
Round-Optimal Secure Two-Party Computation

Jonathan Katz1,� and Rafail Ostrovsky2,��

1 Dept. of Computer Science, University of Maryland
jkatz@cs.umd.edu

2 Dept. of Computer Science, U.C.L.A.
rafail@cs.ucla.edu

Abstract. We consider the central cryptographic task of secure two-
party computation: two parties wish to compute some function of their
private inputs (each receiving possibly different outputs) where security
should hold with respect to arbitrarily-malicious behavior of either of the
participants. Despite extensive research in this area, the exact round-
complexity of this fundamental problem (i.e., the number of rounds re-
quired to compute an arbitrary poly-time functionality) was not previ-
ously known.
Here, we establish the exact round complexity of secure two-party com-
putation with respect to black-box proofs of security. We first show a
lower bound establishing (unconditionally) that four rounds are not suf-
ficient to securely compute the coin-tossing functionality for any super-
logarithmic number of coins; this rules out 4-round protocols for other
natural functionalities as well. Next, we construct protocols for securely
computing any (randomized) functionality using only five rounds. Our
protocols may be based either on certified trapdoor permutations or ho-
momorphic encryption schemes satisfying certain additional properties.
The former assumption is implied by, e.g., the RSA assumption for large
public exponents, while the latter is implied by, e.g., the DDH assump-
tion. Finally, we show how our protocols may be modified – without
increasing their round complexity and without requiring erasures – to
tolerate an adaptive malicious adversary.

1 Introduction

Round complexity measures the number of messages that parties need to ex-
change in order to perform some joint task. Round complexity is a central mea-
sure of efficiency for any interactive protocol, and much research has focused on
improving bounds on the round complexity of various cryptographic tasks. As
representative examples (this list is not exhaustive), we mention work on upper-
and lower-bounds for zero-knowledge proofs and arguments [6, 7, 19, 27, 28, 40],
concurrent zero-knowledge [13, 15, 17, 35, 41, 42], and secure two-party and multi-
party computation [4, 5, 10, 11, 14, 21–23, 31–34,37, 43]. The study of secure two-
party computation is fundamental in this regard: not only does it encompasses
� Part of this work was supported by NSF Trusted Computing Grant #0310751.

�� Part of this work was supported by a gift from the Teradata Corporation.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 335–354, 2004.
c© International Association for Cryptologic Research 2004

336 Jonathan Katz and Rafail Ostrovsky

functionalities whose round-complexity is of independent interest (such as coin
tossing or the zero-knowledge functionality), but it also serves as an important
special case in the study of secure computation.

Yao [43] presented a constant-round protocol for secure two-party computa-
tion when the adversarial party is assumed to be honest-but-curious (or passive).
Goldreich, Micali, and Wigderson [25, 29] extended Yao’s result, and showed a
protocol for secure multi-party computation (and two-party computation in par-
ticular) tolerating malicious (or active) adversaries. Unfortunately, their proto-
col does not run in a constant number of rounds. Recently, Lindell [37] gave the
first constant-round protocol for secure two-party computation in the presence of
malicious adversaries; he achieves this result by constructing the first constant-
round coin-tossing protocol (for polynomially-many coins) and then applying
the techniques of [29]. The number of rounds in the resulting protocol for secure
two-party computation is not specified by Lindell, but is on the order of 20–30.

The above works all focus on the case of a non-adaptive adversary. A general
methodology for constructing protocols secure against an adaptive adversary is
known [12], and typically requires additional rounds of interaction.

Lower bounds on the round-complexity of secure two-party computation with
respect to black-box1 proofs of security have also been given. (We comment
further on black-box bounds in Section 1.2.) Goldreich and Krawczyk [28] showed
that, assuming NP �⊆ BPP , zero-knowledge (ZK) proofs or arguments for NP
require 4 rounds. Since ZK proofs (of knowledge) are a particular example of
a two-party functionality, this establishes a lower bound of 4 rounds for secure
two-party computation. Under the same complexity assumption, Lindell [38] has
shown that for some polynomial p, secure coin-tossing of p(k) coins requires at
least 4 rounds.

1.1 Our Results

Here, we exactly characterize the (black-box) round complexity of secure two-
party computation by improving the known bounds. In particular:

Lower bound: We show that 5 rounds are necessary for securely tossing any
super-logarithmic (in the security parameter) number of coins, with respect to
black-box proofs of security. Thus implies a 5-round black-box lower bound for
a number of other (deterministic) functionalities as well. Beyond the implica-
tions for the round complexity of secure computation, we believe the result is
of independent interest due to the many applications of coin-tossing to other
cryptographic tasks.

The result of Goldreich and Krawczyk [28] mentioned above implies a black-
box lower bound of five rounds for the “symmetric” ZK functionality (where the
parties simultaneously prove statements to each other) – and hence the same
lower bound on the black-box round complexity of secure two-party computation
1 Throughout this paper, “black-box” refers to black-box use of an adversary’s

code/circuit (and not black-box use of a cryptographic primitive, as in [30]). A defi-
nition of black-box proofs of security is given in Appendix A.

Round-Optimal Secure Two-Party Computation 337

of general functionalities – assuming NP �⊆ BPP . In contrast, our lower bound
holds unconditionally.
Matching upper bound: As our main result, we construct 5-round protocols
for securely computing any (randomized) poly-time functionality in the presence
of a malicious adversary. Our protocols may be based on various cryptographic
assumptions, including certified, enhanced trapdoor permutations (see Defini-
tion 1 and Remark 1), or homomorphic encryption schemes satisfying certain
additional properties. The former may be based on, for example, the RSA as-
sumption for large public exponents, while the latter may be based on, for ex-
ample, the decisional Diffie-Hellman (DDH) assumption in certain groups. Due
to space limitations, we focus on the (more difficult) case of certified trapdoor
permutations, and refer the reader to the full version for protocols based on
alternate assumptions.

In Section 4.1, we sketch how our protocols can be extended – without in-
creasing the round complexity and without requiring erasures – to tolerate an
adaptive adversary. The necessary cryptographic assumptions are described in
more detail there.

1.2 A Note on Black-Box Lower Bounds

Until the recent work of Barak [1, 2], a black-box impossibility result was gen-
erally viewed as strong evidence for the “true” impossibility of a given task.
Barak showed, however, that non-black-box use of an adversary’s code could,
in fact, be used to circumvent certain black-box impossibility results [1]. Never-
theless, we believe there is still an important place in cryptography for black-box
impossibility results for at least the following reasons:

1. A black-box impossibility result is useful insofar as it rules out a certain
class of techniques for solving a given problem.

2. With respect to our current understanding, protocols constructed using non-
black-box techniques, currently seem inherently less efficient than those con-
structed using black-box techniques.

It remains an interesting open question to beat the lower bound given in this
paper using non-black-box techniques, or to prove that this is impossible.

1.3 Discussion

Yao’s results [43] give a 4-round protocol secure against honest-but-curious ad-
versaries, assuming the existence of enhanced [26, Sec. C.1] trapdoor permuta-
tions (an optimal 3-round protocol secure against honest-but-curious adversaries
can be constructed based on the existence of homomorphic encryption schemes).
Our lower bound shows that additional rounds are necessary to achieve security
against the stronger class of malicious adversaries. Our upper bound, however,
shows that (at least in the case of trapdoor permutations) a single (i.e., fifth)
additional round suffices.

