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Abstract. A survey is presented on the current status of 3D nucleon tomography. Several

research frontiers are addressed that dominate modern physics from theory to current and

future experiments. We have now a much more detailed spatial image of the nucleon

thanks to various theoretical concepts and methods to describe its charge distribution and

spin decomposition which are highlighted here. The progress of lattice computations of

these quantities is reported and the prospects of what we can come to expect in the near

future are discussed. Multi-dimensional maps of the nucleon’s partonic structure appear

now within reach of forthcoming experiments.

1 Introductory remarks

The strive to understand matter in terms of elementary constituents (“atoms”) and bring order into the

natural world lasts over thousands of years. While the ancient Greeks invented philosophical ideas

about the atoms, their physical discovery became possible only after the invention of the Rutherford

atomic model in 1911. This model is based on the assumption that the atom consists of a central large

mass with positive charge surrounded by rotating low-mass electrons. The next decisive step was the

observation around 1920 that the Hydrogen nucleus can be regarded as the fundamental block of all

heavier nuclei, thus giving rise to the notion of proton. In order to compensate for the repulsive effects

of the positive charges of the protons, Rutherford postulated the existence of neutrons which have no
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electric charge but contribute to the nuclear force. They were discovered later in experiment by his

associate James Chadwick.

But even the proton and the neutron are composite particles and have an internal structure them-

selves, as it was shown by Hofstadter in 1950 by means of high-energy electron-scattering from nuclei

[1]. The differential cross section of the hard process ep −→ e′p′ — illustrated in Fig. 1 (left) — re-

veals that the proton is not a point-like object but bears an internal structure which can be described

in terms of the charge and current form factors F1(t = Q2) and F2(t = Q2), respectively, where Q2

is the momentum transfer (i.e., the virtuality of the exchanged highly off-shell photon −q2 = Q2) in

the spacelike region). These form factors are defined in terms of the hadronic matrix element of the

electromagnetic current Vμ in the Dirac parametrization

〈N(p′, s′)|Vμ(x)|N(p, s)〉 = ū(p′, s′)

[
γμF1(Q2) − σμν

qν

2mN

F2(Q2)

]
u(p, s) , (1)

where p, s, p′, and s′ are, respectively, the momenta and spins of the incoming and outgoing nucleons,

u′s their spinors, and mN is the nucleon mass. These form factors are related to the magnetic (GM)

and electric (GE) Sachs form factors entering the electron-proton scattering cross section by means of

the Rosenbluth formula:

GM(Q2) = F1(Q2) + F2(Q2) (2)

GE = F1(Q2) +
Q2

(2mN)2
F2(Q2) . (3)

The above form factors can be measured in experiments (see Sec. 6) and are also calculable on the

lattice (see Sec. 5). More detailed theoretical analysis of the nucleon form factors computed in terms

of nonperturbative nucleon distribution amplitudes in convolution with hard partonic subprocesses

amenable to QCD perturbation theory can be found in [2–4]. An extensive review which covers the

comparison with the most recent experimental data is given in [5]. In this report, the focus is on more

recent theoretical formulations, which go beyond the longitudinal description of the nucleon, and their

verification by measurements at current and planned experiments.

2 Benchmarks of nucleon tomography

This section addresses the main theoretical framework to describe the internal structure of the nucleon

within QCD. More detailed accounts are given in the subsequent sections.

The nucleon form factors in either representation — Dirac or Sachs — parameterize in some sense

our ignorance about the internal binding effects of the nucleon which give rise to a “diffuse” structure

(represented by a shaded oval in the left panel of Fig. 1) and cause the elastic scattering cross section to

decrease with increasing Q2, hence indicating that the nucleon cannot be pointlike [6]. Indeed, highly

inelastic electron-proton scattering [7, 8] has revealed that the proton contains pointlike constituents

— partons — which couple to the probing highly virtual photon (right panel in Fig. 1).

This naive parton model was later extended to the theory of Quantum Chromodynamics (QCD)

which provides a justification of the parton picture altering its predictions by including corrections

ensuing from the quark-gluon interactions. This interaction is invariant to color SU(3) local gauge

transformations. The success of QCD in the description of hadronic processes is rooted in the property

of asymptotic freedom [9, 10] which enables the systematic calculation of short-distance processes as

a series expansion in terms of the effective coupling αs(Q
2) which vanishes for Q2 −→ ∞ while pre-

serving renormalization. Then, one can separate out all binding effects, attributable to nonperturbative

physics, and absorb them into universal parton distribution functions (PDF)s, parton fragmentation
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Figure 1. Left panel: illustration of elastic-electron-nucleon scattering by means of the interaction with the virtual

photon γ∗(Q2). Right panel: inelastic electron-proton scattering ep −→ e′X in naive parton model approximation,

where the virtual photon couples to a single parton (quark). The produced final-state hadrons are denoted by X.

functions (PFF)s, lightcone distribution amplitudes (DA)s for hadrons, transverse-momentum depen-

dent (TMD) PDFs (Sec. 3), generalized parton distributions (GPD)s, (Sec. 4), etc. Their extraction

from lattice computations will be considered in Sec. 5, while the particular channels and experiments

to access them by measurements will be addressed in Sec. 6 and in Sec. 7 which will present a state

of the art on three-dimensional (3D) nucleon tomography and its future prospects.

Let us now introduce the theoretical tools to probe the interior structure of the nucleon in more

detail. To this end, consider, for instance, the longitudinal distribution of partons inside the nucleon

N, entering a deep-inelastic scattering (DIS) process lN −→ l′X. This process, shown for the proton

in the left panel of Fig. 2, can be expressed in terms of the matrix element1

fq/N(x, μ) =
1

4π

∫
dy−e−ixp+y−〈p|ψ̄(0+, y−, 0T )γ+W(0−, y−)ψ(0+, 0−, 0T )|p〉 (4)

where fq/N(x, μ) is the PDF describing a quark q in a nucleon N carrying a fraction x of its momentum

p at the resolution (factorization) scale μ. Gauge invariance of the correlator is ensured by the insertion

of the Wilson line (or gauge link) operator

W(0−, y−) = P exp

⎡⎢⎢⎢⎢⎣ig
∫ y−

0−
dz−A+a (0+, z−, 0T )ta

⎤⎥⎥⎥⎥⎦ (5)

evaluated in the fundamental representation of SU(3) and taken along a lightlike contour from 0− to

y−. Note that here we are using the lightcone notation y± = (v0 ± y3)/
√

2 for any vector vμ.

