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Abstract. The security of an iterated block cipher heavily depends
on its structure as well as each round function. Matsui showed that
MISTY type structure is faster and more robust than Feistel structure
on linear cryptanalysis and differential cryptanalysis. On the other hand,
Luby and Rackoff proved that the four round Feistel structure is super-
pseudorandom if each round function fi is a random function. This paper
proves that the five round MISTY type structure is super-pseudorandom.
We also characterize its round security.

1 Introduction

The security of an iterated block cipher heavily depends on its structure as well
as each round function. There are some well known structures of iterated block
ciphers, Feistel structure (for example, DES), MISTY type structure, IDEA type
structure and etc. For Feistel structure, Nyberg and Knudsen [7] showed that if
each round function is secure against linear cryptanalysis and differential crypt-
analysis, then the whole block cipher is immune to both attacks. Matsui showed
that MISTY type structure is faster and more robust than Feistel structure on
linear cryptanalysis and differential cryptanalysis [4,5].

Pseudorandomness is also an important cryptographic criterion of iterated
block ciphers. This approach studies the pseudorandomness of the block cipher
by assuming that each round function is ideally random. We say that a block
cipher is pseudorandom if it is secure against chosen plaintext attack, where the
adversary has access only to the forward direction of the block cipher. It is said
to be super-pseudorandom if it is secure under both chosen plaintext and chosen
ciphertext attacks, where the adversary has access to both directions of the block
cipher.

The super-pseudorandomness of Feistel structure has been studied exten-
sively so far. Luby and Rackoff proved that the three round Feistel structure
is pseudorandom and the four round Feistel structure is super-pseudorandom
if each round function fi is a random function [2]. Patarin gave an alternate
proof [8,9]. Lucks showed that the three round Feistel structure is pseudoran-
dom even if the first round function f1 is an XOR-universal hash function (not
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necessarily random) [3]. Naor and Reingold showed that the four round Feistel
structure is super-pseudorandom even if the first and the last round functions
f1 and f4 are XOR-universal [6]. Finally, Ramzan and Reyzin showed that the
four round Feistel structure is super-pseudorandom even if the adversary has
oracle access to the second and the third round functions f2 and f3, but not
super-pseudorandom if the adversary has oracle access to the first or the last
round function, f1 or f4 [10].

However, only a little is known about the super-pseudorandomness of MISTY
type structure. Sakurai and Zheng showed that the three round MISTY type
structure is not pseudorandom, and the four round MISTY type structure is not
super-pseudorandom [11]. On the other hand, it is not known if the five round
MISTY type structure is super-pseudorandom [11].

This paper characterizes the super-pseudorandomness of the five round
MISTY type structure. We prove that the five round MISTY type structure
is super-pseudorandom even if:

1. The first, second and the last round functions, p1, p2 and p5, are XOR-
universal permutations. This holds even if the adversary has oracle access to
the third and fourth round functions p3 and p4.

2. The first and the last round functions, p1 and p5, are XOR-universal. This
holds even if the adversary has oracle access to the second, third and fourth
round functions, p2, p3 and p4.

We also show that it is not super-pseudorandom if the adversary is allowed to
have oracle access to the first or the last round function, p1 or p5.

Intuitively, our results can be stated as follows. The five round MISTY type
structure is super-pseudorandom if: (1) the first and the last rounds have se-
crecy and only weak randomness, (2) the third and fourth rounds have strong
randomness and no secrecy, and (3) the second round has secrecy and only weak
randomness, or no secrecy and strong randomness.

To derive our positive results, we use Patarin’s approach [8,9] while Ramzan
and Reyzin [10] used the approach of Naor and Reingold [6].

Related works: About pseudorandomness (but not super-pseudorandomness)
Sugita showed that the four round MISTY type structure is pseudorandom [12],
and the five round recursive MISTY type structure is pseudorandom [13].

2 Preliminaries

2.1 Notation

For a bit string x ∈ {0, 1}2n, we denote the first (left) n bits of x by xL and the
last (right) n bits of x by xR. If S is a probability space, then s R← S denotes
the process of picking an element from S according to the underlying probability
distribution. (Unless otherwise specified,) The underlying distribution is assumed
to be uniform.
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Denote by Fn the set of all functions from {0, 1}n to {0, 1}n, which consists
of 2n·2n

in total. Similarly, denote by Pn the set of all permutations from {0, 1}n
to {0, 1}n, which consists of (2n)! in total. By a finite function (or permutation)
family F , we denote a set of functions with common domain and common range.
We call a finite function (or permutation) family keyed if every function in it
can be specified by a key sk. We denote the function given by sk as fsk. We
assume that given sk, it is possible to efficiently evaluate fsk at any point (as
well as f−1

sk in case of a keyed permutation family). For a given keyed function
family, a key can be any string from {0, 1}s, where s is known as “key length.”
For functions f and g, g ◦ f denotes the function x �→ g(f(x)).