338 Jonathan Katz and Rafail Ostrovsky

Our technique for achieving security against adaptive adversaries applies only
to adversaries who corrupt at most one of the players. An interesting open ques-
tion is to construct a constant-round protocol tolerating an adaptive adversary
who can potentially corrupt both players.

2 Definitions and Cryptographic Preliminaries

We omit the (completely standard) definitions of security for two-party com-
putation used in this work, which follow [9, 10, 25, 39]. However, we provide in
Appendix A our definition of black-box simulation which is used to prove the
lower bound of Section 3.

We assume the reader is familiar with the cryptographic tools we use and refer
the reader elsewhere for definitions of non-interactive (perfectly binding) com-
mitment schemes [24], 3-round witness-indistinguishable (WI) proofs of knowl-
edge [20, 24], witness-extended emulation for proofs/arguments of knowledge [37],
and the Feige-Shamir 4-round ZK argument of knowledge [18, 19]. We note that
all the above may be constructed based on the existence of certified, enhanced
trapdoor permutations.

To establish notation, we provide here our working definitions of trapdoor
permutations, hard-core bits, and Yao’s garbled circuit technique. We also discuss
equivocal commitment, and show a new construction of this primitive.
Trapdoor permutations. For the purposes of the present abstract, we use the
following simplified definition of trapdoor permutations (but see Remark 1):

Definition 1. Let F be a triple of ppt algorithms (Gen, Eval, Invert) such that
if Gen(1k) outputs a pair (α, td), then Eval(α, ·) is a permutation over {0, 1}k
and Invert(td, ·) is its inverse. F is a trapdoor permutation family if the
following is negligible in k for all poly-size circuit families {Ai}:

Pr[(α, td)← Gen(1k); y ← {0, 1}k; x← Ak(α, y) : Eval(α, x) = y].

We additionally assume that F satisfies (a weak variant of) “certifiability”:
namely, given some α it is possible to decide in polynomial time whether Eval(α, ·)
is a permutation over {0, 1}k.
For notational convenience, we let (α, td) be implicit and will simply let f(·)
denote Eval(α, ·), and f−1(·) denote Invert(td, ·) (where α, td are understood from
the context). Of course, f−1 can only be efficiently evaluated if td is known.
Remark 1. The above definition is somewhat less general than others that have
been considered (e.g., that of [24, Def. 2.4.5]); in particular, the present defini-
tion assumes a domain of {0, 1}k and therefore no “domain sampling” algorithm
is necessary. Furthermore, the protocol of Section 4 does not immediately gener-
alize for trapdoor permutations requiring such domain sampling. Nevertheless,
by introducing additional machinery it is possible to modify our protocol so that
it may be based on any family of enhanced trapdoor permutations (cf. [26, Sec.
C.1]) satisfying the certifiability condition noted above. For simplicity, however,

Round-Optimal Secure Two-Party Computation 339

we use the above definition in proving our results and defer the more complicated
protocol (and proof) to the full version.

Hard-core bits. We assume the reader is familiar with the notion of hard-core
bits for any trapdoor permutation family (see [24]), and thus we merely describe
the notation we use. Let H = {hk : {0, 1}k → {0, 1}} be a hard-core bit for some
trapdoor permutation family F (we will let k be implicit, and set h = hk); thus
(informally), h(z) is “hard” to predict given f(z). We extend this notation to a
vector of k hard-core bits in the following way:

h(z) def= h(z)|h(f(z))| · · · |h(fk−1(z)).

Now (informally), h(z) “looks pseudorandom” given fk(z).

Yao’s “garbled circuit”. Our secure computation protocol uses as a building
block the “garbled circuit” technique of Yao [43] which enables constant-round
secure computation for honest-but-curious adversaries. We abstract Yao’s tech-
nique, and only consider those aspects of it which are necessary for our proof of
security. In what follows, F is a description of a two-input/single-output circuit
whose inputs and output have the same length k (yet the technique may be
generalized for inputs and output of arbitrary polynomial lengths). Yao’s results
give ppt algorithms Yao1, Yao2 for which:

– Yao1 is a randomized algorithm which takes as input a security parameter 1k,
a circuit F , and a string y ∈ {0, 1}k. It outputs a “garbled circuit” circuit and
input-wire labels Z1,0, Z1,1, . . . , Zk,0, Zk,1 ∈ {0, 1}k. The “garbled circuit”
may be viewed as representing the function F (·, y).

– Yao2 is a deterministic algorithm which takes as input 1k, a “garbled cir-
cuit” circuit, and k values Z1, . . . , Zk ∈ {0, 1}k. It outputs either an invalid
symbol ⊥, or a value v ∈ {0, 1}k.

(When k is clear from the context, we omit it.)
We briefly describe how the above algorithms may be used for secure com-

putation in the honest-but-curious setting. Let player 1 (resp., 2) hold input
x (resp., y), and assume that player 1 is to obtain the output F (x, y). First,
player 2 computes (circuit, {Zi,b}) ← Yao1(F, y) and sends circuit to player 1.
Then, the two players engage in k instances of oblivious transfer: in the ith in-
stance, player 1 enters with “input” xi, player 2 enters with “input” (Zi,0, Zi,1),

and player 1 obtains the “output” Zi
def= Zi,xi . Player 1 then computes v =

Yao2(circuit, Z1, . . . , Zk) and outputs v.
A 3-round protocol for oblivious transfer (OT) based on trapdoor permu-

tations may be constructed as follows (we remark that using number-theoretic
assumptions, 2-round OT is possible): Let player 1 have input b and player 2 have
input strings Z0, Z1 ∈ {0, 1}k (the goal is for player 1 to obtain Zb). Player 2 be-
gins by generating trapdoor permutation (f, f−1) and sending f to player 1. Next,
player 1 chooses random z′0, z

′
1 ∈ {0, 1}k, sets zb = fk(z′b) and zb̄ = z ′̄

b
, and sends

z0, z1 to player 2. Finally, player 2 computes W0 = Z0 ⊕ h(f−k(z0)), computes

340 Jonathan Katz and Rafail Ostrovsky

W1 analogously, and sends W0, W1 to player 1. Player 1 can then easily recover
Zb. (A proof of security for essentially the above protocol appears in [25].) Note
that in the honest-but-curious setting it is secure to run polynomially-many
executions of the above in parallel.

Putting everything together, we obtain the following 3-round protocol for
secure computation of any single-output functionality in the honest-but-curious
setting:

Round 1 Player 2 runs Yao1 to generate (circuit, {Zi,b}). He then sends circuit
and the f’s for oblivious transfer.

Round 2 Player 1 sends k pairs (z0, z1).
Round 3 Player 2 sends k pairs (W0, W1).
Output computation Player 1 can now recover the appropriate {Zi} and thus

compute the output value v using Yao2, as discussed above.

Finally, any protocol for secure computation of single-output functionalities can
be used for secure computation of two-output functionalities using only one
additional round [25, Prop. 7.2.11]. Furthermore, any protocol for secure com-
putation of deterministic functionalities may be used for secure computation of
randomized ones (with the same round complexity) [25, Prop. 7.4.4].

