤ i ≤ l, let the verifier constructs a simulator outputs random r′

i and forms
the proof in the same way E(r′

i ∗x ◦ c′
i), where c′

i is the ith random bit obtained
from the public random source. In the view of an adversary whether this is from
an honest prover or the simulator is computationally indistinguishable, if E(ri)
and E(r′

i) are identically distributed in H.

Since RSA encryption has the homomorphic encryption property of Case 2,
we can further prove its security with similar reasoning:

Corollary 1. The protocol given in Example 2 is a secure verifiable encryption
with proof of fairness, where public randomness is generated by random oracle.

6 Distributed Key Generation for Discrete Logarithm

6.1 The Scheme

The main protocol uses homomorphic encryption with public verifiable proof of
fairness as a building block to build a (t, n) threshold cryptosystem. To have pub-
lic key shares pki of player Pi and corresponding secret key shares (sk1, ..., skn)
correctly distributed, suppose each player Pj has his personal public key and
secret key pair (EPKj , DSKj ) (they can be chosen independently and based on
different assumptions). Each share is verifiably encrypted and broadcasted to ev-
ery player so that every player can verify if other players have received the correct
share. A cheating dealer can be caught immediately once he cheats. Since the
network is supposed to be synchronous, then rushing attacks and other attacks
will not take place. The main protocol is performed as follows:

1. For 1 ≤ i ≤ n, Pi chooses a random number xi from the xi ∈R Zp, computes
yi = gxi , and share xi with Shamir’s secret sharing scheme: he sets: ai,0 =
si,0 = xi and chooses ai,k at random from Zq for 1 ≤ k ≤ t, which the number
ai,0, ..., ai,t define a polynomial fi(X) =

∑t
k=0 ai,kXk ∈ Zq[X] of degree t.

Then he computes si,j = fi(j) mod p. He broadcasts: for k = 0, ..., t, Ai,k =
gai,k mod p and yi,j = gsi,j mod p, and an encryption EPKj (si,j) of secret
key share for Player Pj under the correct publicly verifiable encryption with
proof of fairness introduced in section 5. Especially he will keep the share
when j = i.



108 R. Zhang and H. Imai

2. Player P1, ..., Pn each verifies
t∏

k=0

Ajk

i,k =
t∏

k=0

(gai,k)jk

= g
∑t

k=o
ai,kjk

= gfi(j)

and check whether gfi(j) is equal to yi,j in order to verify that the distribution
is correct. The players also verify the proofs that EPKj

(si,j) is the correct
encryption of si,j to the public key PKj .

3. The players which do not follow the protocol will be disqualified. The re-
mained set of player forms the set Q and they can generate the threshold
key system with the public key (y, y1, ..., yn) and secret shares (x1, ..., xn)
where Player Pj will get correct shares from i ∈ Q, and compute the follow-
ing:

xj =
∑

j∈Q

si,j , yj = gxj , y =
∏

i∈Q

Ai,0 = g

∑
i∈Q

fi(0) i, j ∈ Q

respectively, Ai,0 can be computed from the Lagrangian interpolation poly-
nomial given Ai,j (1 ≤ j ≤ t + 1).

4. The secret can be constructed if t+1 honest players gather. sk =
∑t+1

j=1 bixi,
where bi =

∏
1≤k≤t+1,k �=j

j
k−j .

6.2 Security Analysis

We get the following theorem on analysis of our protocol:

Theorem 3. Our scheme is a secure distributed key generation protocol for a
threshold cryptosystem.

Proof. We build our proof on the following two claims for two requirements in
the security definitions:

Claim. Our protocol is correct against passive adversary.

It is clear that any subset of t + 1 honest players can reconstruct the secret
key. For the public verifiability, the honest players can be decided, thus the public
key can be uniquely decided. If there should be one honest player, the public
key y and the secret key x will be uniformly random in the subgroup.

Claim. Our protocol protects the confidentiality of the secret key.

For the zero-knowledge property of the publicly verifiable encryption scheme,
a PPT adversary cannot break the confidentiality of the secret shares. Further-
more, We can build a simulator which is a pre-decided program in stead of real
protocol run. In the view of an adversary, the sharing phase can simulated: it
is computationally indistinguishable for the adversary to tell the output from a
simulator from a real program. Since the verifiable encryption is simulatable.

Combining two claims, we complete the proof of the theorem.

Remark 4. Furthermore, the scheme in [14] can be regarded as a special case if
we take the proof knowledge of the style in the Pailler encryption for Case 1.
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7 Conclusion

Our key generation protocol is round optimal (one round). Our non-interactive
encryption with proof of fairness can be used as building blocks for other com-
plicated schemes. We argue that actually, the technique developed here can be
used to any scenario where data flow from the Trusted Authority to the play-
ers without interactions. Since homomorphic encryption is malleable, it is not
possibly to achieve security against an adaptive adversary under multiple use.
However, it is possible to be made composable if an independent set up with
randomly chosen parameters is applied every time.
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