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Abstract—We consider three types of application layer coding
for streaming over lossy links: random linear coding, systematic
random linear coding, and structured coding. The file being
streamed is divided into sub-blocks (generations). Code symbols
are formed by combining data belonging to the same gener-
ation, and transmitted in a round-robin fashion. We compare
the schemes based on delivery packet count, net throughput,
and energy consumption for a range of generation sizes. We
determine these performance measures both analytically and in
an experimental configuration. We find our analytical predictions
to match the experimental results. We show that coding at the
application layer brings about a significant increase in netdata
throughput, and thereby reduction in energy consumption due
to reduced communication time. On the other hand, on devices
with constrained computing resources, heavy coding operations
cause packet drops in higher layers and negatively affect the
net throughput. We find from our experimental results that low-
rate MDS codes are best for small generation sizes, whereas
systematic random linear coding has the best net throughput
and lowest energy consumption for larger generation sizes due
to its low decoding complexity.

I. I NTRODUCTION

With the rapid increase in multicast streaming applications,
we see more and more proposals for application-layer rateless
erasure coding. A number of these schemes have already
been standardized and are currently being considered for
implementation, such as Raptor codes [1] for Multimedia
Broadcast/Multicast Service (MBMS) [2]. The goal of these
schemes is to combat transport-layer packet losses.

In packet-based data networks, large files are usually seg-
mented into smaller blocks that are put into transport packets.
Packet losses occur not only because of the physical channel
limitations between the sender and the receiver, but also when
the sender pushes data at rates that exceed the speed at which
the receiver can take in packets, given its limited processing
power and buffer space. In point-to-point scenarios, the sender
can adjust its transmission rate to avoid packet losses, and
retransmit lost packets according to the feedback from the
receiver, to ensure efficient and reliable data delivery. Thus
unicast applications usually implement some ARQ protocol.In
broadcast applications from a single sender to many receivers,
however, it is costly for the sender to collect and respond
to individual receiver feedbacks, and thus packet losses are
inevitable.

We here consider three rateless coding schemes to combat
random packet losses in single-hop scenarios. Two are based

on random linear coding, and the third is based on structured
MDS coding such as Reed-Solomon (RS). Note that our
scenario of interest is wireless streaming, rather than trans-
mission over networks as in random linear network coding
[3] over generations [4]. All schemes follow the round-robin
scheduling. Since there is no feedback until the entire file has
been downloaded, the round-robin protocol may result in many
superfluous transmissions for already decoded generations. We
study the schemes both theoretically and by experiment.

This paper is organized as follows: In Section II, we
introduce our coding and scheduling models and define our
performance measures. In Section III, we present an analytical
analysis of the schemes. In Section IV, we describe the
experimental setup, and present measurement results collected
on a mobile platform. In Section V, we discuss the results and
future work.

II. SYSTEM MODEL

We consider transmission without feedback over a mem-
oryless binary erasure channel between the sender and the
receivers. In a packet network, the erasure rate is evaluated as
the packet loss rate, denoted asǫ. For the theoretical analysis,
we assume thatǫ stays constant, regardless of time and the
transmission protocol.

A. Performance Measures

We will measure the performance of the system by the
delivery packet count, delivery time, and energy consumption.
Delivery packet count is defined as the number of packets
that have to be sent until the receiver is able to recover the
entire file. Delivery time is the time the receiver has to spend
in the system until it is able to recover the content. It is a
random variable that depends on the delivery packet count,
the packet size, and the rate of data transmission. In a wireless
network, energy consumption mainly depends on the delivery
time and the transmission power, since the power consumption
in transmission is dominating.