Collinear PDFs, like fa/A, where parton a is a quark, antiquark, or a gluon, in a hadron A, represent

the universal part of the factorized cross section of a collinear process, like DIS, and are related to

leading-twist lightcone correlators of electroweak currents in the hadronic tensor

Wμν =
1

4π

∫
d4yeiq·y

∑

X

〈N| jμ(y)|X〉 〈X| jν(0)|N〉 (6)

for the process lN −→ l′X. For Q2 large and x fixed, Wμν can be cast in factorized form (see [11] and

references cited therein) to read

Wμν(qμ, pμ) =
∑

a

∫ 1

x

dξ

ξ
fa/N(ξ, μ)H

μν
a (qμ, ξpμ, μ, αs(μ)) + remainder , (7)

where the contribution of all short-distance subprocesses on the parton a is denoted by H
μν
a . By virtue

of universality, the PDFs for the Drell-Yan (DY) process, shown on the right of Fig. 2, should be

1Boldfaced symbols denote Euclidean two vectors in the transverse plane.
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Figure 2. Schematic representation of partonic subprocesses in QCD “embedded” within the experimentally

measured semi-inclusive deep inelastic lepton (l) scattering l + p −→ l′ + h + X, where p is the incoming proton

and h represents the detected hadron in the final state (left panel). The right panel shows the analogous situation

for the Drell-Yan process h1+h2 −→ γ∗+X −→ l+ l′+X, where h1(2) represent incoming hadrons. The thick lines

in both panels denote “eikonalized”, i.e., Wilson-line extended quarks to account for initial (DY) or final (SIDIS)

state interactions. Examples of single gluon exchanges emanating from these lines are also shown. Additional

hard-gluon exchanges have been omitted. In both panels the symbol X represents an inclusive sum over all final

states.

the same as in DIS — left panel of the same figure. Moreover, the momentum-scale dependence of

these PDFs is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–14] evolu-

tion equation, so that once determined at an initial scale, they can be evolved in perturbative QCD

to any desired reference momentum to confront theoretical predictions with the experimental data

using the appropriate anomalous dimensions (i.e., splitting functions). A large set of PDFs has been

extracted from global analysis of the existing data, from the low-momentum to the Large Hadron

Collider (LHC) regime, but this procedure depends on the accuracy of the process-dependent pertur-

batively calculated short-distance part H
μν
a , see [5] for a recent review.

Thus, the factorization formalism [15] of the μ dependence contains a strong predictive power for

scattering off a nucleon (hadron). However, its validity on the partonic level, beyond the collinear

approximation, faces challenges which are related to the appearance of so-called rapidity divergences

ensuing from Wilson lines and their renormalization (see Sec. 3). Theoretically, these effects originate

from the Wilson-line-extended structure of the operator definition of quark (gluon) correlators, as it

becomes obvious from the following TMD field correlator [16–18]

Φ
q[C]

i j
(x, kT ; n) =

∫
d(y · P)d2

yT

(2π)3
eik·y

〈
p|ψ̄ j(y)W(0, y|C)ψi(0)|p

〉
y·n=0

. (8)

One notices the path dependence of this expression encoded in the contour C in the exponential line

integral. It can be resolved by adopting that particular contour which ensures the continuous color

flow in the considered partonic process. As a result, the DY process, shown in the right panel of Fig.

2, contains a sign reversal relative to the SIDIS situation (left panel in Fig. 2), which originates from

the change of a future-pointing Wilson line to one with the opposite orientation as a consequence of

CP invariance and CPT conservation in QCD. This entails the breakdown of universality, because the

factored out nonperturbative part of the SIDIS setup cannot be used without readjustment (sign flip) in

the DY process:
[
f⊥
1Tq

]
DY
= −

[
f⊥
1Tq

]
SIDIS

[19]. This intriguing behavior constitutes in fact the litmus

test of the TMD approach to single spin asymmetries [20] which require that the rescattering of the

struck quark in the field of the remnant hadron generates an interaction phase. This phase would be

forced to vanish by the time-reversal invariance in the absence of the directional dependence of the

Wilson line. Additional phases appear for time-reversal-odd TMD PDFs even at the leading-twist

level when includes into the Wilson lines the Pauli tensor term to account for a correct treatment of

the spin degrees of freedom [21, 22].
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The formal proof of factorization employs a detailed analysis of singularities that originate from

different sources: (i) ultraviolet (UV) poles, induced by large loop momenta, that can be regularized

dimensionally, (ii) rapidity divergences that originate from the Wilson lines, and (iii) overlapping

UV and rapidity divergences. The latter emerge from gluons moving with an infinite rapidity in the

opposite direction with respect to their parent hadron and cannot be regularized by infrared gluon mass

regulators. While in the collinear case rapidity divergences cancel in the sum of graphs, in the TMD

case one needs additional regularization parameters. We will have to say more about these problems

in Sec. 3 below. In the same section we will consider the calculation of TMD correlators beyond the

leading order in αs(μ) and discuss the concepts of their evolution. First attempts to “measure” TMD

PDFs on the lattice have been given in [23], while current investigations will be presented in Sec. 5.

A compilation of the various TMD PDFs (“TMDs” for short) is given in Table 1. Note that a similar

structure holds also for gluon TMDs.

Table 1. Twist-two TMDs as functions of (x, kT ) describing correlations between intrinsic spin and transverse

momentum using the following abbreviations: U (unpolarized), L (longitudinally polarized), T (transversely

polarized). The boldfaced elements survive the kT integration. The two terms in brackets are T-odd, whereas all

elements in the last column are chirally odd.