With the above in mind, we describe the properties required of Yao1, Yao2.
We first require correctness : for any F, y, any output (circuit, {Zi}) of Yao1(F, y),
and any x we have F (x, y) = Yao2(circuit, Z1,x1, . . . , Zk,xk

). The algorithms also
satisfy the following notion of security: there exists a simulator Yao-Sim which
takes x, v as input, and which outputs circuit and a set of k input-wire labels {Zi};
furthermore, the following distributions are computationally indistinguishable
(by poly-size circuit families):

1.
{
(circuit, {Zi,b})← Yao1(F, y) : (circuit, {Zi,xi})

}
x,y

2.
{
v = F (x, y) : Yao-Sim(x, v)

}
x,y

.

Algorithms (Yao1, Yao2) satisfying the above definitions may be constructed as-
suming the existence of one-way functions.

Equivocal commitment. Although various notions of equivocal commitment
have appeared previously, we present here a definition and construction specific
to our application. Informally, an equivocal commitment scheme is an interactive
protocol between a sender and a receiver which is computationally hiding and
computationally binding in a real execution of the protocol. However, in a simu-
lated execution of the protocol (where the simulator interacts with the receiver),
the simulator is not bound to any particular value but can instead open the com-
mitment to any desired value. Furthermore, for any (non-uniform) ppt receiver
R and any string x, the view of R when the real sender commits/decommits to
x is computationally indistinguishable from the view of R when the simulator
“commits” in an equivocal way and later opens this commitment as x. We defer
a formal definition, especially since one follows easily from the construction we
now provide.

Round-Optimal Secure Two-Party Computation 341

We construct an equivocal commitment scheme for a single bit in the follow-
ing way: let Com be a non-interactive (perfectly binding) commitment scheme.
To commit to a bit x, the sender chooses coins ω1, ω2 and computes C =
Equiv(x; ω1, ω2)

def= Com(x; ω1)||Com(x; ω2). It sends C to the receiver and per-
forms a zero-knowledge proof/argument that C was constructed correctly (i.e.,
that there exist x, ω1, ω1 such that C = Equiv(x; ω1, ω2)). The receiver rejects in
case the proof/argument fails. To decommit, the sender chooses a bit b at ran-
dom and reveals x, ωb. Note that a simulator can “equivocate” the commitment
by setting C = Com(x; ω1)||Com(x̄; ω2) (where x is chosen at random in {0, 1}),
simulating the zero-knowledge step, and then revealing ω1 or ω2 depending on
x and the bit to be revealed. By committing bit-by-bit, the above extends easily
to yield an equivocal commitment scheme for polynomial-length strings.

3 The Round Complexity of Coin Tossing

We show that any protocol for securely flipping a super-logarithmic number of
coins (which is proven secure via black-box simulation) requires at least 5 rounds.
(The reader is referred to Appendix A for a definition of black-box simulation.)
More formally:

Theorem 1. Let p(k) = ω(log k), where k is the security parameter. Then there
does not exist a 4-round protocol for tossing p(k) coins which can be proven secure
via black-box simulation.

The above theorem refers to the case where both parties are supposed to receive
the resulting coin as output.

Before starting our proof, we note that the above theorem is “tight” in the
following two regards: first, for any p(k) = O(log k), 3-round protocols (proven
secure using black-box simulation) for tossing p(k) coins are known [8, 25, 29],
assuming the existence of a non-interactive commitment scheme. Furthermore,
our results of Section 4 imply a 5-round protocol (based on the existence of
trapdoor permutations) for tossing any polynomial number of coins. In fact,
we can also construct a 5-round protocol for tossing any polynomial number of
coins based on the existence of a non-interactive commitment scheme; details
will appear in the final version.

Proof (sketch). We assume (toward a contradiction) some 4-round protocol Π
for tossing p = p(k) coins. Without loss of generality, we may assume that player
1 sends the final message of Π (since in the ideal model, only player 1 has the
ability to abort the trusted party); hence, player 2 must send the first message of
Π . Consider a real-model adversary Ã1, corrupting player 1, who acts as follows:
Let Good ⊂ {0, 1}p(k) be some set of “small” but noticeable size, whose exact
size we will fix later. Ã1 runs protocol Π honestly until it receives the third
message, and then computes the value c of the tossed coin. If c ∈ Good, then Ã1

completes execution of the protocol honestly and outputs some function of its
view; otherwise, Ã1 aborts with output ⊥.

342 Jonathan Katz and Rafail Ostrovsky

Black-box security of Π implies the existence of a black-box ideal-model
adversary B̃1 satisfying the following property (informally): conditioned upon
receiving a coin c ∈ Good from the trusted party, with all but negligible proba-
bility B̃1 “forces” an execution with Ã1 in which Ã1 does not abort and hence
Ã1’s view is consistent with some coin c′ ∈ Good (for our proof, it does not
matter whether c′ = c or not).

We next define a real-model adversary Ã2, corrupting player 2, acting as
follows: Ã2 incorporates the code of B̃1 and – simulating the trusted party for
B̃1 – feeds B̃1 a coin c randomly chosen from Good. By the above, B̃1 can
with overwhelming probability “force” an execution with Ã1 in which Ã1 sees a
view consistent with some c′ ∈ Good. We show that we can use B̃1 to “force”
an execution with (the honest) A1 in which A1 outputs some c′ ∈ Good with
sufficiently high probability. Of course, Ã2 (and hence B̃1) interacts with the
honest A1, and not with adversarial Ã1; thus, in particular, Ã2 (and hence B̃1)
cannot rewind A1. However, since Ã1 acts “essentially” like the honest A1 (with
the only difference being due to aborts), we can show that Ã2 “forces” A1 to
output a coin c′ ∈ Good with at least some inverse polynomial probability 1/q(k),
where q(k) relates to the number of queries B̃1 makes to its oracle for Ã1.

Choosing Good such that |Good|/2k ≤ 1/2q(k), we derive a contradiction:
in any ideal-model execution, an honest player 1 outputs a coin in Good with
probability at most 1/2q(k); in the real world, however, Ã2 forces an honest A1

to output a coin in Good with probability at least 1/q(k). This implies a simple,
poly-time distinguisher with non-negligible advantage at least 1/2q(k).

Remark 2. Theorem 1 immediately extends to rule out 4-round, black-box
protocols for other functionalities (when both parties are supposed to receive
output), and in particular some natural, deterministic ones. For example, the
theorem implies that 4 rounds are not sufficient for computing the “xor” func-
tionality (i.e., F (x, y) = x⊕ y) on inputs of super-logarithmic length, since any
such protocol could be used to toss a super-logarithmic number of coins (in the
same number of rounds). This can be generalized in the obvious way.

4 A 5-Round Protocol for Secure Computation

Here, we prove the existence of a 5-round protocol for secure computation of gen-
eral functionalities based on the existence of (certified) trapdoor permutations
(see Definition 1 and Remark 1). To simplify matters, we describe a 4-round
protocol for secure computation of deterministic functionalities in which only
the first party receives output ; this suffices for our main result since any such
protocol can be used for secure computation of randomized functionalities in
which both parties receive (possibly different) outputs, at the cost of one more
(i.e., fifth) additional round [25, Propositions 7.2.11 and 7.4.4].

