
Round Reduction Using Faults

Hamid Choukri1 and Michael Tunstall1,2

1 Gemplus Card International, Applied Research & Security Centre,
Avenue des Jujubiers, La Ciotat, F-13705, France.

hamid.choukri@gemplus.com, michael.tunstall@gemplus.com
2 Royal Holloway, University of London, Information Security Group,

Egham, Surrey TW20 0EX, UK.
m.j.tunstall@rhul.ac.uk

Abstract. This paper presents a practical implementation of a fault
attack implemented on a Silvercard (a freely available smart card based
on a PIC16F877 produced by Microchip). The aim of the fault attack
is to effectively reduce the number of rounds of a secret key algorithm.
The simplest case of reducing the number of rounds to one was chosen
to facilitate subsequent cryptanalysis.
The fault injection method used is a glitch on the power supplied to the
smart card. The manner in which this changes the functioning of the
smart card is described, followed by how this effect can then be used to
produce the desired result. A description of how this was applied to an
AES implementation is given. Lastly, Various generic countermeasures
are discussed to show how this type of attack can be prevented.

1 Introduction

Secret key cryptographic algorithms such as DES and AES are based on a func-
tion that is computed iteratively as a series of rounds to provide a high level
of security. This function is referred to as the round function. In [2] the idea
was put forward to implement a fault attack that would effectively reduce the
number of rounds of a secret key cryptographic algorithm to enable the key to
be derived.

In this paper an attack on AES is demonstrated which effectively reduces the
number of rounds of an AES to one. The cryptanalysis of the resulting algorithm
is simple and only requires two plaintext/ciphertexts pairs.

The method used to characterise the fault injection technique and then how
such an attack can be achieved in practice. A transient glitch is used that pro-
duces a provisional fault within the chip. The actual effect of the fault within
the chip cannot be described accurately without reverse engineering the chip,
but some hypotheses are proposed as to what impact the fault may have.

It should be noted that the Silvercard contains no sensors that test the smart
cards environment. This is a standard feature of all modern smart cards and
are designed to thwart fault attacks such as that presented in this paper. The
research was more oriented towards the possible effects of fault injection and
fault analysis rather than the possible effects on actual smart cards.



The AES algorithm implementation used is a naive one, in the sense that
no countermeasures are present against any sort of attack. The implementation
will be vulnerable to power analysis and other forms of fault attacks. The aim
being to show that precise faults can be induced within a chip that can lead to
theoretically simple attacks.

2 Fault Injection

There are various different ways in which a fault can be induced in a microcon-
troller. These include methods such as a particle accelerator [3], a laser [8] or
light [10]. These types of fault injection need the chip to be decapsulated so that
the surface of the chip can be accessed. A simpler method of fault injection is
to insert a glitch on the power supply pin, so that the processor misinterprets
an instruction or a variable. A description of the different types of glitches that
can be applicable to a microcontroller can be found in [1].

Figure 1 represents a SPICE (a general-purpose circuit simulation program
[12]) simulation of an inverter’s response to a transient variation on the power
supply voltage. The goal is to give an example of a glitch’s effect on the chip. An
inverter was chosen as this is the basic building block from which logical gates
can be created.

When the inverter output is set to 0 the glitch has no noticeable effect.
However, when the output is switched to 1 the glitch changes the output value
quite considerably. This shows that a glitch will produce an effect within the chip
but unfortunately we cannot predict exactly what this will be. Similar effects
can be produced using a laser [6].

In order to find a glitch that would have this type of impact on a smart card,
an implementation of AES was used as a way of detecting a glitch. Numerous
different glitch configurations were applied to AES, with no effort made to pro-
duce any particular effect. Every time an erroneous result was produced, the
configuration that produced that result was recorded.

The external clock speed was varied between 1 MHz and 5 MHz in steps
of 1 MHz. The size of the glitch varied between 1 clock cycle and 10 clock
cycles in steps of 1 clock cycle. The applied voltage started at 3 volts and was
incremented in steps of 0.5 volts to 5 volts. All the possible combinations of
these three parameters were tested at 200 different positions in the computation
of an AES. The voltage applied during the glitch was determined by dichotomy
by finding the voltage limit at which the smart card did not respond correctly.
The boundaries set for the dichotomy were between 0.25 volts and the voltage
applied during the normal functioning of the smart card.

The corrupt responses were used to determine the different glitch configu-
rations that succeeded in inducing a fault. Various different configurations that
worked with an external clock set to 5 MHz. The smallest glitch size that created
a fault was chosen to give as much precision as possible when an attempt is made
to use this in a fault attack. In this implementation this was one clock cycle. The
voltage applied to the card was chosen arbitrarily amongst those configurations



Fig. 1. The upper image shows the response of the inverter to a glitch when its output
should be 0. The lower image shows the response when the output should be 1. In each
case, a glitch has been applied to the supply voltage of the inverter. The effect can
clearly be seen in the lower image.



that worked. The voltage level of the glitch itself was not deemed to have any
importance, as it was assumed to be variable given the chip’s behaviour would
change as it heats up. This process took approximately 24 hours.