Nucleon\Quark Polarization

U L T

U f
q

1

[
h

q⊥
1

]

unpolarized Boer-Mulders

L g
q

1L
h

q⊥
1L

helicity worm-gear L

T
[
f

q⊥
1T

]
g

q⊥
1T

h
q

1T
| h

q⊥
1T

Sivers worm-gear T transversity | pretzelosity

3 Parton distributions with transverse degrees of freedom — TMDs

2The longitudinal PDFs are based on collinear factorization and provide no information about the

transverse structure of hadrons. To achieve a 3D picture of the hadronic structure, one has to retain

the transverse momenta kT of the partons unintegrated, as expressed in Eq. (8). This gives rise to

eight kT dependent PDFs of leading twist two (see Table 1), which enter various processes as the

SIDIS and the DY process, both illustrated in Fig. 2. In SIDIS, one has the convolution of a TMD

with a fragmentation function, whereas in DY one faces the convolution of two TMDs. In this section,

we will discuss the properties of TMDs from the theoretical point of view and address them in more

detail. On focus is the use of kT factorization theorems, the renormalization of rapidity singularities,

and the TMD evolution behavior in the factorized dynamical regimes (see [24] for a comprehensive

review).

The core of the TMD factorization theorem in its current form [15, 26–28], is based on the under-

standing of the structure of rapidity divergences in the DY and/or SIDIS cross section.

As shown in Fig. 3, the cross section for SIDIS can be split, by virtue of power counting ar-

guments, into three pieces: a transverse-momentum dependent initial state (called “F”), a final state

(termed “D”), and a soft-interaction part (denoted by “S”) which connects the previous two. The

power counting procedure, which defines these states, appears naturally in an effective field-theory

2Based on the contribution by I. Scimemi.
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Figure 3. Generic structure of a SIDIS-like process involving various TMD PDFs. The factorization of dynamical

regimes is indicated by dashed lines. The large μ2 evolution is controlled by the renormalization-group equation

(RGE), while the evolution with respect to ζ follows the Collins-Soper-Sterman (CSS) equation [25] (see text).

framework, like the Soft Collinear Effective Theory (SCET) [29–31]. However, one can obtain this

dissection of the cross section, by employing more standard QCD arguments in connection with fac-

torization theorems. Actually, the states so naively identified as above, are not per se well defined.

This can be checked, for instance, by a one-loop calculation, to show that the rapidity divergences

induce a mixing of all of these states so that it is impossible to arrive at a rigorous definition of a state

whose perturbative calculation allows the proper separation of ultraviolet and infrared (IR) scales. In

order to achieve this goal, we have to proceed in a different way which is exposed below.

To this end, we define the bare (unrenormalized and singular in rapidity) quark, anti-quark and

gluon unpolarized TMD PDF operators as follows:

Obare
q (x, bT ) =

1

2

∑

X

∫
dξ−

2π
e−ixp+ξ−

{
T

[
q̄i W̃T

n

]
a

(
ξ

2

)
|X〉γ+i j〈X| T̄

[
W̃T†

n q j

]
a

(
− ξ

2

)}
,

Obare
q̄ (x, bT ) =

1

2

∑

X

∫
dξ−

2π
e−ixp+ξ−

{
T

[
W̃T†

n q j

]
a

(
ξ

2

)
|X〉γ+i j〈X| T̄

[
q̄iW̃

T
n

]
a

(
− ξ

2

)}
,

Obare
g (x, bT ) =

1

xp+

∑

X

∫
dξ−

2π
e−ixp+ξ−

{
T

[
F+μ W̃T

n

]
a

(
ξ

2

)
|X〉〈X|T̄

[
W̃T†

n F+μ
]
a

(
− ξ

2

)}
, (9)

where ξ = {0+, ξ−, bT } and n, n̄ are lightcone vectors (n2 = n̄2 = 0, n·n̄ = 2). For a generic vector v, we

have v+ = n̄ · v and v− = n · v. Repeated color indices a (a = 1, . . . ,Nc for quarks and a = 1, . . . ,N2
c − 1

for gluons) are summed up. The representations of the color SU(3) generators inside the Wilson lines

are the same as the representations of the corresponding partons (i.e., fundamental representation for

quarks and adjoint representation for gluons). The Wilson lines W̃T
n (x) emerge at the coordinate x

and continue to lightcone infinity along the vector n, where they connect to a transverse gauge link

(indicated by the superscript T ) extending to transverse infinity.
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The hadronic matrix elements of the operators, defined in Eq. (9), provide the unsubtracted TMDs

in accordance with the TMD factorization theorems [15, 26, 27]:

Φq←N(x, bT ) =
1

2

∑

X

∫
dξ−

2π
e−ixp+ξ−〈N |

{
T

[
q̄i W̃T

n

]
a

(
ξ

2

)
|X〉γ+i j〈X|T̄

[
W̃T†

n q j

]
a

(
− ξ

2

)}
|N〉,

Φq̄←N(x, bT ) =
1

2

∑

X

∫
dξ−

2π
e−ixp+ξ−〈N |

{
T

[
W̃T†

n q j

]
a

(
ξ

2

)
|X〉γ+i j〈X|T̄

[
q̄iW̃

T
n

]
a

(
− ξ

2

)}
|N〉,

Φg←N(x, bT ) =
1

xp+

∑

X

∫
dξ−

2π
e−ixp+ξ−

×〈N|
{
T

[
F+μ W̃T

n

]
a

(
ξ

2

)
|X〉〈X|T̄

[
W̃T†

n F+μ
]
a

(
− ξ

2

)}
|N〉 , (10)

where N is a nucleon/hadron.

Here, the variable x represents the momentum fraction carried by a parton originating from the

nucleon (this refers to the TMD labeling rule f ← N). One notices that at the operator level the

TMDs resemble the integrated parton densities, the only difference being that the parton fields are

additionally separated by the spacelike distance bT . In order to renormalize correctly the operators

and the respective matrix elements, one has to perform the regularization of the UV, IR and rapidity

divergences. The UV divergences in the TMDs are removed by the usual renormalization factors.

In order to cancel rapidity divergences, one has to consider both the so-called zero-bin subtractions

and the soft function. According to the SCET terminology, the “zero-bin” represents the soft-overlap

contribution that has to be removed from the collinear matrix element in order to avoid double count-

ing of soft singularities [32]. The combination of the zero-bin subtraction with the soft function has

a very particular form, which is dictated by the factorization theorem and should be included in the

definition of the TMD operators in the form of a single “rapidity renormalization factor” R in order to

complete the definition of the renormalized TMD operator. Then, one has

Oq,q̄(x, bT , μ, ζ) = Zq(ζ, μ)Rq(ζ, μ)Obare
q,q̄ (x, bT ),

Og(x, bT , μ, ζ) = Zg(ζ, μ)Rg(ζ, μ)O
bare
g (x, bT ) , (11)

where Zq (quark) and Zg (gluon) are the UV renormalization constants for the TMD operators and the

scale ζ emerges as a result of splitting the soft function between the two TMDs F and D.