B. Coding within Generations

Suppose a file is segmented intoN blocks for transmission.
A block fits into the data payload of an application layer
packet. Throughout the paper, we use the words “block” and
“packet” interchangeably. To combat random packet losses,
we apply erasure codes at the block level. That is, instead



of transmitting the original file blocks, the sender transmits a
coded block formed from the original blocks. The coded block
contains the same number of information bits contained in an
original file block. But due to practical concerns, such as com-
putational complexity, whenN is large, the erasure codes are
applied to subsets of theN blocks. These subsets are referred
to as generations, and each file block belongs to at least one
of the generations. Suppose there aren generations, denoted
by G1, G2, . . . , Gn, and assume a uniform generation size of
g. Note that wheng = 1, the coded blocks are effectively the
original blocks. In each transmission, the sender selects one
of then generations, and sends a coded block composed from
the selected generation. A transmission scheme is therefore
defined by three aspects: the composition of generations, the
encoding scheme of blocks within each generation, and the
order of selecting generations whence a coded block is created.
The last component is referred to as generation scheduling.
When the generation sizeg = 1, it is simply the question
of which block to send in each transmission. At the receiver,
coded blocks are classified by their originating generations,
and decoding is performed within each generation.

In [5], the delivery time of coding within both disjoint and
overlapping generations has been studied when generations
are scheduled at random and when coded blocks are random
linear combinations over a finite field. In this paper we discuss
selecting generations in a round-robin fashion: send one coded
packet from each generation sequentially and wrap around.
As for the encoding scheme within the generations, we study
three schemes: (1) the random linear combination approach
as in [5], (2) the random linear combination approach with a
systematic phase, and (3) using an MDS (maximum distance
separable) erasure code.

1) Random Linear Combinations over GF(q) (RL): Each
block is represented as a row vector of symbols from finite
field GF(q), and the whole file is represented as a matrix of
N rows, one block each row. We abuse the notation a little
here to useGj to denote the matrix representing generation
Gj . To generate a coded block from a generationGj of g
blocks, choose a coding vectorc = [c1, c2, . . . , cg] by choosing
g symbols independently and equiprobably from GF(q). The
resulting coded block is thenc ·Gj .

2) Random Linear Combinations Including a Systematic
Phase (RLS): This is a variation of the RL scheme that
includes a systematic phase at the beginning: send the original
blocks from A to Z before starting to send random linear
combinations of the original file blocks.

3) Maximum Distance Separable Codes (MDS): Over a
finite field of small size, such as the common binary field,
random linear combinations chosen in the way specified in
the RL scheme inevitably introduces non-negligible linear
dependency between the coded packets. For short lengths
of data, we can use low-rate MDS codes instead. With an
MDS(K,g) code,g packets are encoded intoK coded packets,
and all theg packets are recoverable as soon as anyg of
the K distinct coded packets have been collected. To extend
transmission after the sender has exhausted all theK coded

packets, the sender repeats the coded packets in a round-robin
fashion. The parity check code is a binary MDS code where
K = g + 1. Reed-Solomon codes are another important class
of MDS codes that operate on GF(2l) with g < K < 2l. The
increased complexity that comes with operations on a finite
field of large size, however, can possibly undo the benefit
brought by the MDS property, as we will later show in our
experimental results.

III. STATISTICS OF THEDELIVERY PACKET COUNT

In this section, we characterizeT , the delivery packet count
of coding within disjoint generations following the round-robin
generation scheduling scheme. We assume that in each round,
one coded packet is created from a generation that is selected
from then generations in a wrap-around fashion. After thetth
transmission,mt(= ⌊t/n⌋) rounds have been completed. By
that time,(mt + 1) packets will have been sent from each of
the first [t −mtn] generations, andmt packets from each of
the rest[(mt + 1)n− t] generations.

Since the generations are disjoint, each generation is de-
coded independently. LetMg,ǫ be the number of coded packets
needed to be sent over a link of packet erasure rateǫ from
a generation of sizeg so that the receiver can decode all
file packets in the generation. Letpm,g,ǫ be the probability
that Mg,ǫ ≤ m. Let pt be the probability thatT ≤ t. Then,
pt = prtmt+1,g,ǫp

n−rt
mt,g,ǫ

, wheremt = ⌊t/n⌋ andrt = t−mtn.
Note that sincepm,g,ǫ is the cumulative probability function of
Mg,ǫ, pm,g,ǫ is non-decreasing inm, and hencept is bounded
as follows:

pnmt,g,ǫ
≤ pt < pnmt+1,g,ǫ. (1)