Before describing our protocol, we provide some intuition about the “high-
level” structure of our protocol and highlight some techniques developed in the
course of its construction. We stress that our protocol does not merely involve

Round-Optimal Secure Two-Party Computation 343

“collapsing” rounds by running things in parallel – new techniques are needed to
obtain a round-optimal protocol. At the core of our protocol is Yao’s 3-round pro-
tocol tolerating honest-but-curious adversaries (it will be helpful in what follows
to refer to the description of Yao’s “basic” protocol in Section 2). The standard
way of adding robustness against malicious adversaries (see [25]) is to “compile”
this protocol by having the parties (1) commit to their inputs; (2) run (modified)
coin-tossing protocols, so each party ends up with a random tape and the other
party receives a commitment to this tape; and (3) run the basic Yao protocol
with ZK proofs/arguments of correct behavior (given the committed values of
the input and random tape) at each round. We may immediately note this ap-
proach will not suffice to obtain a 4-round protocol, since a ZK proof/argument
for the first round of Yao’s protocol alone will already require 4 rounds. Instead,
we briefly (and informally) summarize some of the techniques we use to achieve
a 4-round protocol. In the following (but not in the more formal description
that follows), we number the rounds from 0–3, where round 0 corresponds to an
“initialization” round, and rounds 1–3 correspond to rounds 1–3 of Yao’s basic
protocol.

– We first observe that in Yao’s protocol a malicious player 2 gains nothing by
using a non-random tape and thus coin-tossing for this party is not needed.

– It is essential, however, that player 1 is unable to choose his coins in round
two. However, full-blown coin-tossing is unnecessary, and we instead use a 3-
round sub-protocol which “forces” player 1 to use an appropriate set of coins.
(This sub-protocol is run in rounds 0–2.) This component and its analysis
are based loosely on earlier work of Barak and Lindell [3].

– When compiling Yao’s protocol, player 1 may send his round-two message
before the proof of correctness for round one (being given by player 2) is com-
plete (here, we use the fact that the trapdoor permutation family being used
is “certifiable”). We thus construct our protocol so the proof of correctness
for round one completes in round three. To obtain a proof of security, we
require player 2 to delay revealing circuit until round three. Yet, a proof of
security also requires player 2 to be committed to a circuit at the end of the
round one. We resolve this dilemma by having player 2 commit to circuit in
round one using an equivocal commitment scheme.

– Finally, use a specific WI proof of knowledge (from [36]; see also [18]) with the
property that the statement to be proved (and, by implication, a witness) need
not be known until the last round of the protocol, yet soundness, completeness,
and witness-indistinguishability still hold. (The proof of knowledge aspect
must be dealt with more carefully; see Appendix B.) Furthermore, this proof
system has the property that the first message from the prover is computed
independently of the statement being proved (as well as its witness); we use
this fact when constructing an adaptively-secure protocol in Section 4.1.

We also construct a novel 4-round ZK argument of knowledge with similar
properties (see Appendix B), by modifying the Feige-Shamir ZK argument
of knowledge [19]. Our new protocol may be of independent interest.

344 Jonathan Katz and Rafail Ostrovsky

Let F = {Fk}k∈N be a polynomial-size (deterministic) circuit family repre-
senting the functionality of interest, where Fk takes two k-bit inputs and re-
turns a k-bit output to player 1. (Clearly, the protocol extends for arbitrary
input/output lengths. We have also mentioned earlier how the protocol may be
extended for randomized, two-output functionalities.) When k is understood, we
write F instead of Fk. Let x = x1 · · ·xk ∈ {0, 1}k represent the input of player 1,
let y = y1 · · · yk ∈ {0, 1}k represent the input of player 2, and let v = F (x, y). In
the following, i always ranges from 1 to k, and b ranges from 0 to 1.
First round. The protocol begins with first player proceeding as follows:

1. Player 1 chooses 2k values {ri,b} def= {r1,0, r1,1, . . . , rk,0, rk,1} at random from
{0, 1}k. It then chooses 2k random coins {ωi,b} and computes Comi,b =
Com(ri,b; ωi,b), where Com is any perfectly-binding commitment scheme.

2. Player 1 also prepares the first message (which we call PoK1) of a 3-round
witness indistinguishable proof of knowledge (for a statement which will
be fully determined in the third round; see the earlier remarks). For later
reference, define statement1 as the following:

∃ {(ri, ωi)}1≤i≤k s.t. ∀i : (Comi,0 = Com(ri; ωi) ∨ Comi,1 = Com(ri; ωi)) .

(Informally, statement1 represents the fact that player 1 “knows” either the
decommitment of Comi,0 or the decommitment of Comi,1 for each i.)

3. Player 1 also prepares the first message (acting as the verifier) of the modified
Feige-Shamir ZK argument of knowledge (see Appendix B). We denote this
message by FS′

1.
4. The message sent by player 1 contains {Comi,b}, PoK1, and FS′

1.

Second round. Player 2 proceeds as follows:

1. Player 2 generates 2k trapdoor permutations (denoted {(fi,b, f−1
i,b)}) using 2k

invocations of Gen(1k), chooses 2k values {r′i,b} at random from {0, 1}k, and
prepares the second message (denoted PoK2) for the WI proof of knowledge
initiated by player 1 in the previous round.

2. Next, player 2 generates a “garbled circuit” (cf. Section 2) for the func-
tionality F , based on its own input y. This involves choosing random coins
Ω and computing (circuit, {Zi,b}) = Yao1(F, y; Ω). Player 2 also computes
commitments to the {Zi,b}: that is, it chooses coins {ω′

i,b} and computes
Comi,b = Com(Zi,b; ω′

i,b).
3. Player 2 next chooses random coins ζ and generates an equivocal commit-

ment Equiv = Equiv(circuit; ζ).
4. Next, player 2 prepares the second message (denoted FS′

2) for the modified
Feige-Shamir ZK argument of knowledge (for a statement which will be fully
determined in the fourth round; cf. Appendix B). For future reference, let
statement2 be the following: there exist

(
y, Ω, circuit, {Zi,b}, {ω′

i,b}, ζ
)

s.t.:

(a) (circuit, {Zi,b}) = Yao1(F, y; Ω);
(b) ∀i, b: Comi,b = Com(Zi,b; ω′

i,b); and

Round-Optimal Secure Two-Party Computation 345

(c) Equiv = Equiv(circuit; ζ).
(Informally, statement2 states that player 2 performed the preceding two
steps correctly.)

5. The message includes {fi,b}, {r′i,b}, {Comi,b}, Equiv, PoK2, and FS′
2.

Third round. Player 1 proceeds as follows:

1. If any of the {fi,b} are not valid2, player 1 aborts. Otherwise, player 1 will
use k parallel invocations of oblivious transfer to obtain the input-wire labels
corresponding to its input x. Formally, for each i player 1 prepares values
(zi,0, zi,1) in the following way:
– If xi = 0, choose random z′i,0 ∈ {0, 1}k and set zi,0 = fki,0(z

′
i,0). Also, set

zi,1 = ri,1 ⊕ r′i,1 (recall, ri,1 was committed to by player 1 in the first
round, and r′i,1 was obtained from player 2 in the second round).