The scales μ and ζ are related to the UV and rapidity subtractions, respectively. While the UV

renormalization factors depend on the UV regularization method and the regularization scale μ, the

“rapidity renormalization factors” depend in addition on the rapidity regularization method and the

rapidity scale ζ as well. Remarkably, because the soft function is process independent, the “rapidity

renormalization factors” turn out to be process independent as well (see [15, 26–28, 33] for general

arguments and [34] for an explicit calculation at the next-to-next-to-leading order (NNLO)). However,

the particular form of the zero-bin subtractions, contained in the factor R, is regulator dependent.

Therefore, one has to fix the order of how to deal with these singular factors exactly. Following

[35], one can first remove all rapidity divergences and carry out the zero-bin subtraction, performing

subsequently the multiplication with the Z factors. In that case, one finds that the factor R contains

not only rapidity divergences, but also explicit UV poles which, however, have already been taken

into account by means of the factor Z. Thus, different subtraction procedures can produce different

intermediate expressions, while the final (UV finite and rapidity-divergences-free) expressions will be

the same.
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The final definitions for the TMDs entering the SIDIS process in Fig. 3 read

F f←N(x, bT ; μ, ζ) = 〈N|O f (x, bT ; μ, ζ)|N〉,
D f→N(z, bT ; μ, ζ) = 〈N|†O f (z, bT ; μ, ζ)|N〉† . (12)

This definition in conjunction with the TMD factorization theorem implies the following relation

between bare and renormalized TMDs

F f←N(x, bT ; μ, ζ) = Z f (μ, ζ)R f (μ, ζ)Φ f←N(x, bT ),

D f→N(z, bT ; μ, ζ) = Z f (μ, ζ)R f (μ, ζ)Δ f→N(x, bT ) . (13)

The TMD factorization theorem dictates the explicit form of R f as well. It is given by the expression

R f (ζ, μ) =

√
S (bT )

Zb
, (14)

which involves the soft function S (bT ) and the zero-bin contribution Zb, i.e., the soft overlap of the

collinear and the soft sectors entering the factorization theorem [15, 26–28, 32].

The soft function is defined as the vacuum expectation value of a certain configuration of Wilson

lines pertaining to the process under investigation. Consider, for instance, the SIDIS process. Then,

one has

S (bT ) =
Trc

Nc

〈0| T
[
S T†

n S̃ T
n̄

]
(0+, 0−, bT )T̄

[
S̃

T†
n̄ S T

n

]
(0) |0〉 . (15)

The Wilson lines are given by the following ordered exponentials

S T
n = TnS n , S̃ T

n̄ = T̃nS̃ n̄ , (16)

S n(x) = P exp

[
ig

∫ 0

−∞
ds n · A(x + sn)

]
,

Tn̄(x) = P exp

[
ig

∫ 0

−∞
dτ�l⊥ · �A⊥(0+,∞−, �x⊥ + �l⊥τ)

]
,

S̃ n̄(x) = P exp

[
−ig

∫ ∞

0

ds n̄ · A(x + n̄s)

]
,

T̃n(x) = P exp

[
−ig

∫ ∞

0

dτ�l⊥ · �A⊥(∞+, 0−, �x⊥ + �l⊥τ)
]
.

The transverse Wilson lines Tn are indispensable in singular gauges, e.g., the lightcone gauge n ·
A = 0 (or n̄ · A = 0) (see [17, 36–40]), while in covariant gauges the Tn’s appear only formally in

order to preserve gauge invariance, but do not contribute. Pay attention to the fact that the collinear

Wilson lines WT
n (x), used in the TMD operators given by Eq. (9), are defined in the same way as

the soft Wilson lines S T
n (x). However, we keep them apart because they behave differently under

regularization.

A few technical remarks are here in order. The zero-bin (or overlap) subtraction is a subtle issue

and demands particular caution. (i) The subtraction procedure depends on the regularization method

used to remove the rapidity divergences (see, e.g., [27] for a more complete discussion). (ii) It might be

impossible to define the zero-bin (overlap) region in terms of a proper matrix element for a particular

regularization scheme, even if it is calculable. Choosing a convenient rapidity regularization, the

zero-bin subtractions can be related to a particular combination of soft factors. Using, for instance,

the modified δ-regularization scheme, the zero-bin subtraction becomes equal to the soft factor: Zb =
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S (bT ). In fact, the modified δ-regularization scheme has been employed with the aim to preserve

just this relation, see [34, 35]. A crucial consequence of this relation is that the collinear Wilson

lines Wn(n̄)(x) and the soft Wilson lines S n(n̄)(x) assume different regularized forms. Finally, using the

modified δ-regularization, the expression for the rapidity renormalization factor becomes

R f (ζ, μ)

∣∣∣∣∣
δ-reg.

=
1√

S (bT ; ζ)
, (17)

which was first explicitly verified at NNLO in [34, 41], and was confirmed for various kinematics

in [35]. By virtue of the process independence of the soft function [15, 26–28, 33], the factor R f is

process independent as well. We complete this discussion by a comment on the TMD formulation

used in Ref. [15]. There, the rapidity divergences are regularized by tilting the Wilson lines off-the-

light-cone. This way, the contributions originating from the overlapping regions and the soft factors

can be recombined in the individual TMDs by properly combining different soft factors with a partially

removed regulator. This combination entails in our notation the factor R f , i.e.,

R f (ζ, μ)

∣∣∣∣∣
JCC

=

√
S̃ (yn, yc)

S̃ (yc, yn̄)S̃ (yn, yn̄)
. (18)

The further steps remain the same as with the δ-regulator technique.