Hence,

E[T ] =

∞
∑

t=0

(1− pt) =

∞
∑

m=0

(

n− pm,g,ǫ

pn−1
m+1,g,ǫ − pn−1

m,g,ǫ

pm+1,g,ǫ − pm,g,ǫ

)

(2)
and

n

∞
∑

m=1

(1 − (pm,g,ǫ)
n) < E[T ] ≤ n

∞
∑

m=0

(1 − (pm,g,ǫ)
n). (3)

In the following, we characterizepm,g,ǫ for different coding
schemes within each generation.

A. RL Scheme

In this scheme, each coded packet is statistically the same;
it is simply a random linear combination of the source packets.
To decode a generation of sizeg, a numberg of linearly
independent coded packets must be received. Whenm coded
packets have been transmitted over the channel with erasure
rate ǫ, somej ≥ g have to be received, and among them
g have to be linearly independent. Therefore, the probability
pRL
m,g,ǫ of successful decoding, givenm ≥ g coded packets

have been transmitted is given as follows:
Claim 1:

pRL
m,g,ǫ =

m
∑

j=g

(

m

j

)

(1 − ǫ)jǫm−j

g−1
∏

s=0

(1 − qs−j) (4)



The product in the equation is the probability that aj×g matrix
with random entries chosen independently and equiprobably
from GF(q) is of full column rank g. It is equal to the
probability of havingg linearly independent coded packets
amongj coded packets. We can lower bound this product as
follows (see [6], Lemma 7):

g−1
∏

s=0

(1− qs−j) ≥

{

0.288, if q = 2 andg = j;
1− 1

qj−g(q−1) , otherwise.

(5)
When q is large, we can further approximatepRL

m,g,ǫ as
follows:

pRL
m,g,ǫ &

m
∑

j=g

(

m

j

)

(1 − ǫ)jǫm−j

−
1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)j(qǫ)m−jqg−m

B. RLS Scheme

This scheme consists of two phases. In the first (systematic)
phase, only uncoded packets are sent, and the second phase
is the same as the RL scheme described above. For each
generation, first each of the originalg packets is transmitted
once, and random linear combinations of all the packets
afterwards. Therefore, afterm transmissions, a generation can
be decoded ifl packets are received during the first phase
of g transmissions, andg − l coded packets that are linearly
independent of the firstl are received in the second phase
of m − g transmissions. The probabilitypRLS

m,g,ǫ of successful
decoding, givenm ≥ g coded packets have been transmitted
over the channel with the erasure rateǫ is given as follows:

The probability of receivingh linearly independent packets
from m transmissions is

Claim 2:

pRLS
m,g,ǫ =(1− ǫ)g +

g−1
∑

l=0

(

g

l

)

(1− ǫ)lǫg−lpRL
m−g,g−l,ǫ (6)

&

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−j +
(1− ǫ)g

q − 1
(
1− ǫ

q
+ ǫ)m−g−

−
1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−jqg−j

Proof: Please refer to the appendix.

C. MDS Scheme

Suppose we use an MDS code which encodesg symbols
into K symbols s.t. theg symbols can be entirely recovered as
long asg distinct symbols have been received. We apply the
code to generateK encoded packets fromg original packets,
and transmit theK encoded packets in a round-robin fashion.

Let um = ⌊m
K
⌋ and vm = m − umK be the quotient and

the remainder of the number of transmissionsm divided by
the code block lengthK. Then, afterm transmissions, the first
vm of theK encoded packets have been transmittedum + 1
times and the lastK − vm of the K encoded packets have

been transmittedum times. The probability that an encoded
packet has been received is then1 − ǫum+1 for any packet
among the firstvm, and 1 − ǫum among the lastK − vm.
The probabilitypMDS

m,K,g,ǫ of successful decoding of all theg
packets, givenm encoded packets have been transmitted, is
equal to the probability that at leastg of theK encoded packets
have been received, or at mostK − g encoded packets have
never been received. Therefore,pMDS

m,K,g,ǫ can be computed by
summing up the probability thatl of the firstvm packets are
absent andj of the remainingK − vm packets are absent
in the receiver collection for all integersl and j satisfying
0 ≤ l + j ≤ K − g.