3 The Fault Target

The model used to try and imagine the effect of a fault during the execution of
AES was that of a fault producing a change in the code executed, as described
in [1]. For this reason the code executed was examined to determine where a
fault could be injected.

In general, the implementation of a secret key cryptographic algorithm in the
PIC assembly language will have the following format.

movlw 0Ah

movwf RoundCounter

RoundLabel

call RoundFunction

decfsz RoundCounter

goto RoundLabel

The RAM variable (RoundCounter) is set to the number of rounds required,
which for the example that is described in this paper (AES) the value loaded
into the counter is 0A in hexadecimal. The round function is executed, which has
been represented by a call to the function RoundFunction. The RoundCounter

variable is then decremented, and the round is repeated until RoundCounter is
equal to zero, at which point the loop exits. It is this loop that we are trying to
change so that it exits earlier than expected.

The target of the fault is the decfsz step, which consists of a decrement, a
test, followed by a conditional jump. The conditional jump is present as jump
of one instruction when the test is positive; otherwise the next instruction is
executed. The aim of the attack is to reduce the algorithm to one round. It is
not possible to remove the first round entirely as the first conditional test is after
the first round. The instruction can be broken down into three different tasks,
the first being the decrementation:

Decrement task:

RoundCounter <= RoundCounter - 1

There are three tasks that are necessary when a variable in RAM is decre-
mented by 1. All three of these tasks represent a potential point for a fault to
arise. They are:

1. The transfer of the RAM variable contents to the internal processor accu-
mulator.



2. Decrementation of the internal processor accumulator.
3. Transfer of the contents of the internal processor accumulator to RAM.

After the RoundCounter variable is updated its content is tested to see it is
equal to zero.

Testing task:

If (RoundCounter == 0)

Status <= 1

Else

Status <= 0

An injected fault could potentially have an effect during two different phases
of this task execution:

1. The Register content test.
2. The change to the status value.

Following the status of the test the program counter (PC) will take one of
two different values.

Jump task:

If (Status == 1)

PC <= PC1

Else

PC <= PC2

If the Status variable is equal to 1, the hardware sets the program counter
to PC1. Otherwise it sets the program counter to PC2. In the case of the decfsz

command PC1 will be equal to the program counter plus two and PC2 will be the
program counter plus one. This gives two cases that could be potential targets
for a fault attack.

1. The Status value test.
2. The modification to the value of PC.

In the case of the PIC16F877 chip, this instruction executes in one clock
cycle when the test is negative, and two when the following instruction is not
executed. The next instruction is a goto that will change the program counter
so that the round function is executed again, which takes two clock cycles to
execute. This means that the target for the attack is three cycles long, where
the first two tasks are present in the decfsz step and the last is in the goto.

4 Reducing the number of rounds

Once the target of the fault has been determined, this target needs to be found
within the command that executes the algorithm under attack. The execution



of the code described above can be easily detected by monitoring the current
consumption of a smart card as the round function will create a pattern that
will repeat itself. Figure 2 gives the example of the current consumption during
a command that implements AES. A pattern that repeats itself nine times is
visible, with a tenth pattern that is slightly shorter due to the absence of the
MixColumn function.

Fig. 2. A current consumption waveform that shows the rounds of AES visible as a
repeating pattern.

This can give an approximate position of where the target opcode is executed.
The more effort that is put into this stage, the quicker the attack can proceed. If
the functions within the round function can be identified, the amount of positions
that need to be tried to get the desired results can be reduced. There is a lower
limit to the amount of positions that will need to be tested as the test that will
exit the loop could be placed either before or after the MixColumn function.

The simplest case was taken by applying a glitch at what appears to be the
middle of the first round, and incrementing the glitch position in steps of one
clock cycle to the middle of the second round. This took approximately 48 hours
of testing to scan 9000 different positions. The same parameters as chosen during
the characterization stage were chosen and the voltage applied during the glitch
varying in the same way. This produced five different positions where AES had
been reduced to one round in the fashion that was expected.

If an open card is available where it is possible to change the key used, the
desired output can be searched for within the data acquired. This will show when
the algorithm has been reduced to one round.

If an open card is not available, the I/O channel needs to be acquired each
time the glitch is applied. This can be used to signal when the attack has been
successful as the time in between the command and the response will shorten
as 9 rounds of AES have been removed. An example of this is shown in figure 3
where the shortening of the command can be seen in the I/O and is confirmed
by the current consumption. This shortening of the command time is only signif-
icant when the status returned by the card implies that everything has executed



correctly and sixteen bytes have been returned. Otherwise it could be confused
with a warm reset provoked by an overly aggressive glitch.