The use of the modified δ-regulator brings within reach a perturbative calculation at NNLO. In-

deed, the matrix elements for the soft factor have been evaluated at the two-loop order in [34]. This

has made it possible to calculate all unpolarized TMDs and TMD fragmentation functions (FF)s at the

same order [35, 41]. In addition, also the calculation of the soft matrix element for double-parton scat-

tering [42] has been carried out at NNLO. The results obtained for the TMDs confirmed the previous

QCD calculations performed in [43–47]. Employing symmetry arguments for the soft factor, the evo-

lution of all unpolarized TMDs has been performed at the three-loop order in [48] finding agreement

with a recent result reported in [49]. These calculations use the operator product expansion of the

TMDs in the lowest order of the power expansion which works sufficiently well for asymptotically

high transverse momenta. However, a complete treatment of the TMDs must also include analysis

beyond this lowest order, a subject we expect to become an active field of research in the near future.

For the time being, the nonperturbative structure of the unpolarized TMDs has been modeled within a

renormalon analysis in the limit of high transverse momentum, see [50]. Remarkably, it shows a non-

trivial entanglement between the transverse momentum and the Bjorken variables beyond the lowest

order in the power expansion.

At the end of this exposition, we turn our attention to the evolution of TMDs. Recalling Eq. (12),

we write

μ2 d

dμ2
O f (x, bT ) =

1

2
γ f (μ, ζ)O f (x, bT ), μ2 d

dμ2
O f (z, bT ) =

1

2
γ f (μ, ζ)O f (z, bT ) . (19)

The TMD PDF operator and also the TMD FF operator have the same anomalous dimension γ f , which

comes solely from the renormalization factor Z f and is universal on account of the universality of the

hard interactions [15, 26, 27]. Applying standard RGE techniques, we obtain

γq(μ, ζ) = 2 ÂD
(
Z2 − Zq

)
, γg(μ, ζ) = 2 ÂD

(
Z3 − Zg

)
, (20)

where ÂD represents the operator which extracts the anomalous dimension from the counterterm (i.e.,

gives the coefficient in front of the leading pole in 1/ǫ with a n! prefactor, n being the order of the
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perturbative expansion). The first term of the perturbative expansion is the cusp anomalous dimension

Γ
f
cusp [51], given by

γ f = Γ
f
cusplζ − γ f

V
, (21)

where we have used the notation

LX ≡ ln

⎛⎜⎜⎜⎜⎝
X2b2

T

4e−2γE

⎞⎟⎟⎟⎟⎠ , lX ≡ ln

(
μ2

X

)
, λλλδ ≡ ln

(
δ+

p+

)
. (22)

At the level of the renormalization factors, the logarithmic part of the factor R f can be unambiguously

fixed by means of the relation

d2 ln R f

d ln μ2 d ln ζ

∣∣∣∣∣∣
f .p

= ÂD

⎡⎢⎢⎢⎢⎣Z f

(
d ln R f

d ln ζ

)

s.p

⎤⎥⎥⎥⎥⎦ = −
Γ

f
cusp

2
. (23)

A similar relation was obtained in [52, 53].

Most part of the work reported above, has covered unpolarized TMDs. However, for a complete

understanding of the confinement process, the study of polarization effects and twist expansion of

TMDs are of fundamental importance as well. Progress has been achieved with respect to the under-

standing of rapidity divergences and their treatment via soft factor functions by virtue of the TMD

factorization theorem. The nonperturbative structure of TMDs should also be explored from a theo-

retical and an experimental point of view. Among some recent developments, we like to mention the

efforts to combine the TMD formalism with the jet analysis discussed in [54–56].

4 3D imaging of the nucleon’s partonic content in terms of GPDs

3In continuation of the previous discussion of the spatial distribution of quarks and gluons, we will

describe in this section distributions which can provide tomographic 3D images of the nucleon [57,

58], termed generalized parton distributions, or (GPD)s for short. These quantities were initially

introduced in connection with the partonic description of deeply virtual Compton scattering (DVCS)

by Müller [59], and independently by Ji [60], and Radyushkin [61]. More recently, they have also

been employed in the description of deeply virtual meson production (DVMP) [62, 63] and in timelike

Compton scattering (TCS) [64]. A recent review of the use of GPDs can be found in [65] and broader

comprehensive reviews in [66–70], while global analysis of available data is performed in [71]. The

efforts to extract GPDs from experiment will be addressed in Sec. 6 and Sec. 7.

Unlike PDFs and TMDs, GPDs are defined in terms of non-forward hadronic matrix elements of

quark and gluon correlators, i.e., p′ � p, as one sees from the generalized form factor for quarks (see,

e.g., [65])

Fq(x, ξ, t) =

∫
dy−

2π
e−ixp+y−〈p′|ψ̄(

y−

2
)
γ+

2
ψ(−y

−

2
)|p〉 (24)

≡ Hq(x, ξ, t)
[
U(p′)γμU(p)

] nμ

p · n + Eq(x, ξ, t)

[
U(p′)

iσμν(p′ − p)ν

2M
U(p)

]
nμ

p · n ,

where we have suppressed the Wilson lines needed to ensure gauge invariance. Here, the quantities

Hq(x, ξ, t) and Eq(x, ξ, t) are the quark GPDs which generalize the nucleon form factors F1 and F2

in Eq. (1). They depend on the squared hadron momentum transfer t = (p′ − p)2 and the skewness

3Based on the contribution by H. Moutarde.
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ξ (p p)(n/2), whereas x is the average longitudinal momentum fraction carried by the quark. Note

that by replacing in (25) γμ −→ γμγ5, one obtains two additional quark GPDs, viz., H̃q(x, ξ, t) and

Ẽq(x, ξ, t) so that there are in total four chiral even GPDs defined in transverse space and longitudinal

momentum. Thus, GPDs provide a snapshot of the nucleon in the bT plane at each x value. Analogous

expressions are valid also for gluon GPDs. Employing factorization theorems, the GPDs in DVCS

can be linked to the electroproduction of photons and pseudoscalar/vector mesons. At the leading-

twist two level, factorization theorems were proved for transverse polarized photons in DVCS [63]

and longitudinally polarized photons in DVMP [72]. These basic hadronic processes involving GPDs

are displayed in Fig. 4.

l'

l
l'

l

GPD(x,  ,t)

γ

ξ

x

GPD(x,  ,t)

+ξ −ξ

ξ

x

π,ρ,ω...

Ν,Λ,Σ...

t
p

(Q²)

p'

(Q²)γ∗

g

DAγ∗

Figure 4. Left panel. Illustration of the DVCS process. Right panel. Schematic representation of the DVMP.