2.2 Super-Pseudorandomness

We are now ready to define a secure block cipher, or what Luby and Rackoff
called a super-pseudorandom permutation [2]. The super-pseudorandomness of
a keyed permutation family F over {0, 1}n captures its computational indistin-
guishability from Pn, where the adversary is given access to both directions of
the permutation. In other words, it measures security of a block cipher against
chosen plaintext and chosen ciphertext attacks.

Our adaptive adversaryM is modeled as a Turing machine that has black-
box access to some number k of oracles, each of which computes some specified
function. If (f1, . . . , fk) is a k-tuple of functions, thenMf1,...,fk denotes a k-oracle
adversary who is given black-box access to each of the functions f1, . . . , fk. The
computational power ofM is unlimited, but the total number of oracle calls is
limited to a parameter m.

Definition 2.1. (Advantage, sprp). Let a block cipher F be a keyed permuta-
tion family over {0, 1}n with key length s. LetM be a 2-oracle adversary. Then
we defineM’s advantage as

Advsprp
F (M) def= |pf − pR|

where {
pf

def= Pr(Mfsk,f
−1
sk (1n) = 1 | sk R← {0, 1}s)

pR
def= Pr(MR,R−1

(1n) = 1 | R R← Pn)

Definition 2.2. (Super-pseudorandom permutation family). A block ci-
pher F is super-pseudorandom if Advsprp

F (M) is negligible for any 2-oracle ad-
versaryM.

2.3 MISTY Type Permutation [4,5]

Matsui proposed MISTY [4,5], which is faster and more robust than Feistel
structure on linear cryptanalysis and differential cryptanalysis.
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Definition 2.3. (The basic MISTY type permutation). Let x ∈ {0, 1}2n.
For any permutation p ∈ Pn, define the basic MISTY type permutation, Mp ∈
P2n asMp(x)

def= (xR, p(xL)⊕xR). Note that it is a permutation sinceM−1
p (x) =

(p−1(xL ⊕ xR), xL).

Definition 2.4. (The r round MISTY type permutation, ψ). Let r ≥ 1
be an integer, p1, . . . , pr ∈ Pn be permutations. Define the r round MISTY type
permutation ψ(p1, . . . , pr) ∈ P2n as ψ(p1, . . . , pr)

def= ρ ◦Mpr
◦ · · · ◦Mp1 , where

ρ(xL, xR) = (xR, xL) for x ∈ {0, 1}2n.

See Fig. 1 (the four round Feistel permutation) and Fig. 2 (the five round
MISTY type permutation) for illustrations. Note that pi in Fig. 2 is a permu-
tation whereas fi in Fig. 1 is just a function. For simplicity, the left and right
swaps are omitted.

f4

❄

✍✌
✎�
+ �✛✛

f3

❄

✍✌
✎�
+� ✲ ✲

f2

❄

✍✌
✎�
+ �✛✛

f1

❄

✍✌
✎�
+� ✲ ✲

❄ ❄

Fig. 1. Feistel permutation

p5
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❄

❄

p4
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✎�
+� ✲

❄

❄

p3

❄

✍✌
✎�
+ �✛

❄

❄

p2

❄

✍✌
✎�
+� ✲

❄

❄

p1

❄

✍✌
✎�
+ �✛

❄

❄

❄ ❄

Fig. 2. MISTY type permutation

2.4 Round Security of the Five Round MISTY Type Permutation

The round security model of a block cipher was introduced by Ramzan and
Reyzin [10]. In the round security model, the adversary is allowed to have oracle
access to some subset K of round functions, and the advantage additionally
depends on K.
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Definition 2.5. (Round security of the five round MISTY type per-
mutation). Let pi be a permutation drawn from a keyed permutation fam-
ily Pi over {0, 1}n with key length si, for i = 1, . . . , 5. Let ψ(p1, . . . , p5) be
the five round MISTY type permutation, and Ψ be the set of ψ(p1, . . . , p5)
with key length s = s1 + · · · + s5 (the key sk for ψ(p1, . . . , p5) is simply the
concatenation of keys for p1, . . . , p5). Fix some subset K = {Π1, . . . , Πk} of
the set {P1,P−1

1 , . . . ,P5,P−1
5 }, and let M be a (k + 2)-oracle adversary. Let

K
def= {π1sk, . . . , πksk}, where πisk ∈ Πi for 1 ≤ i ≤ k. Then we define M’s

advantage as
Advsprp

Ψ ;K(M) def= |pψ − pR|
where {

pψ
def= Pr(Mψsk,ψ

−1
sk
,π1

sk,...,π
k
sk(12n) = 1 | sk R← {0, 1}s)

pR
def= Pr(MR,R−1,π1

sk,...,π
k
sk(12n) = 1 | R R← P2n, sk

R← {0, 1}s)

2.5 Uniform ε-XOR Universal Permutation

Our definition follows from those given in [1,10,14].