Claim 3:

pMDS
m,K,g,ǫ =

K−g
∑

l=0

(

vm
l

)

(ǫum+1)l(1− ǫum+1)vm−l (7)

·

K−g−l
∑

j=0

(

K − vm
j

)

(ǫum)j(1− ǫum)K−vm−j .

whereum = ⌊m
K
⌋, vm = m− umK, and

(

a

b

)

= 0 for b > a.
Whenm ≤ K, um = 0, vm = m, (7) becomes

pMDS
m,K,g,ǫ =

m−g
∑

l=0

(

m

l

)

ǫl(1− ǫ)m−l =
m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−j .

WhenK = g, the code is the repetition code, and the right
hand side of (7) becomes(1− ǫum+1)vm(1− ǫum)K−vm .

IV. N UMERICAL AND EXPERIMENTAL RESULTS

To evaluate the performance of the schemes discussed in the
previous section, we implemented them on an experimental
platform consisting of a laptop computer and a smartphone.
We measure the time and the energy consumption required
for the receiver to recover the whole file. In this section, the
experimental results are presented along with the theoretical
predictions.

A. Experimental Setup

The experimental setup consists of an HP Pavilion dv5-
1120eg laptop computer as a transmitter and a Nokia N8
smartphone as a receiver. The specifications for the Nokia N8
are shown in Table I.

TABLE I
SPECIFICATIONS OF THENOKIA N8

Operating System Symbianˆ3
CPU ARM11 @ 1 GHz
Memory 256 MB SDRAM
Display 640 x 360 pixels, 3.5 inch
Battery BL-4D (3.7 V, 1200 mAh Li-Ion)

Both the laptop and the smartphone runs the same native
C++ application (in sender and receiver mode, respectively)
implemented using the Qt cross-platform application frame-
work. The laptop transmits a file at a nominal application-layer
data rate of 1000KB/s via UDP and using IEEE 802.11b at a



4 8 16 32 64 128 256 512
Generation size (g)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
li
ze
d
 d
e
li
ve
ry
 p
a
ck
e
t 
co
u
n
t

RL

RLS

RS(255,g)

PC(g+1,g)

Fig. 1. Predicted expected delivery packet count (number oftransmitted
packets required to recover the entire file) versus generation size (assuming
packet loss rateǫ = 0.15). RL: Random linear combinations. RLS: Random
linear combinations with a systematic phase. RS(255,g): Reed-Solomon codes.
PC(g + 1,g): A systematic code with a single coded packet as the bit-by-bit
xor-sum of all file packets.

physical layer rate of 11 Mbps. A transmitted file consists of
512 random packets having 1400 data bytes each. These data
packets are encoded following the three encoding schemes
described in Section II. The receiving cell phone tries to
decode the original file without sending any feedback infor-
mation to the sender except for a final completion indicator
transmitted only when the file is fully decoded. The sender
stops transmission once it has received this completion signal.

During the measurements the following information is
recorded:

1) Number of packets sent before receiving the completion
signal.

2) Number of packets received before sending the comple-
tion signal.

3) Time elapsed from the time when the first packet is
received to the completion time.

4) Energy consumption by the receiver during the elapsed
time. The test application uses the Control API of the
Nokia Energy Profiler [7] to programmatically monitor
(and record) the energy consumption of the mobile
phone. The margin of error for these energy readings
is 3%.

Each test was repeated 100 times for each generation size
and encoding scheme pair. The following section presents the
experimental results observed.