– If x1 = 1, choose random z′i,1 ∈ {0, 1}k, set zi,1 = fki,1(z
′
i,1), and set

zi,0 = ri,0 ⊕ r′i,0.
2. Define statement3 as follows:
∃ {(ri, ωi)}1≤i≤k s.t. ∀i :
–

(
Comi,0 = Com(ri; ωi) ∧ zi,0 = ri ⊕ r′i,0

)
or

–
(
Comi,1 = Com(ri; ωi) ∧ zi,1 = ri ⊕ r′i,1

)
.

Informally, this says that player 1 correctly constructed the {zi,b} values.
3. Player 1 then prepares the final message (denoted PoK3) for the proof of

knowledge begun in round 1. The statement3 to be proved is: statement1 ∧
statement3. Player 1 also prepares the third message for the modified Feige-
Shamir ZK protocol (denoted FS′

3).
4. The message includes {zi,b}, PoK3, and FS′

3.

Fourth round. The second player proceeds as follows:

1. If either PoK3 or FS′
3 would cause rejection, player 2 aborts. Otherwise,

player 2 completes the oblivious transfer in the standard way. Namely, for
each zi,b sent in the previous round, player 2 computes z′i,b

def= f−k
i,b (zi,b) and

xor’s the k resulting hard-core bits with the corresponding input-wire labels
thusly: Wi,b = h(z′i,b)⊕ Zi,b.

2. Define statement4 as follows:
∃ {(Zi,b, ω

′
i,b, z

′
i,b)}1≤i≤k;b∈{0,1} s.t. ∀i, b :

(
Comi,b = Com(Zi,b; ω′

i,b)
) ∧(

fki,b(z
′
i,b) = zi,b

) ∧(
Wi,b = h(z′i,b)⊕ Zi,b

)
.

Informally, this says that player 2 performed the oblivious transfer correctly.
3. Player 2 prepares the final messages (denoted FS′

4) for the modified Feige-
Shamir protocol. The statement to be proved is: statement2 ∧ statement4.

2 Recall (cf. Definition 1) that the trapdoor permutation family is certifiable.
3 An honest player 1 actually knows multiple witnesses for statement1. For concrete-

ness, we have the player choose one of these at random to complete the proof.

346 Jonathan Katz and Rafail Ostrovsky

4. Finally, player 2 decommits Equiv as circuit (recall from Section 2 how de-
commitment is done for equivocal commitments).

5. The message includes the {Wi,b}, circuit (and the corresponding decommit-
ment), and FS′

4.

Output computation. The first player concludes the protocol as follows: If
FS′

4 or the decommitment of circuit would cause rejection, player 1 aborts.
Otherwise, by completing the oblivious transfer (in the standard way) player
1 obtains Zi

def= Zi,xi (recall, x is the input of player 1) and computes v =
Yao2(circuit, Z1, . . . , Zk). If v �=⊥, it outputs v. Otherwise, it aborts.

Sufficient assumptions. As noted in Section 2, every component of the above
protocol may be based on the existence of a trapdoor permutation family (the
certifiability property is only needed for the verification performed by player 1 at
the beginning of the third round). Furthermore, as noted in Remark 1, although
the description of the protocol (and its proof of security) use the definition of
a trapdoor permutation family given by Definition 1, it is possible to adapt the
protocol so that its security may be based on any family of (certified) enhanced
trapdoor permutations, as per the definitions of [24, 26].

Theorem 2. Assuming the existence of a trapdoor permutation family, the above
protocol Π securely computes functionality F .

Proof. We separately prove two lemmas dealing with possible malicious behavior
of each of the parties; the theorem follows. We first consider the case when
player 2 is malicious:

Lemma 1. Let (A1, A2) be a pair of (non-uniform) ppt machines in which A1

is honest. There exist a pair of (non-uniform) expected polynomial-time machines
(B1, B2) such that

{
realΠ,A(z)(x, y)

}
x,y,z

c≡
{
idealF,B(z)(x, y)

}
x,y,z

. (1)

Proof (sketch). Clearly, we may take B1 to be honest. We assume that A2 is
deterministic, and construct B2 using black-box access to A2 as follows:

1. B2 runs a copy of A2 internally, passing to it any auxiliary information z.
To emulate the first round of the protocol, B2 acts exactly as an honest
player 1, generates a first-round message, and passes this message to A2.
In return, B2 receives a second-round message which includes, in particular,
{r′i,b}. If an honest player 1 would abort after receiving this second-round
message, B2 aborts (without sending any input to the trusted party) and
outputs whatever A2 outputs.

2. Otherwise B2 generates a third-round message exactly as an honest player 1
would, with the following exception: for all i, b, it sets zi,b = ri,b⊕ r′i,b. Note
in particular that B2 can easily compute PoK3, since both statement1 and
statement3 are true. It passes the third-round message to A2, and receives
in return a fourth-round message.

Round-Optimal Secure Two-Party Computation 347

3. If an honest player 1 would abort after receiving the fourth-round message,
B2 aborts (without sending any input to the trusted party) and outputs
whatever A2 outputs. Otherwise, B2 attempts to extract4 from A2 an input
value y (cf. step 4 of the second round in the description of the protocol). If
extraction fails, B2 aborts and outputs fail.

4. Otherwise, B2 sends y to the trusted party. It then stops and outputs what-
ever A2 outputs.

We may note the following differences between the ideal world and the real
world: (1) in the second round, B2 sets zi,b = ri,b ⊕ r′i,b for all i, b, whereas an
honest player 1 does this only for i, b such that xi �= b; also (2) B2 passes the
input value y to the trusted party (and hence player 1 will receive the value
F (x, y) from this party), whereas in the real world player 1 will compute an
output value based on the circuit and other values it receives from A2 in the
fourth round. Nevertheless, we claim that Equation (1) holds based on (1) the
hiding property of the commitment scheme used in the first round and (2) the
argument of knowledge (and hence soundness) property of the modified Feige-
Shamir protocol (cf. Appendix B), as well as the correctness of the Yao “garbled
circuit” construction. A complete proof appears in the full version.

Lemma 2. Let (A1, A2) be a pair of (non-uniform) ppt machines in which A2

is honest. There exist a pair of (non-uniform) expected polynomial-time machines
(B1, B2) such that

{
realΠ,A(z)(x, y)

}
x,y,z

c≡
{
idealF,B(z)(x, y)

}
x,y,z

. (2)

Proof (sketch). Clearly, we may take B2 to be honest. We assume that A1 is
deterministic, and construct B1 using black-box access to A1 as follows:

1. B1 runs a copy of A1 internally, passing to it any auxiliary information z
and receiving a first-round message from A1. Next, B1 emulates the sec-
ond round of the protocol as follows: it generates {fi,b}, {r′i,b}, and PoK2

exactly as an honest player 2. All the commitments Comi,b, however, are
random commitments to 0k. Furthermore, commitment Equiv is set up in
an “equivocal” way (cf. Section 2) so that B1 will later be able to open this
commitment to any value of its choice. B1 prepares FS′

2 using the ZK sim-
ulator for the modified Feige-Shamir protocol (cf. Appendix B). B1 passes
the second-round message thus constructed to A1, and receives in return a
third-round message. If an honest player 2 would abort after receiving this
message, B1 aborts (without sending any input to the trusted party) and
outputs whatever A1 outputs.