Once a position has been found this can be attacked several times with
different plaintexts to acquire the data needed to derive AES key being used in
the card under attack.

The five different positions where a glitch had previously worked were at-
tacked with three different massages. The data that had been acquired during
the characterisation stage did not appear to give the same result with a given
glitch configuration. For this reason the voltage level to which the glitch dropped
was varied in the same fashion as used during the characterisation phase. This
resulted in 150 different attempts to reduce AES to one round. All the data re-
turned with the corresponding message were kept for subsequent interpretation.

5 Interpreting the Results

An AES that has been reduced to one round will consist of the following func-
tions:

AddRoundKey();

ShiftRows();

SubBytes();

MixColumns();

AddRoundKey();

The AddRoundKey function is a xor with the relevant subkey, the ShiftRows
is a Bytewise permutation, the ByteSub function is a non-linear transformation
normally expressed as a substitution table and the MixColumn is a linear trans-
formation in GF (8). These functions are described in [11]. As stated before, the
MixColumn function is not necessarily present depending on the implementa-
tion.

If we present two plaintexts (m1 and m2) to this algorithm to produce two
corrupt ciphertexts (c1 and c2). If the first subkey is referred to as k, then the
data acquired can be compared in the following fashion:

SubBytes (m1 ⊕ k) ⊕ SubBytes (m2 ⊕ k) = MixColumn−1 (c1 ⊕ c2) (1)

The ShiftRow function is not taken into account as it is a bytewise permuta-
tion. The last AddRoundKey is ignored as the effect of this function is removed
by xoring the two corrupt ciphertexts together.

The right hand side of the equation expresses the Hamming distance between
AES calculations after the SubByte function. As m1 and m2 are known this
equation can be evaluated for each byte with all the possible values of the first
subkey that is xored with that byte.

With two ciphertexts this will usually lead to two different hypotheses for
each byte of the first subkey. There is no calculation involved in the generation



Fig. 3. The acquisitions from top to bottom: The I/O trace of a normal AES execution
and its current consumption, where the rounds can be seen. Followed by the I/O trace
of an AES execution where the number of rounds have been reduced to one and the
current consumption showing the reduction in the number of rounds.



of the first subkey so these hypotheses apply directly to the key. This can be
seen by calculating a table of differentials as used in [4] for the DES. This leads
to an exhaustive search of 216 possible keys, as:

(

Σ(Non zero differentials)

#(Non zero differentials)

)16

= 216 (2)

If three ciphertexts are available then the number of keys that are included
in an exhaustive search are much reduced. This is because three different com-
parisons can be made using the formula described above. Each one providing
approximately two different hypotheses for each byte on the key.

In practice, the data acquired is likely to be noisy as there will be some faults
that will produce a corrupt ciphertext and change the I/O but will not have the
desired properties. For this reason it is best to compare each ciphertext that
comes from a command that returned 16 bytes that are not equal to the correct
ciphertext with all the others that fulfill the same criteria. Otherwise the analysis
could be made impossible fulfils the required criteria with all of the others so
that the analysis is not made impossible.

This does not slow down the attack as if one of the two, or both, ciphertexts
does not have the required properties the calculated hamming distance will be
meaningless, as deriving a list of hypotheses will not be possible. The probability
that random data will produce at least one hypothesis for every byte of the key
is:

(

#(Non zero differentials)

2562

)16

= 3.14 × 10−3 (3)

Even with a large amount of acquired data the time needed to search for the
key remains reasonable.

From the 150 glitch attempts made against the Silvercard a pair of results
that produced was found almost instantly using this method.

6 Other Algorithms

The attack presented in this paper can be directly applied to other secret key
algorithms. The main difference is in the manner in which the data acquired
is exploited. In the case of the DES, hypotheses on the key can be derived by
inspection due to the structure of the Feistel network. This will give a keyspace
of 224 to be searched from one corrupt ciphertext. This can be further reduced
by examining other corrupt ciphertexts to derive the first subkey. Reducing
subsequent DES executions to two rounds can give direct information on the 8
bits not present in the first subkey. As stated in [2] this can provide a method
of attacking the DES without knowledge of the plaintexts.



7 Countermeasures

Software countermeasures would include having some form of redundancy with
the register referred to RoundCounter above. This would involve having two
tests at the end of each round. In the example presented, a glitch of one clock
cycle was used to provide as much precision as possible. It is perfectly possible to
find a glitch that lasts for several cycles that will induce a fault. A large enough
glitch could potentially effect both tests if they are made one after the other.
There is also the possibility of using multiple glitches, one for each test, but it is
unlikely to be practical. The effectiveness of this attack relies on being able to
detect that the attack has been successful by observing the I/O trace. There is
no simple way of detecting when one glitch has succeeded in changing one test
before trying to position the second glitch on the second test.