B. Results

Figure 1 shows theoretical predictions for the normalized
delivery packet count (i.e. how many packets are needed to
successfully deliver one packet) under typical channel condi-
tions in our experimental setup. The predictions are calculated
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Fig. 2. Measured delivery packet count versus generation size

from (2) wherepm,g,ǫ is obtained from (4), (6), or (7). We
observed that the packet loss rate (ǫ) is around 15% on an
idle receiver when the sender is transmitting at a nominal
rate of 1000KB/s. The RL and RLS schemes encode over the
binary field, and the MDS schemes are represented by a Reed-
Solomon (RS) code (n = 255,K = g) and a simple Parity
Check (PC) code (n = g + 1,K = g) that has one parity
symbol (all original symbols XORed together). We observe
that the overhead per packet drops as the generation size
increases, and thus the probability of transmitting a packet for
an already decoded generation decreases. This is not true for
PC(g+1,g) that can only cope with very low packet loss rates.
The incorporation of a systematic phase in the random linear
combination approach helps to reduce overhead for small
generation sizes, but the gap quickly closes as the generation
size increases. The Reed-Solomon code curve is near optimal
since the code rates we use are much lower (R < 0.51)
than the packet loss rate, and with a high probability the
transmission finishes before the sender runs out of the255
coded packets for each generation.

Figure 2 shows the average number of packets sent per
successfully delivered packet as measured in our experiments.
This was calculated using the total number of packets sent and
received divided by the number of packets in the test file (i.e.
512). For small generation sizes, we observe that increasing
the generation size lowers the overhead per packet. These
values are in accordance with the predictions in Figure 1. We
would expect this trend to continue, since ideally we would
use a single generation for the entire file. This would eliminate
the possibility of transmitting packets that belong to an already
decoded generation. However, this is not the optimal strategy
in practice due to the increasing computational complexity.
Figure 2 shows that the overhead per sent packet increases
significantly for the RS(255,g) scheme wheng > 16, and for
the RL scheme wheng > 64. This indicates that the computa-
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Fig. 3. Measured delivery packet count compared to predictions calculated
for measured packet loss rates

tional load on the receivers was too high, and they were unable
to keep up with the transmission rate of the sender. The offset
between the RS(255,g) and RL scheme may be explained by
the larger field size used by the RS(255,g) scheme. Utilizing
large fields (e.g.q = 28) typically requires some form of
memory based look-up table to perform multiplication and
division, whereas all operations in the binary field (q = 2)
may be implemented using CPU instructions for binary XOR
and AND operations. The RS implementation was based on
a non-systematic Vandermonde matrix, other approaches such
as utilizing binary Cauchy matrices [8] should be considered
to further increase the performance of this implementation.

The lower computational requirements associated with the
systematic packets in the RLS scheme clearly benefit the
overall system performance. It is however worth noting that
the systematic phase assumes that the receivers did not receive
any packets previously. The systematic phase might lead to
an additional overhead if the state of the receivers is initially
unknown. The curve of the RLS scheme only deviates from
the predicted values for very high generation sizes,256 and
512.

Figure 3 shows that when we plug the average (application-
layer) packet loss rate observed from the experiments (the loss
rates are higher for larger generation sizes) into Claims 1-3,
the theoretical predictions still match experimental data. This
confirms the validity of our characterization.

The energy consumption of the communication system
is especially important on battery-driven mobile devices.In
Figure 4, we show the average energy consumption in Joules
per file download. This is compared to the net throughput
observed throughout the test. Due to the dominant impact of
the wireless radio on the power consumption, we observe a
significant connection between these two measured quantities.
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Fig. 4. Net data rate (= file size
delivery time) and energy consumption versus

generation size

As the power consumption of the wireless radio remains
relatively stable, when not in power-save or sleep mode, the
energy consumption largely depends on the time needed to
complete a test, and thus it is inversely proportional to the
net rate. In order to minimize the energy consumption of the
protocol, we need to maximize the net rate.

When comparing the RS(255,g) to the binary-field RL and
RLS codes, we observe that using a larger field size yields a
better code performance at lower generation sizes. On the other
hand, it is unable to sustain the low overhead as the generation
size and thereby the computational complexity increases.