Definition 2.6. Let Hn be a keyed permutation family over {0, 1}n. Denote by
#Hn the size of Hn. Hn is uniform ε-XOR universal provided that the following
two conditions are satisfied:

1. for any element x ∈ {0, 1}n and any element y ∈ {0, 1}n, there exist exactly
#Hn

2n permutations h ∈ Hn such that h(x) = y.
2. for any two distinct elements x, x′ ∈ {0, 1}n and any element y ∈ {0, 1}n,
there exist at most ε#Hn permutations h ∈ Hn such that h(x)⊕ h(x′) = y.

Let fa,b(x)
def= a · x+ b over GF(2n), where a �= 0. Then {fa,b(x)} is uniform

1
2n−1 -XOR universal.

We will use the phrase “h is an uniform ε-XOR universal permutation” to
mean that “h is drawn uniformly from an uniform ε-XOR universal permutation
family.”

3 Round Security of MISTY Type Permutation

3.1 Negative Result

In this section, we show that ψ(p1, p2, p3, p4, p5) is not super-pseudorandom if
the adversary is allowed to have oracle access to {p1, p−1

1 } or {p−1
5 }. This means

that, we require secrecy in the first and the last rounds if the cipher is secure.

Theorem 3.1. Let p1, p2, p3, p4, p5 ∈ Pn be random permutations. Let ψ =
ψ(p1, p2, p3, p4, p5), and R ∈ P2n be a random permutation. Suppose that K con-
tains at least one of {p1, p−1

1 } or {p−1
5 }. Then there exists an oracle adversary

M such that
Advsprp

Ψ ;K(M) ≥ 1− 2
2n

.
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Proof. Let O = R or ψ. First, suppose thatM has oracle access to O, O−1, p1
and p−1

1 . Consider the followingM:

1. Pick X,A,A′ ∈ {0, 1}n such that A �= A′ arbitrarily.
2. Ask (A,A⊕X) to O−1 and obtain (C,D).
3. Ask (A′, A′ ⊕X) to O−1 and obtain (C ′, D′).
4. Ask C to p1 and obtain E.
5. Ask C ′ to p1 and obtain E′.
6. Ask D ⊕D′ ⊕ E to p−1

1 and obtain F .
7. Ask D ⊕D′ ⊕ E′ to p−1

1 and obtain F ′.
8. Ask (F ′, D) to O and obtain (S, T ).
9. Ask (F,D′) to O and obtain (S′, T ′).
10. Output “1” if and only if S ⊕ T = S′ ⊕ T ′.

If O = ψ, then X is the output of p5 at step 2 and step 3. Hence the input
to p5 at step 2 is equal to that of step 3. Therefore, from step 4 and step 5, we
have

p2(D)⊕D ⊕ E ⊕ p3(D ⊕ E) = p2(D′)⊕D′ ⊕ E′ ⊕ p3(D′ ⊕ E′) . (1)

In step 8, the output of p1 is equal to D ⊕D′ ⊕ E′ from step 7. Therefore, the
input to p5 is equal to p2(D)⊕D′⊕E′⊕p3(D′⊕E′) in step 8. Similarly, in step
9, the input to p5 is equal to p2(D′)⊕D⊕E⊕ p3(D⊕E). Then from eq.(1), we
see that the inputs to p5 are equal in step 8 and step 9. Hence we have pψ = 1.

If O = R, we have pR ≤ 2
2n .

Next suppose that M has oracle access to O, O−1 and p−1
5 . Consider the

followingM:

1. Pick X,B,B′ ∈ {0, 1}n such that B �= B′ arbitrarily.
2. Ask B to p−1

5 and obtain A.
3. Ask B′ to p−1

5 and obtain A′.
4. Ask (X,X ⊕B) to O−1 and obtain (C,D).
5. Ask (A⊕A′ ⊕B ⊕B′ ⊕X,A⊕A′ ⊕B ⊕X) to O−1 and obtain (C ′, D′).
6. Ask (C,D′) to O and obtain (E,F ).
7. Ask (C ′, D) to O and obtain (E′, F ′).
8. Ask E ⊕ F to p−1

5 and obtain H.
9. Ask E′ ⊕ F ′ to p−1

5 and obtain H ′.
10. Output “1” if and only if H ⊕ F = H ′ ⊕ F ′.