4 Technically, B2 runs a witness-extended emulator [37] for the modified Feige-Shamir
proof system, which results in a transcript t and a witness w. This is what we mean
when we informally say that B2 “attempts to extract”.

348 Jonathan Katz and Rafail Ostrovsky

2. Otherwise, B1 attempts to extract (cf. footnote 4) values {(ri, ωi)}1≤i≤k

corresponding to (half) the commitments {Comi,b} sent by A1 in the first
round. If extraction fails, B1 outputs fail. Otherwise, let bi ∈ {0, 1} be such
that Comi,bi = Com(ri; ωi). B1 then defines a string x = x1 · · ·xk as follows:

If zi,bi = ri ⊕ r′i,bi
, then xi = b̄i; otherwise, xi = bi.

(xi is B1’s “guess” as to which input-wire label A1 is “interested in”.) B1

sends the string x thus defined to the trusted party, and receives a value v in
return. It then runs Yao-Sim(x, v) to generate a garbled circuit circuit along
with input-wire labels {Zi} (cf. Section 2). B1 then prepares the “answers”
{Wi,b} to the oblivious transfer as follows, for each i: it correctly sets Wi,xi =
h(f−k

i,xi
(zi,xi))⊕ Zi, but chooses Wi,x̄i at random.

3. B1 emulates the fourth round of the protocol as follows: it sends the {Wi,b}
as computed above, sends circuit as computed above (note that the cor-
responding decommitment can be given since Equiv was constructed in an
“equivocal” way), and uses the simulator for the modified Feige-Shamir pro-
tocol to compute FS′

4 (cf. Appendix B). B1 passes the final message thus
constructed to A1, and outputs whatever A1 outputs.

We note (informally) the following differences between the ideal world and the
real world: (1) {Comi,b} are commitments to 0k rather than to “real” input-wire
labels; (2) Equiv is set up so that B1 can “equivocate” and later open this as
any value it chooses; (3) the modified Feige-Shamir ZK argument is simulated
rather than real; (4) the answers {Wi,x̄i} are “garbage” (where x is B1’s guess as
to the “input” of A1); and (5) the garbled circuit is constructed using Yao-Sim
rather than Yao1. Nevertheless, we claim that Equation (2) holds. Due to lack
of space, a complete proof appears in the full version.

4.1 Handling Adaptive Adversaries

We briefly sketch how the protocol above can be modified – without increasing
the round complexity – to provide security against an adaptive adversary who
can monitor communication between the parties and decide whom to corrupt
at any point during the protocol based on this information. (We consider only
an adversary who can corrupt at most one of the parties.) In brief, we modify
the protocol by using a (public-key) adaptively-secure encryption scheme [12] to
encrypt the communication between the two parties. Two issues arise:

1. The encryption scheme of [12] requires a key-generation phase which would
necessitate additional rounds. We avoid this extra phase using the assump-
tion of simulatable public-key cryptosystems [16] (see below). The existence
of such cryptosystems is implied in particular by the DDH assumption [16];
see there for constructions based on alternate assumptions.

2. Regardless of the encryption scheme used, one additional round seems nec-
essary just to exchange public keys. To avoid this, we do not encrypt the
first message from player 1 to player 2. Nevertheless, the modified protocol

Round-Optimal Secure Two-Party Computation 349

is adaptively-secure: the proof uses the fact that the first round (as well as
the internal state after the first round) is identical in both the real execution
and the simulation for a malicious player 2 (cf. the proof of Lemma 1).

The modified protocol. Before describing our construction of an adaptively-
secure encryption scheme, we outline how it will be used to achieve adaptive
security for our protocol. Let Π denote the protocol given in the previous section.
Our adaptively-secure protocol Π ′ proceeds as follows: in the first round of
Π ′, player 1 sends a message just as in the first round of Π , but also sends
sufficiently-many public keys (for an adaptively-secure encryption scheme) to
enable player 2 to encrypt the messages of rounds two and four. (The adaptively-
secure encryption scheme we use only allows encryption of a single bit; therefore,
the number of public keys sent by player 1 is equal to the bit-length of messages
two and four in Π .) In the second round of Π ′, player 2 constructs a message as in
Π , encrypts this message using the corresponding public keys sent in round one,
and additionally sends sufficiently-many public keys (for an adaptively-secure
encryption scheme) to enable player 1 to encrypt the messages of rounds three
and five. Π ′ proceeds by having the players construct a message just as in the
corresponding round of Π and then having them encrypt these messages using
the appropriate public keys sent by the other player.

We defer a proof of security for this construction to the final version.

An adaptively-secure encryption scheme. Informally, a public-key cryp-
tosystem for single-bit plaintexts is simulatable if (1) it is possible to obliviously
generate a public key without learning the corresponding secret key, and also
(2) given a public key, it is possible to obliviously sample a random (valid) ci-
phertext without learning the corresponding message. We assume further that
if a ciphertext is obliviously sampled in this way, then the probability that the
corresponding plaintext will be a 0 or 1 is equal (or statistically close). See [16,
Def. 2] for a formal definition.

Given such a cryptosystem, our construction of an adaptively-secure en-
cryption scheme for a single-bit is as follows: the receiver generates k pairs
(pki,0, pki,1) of public keys by generating one key of each pair (selected at ran-
dom) using the key-generation algorithm, and the other key using the oblivious
sampling algorithm. This also results in a set of k secret keys (one for each pair
of public keys). To encrypt a bit m, the sender proceeds as follows: for each
index i, choose a random bit bi, set Cbi ← Epki,bi

(m) and choose Cb̄i
using the

oblivious sampling algorithm. Then send the k ciphertext pairs (C0, C1).
To decrypt, the receiver decrypts one ciphertext out of each pair using the

secret key it knows, and sets the decrypted message equal to the majority of the
recovered bits. Note that correctness holds with all but negligible probability
since (on average) 3/4 of the 2k ciphertexts constructed by the sender decrypt to
the desired message m (namely, the k ciphertexts encrypted using the legitimate
encryption algorithm, along with (on average) 1/2 of the remaining k ciphertexts
chosen via the oblivious sampling algorithm).

We defer a proof that this scheme is adaptively secure to the full version.

350 Jonathan Katz and Rafail Ostrovsky

Acknowledgments

We thank Bill Aiello for a helpful discussion, and the anonymous referees for their
useful remarks. Thanks also to Yuval Ishai for his useful suggestions towards
improving the presentation of our results.

References

1. B. Barak. How to Go Beyond the Black-Box Simulation Barrier. 42nd IEEE Sym-
posium on Foundations of Computer Science (FOCS), IEEE, pp. 106–115, 2001.

2. B. Barak. Constant-Round Coin-Tossing with a Man-in-the-Middle or Realizing
the Shared Random String Model. 43rd IEEE Symposium on Foundations of Com-
puter Science (FOCS), IEEE, pp. 345–355, 2002.