The factorization of each process is indicated by dashed lines.

Evaluating the GPDs for the skewness ξ → 0, one obtains for the squared hadron momentum

transfer t → −∆2
T

. This allows one to perform a Fourier transformation of GPD(x, ξ = 0, t) with

respect to ∆T and derive adjoint distributions of quarks and gluons as functions of their longitudinal

momentum fraction x and the transverse position bT , fa(x, bT ), where a = q, q̄, g. These quantities

effectively resemble spatial 3D distributions, i.e., tomographic images, of quarks and gluons inside

hadrons. Thus, the combination of GPDs and TMDs can provide a deep and encompassing 3D view

on the quark and gluon content of hadrons.

Another key issue in studying the nucleon structure relates to the question of how the proton spin

is distributed among its constituents. It has been established by measurements of the European Muon

Collaboration (EMC) [73] that the proton’s quark and antiquark constituents with a given longitudinal

momentum fraction x contribute only about 30 % of its (longitudinal) spin. Recent data taken by

the RHIC SPIN Collaboration [74] indicate that about 15 % of the proton’s spin is built up by gluons.

These important discoveries notwithstanding, still the origin of half of the proton spin is yet unknown.

Because some GPDs are intimately related to the orbital angular momentum carried by quarks and

gluons [75], they are indispensable tools to reveal the transverse, i.e., transverse-position dependent

(bT ), structure of the nucleon beyond the collinear approximation, e.g., via DVCS (see Fig. 4). An

example for the quantification of this connection is provided by Ji’s sum rule [76], which expresses

the total angular momentum Jq (helicity and orbital momentum) carried by quarks and anti-quarks of

the same flavor, and can be computed in lattice QCD, see [77] and Sec. 5.

What are the key steps towards nucleon imaging? We first define transverse plane coordinates.

Considering a collection of partons confined in a hadron, labeled by an individual index i, flying

collinearly at (almost) the speed of light and carrying a longitudinal momentum fraction xi, the trans-

verse center of momentum RT is defined by

RT =
∑

i

xirTi , (25)
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where rTi denotes the position of the ith parton relative to an arbitrary origin in the transverse plane.

Following the conventions of Diehl [67], the 2D transverse plane Fourier transform of a function f

evaluated at position bT reads

f (bT ) =

∫
d2 DT

(2π)2
e−iDT bT f (t) , (26)

where the Mandelstam variable t is related to the vector DT through

t = t0 − (1 − ξ2)D2
T , (27)

and t0 = −4ξ2m2
N
/(1−ξ2). Here |t0| is the smallest value of |t| accessible at given skewness ξ. Then, the

probability density ρq(x, bT , λ, λN) to find a quark q with helicity λ, carrying longitudinal momentum

fraction x, at transverse position bT , inside a nucleon with longitudinal polarization λN and transverse

spin S T , is [57]

ρq(x, bT , λ, λN) =
1

2

⎡⎢⎢⎢⎢⎢⎣Hq(x, 0, b2
T ) +

bi
T
ǫ i jS

j

T

mN

∂Eq

∂b2
T

(x, 0, b2
T ) + λλN H̃q(x, 0, b2

T )

⎤⎥⎥⎥⎥⎥⎦ . (28)

From symmetry considerations, the Fourier transform of a generic GPD Fq can only depend on the

modulus of bT , which is made transparent by the reduction of Eq. (26) to a one-dimensional integral

Fq(x, 0, b2
T ) =

∫ +∞

0

d|DT |
2π
|DT |J0(|bT ||DT |)Fq(x, 0,−D2

T ) , (29)

where J0 is the 0th-order Bessel function. Therefore the 3D view of the nucleon that we may hope to

extract from GPDs requires the knowledge of the three GPDs H, E and H̃, the last two GPDs inducing

the deviation from rotational invariance in the transverse plane.

Therefore, the path to nucleon tomography through GPDs is the following (F being a generic

notation for a GPD):

1. Extract F(x, ξ, t) from experimental data.

2. Extrapolate F(x, ξ, t) to vanishing skewness F(x, 0, t).

3. Extrapolate F(x, 0, t) up to infinite t.

4. Compute the 2D transverse plane Fourier transform of F(x, 0, t) using Eq. (29).

5. Propagate statistical and systematic experimental uncertainties, and theoretical uncertainties

through the whole computing chain.

6. Control extrapolations and evaluate the corresponding uncertainties.

Task 1 has been recently reviewed in [78], where the current status is described, as well as the

prospects offered by future data from Jefferson Lab, COMPASS or EIC. This problem is much harder

than PDF fitting, notably because of the curse of dimensionality (more functions depending on more

variables), but the first decade of DVCS or DVMP fits show the feasibility of GPD extractions from

experimental data. It should nevertheless be stressed that global fits are needed, in particular to sep-

arate the contributions from gluons (HERA, EIC), sea quarks (HERMES, COMPASS) and valence

quarks (CLAS, Hall A).

Task 2 may turn out to be easier than other well-known extrapolations in hadronic physics, as,

e.g., proton radius extractions. In the latter, one has to evaluate the derivative of the form factor
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F1 at vanishing momentum transfer t, while experimental data are collected only for non-vanishing

momentum transfer. In the former, experimental data exist only for non-vanishing ξ, and the available

physical range is bounded by kinematic considerations. We can hope at best to extract data for ξ ∈
[ξmin, ξmax] with 0 < ξmin < ξmax < 1. Let us now assume that we know a GPD F over this interval. The

well-known polynomiality condition asserts that the nth Mellin moment of this GPD is a polynomial

in the variable ξ. Knowing a polynomial on a given interval is enough to know it everywhere in the

complex plane, and in particular at ξ = 0. Thus, from measurements at ξ � 0, we may hope to get

the Mellin moments of GPDs at ξ = 0. Moreover, the support condition x ∈ [−1,+1] ensures that

this type of moment problem, called Hausdorff moment problem, admits a unique solution. Thus, it

should be possible to recover the GPD at vanishing skewness F(x, ξ = 0, t) without any bias related

to the choice of an extrapolation formula.