If O = ψ, then A ⊕ B ⊕X is the outputs of p4 at step 4 and step 5. Then
the input to p4 at step 6 is equal to that of step 7. Hence we have pψ = 1.

If O = R, we have pR ≤ 2
2n . ��

3.2 Positive Result 1

Let h1, h2, h3 ∈ Hn be uniform ε-XOR universal permutations and p ∈ Pn be
a random permutation. Let ψ = ψ(h1, h2, p, p, h−1

3 ), and R ∈ P2n be a random
permutation. Define K = {p, p−1}.
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Lemma 3.1. Let m0 and m1 be integers. Choose x(i) ∈ {0, 1}2n and y(i) ∈
{0, 1}2n for 1 ≤ i ≤ m0 arbitrarily in such a way that x(i) are all distinct and
y(i) are all distinct. Choose X(i) ∈ {0, 1}n and Y (i) ∈ {0, 1}n for 1 ≤ i ≤ m1
arbitrarily in such a way that X(i) are all distinct and Y (i) are all distinct.

Then the number of (h1, h2, p, h3) such that

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ m0, and
p(X(i)) = Y (i) for 1 ≤ ∀i ≤ m1

}
(2)

is at least

(#Hn)3(2n − 2m0 −m1)!
(
1− ε ·m0(3m0 − 2)− 2m0(m0 + 2m1)

2n

)
.

A proof is given in the next section.

Theorem 3.2. For any 4-oracle adversaryM that makes at most m queries in
total,

Advsprp
Ψ ;K(M) ≤ ε ·m(3m− 2) + 4m2

2n
.

Proof. Let O = R or ψ. The 4-oracle adversaryM has oracle access to O, O−1,
p and p−1. Assume thatM makes m0 queries to O or O−1, and m1 queries to
p or p−1, where m = m0 +m1.

Let q(1), . . . , q(m0) ∈ {0, 1}2n be bit strings thatM asks to O or O−1, and let
a(1), . . . , a(m0) ∈ {0, 1}2n be the answers thatM obtains. Let Q(1), . . . , Q(m1) ∈
{0, 1}n be bit strings thatM asks to p or p−1, and let A(1), . . . , A(m1) ∈ {0, 1}n
be the answers thatM obtains.

Let

(x(i), y(i)) =
{
(q(i), a(i)) if O(q(i)) = a(i)
(a(i), q(i)) if O−1(q(i)) = a(i) ,

(3)

(X(i), Y (i)) =
{
(Q(i), A(i)) if p(Q(i)) = A(i)

(A(i), Q(i)) if p−1(Q(i)) = A(i) .
(4)

That is,

O(x(i)) = y(i) for 1 ≤ i ≤ m0, and p(X(i)) = Y (i) for 1 ≤ i ≤ m1 .

Without loss of generality, we assume that x(i) are all distinct, y(i) are all distinct,
X(i) are all distinct and Y (i) are all distinct.

Suppose thatM has obtained a(1), . . . , a(i) and A(1), . . . , A(j) from the ora-
cles at some point. Then the next behavior of M is completely determined by
a(1), . . . , a(i) and A(1), . . . , A(j). Therefore, the final output of M (0 or 1) de-
pends only on a def= (a(1), . . . , a(m0)) and A def= (A(1), . . . , A(m1)). Hence denote
by CM(a,A) the final output ofM.

Let B def= {(a,A) | CM(a,A) = 1} and N def= #B.
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Evaluation of pR. From the definition of pR, we have

pR = Pr
R,p
(MR,R−1,p,p−1

(12n) = 1) =
#{(R, p) | MR,R−1,p,p−1

(12n) = 1}
(22n)!(2n)!

.

We say that (R, p) is compatible with (a,A) if the (R,R−1) oracles answer
a and the (p, p−1) oracles answer A. More precisely, (R, p) is compatible with
(a,A) if

R(x(i)) = y(i) for 1 ≤ i ≤ m0 and p(X(i)) = Y (i) for 1 ≤ i ≤ m1 , (5)

where x(i), y(i), X(i), Y (i) are defined by eq.(3) and eq.(4) from (a,A). For each
(a,A) ∈ B, the number of (R, p) which is compatible with (a,A) is exactly
(22n −m0)!(2n −m1)!. Therefore, we have

pR =
∑

(a,A)∈B

#{(R, p) | (R, p) is compatible with (a,A)}
(22n)!(2n)!

=
∑

(a,A)∈B

#{(R, p) | (R, p) satisfying (5)}
(22n)!(2n)!

= N · (2
2n −m0)!(2n −m1)!

(22n)!(2n)!
.