Another method would be to repeat all, or part, of the algorithm in such a
way that any reduction in the number of rounds could be detected. This can
have a large impact on the performance of the algorithm if the whole algorithm
is repeated.

A generic countermeasure is the inclusion of a random delay before the algo-
rithm so that it is difficult to find the correct position to attack. This will not
stop an attack but will make it more difficult to achieve. If the same procedure
as described in this paper was applied to a smart card with a random delay, the
first results would probably be discouraging until the random delay was noticed.
Once the random delay has been assessed, it would be possible to design the
attack so that the random effects could be ignored, although this would greatly
increase the time required to realize the attack.

However, these countermeasures are more to prevent this particular attack.
All modern microcontrollers used in smart cards have sensors designed to detect
this sort of attack. It is rare to find a smart card that is vulnerable to this
method of fault injection. The normal response of a smart card is either to
become mute or to reset itself. Whilst the software countermeasures mentioned
above can defend against the attack described above, hardware countermeasures
are required to have a secure implementation. The only advantage of including
the software countermeasures is that they will also protect the smart card against
other forms of fault injection, which may be able to produce a similar effect.

8 Conclusion

A generic attack against secret key algorithms in smart cards and its imple-
mentation has been described. It should be noted that the AES implementation
studied was a naive implementation to show the potential of theoretically simple
fault attacks.

The described attack will only work against implementations that are im-
plemented as shown above. It is possible to implement algorithms so that each
round is called independently i.e.



call RoundFunction

call RoundFunction

call RoundFunction

...

This sort or implementation will not be effected by the fault attack described
above, and could even be considered an effective countermeasure. However, it
should be possible to remove one round from the algorithm. This will reverse
the situation as it will then be possible to derive hypotheses on the last subkey
rather than the first. This is because it will be possible to compare the effect
of the last round on the calculation by comparing the actual ciphertext with a
ciphertext that has a missing round.

The software countermeasures described can be implemented fairly easily
but only defend against the attack described. It would still be possible to do
other things with the fault injection method used against AES, which could still
compromise the security of the smart card.

Some examples of other fault attacks that have been implemented against
AES include [7], [5], and [9]. These attacks do not really compare well with
the attack described above, as they exploit the mathematical properties of the
algorithm itself. The advantage of these attacks is that less control is required
over where the fault is produced, but a more complex mathematical treatment
is necessary.

The attack described in this paper requires a high degree of control with
regard to where the fault takes place but relatively little calculation is required
after acquiring the desired corrupt ciphertexts.

References

1. R. Anderson and M. Kuhn. Tamper resistance – a cautionary note. In Proceedings
of the Second USENIX Workshop of Electronic Commerce, pages 1–11, November
1996.

2. R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. Security
Protocols, pages 125–136, 1998. Lecture Notes in Computer Science No. 1361.

3. G. Berger and G. Ryckewaert. The heavy ion irradiation facility at CYCLONE - a
dedicated SEE beam line. IEEE Radiation Effects Data Workshop, page 78, 1996.

4. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Proceedings of CRYPTO 90, pages 2–21, 1991. Lecture Notes in Computer Science
No. 537.

5. J. Blömer and J-P. Seifert. Fault based cryptanalysis of the advanced encryption
standard (AES). Proceedings of Financial Cryptography 2003, pages 162–181, 2003.
Lecture Notes in Computer Science No. 2742.

6. F. Darracq, T. Beauchne, D. Lewis, V. Pouget, H. Lapuyade, P. Fouillat, and
A. Touboul. Single-event sensitivity of a single sram cell. In IEEE Transactions
on Nuclear Science, volume 49, pages 1486–1490, 2002.

7. C. Giraud. DFA on AES. Cryptology ePrint Archive: Report 2003/008.
http://www.iacr.org.



8. D. Lewis, V. Pouget, F. Beaudoin, P. Perdu, H. Lapuyade, P. Fouillat, and
A. Touboul. Backside laser testing of ICs for SET sensitivity evaluation. IEEE
Transactions on Nuclear Science, 48:2193–2201, 2001.

9. G. Piret and J. J. Quisquater. A differential fault attack technique against SPN
structures, with application to the AES and Khazad. Cryptographic Hardware and
Embedded Systems Workshop (CHES-2003), pages 77–88, 2003. Lecture Notes in
Computer Science No. 2779.

10. S. Skorobogatov and R. Anderson. Optical fault induction attacks. Cryptographic
Hardware and Embedded Systems Workshop (CHES-2002), pages 2–12, 2002. Lec-
ture Notes in Computer Science No. 2523.

11. Federal Information Processing Standards. Advanced Encryption Standard (AES).
FIPS publication 197.

12. A. Vladimirescu. The SPICE Book. J. Wiley & Sons, 1993.