3. B. Barak and Y. Lindell. Strict Polynomial Time in Simulation and Extraction.
34th ACM Symposium on Theory of Computing (STOC), ACM, pp. 484–493, 2002.

4. J. Bar-Ilan and D. Beaver. Non-Cryptographic Fault-Tolerant Computing in Con-
stant Number of Rounds of Interaction. Principles of Distributed Computing, ACM,
pp. 201–209, 1989.

5. D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure Protocols.
22nd ACM Symposium on Theory of Computing (STOC), ACM, pp. 503–513, 1990.

6. M. Bellare, S. Micali, R. Ostrovsky. Perfect Zero-Knowledge in Constant Rounds
STOC 1990: 482-493.

7. M. Bellare, S. Micali, R. Ostrovsky. The (True) Complexity of Statistical Zero
Knowledge STOC 1990: 494-502

8. M. Blum. Coin Flipping by Phone. IEEE COMPCOM, pp. 133–137, 1982.
9. R. Canetti. Security and Composition of Multi-Party Cryptographic Protocols. J.

Cryptology 13(1): 143–202, 2000.
10. R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party

and multi-party secure computation. STOC 2002: 494-503
11. R. Canetti, E. Kushilevitz, R. Ostrovsky, A. Rosen: Randomness versus Fault-

Tolerance. J. Cryptology 13(1): 107-142 (2000)
12. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively-Secure Multiparty

Computation. 28th ACM Symposium on Theory of Computing (STOC), ACM, pp.
639–648, 1996.

13. R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Concurrent Zero-Knowledge Re-
quires Ω̃(log n) Rounds. 33rd ACM Symp. on Theory of Comp. (STOC), ACM,
pp. 570–579, 2001.

14. R. Cramer and I. Damg̊ard. Secure Distributed Linear Algebra in a Constant
Number of Rounds. Adv. in Cryptology – Crypto ’01, LNCS 2139, Springer-Verlag,
pp. 119–136, 2001.

15. G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-
processing. In CRYPTO 1999: pp. 485-502.

16. I. Damg̊ard and J.B. Nielsen. Improved Non-Committing Encryption Schemes.
Adv. in Cryptology – Crypto 2000, LNCS vol. 1880, Springer-Verlag, pp. 432–450,
2000.

17. A. De Santis, G. DiCrescenzo, R. Ostrovsky, G. Persiano, A. Sahai: Robust Non-
interactive Zero Knowledge. CRYPTO 2001: 566-598

Round-Optimal Secure Two-Party Computation 351

18. U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis,
Weizmann Institute of Science, 1990.

19. U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds.
Adv. in Cryptology – Crypto 1989, LNCS vol. 435, Springer-Verlag, pp. 526–544,
1989.

20. U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Proto-
cols. 22nd ACM Symposium on Theory of Computing (STOC), ACM, pp. 416–426,
1990.

21. M. Fitzi, J. Garay, U. Maurer, R. Ostrovsky: Minimal Complete Primitives for
Secure Multi-party Computation. CRYPTO 2001: 80-100

22. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. The Round Complexity of
Verifiable Secret Sharing and Secure Multicast. 33rd ACM Symposium on Theory
of Computing (STOC), ACM, pp. 580–589, 2001.

23. R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. On 2-Round Secure Multiparty
Computation. Adv. in Cryptology – Crypto 2002, LNCS vol. 2442, Springer-Verlag,
pp. 178–193, 2002.

24. O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge Uni-
versity Press, Cambridge, UK, 2001.

25. O. Goldreich. Draft of a Chapter on Cryptographic Protocols, June 2003. Available
at http://www.wisdom.weizmann.ac.il/˜oded/foc-vol2.html.

26. O. Goldreich. Draft of an Appendix Regarding Corrections and Additions, June
2003. Available at http://www.wisdom.weizmann.ac.il/˜oded/foc-vol2.html.

27. O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. J. Cryptology 9(3): 167–190, 1996.

28. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM J. Computing 25(1): 169–192, 1996.

29. O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game: a
Completeness Theorem for Protocols with Honest Majority. 19th ACM Symposium
on Theory of Computing (STOC), ACM, pp. 218–229, 1987.

30. R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way
Permutations. 21st ACM Symposium on Theory of Computing (STOC), ACM, pp.
44–61, 1989.

31. J.. Kilian, E. Kushilevitz, S. Micali, R. Ostrovsky: Reducibility and Completeness
in Private Computations. SIAM J. Comput. 29(4): 1189-1208 (2000)

32. Y. Ishai and E. Kushilevitz. Randomizing Polynomials: A New Representation
with Applications to Round-Efficient Secure Computation. 41st IEEE Symposium
on Foundations of Computer Science (FOCS), IEEE, pp. 294–304, 2000.

33. J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-Party Computation
with a Dishonest Majority. Adv. in Cryptology – Eurocrypt 2003, LNCS vol. 2656,
Springer-Verlag, pp. 578–595, 2003.

34. E. Kushilevitz, R. Ostrovsky, A. Rosén: Amortizing Randomness in Private Mul-
tiparty Computations. SIAM J. Discrete Math. 16(4): 533-544 (2003)

35. J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-
logarithmic Rounds. 31st ACM Symposium on Theory of Computing (STOC),
ACM, pp. 560–569, 2001.

36. D. Lapidot and A. Shamir. Publicly-Verifiable Non-Interactive Zero-Knowledge
Proofs. Adv. in Cryptology – Crypto 1990, LNCS vol. 537, Springer-Verlag, pp.
353–365, 1991.

37. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation. Adv. in Cryptology – Crypto 2001, LNCS vol. 2139, Springer-Verlag, pp.
171–189, 2001.

352 Jonathan Katz and Rafail Ostrovsky

38. Y. Lindell. Personal communication, 2001.
39. S. Micali and P. Rogaway. Secure Computation. Adv. in Cryptology – Crypto 1991,

LNCS vol. 576, Springer-Verlag, pp. 392–404, 1991.
40. M. Naor, R. Ostrovsky, R. Venkatesan, M.Yung. Perfect Zero-Knowledge Argu-

ments for NP Can Be Based on General Complexity Assumptions. CRYPTO 1992:
196-214

41. M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero Knowledge with Log-
arithmic Round-Complexity. 43rd IEEE Symposium on Foundations of Computer
Science (FOCS), IEEE, pp. 366–375, 2002.

42. R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge
Proofs. Adv. in Cryptology – Eurocrypt 1999, LNCS vol. 1592, Springer-Verlag, pp.
415–431, 1999.

43. A.C. Yao. How to Generate and Exchange Secrets. 27th IEEE Symposium on Foun-
dations of Computer Science (FOCS), IEEE, pp. 162–167, 1986.

A Black-Box Simulation

Typical definitions of security for two-party computation only require that for
every pair of admissible real-world adversaries A there exists a pair of ideal-world
adversaries B satisfying some relevant criterion (namely, indistinguishability of
the resulting output distributions). Most work in this area, however, (and espe-
cially prior to the work of Barak [1]) proves the existence of such a B via what
is known as a black-box simulation; this means that the ideal-model adversary
Bi corresponding to the dishonest real-model adversary Ai is constructed using
only oracle access to Ai.