Evaluation of pψ. From the definition of pψ, we have

pψ = Pr
h1,h2,p,h3

(Mψ,ψ−1,p,p−1
(12n) = 1)

=
#{(h1, h2, p, h3) | Mψ,ψ−1,p,p−1

(12n) = 1}
(#Hn)3(2n)!

.

Similarly to pR, we have

pψ =
∑

(a,A)∈B

# {(h1, h2, p, h3) | (h1, h2, p, h3) satisfying (2)}
(#Hn)3(2n)!

.

Then from Lemma 3.1, we obtain that

pψ ≥
∑

(a,A)∈B

(#Hn)3(2n − 2m0 −m1)!
(
1− ε ·m0(3m0 − 2)− 2m0(m0+2m1)

2n

)
(#Hn)3(2n)!

= N
(2n − 2m0 −m1)!

(2n)!

(
1− ε ·m0(3m0 − 2)− 2m0(m0 + 2m1)

2n

)

= pR
(22n)!(2n − 2m0 −m1)!
(22n −m0)!(2n −m1)!

(
1− ε ·m0(3m0 − 2)− 2m0(m0 + 2m1)

2n

)
.
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Since (22n)!(2n−2m0−m1)!
(22n−m0)!(2n−m1)!

≥ 1 (This can be shown easily by an induction on m0),
we have

pψ ≥ pR
(
1− ε ·m0(3m0 − 2)− 2m0(m0 + 2m1)

2n

)

≥ pR − ε ·m0(3m0 − 2)− 2m0(m0 + 2m1)
2n

≥ pR − ε ·m(3m− 2)− 4m2

2n
. (6)

Applying the same argument to 1− pψ and 1− pR yields that

1− pψ ≥ 1− pR − ε ·m(3m− 2)− 4m2

2n
. (7)

Finally, (6) and (7) give |pψ − pR| ≤ ε ·m(3m− 2) + 4m2

2n . ��

3.3 Positive Result 2

Let h1, h2 ∈ Hn be uniform ε-XOR-universal permutations, p1, p2, p3 ∈ Pn be
random permutations, ψ = ψ(h1, p1, p2, p3, h−1

2 ), and R ∈ P2n be a random
permutation. Define K = {p1, p−1

1 , p2, p
−1
2 , p3, p

−1
3 }.

Lemma 3.2. Let m0,m1,m2,m3 be integers such that m = m0+m1+m2+m3.
Choose x(i) ∈ {0, 1}2n and y(i) ∈ {0, 1}2n for 1 ≤ i ≤ m0 arbitrarily in such a
way that x(i) are all distinct and y(i) are all distinct. Similarly, for 1 ≤ l ≤ 3,
choose X(i)

l ∈ {0, 1}n and Y (i)
l ∈ {0, 1}n for 1 ≤ i ≤ ml arbitrarily in such a

way that X(i)
l are all distinct, Y (i)

l are all distinct and

X
(i)
1 ⊕ Y (i)

1 �= X(j)
1 ⊕ Y (j)

1 for l = 1 and 1 ≤ ∀i < ∀j ≤ m1 .

Then the number of (h1, p1, p2, p3, h2) such that

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ m0,

p1(X
(i)
1 ) = Y (i)

1 for 1 ≤ ∀i ≤ m1,

p2(X
(i)
2 ) = Y (i)

2 for 1 ≤ ∀i ≤ m2, and
p3(X

(i)
3 ) = Y (i)

3 for 1 ≤ ∀i ≤ m3




(8)

is at least

(2n −m1)!(2n −m2 −m0)!(2n −m3 −m0)!

(#Hn)2
(
1− 2ε ·m0(m0 − 1)− m0(2m− 1)

2n

)
.

A proof is similar to that of Lemma 3.1.
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Theorem 3.3. For any 8-oracle adversaryM that makes at most m queries in
total,

Advsprp
Ψ ;K(M) ≤ 2ε ·m(m− 1) + m(3m− 2)

2n
.

Proof. Let O = R or ψ. The 8-oracle adversaryM has oracle access to O, O−1,
p1, p−1

1 , p2, p−1
2 , p3 and p−1

3 . Assume that M makes m0 queries to O or O−1

and ml queries to pl or p−1
l for 1 ≤ l ≤ 3, where m = m0 +m1 +m2 +m3.

Let q(1), . . . , q(m0) ∈ {0, 1}2n be bit strings that M asks to O or O−1, and
let a(1), . . . , a(m0) ∈ {0, 1}2n be the answers that M obtains. For 1 ≤ l ≤ 3,
let Q(1)

l , . . . , Q
(ml)
l ∈ {0, 1}n be bit strings that M asks to pl or p−1

l , and let
A

(1)
l , . . . , A

(ml)
l ∈ {0, 1}n be the answers thatM obtains.