Task 3 is less constrained. Some model dependence will probably be unavoidable even if the t-

behavior of the GPDs should follow the form-factor sum rules linking the integral over x of GPDs

to form factors. An essential theoretical progress was achieved in 2012 through the computation of

finite-t and target-mass corrections to DVCS [79]. Factorization theorems [63, 72] give a partonic

interpretation of DVCS or DVMP under the assumption of the presence of one (unique) large scale

in the process, usually the virtuality Q2 of the exchanged photon (see Fig. 4). In the case of DVCS,

this means that the nucleon mass mN and the momentum transfer t are small compared to Q2. Unfor-

tunately, most of the experimental data collected so far possess a large Q2, with |t|/Q2 ranging from

≃ 0.04 in HERA to 0.15 in CLAS. A significant part of them may be a priori excluded from a fit

relying on a conservative use of factorization theorems as, e.g., |t|/Q2 < 0.1. Therefore, the state-of-

the-art expressions of the DVCS amplitude including these |t|/Q2 and m2
N
/Q2 corrections will play a

key role in the analysis of future data by extending the t-range that can be used to actually constrain

the GPD shapes from experimental data.

After completion of the first three tasks, the computation of the Fourier transform becomes a

purely numerical problem. The challenge will be the evaluation of the corresponding integrals with

a ≃ 0.1% systematic uncertainty. Future Jefferson Lab data indeed promise a statistical uncertainty

at the level of a few percent. Evaluating the integral of Eq. (29) with a similar uncertainty would

make no sense since it would spoil the accuracy of the experimental data in the imaging process.

Once all physical hypotheses are stated, the numerical evaluation of an integral should be obtained

with a precision at least an order of magnitude smaller than that of measurements. It is reasonable to

expect such a control of the numerics in nucleon tomography because it has been achieved, e.g., in the

computation of Compton Form Factors (CFF) [80] — the coefficient functions of the DVCS process.

The propagation of experimental uncertainties of task 5 can be handled by repeating the previous

steps using Monte Carlo replicas of the experimental data generated with appropriate probability den-

sities. Such a program was explicitly carried on in the case of Compton Form Factor fits in the valence

region [70]. This part of the problem is therefore limited by computing resources, not by some phys-

ical principles. Part of the theoretical uncertainties (order of perturbative expansion in the coefficient

functions or in GPD evolution equations, relation between the factorization scale and the virtuality Q2

of the exchanged photon, approximations in the expressions of DVCS or DVMP cross sections, etc.)

can be systematically probed by means of a flexible framework to perform GPD computations. Such

a framework is under construction but will be released to the whole community as soon as its testing

period is over. It’s the PARTONS4 project and its software architecture was described in [81]. To

state things simply, the PARTONS framework allows systematic differential studies through a simple

interface allowing physicists to change models, assumptions or parameterizations to perform the same

computations, and evaluate the dispersion of results.

4PARtonic Tomography Of Nucleon Software
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The remaining task 6 addresses the question of GPD parameterizations. Today, there is no known

parameterization of GPD relying only on first principles, and some control of the extrapolations to

large t and small ξ will be needed. As said before, the key to the small ξ extrapolation is probably the

polynomiality condition, which is an expression of Lorentz covariance. It goes without saying, that

nucleon tomography can possibly be achieved only with models embedding a decent implementation

of Lorentz covariance. A promising venue to obtain models fulfilling the polynomiality and positivity

properties consists in the description of a GPD as an overlap of light front wave functions in the

DGLAP region (defined by |ξ| < |x|) and its covariant extension to the complementary ERBL region

(defined by |x| < |ξ|). A contemporary status on this model building program can be found in [82]. At

last, neural networks may play an important role in the propagation of errors through extrapolations.

They are commonly used in PDF fits, and were used in CFF fits in a pioneering study in 2011 [83].

To summarize, nucleon imaging through GPDs has witnessed tremendous progress over the last

decade, showing the maturity of the field from the phenomenological point of view. Nucleon imaging

is difficult, but there are good reasons to think that most of the conceptual problems are solved, or

close to being solved. If the awaited experimental data are as accurate as expected, and if an EIC is

built to explore in detail the gluon sector, then precision tomography of the nucleon is within reach

(see Sec. 7).

5 Nucleon structure on the lattice — novel results

5 Lattice QCD calculations start directly from the QCD Lagrangian defining it on a four-dimensional

discretized hyper-cube proposed by K. Wilson [84] and utilizing as input the bare quark masses and

the coupling constant or equivalently the lattice spacing. State-of-the-art simulations have seen a

tremendous progress due to both better formulations and algorithms as well as more powerful com-

puters. Nowadays we simulate the full QCD near the physical values of the parameters and reproduce

key hadronic properties such as the values of the low-lying hadron masses including isospin break-

ing effects due to the difference in the up and down quark masses and electromagnetism as shown in

Fig. 5.

Figure 5. Isospin mass splitting obtained by the

BMW Collaboration in [85]. The isospin and

electromagnetic effects enter the nucleon mass with

opposite signs. The physical mass splittings are

reproduced.

Moments of GPDs have also been computed in lattice QCD providing insight into the distribution

of spin, momentum fraction, etc., as well as observables that give hints for physical phenomena be-

yond the physics of the standard model, for example, scalar and tensor interactions. An example of

5Based on the contribution by C. Alexandrou.

   
 

 
DOI: 10.1051/, 01003 (2017) 713701003137EPJ Web of Conferences epjconf/201

XII th  Quark Confinement & the Hadron Spectrum

14



the successful application of lattice QCD is the computation of the first moments of GPDs. In Fig. 6

we show the isovector quark momentum fraction, helicity and transversity. For the former two quan-

tities, lattice QCD provides a postdiction, while for the latter the obtained result constitutes a genuine

prediction.

Figure 6. Lattice QCD calculations for the isovector quark momentum fraction 〈x〉u−d (left), helicity 〈x〉Δu−Δd

(middle) using various discretization schemes. The right panel shows twisted-mass results for transversity [86].

Experimental values are marked by asterisks.