More formally, a black-box simulation for party 1 (with a completely anal-
ogous definition for black-box simulation for party 2) implies the existence of
a simulator S1 for which the following holds: For any real-model adversary A1,
let B1(x, z; rA, rS) (where x, z are the inputs of B1 and r = (rA, rS) are the
random coins of B1) be defined by S

A1(x,z, · ; rA)
1 (x; rS), where A1(x, z, · ; rA) de-

notes the next-message function of A1 on the given inputs and random coins
(we stress that S1 is not explicitly given the auxiliary input z nor the random
coins rA). Then A = (A1, A2) and B = (B1, B2) (where A2, B2 are just the hon-
est algorithms) satisfy the relevant criterion. Furthermore, S1 runs in expected
polynomial-time, where each oracle call to A1(x, z, · ; rA) is counted as a single
step. Finally (although this is not essential to our results), it is typical to as-
sume that S1 is a uniform algorithm. Note that if A1 runs in strict polynomial
time, the above implies that the entire algorithm B1 runs in expected polynomial
time; furthermore, if A1 is uniform then so is B1 (on the other hand, if A1 is
a non-uniform machine, then B1 will be too). We say that a protocol is proven
secure via black-box simulation if the simulations for both parties are black-box.

We stress a crucial point about the above: when we say S1 runs in expected
polynomial-time, we mean that there is a fixed polynomial q(·) such that the
expected running time of S1 on input x, when interacting with any A1 (and
counting queries to A1 as a single step), is q(|x|). On the other hand, the expected
running time of B1 (including the steps of A1, and no longer counting each query

Round-Optimal Secure Two-Party Computation 353

to A1 as a single step) cannot be bounded a priori by any fixed polynomial, as
the running time of B1 will of course depend on the running time of A1. Of
course, as noted above, if A1 runs in strict polynomial time q′(·) then B1 runs in
expected time (at most) q′(·)q(·), which is polynomial. (Note that this definition
of black-box simulation avoids the technical problem of, e.g., [28] regarding the
need for B1 to feed A1 coins rA whose length depends on A1 and is not bounded
a priori by any polynomial.)

B Proof Systems Used in This Work

We provide here a laconic sketch of the proof systems claimed in Section 4;
further details and proofs will appear in the full version. We first describe the
WI proof of knowledge of [36] (as described in [18]).

We will be working with the NP -complete language HC of graph Hamil-
tonicity, and thus assume statements to be proved take the form of graphs,
while witnesses correspond to Hamilton cycles. If thm is a graph, we abuse no-
tation and also let thm denote the statement “thm ∈ HC”. We show how the
proof system can be used to prove the following statement: thm ∧ thm′, where
thm will be included as part of the first message, while thm′ is only included in
the last round (indeed, it will not be fixed until the third round begins). The
proof system runs k parallel executions of the following 3-round protocol:

1. The prover commits to two adjacency matrices for two randomly-chosen cycle
graphs C, C′. The commitment is done bit-by-bit using a perfectly-binding
commitment scheme.

2. The verifier responds with a single bit b, chosen at random.
3. If b = 0, the prover opens all commitments. If b = 1, the prover sends two

permutations mapping the cycle in thm (resp., thm′) to C (resp., C′). For
each non-edge in thm (resp., thm′), the prover opens the commitment at the
corresponding position in C (resp., C′).

4. The verifier checks that all commitments were opened correctly. If b = 0, the
verifier additionally checks whether both decommitted graphs are indeed
cycle graphs. If b = 1, the verifier checks whether each non-edge in thm
(resp., thm′) corresponds to a non-edge in C (resp., C′).

Note that the prover does not need to know either thm or thm′ (or the corre-
sponding witnesses) until the beginning of the third round. However, we assume
thm is fixed as part of the first-round message because this will enable us to
claim stronger properties about the above proof system.

Very informally, we claim that the proof system above satisfies the following:

• It is complete and sound. In particular, the probability that an all-powerful
prover can cause a verifier to accept when either thm or thm′ are not true
is at most 2−k. We stress that this holds even if the prover can adaptively
choose thm′ after viewing the second-round message of the verifier.
• It is witness indistinguishable.

354 Jonathan Katz and Rafail Ostrovsky

• It is a proof of knowledge for thm. (More formally, we can achieve a notion
similar to that of witness-extended emulation [37] for thm.) We do not know
whether such a claim holds for thm′.

Note also that the first round of the above proof system (as well as the
internal state of the prover immediately following this round) is independent of
thm or the associated witness. We rely on this fact in Section 4.1.

Next, we informally describe our modification of the Feige-Shamir ZK argu-
ment of knowledge [19] which will allow the prover to prove thm ∧ thm′, where
thm is sent as part of the second round yet thm′ is only sent as part of the last
round (indeed, it need not be known until the beginning of that round). We use
the notation used in the description of the Feige-Shamir protocol in [18, Prot.
8.2.62]. Our modified protocol proceeds as follows:

1. The first round is as in the original protocol, and includes values x1, x2.
2. The prover chooses a random R ∈ {0, 1}2k and computes Equiv = Equiv(R, ζ)

(cf. Section 2). Let ok denote the statement that Equiv was formed correctly.
3. Let t̃hm denote the statement: (thm∧ok)∨ (f(w′) = x1)∨ (f(w′) = x2) (this

statement is reduced to a single graph t̃hm). The prover sends Equiv and also
the first message of the WI proof system described above.

4. The verifier’s third message is as in the original protocol, except that the
verifier additionally chooses and sends a random R′ ∈ {0, 1}2k.

5. The prover decommits (as in Sec. 2) to R. Let prg be the statement that
r = R⊕R′ is pseudorandom (i.e., ∃s s.t. G(s) = r, for G a PRG). Let t̃hm

′

be the statement thm′ ∨ prg (reduced to a single graph t̃hm
′
). The prover

completes the WI proof system, as above, for the statement t̃hm ∧ t̃hm
′
.

6. The verifier checks the decommitment of R, and verifies the proof as before.

We claim the following about the above proof system:

• It is complete and sound (for a poly-time prover) for thm and thm′. (As
argued earlier, rounds 2–4 constitute a proof of knowledge for t̃hm. As in [18]
– relying on the one-wayness of f – this implies that if a poly-time prover
can cause a verifier to accept with “high” probability, then a witness for
thm∧ok can be extracted with essentially the same probability. If ok is true,
then with all but negligible probability prg will not be true. Soundness of
the proof of knowledge sub-protocol then implies that t̃hm

′
is true. But this

means that thm′ is true.)
• It is zero-knowledge. (In addition to simulating for t̃hm as in [18], the sim-

ulator also uses the equivocal commitment property to decommit to an R
such that prg is true.)
• It is an argument of knowledge for thm (we have already argued as much

above).

	1 Introduction
	1.1 Our Results
	1.2 A Note on Black-Box Lower Bounds
	1.3 Discussion

	2 Definitions and Cryptographic Preliminaries
	3 The Round Complexity of Coin Tossing
	4 A 5-Round Protocol for Secure Computation
	4.1 Handling Adaptive Adversaries

	Acknowledgments
	References
	A Black-Box Simulation
	B Proof Systems Used in This Work