Let

(x(i), y(i)) =
{
(q(i), a(i)) if O(q(i)) = a(i)
(a(i), q(i)) if O−1(q(i)) = a(i)

(9)

(X(i)
l , Y

(i)
l ) =

{
(Q(i)

l , A
(i)
l ) if pl(Q

(i)
l ) = A

(i)
l

(A(i)
l , Q

(i)
l ) if p

−1
l (Q(i)

l ) = A
(i)
l

(10)

for 1 ≤ l ≤ 3. That is, O(x(i)) = y(i) for 1 ≤ i ≤ m0 and pl(X
(i)
l ) = Y

(i)
l for

1 ≤ l ≤ 3 and 1 ≤ i ≤ ml.
Without loss of generality, we assume that x(i) are all distinct, y(i) are all

distinct, X(i)
l are all distinct and Y (i)

l are all distinct, for 1 ≤ l ≤ 3.
Define a def= (a(1), . . . , a(m0)) and Al

def= (A(1)
l , . . . , A

(ml)
l ) for 1 ≤ l ≤ 3. Then,

similarly to the proof of Theorem 3.2, we can denote by CM(a,A1, A2, A3) the
output ofM (0 or 1). Let



B1 def= {(a,A1, A2, A3) | CM(a,A1, A2, A3) = 1},
N

def= #B1, and
B2 def= {(a,A1, A2, A3) | CM(a,A1, A2, A3) = 1 and

1 ≤ ∀i < ∀j ≤ m1, X
(i)
1 ⊕ Y (i)

1 �= X(j)
1 ⊕ Y (j)

1 }.
Evaluation of pR. From the definition of pR, we have

pR = Pr
R,p1,p2,p3

(MR,R−1,p1,p
−1
1 ,p2,p

−1
2 ,p3,p

−1
3 (12n) = 1)

=
#{(R, p1, p2, p3) | MR,R−1,p1,p

−1
1 ,p2,p

−1
2 ,p3,p

−1
3 (12n) = 1}

(22n)! ((2n)!)3
.

Since the number of (R, p1, p2, p3) such that

R(x(i)) = y(i) for 1 ≤ ∀i ≤ m0,

p1(X
(i)
1 ) = Y (i)

1 for 1 ≤ ∀i ≤ m1,

p2(X
(i)
2 ) = Y (i)

2 for 1 ≤ ∀i ≤ m2, and
p3(X

(i)
3 ) = Y (i)

3 for 1 ≤ ∀i ≤ m3




(11)

is exactly (22n −m0)!(2n −m1)!(2n −m2)!(2n −m3)!, we have
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pR =
∑

(a,A1,A2,A3)∈B1

#{(R, p1, p2, p3) | (R, p1, p2, p3) satisfying (11)}
(22n)!((2n)!)3

= N · (2
2n −m0)!(2n −m1)!(2n −m2)!(2n −m3)!

(22n)!((2n)!)3
.

Define C be the total number of possible (a,A1, A2, A3). Then

C =
(22n)!

(22n −m0)!
(2n)!

(2n −m1)!
(2n)!

(2n −m2)!
(2n)!

(2n −m3)!
.

Therefore we have pR = N
C .

Evaluation of pψ. From the definition of pψ, we have

pψ = Pr
h1,p1,p2,p3,h2

(Mψ,ψ−1,p1,p
−1
1 ,p2,p

−1
2 ,p3,p

−1
3 (12n) = 1)

=
#{(h1, p1, p2, p3, h2) | Mψ,ψ−1,p1,p

−1
1 ,p2,p

−1
2 ,p3,p

−1
3 (12n) = 1}

(#Hn)2((2n)!)3
.

Then

pψ ≥
∑

(a,A1,A2,A3)∈B2

# {(h1, p1, p2, p3, h2) | (h1, p1, p2, p3, h2) satisfying (8)}
(#Hn)2((2n)!)3

.

Now we want to evaluate #B2. Fix any i and j such that 1 ≤ i < j ≤ m1.
Then the number of A1 = (A(1)

1 , . . . , A
(m1)
1 ) which satisfies X(i)

1 ⊕ Y (i)
1 = X(j)

1 ⊕
Y

(j)
1 is exactly 1

2n−1
(2n)!