Although these results and the specific optimal values are
certainly device- and system-dependent, we expect that other
devices would exhibit similar tendencies, but the actual values
would be shifted depending on the capabilities of the given
platform. Faster devices might be able to support higher
generation sizes and higher data rates.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered three application-layer coding
schemes for streaming over lossy links: random linear coding
(RL), systematic random linear coding (RLS), and structured
coding (MDS). We characterized the exact distribution and
the expected value of the delivery packet count of coding
within disjoint generations following the round-robin gener-
ation scheduling scheme, taking into account the effect of
field size and generation size. Our characterization matches
experimental results.

The three coding schemes were implemented on a laptop
computer and a Nokia N8 smartphone using the Qt cross-
platform application framework. We presented measurement
results collected during numerous experiments with various
settings. Results show that the computational complexity has
a significant impact on the performance of these schemes. The
RLS scheme is the least computationally intensive, therebyit



is able to achieve the highest net data rate and the lowest
energy consumption.

In the future, we plan to implement other codes such as LT
codes, Raptor codes, and systematic Reed-Solomon codes on
the same testbed in order to compare their performance to the
coding schemes discussed in this paper. The cost of random
memory access and finite field operations is non-negligible
on a terminal with constrained capacity. A model should be
devised that can account for these factors to give predictions
on other platforms with different capabilities and constraints.
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APPENDIX

PROOF OFCLAIM 2

g−1
∑

l=0

(

g

l

)

(1− ǫ)lǫg−lpRL
m−g,g−l,ǫ

=

g−1
∑

l=0

(

g

l

)

(1 − ǫ)lǫg−l· (8)

·

m−g
∑

j=g−l

(

m− g

j

)

(1− ǫ)jǫm−g−j

g−l−1
∏

s=0

(1 − qs−j)

=

g−1
∑

l=0

(

g

l

) m−g
∑

j=g−l

(

m− g

j

)

(1− ǫ)j+lǫm−l−j

g−l−1
∏

s=0

(1− qs−j)

=

g−1
∑

l=0

(

g

l

)m−g+l
∑

j=g

(

m− g

j − l

)

(1− ǫ)jǫm−j

g−l−1
∏

s=0

(1 − qs−j+l)

=

m−1
∑

j=g

g−1
∑

l=0

(

g

l

)(

m− g

j − l

)

(1 − ǫ)jǫm−j

g−l−1
∏

s=0

(1− qs−j+l)

&

m−1
∑

j=g

g−1
∑

l=0

(

g

l

)(

m− g

j − l

)

(1 − ǫ)jǫm−j(1−
1

q − 1
qg−j)

(*)

(*) follows from (5). Applying Vandermonde’s identity
∑g

l=0

(

g

l

)(

m−g

j−l

)

=
(

m

j

)

to (*), we have

(∗)

=

m
∑

j=g

(

(

m

j

)

−

(

m− g

j − g

)

)

(1− ǫ)jǫm−j(1−
1

q − 1
qg−j)

=
m
∑

j=g

(

m

j

)

(1 − ǫ)jǫm−j −
m
∑

j=g

(

m− g

j − g

)

(1 − ǫ)jǫm−j

−
1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−jqg−j

+
1

q − 1

m
∑

j=g

(

m− g

j − g

)

(1− ǫ)jǫm−jqg−j

=

m
∑

j=g

(

m

j

)

(1 − ǫ)jǫm−j − (1− ǫ)g
m−g
∑

j=0

(

m− g

j

)

(1− ǫ)jǫm−g−j

−
1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−jqg−j

+
(1− ǫ)g

q − 1

m−g
∑

j=0

(

m− g

j

)

(
1− ǫ

q
)jǫm−g−j

=

m
∑

j=g

(

m

j

)

(1 − ǫ)jǫm−j −
1

q − 1

m
∑

j=g

(

m

j

)

(1− ǫ)jǫm−jqg−j

− (1− ǫ)g +
(1− ǫ)g

q − 1
(
1 − ǫ

q
+ ǫ)m−g.
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