(2n−m1)!
, since we have 2n choice of A(i)

1 which uniquely

determines A(j)
1 according to the relation X(i)

1 ⊕ Y (i)
1 = X

(j)
1 ⊕ Y (j)

1 , and other
bit strings, A(l)

1 where l �= i, j, can be arbitrarily, we have (2n−2)!
(2n−m1)!

choice. Since
we have

(
m1
2

)
choice of (i, j), the number of (a,A1, A2, A3) which satisfy

1 ≤ ∃i < ∃j ≤ m1, X
(i)
1 ⊕ Y (i)

1 = X(j)
1 ⊕ Y (j)

1

is at most
(
m1
2

)
C

2n−1 , which is upper bounded by
m1(m1−1)

2n C. Then it is clear

that #B2 ≥ N − m1(m1−1)
2n C.

Define

D
def=

(
1− 2ε ·m0(m0 − 1)− m0(2m− 1)

2n

)
.

Then from Lemma 3.2, we have

pψ ≥
∑

(a,A1,A2,A3)∈B2

(2n −m1)!(2n −m2 −m0)!(2n −m3 −m0)!
((2n)!)3

D

≥
(
N − m1(m1 − 1)

2n
C

)
(2n −m1)!(2n −m2 −m0)!(2n −m3 −m0)!

((2n)!)3
D

=
(
pR − m1(m1 − 1)

2n

)
D · C (2

n −m1)!(2n −m2 −m0)!(2n −m3 −m0)!
((2n)!)3

.
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Since C (2n−m1)!(2n−m2−m0)!(2n−m3−m0)!
((2n)!)3 = (22n)!(2n−m2−m0)!(2n−m3−m0)!

(22n−m0)!(2n−m2)!(2n−m3)!
≥ 1

(This can be shown easily by an induction on m0), we have

pψ ≥
(
pR − m1(m1 − 1)

2n

) (
1− 2ε ·m0(m0 − 1)− m0(2m− 1)

2n

)

≥ pR − 2ε ·m0(m0 − 1)− m0(2m− 1)
2n

− m1(m1 − 1)
2n

≥ pR − 2ε ·m(m− 1)− m(3m− 2)2n
.

Then we have

|pψ − pR| ≤ 2ε ·m(m− 1) + m(3m− 2)
2n

by applying the same argument as was used in Theorem 3.2. ��

4 Proof of Lemma 3.1

In ψ, we denote by I3 ∈ {0, 1}n, the input to p in the third round, and denote
by O3 ∈ {0, 1}n, the output of it. Similarly, I4, O4 ∈ {0, 1}n are the input and
output of p in the fourth round, respectively.
Number of h1. First,

– if x(i)L = x(j)L , then there exists no h1 which satisfies

h1(x
(i)
L )⊕ x(i)R = h1(x

(j)
L )⊕ x(j)R (12)

since x(i)L = x(j)L implies x(i)R �= x(j)R .
– if x(i)L �= x

(j)
L , then the number of h1 which satisfies (12) is at most ε#Hn

from Definition 2.6.

Therefore, the number of h1 which satisfies

1 ≤ ∃i < ∃j ≤ m0, h1(x
(i)
L )⊕ x(i)R = h1(x

(j)
L )⊕ x(j)R (13)

is at most ε
(
m0
2

)
#Hn.

Next, the number of h1 which satisfies

h1(x
(i)
L )⊕ x(i)R = X(j)

is exactly #Hn

2n from Definition 2.6. Therefore, the number of h1 which satisfies

1 ≤ ∃i ≤ m0, 1 ≤ ∃j ≤ m1, h1(x
(i)
L )⊕ x(i)R = X(j) (14)

is at most m0m1#Hn

2n .
Then, from (13) and (14), the number of h1 which satisfies

1 ≤ ∀i < ∀j ≤ m0, h1(x
(i)
L )⊕ x(i)R �= h1(x(j)L )⊕ x(j)R , and

1 ≤ ∀i ≤ m0, 1 ≤ ∀j ≤ m1, h1(x
(i)
L )⊕ x(i)R �= X(j)

}
(15)
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is at least #Hn− ε
(
m0
2

)
#Hn− m0m1#Hn

2n . Fix h1 which satisfies (15) arbitrarily.
This implies that I(1)3 , . . . , I

(m0)
3 are fixed in such a way that I(1)3 , . . . , I

(m0)
3 are

distinct, and I(i)3 �= X(j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1.
Number of h2. Similarly, the number of h2 which satisfies

1 ≤ ∀i < ∀j ≤ m0, h2(x
(i)
R )⊕ I(i)3 �= h2(x(j)R )⊕ I(j)3 ,

1 ≤ ∀i ≤ m0, 1 ≤ ∀j ≤ m1, h2(x
(i)
R )⊕ I(i)3 �= X(j),

1 ≤ ∀i,∀j ≤ m0, h2(x
(i)
R )⊕ I(i)3 �= I(j)3 , and

1 ≤ ∀i,∀j ≤ m0, h2(x
(i)
R )⊕ I(i)3 �= y(j)R




(16)

is at least #Hn − ε
(
m0
2

)
#Hn − m0m1#Hn

2n − 2m2
0#Hn

2n . Fix h2 which satisfies (16)
arbitrarily. This implies that I(1)4 , . . . , I

(m0)
4 are fixed in such a way that:

– I(1)4 , . . . , I
(m0)
4 are distinct,

– I(i)4 �= X(j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1, and
– I(i)4 �= I(j)3 and I(i)4 �= y(j)R for 1 ≤ ∀i,∀j ≤ m0.

Number of h3. Similarly, the number of h3 which satisfies

1 ≤ ∀i < ∀j ≤ m0, h3(y
(i)
L ⊕ y(i)R )⊕ y(i)R �= h3(y(j)L ⊕ y(j)R )⊕ y(j)R ,

1 ≤ ∀i < ∀j ≤ m0, h3(y
(i)
L ⊕ y(i)R )⊕ I(i)4 �= h3(y(j)L ⊕ y(j)R )⊕ I(j)4 ,

1 ≤ ∀i ≤ m0, 1 ≤ ∀j ≤ m1, h3(y
(i)
L ⊕ y(i)R )⊕ I(i)4 �= Y (j),

1 ≤ ∀i ≤ m0, 1 ≤ ∀j ≤ m1, h3(y
(i)
L ⊕ y(i)R )⊕ y(i)R �= Y (j), and

1 ≤ ∀i,∀j ≤ m0, h3(y
(i)
L ⊕ y(i)R )⊕ y(i)R �= h3(y(j)L ⊕ y(j)R )⊕ I(j)4




(17)

is at least #Hn − 2ε
(
m0
2

)
#Hn − 2m0m1#Hn

2n − εm2
0#Hn. Fix h3 which satisfies

(17) arbitrarily. This implies that O(1)
4 , . . . , O

(m0)
4 and O(1)

3 , . . . , O
(m0)
3 are fixed

in such a way that:

– O(1)
4 , . . . , O

(m0)
4 are distinct,

– O(1)
3 , . . . , O

(m0)
3 are distinct,

– O(i)
3 �= Y (j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1,

– O(i)
4 �= Y (j) for 1 ≤ ∀i ≤ m0 and 1 ≤ ∀j ≤ m1, and

– O(i)
4 �= O(j)

3 for 1 ≤ ∀i,∀j ≤ m0.

Number of p. Now h1, h2 and h3 are fixed in such a way that

I
(1)
3 , . . . , I

(m0)
3 , I

(1)
4 , . . . , I

(m0)
4 , X(1), . . . , X(m1)

(which are inputs to p) are all distinct and

O
(1)
3 , . . . , O

(m0)
3 , O

(1)
4 , . . . , O

(m0)
4 , Y (1), . . . , Y (m1)

(which are corresponding outputs of p) are all distinct. In other words, for p, the
above 2m0 +m1 input-output pairs are determined. The other 2n − 2m0 −m1
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input-output pairs are undetermined. Therefore we have (2n−2m0−m1)! possible
choices of p for any such fixed (h1, h2, h3).

Then the number of (h1, h2, p, h3) which satisfy (2) is at least

(#Hn)3(2n − 2m0 −m1)!
(
1− ε

(
m0

2

)
− m0m1

2n

)

×
(
1− ε

(
m0

2

)
− m0m1

2n
− 2m2

0

2n

) (
1− 2ε

(
m0

2

)
− 2m0m1

2n
− εm2

0

)

≥ (#Hn)3(2n − 2m0 −m1)!
(
1− ε ·m0(3m0 − 2)− 2m0(m0 + 2m1)

2n

)

This concludes the proof of the lemma. ��

5 Conclusion

In this paper, we proved that:

1. ψ(p1, p2, p3, p4, p5) is not super-pseudorandom if the adversary is allowed to
have oracle access to {p1, p−1

1 } or {p−1
5 } (Theorem 3.1).

2. ψ(h1, h2, p, p, h−1
3 ) is super-pseudorandom even if the adversary has oracle

access to p and p−1 (Theorem 3.2).
3. ψ(h1, p1, p2, p3, h−1

2 ) is super-pseudorandom even if the adversary has oracle
access to p1, p−1

1 , p2, p−1
2 , p3 and p−1

3 (Theorem 3.3).

The following concrete questions remain to be tackled.

– Is it possible to distinguish ψ(p1, p2, p3, p4, p5) from P2n with access to only
one of {p1, p−1

1 , p5} ?
– For example, is ψ(h1, p1, p1, p2, h−1

2 ) secure when the adversary has oracle
access to p1, p−1

1 , p2 and p−1
2 ?
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