The generalized form factors A20(Q2)|Q2=0 and B20(Q2)|Q2=0, where Q2 = −q2 is the momentum

transfer squared, are extracted from the nucleon matrix element of the vector operator containing one

derivative and provide valuable information on the proton spin. We have computed A
q

20
(0) = 〈x〉q and

B
q

20
(0) for q = u, d, s, and also A

g

20
(0) = 〈x〉g for the gluon. We find

∑

q=u,d,s

〈x〉q = 0.74(10) 〈x〉g = 0.27(2)(2) (30)

in the MS at 2 GeV, where the mixing of 〈x〉u+d+s with the gluon operator is perturbatively computed

using one-loop lattice perturbation theory [87]. The systematic error results from the difference be-

tween using one- and two-levels of stout smearing. Having obtained both the quark and the gluon

momentum fractions, we can check the momentum sum
∑

q〈x〉q + 〈x〉g = 1.01(10)(2), which is very

well satisfied. The proton can be written as JN =
1
2

∑
q

(
A

q

20
+ B

q

20
(0)

)
+

(
A
g

20
+ B

g

20
(0)

)
. We have

found that B
q

20
is consistent with zero. Assuming B

g

20
(0) ∼ 0, we can check the spin sum. We get

Ju+d+s = 0.374(51)(42) which, when combined with the gluon contribution of 0.136(12)(12), yields

JN = 0.51(5)(4), in accord with the spin sum of 1/2 [88].

A new approach that could allow us to obtain the parton distribution functions directly from lattice

QCD has been proposed by Ji [89]. One considers the matrix element

q̃(x,Λ, P3) =

∫ +∞

−∞

dz

4π
e−izxP3〈P|ψ̄(z, 0) γ3W(0→ z)ψ(0, 0)|P〉h(P3,z) , (31)

where q̃(x) is the quasi-distribution to be related to the PDFs, Λ is a UV cut-off scale like 1/a, with a

being the lattice spacing, and P3 is the nucleon’s momentum in the z direction. The above correlator

includes a Wilson lineW(0→ z) extending from the location of the quark field at 0 to∞ along the z

direction [89].

First results have been obtained for N f = 2 + 1 + 1 (two degenerate u and d quarks, plus a strange

and a charm quark) clover fermions on a HISQ sea [90, 91], and for N f = 2 + 1 + 1 twisted-mass

fermions [92, 93] using simulations with a pion mass of about 310 MeV and 370 MeV, respectively.
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In Fig. 7 we show the unrenormalized PDFs obtained with the twisted-mass fermions. Efforts are

under way to understand the renormalization of these quantities in more detail.
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Figure 7. The isovector unpolarized, polarized, and transversity parton distribution (figure taken from Ref. [93]).

Despite these successes, there are also challenges ahead. We demonstrate one such challenge by

examining the neutron electric dipole moment obtained from the CP-odd form factor F3(0) (see Ref.

[94] for technical details). We show in Fig. 8 simulations for F3(Q2) for three source-sink time sep-

arations and two different pion masses and lattice sizes. The left panel shows the results for the ratio

R3pt(Q
2 = 0) (from which F3 can be extracted) for one ensemble of twisted-mass fermions fitted in the

plateau region with a constant using a pion mass of 373 MeV. The right panel displays analogous re-
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-0.4

-0.2
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-6 -4 -2  0  2  4  6

F
3
(
Q
2
=
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Figure 8. Left panel: Computation of R3pt(Q
2 = 0) as a function of the insertion time

(
t − t f /2

)
/a on a 323 × 64

lattice at mπ = 373 MeV using 4623 statistics at three source-sink separations of ts/a = 10, 12, 14, denoted by

green, red, and blue, respectively. Right panel: Computation of F3(Q2) on a 483 × 96 lattice at mπ = 131 MeV

using 4528 statistics at ts/a = 10.

sults for F3(0) using a pion mass of 131 MeV and the smallest source-sink time separation. Using the

same statistics, and employing the smallest time propagation ts, the errors turn out to be prohibitively

large for the ensemble with a pion mass close to the physical value. But a larger time propagation

is necessary in order to isolate the nucleon ground state. This, however, increases the gauge noise

resulting in turn to even larger errors rendering the determination of F3(0) computationally very de-

manding. Thus, a brute-force approach is not sufficient. Noise reduction algorithms are needed and a

lot of effort has being devoted towards this goal.
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6 Facilities and Experiments - from Past to Present

6 The study of the internal structure of hadrons is entering a new era. Substantial advances in theory

now allow for constructing snapshots of particles that can be compared to experiment. These one-

dimensional characteristics can be determined from experiment by extracting the elastic form factors.

The resolution of the image is determined by the momentum transfered to the object and new facilities

like 12 GeV Jefferson Lab (JLab) enable access to scales thus far not accessible. Form factors thus

continue to play an essential role in understanding hadron structure.

Experimental and theoretical knowledge acquired over the past decades, as well as availability

of new technology, now enables revolutionary access to a multidimensional representation of the

nucleon’s inner structure. The pioneering efforts of HERMES and COMPASS, together with the 6

GeV JLab, have demonstrated the feasibility of studying TMDs and to access GPDs through exclusive

processes like DVCS (Fig. 4). For example, recent measurements at JLab have demonstrated that

high-quality continuous wave (CW) polarized electron beams with a combination of large acceptance

and precision detectors are excellent tools for measuring these fundamental distributions. Recent data

are also available from RHIC and Drell-Yan studies at Fermilab.

In the near term, the 12 GeV JLab with its extended kinematic range and new experimental hard-

ware has the potential to reveal new aspects of nonperturbative dynamics and the nucleon valence

structure. COMPASS can generally provide similar information, but with lower statistical precision

and at lower Bjorken x (xB). There will also be data from the Mainz 2 GeV CW microtron facility,

which features excellent CW polarized electron beams. However, the lower energy at Mainz will

have a very limited kinematic reach as compared to JLab. In the future, the Electron-Ion Collider

(EIC) will allow for unprecedented access to the nucleon sea quark and gluon structure. A selection

of experiments, projections and results are discussed in the sections below.

6.1 Measuring elastic form factors

The electric and magnetic form factors of the nucleon (cf. Eqs. (2) and (3)) describe the distribution

of charge and currents and are measured using elastic electron scattering (see Fig. 1, left panel). At

sufficiently small values of the momentum of the virtual-photon probe, Q2, form factors provide a

measure of the proton size. The proton size extracted from recent muonic Lamb shift measurements

is seven standard deviations smaller than that from electron scattering experiments. This discrepancy

known as the “proton radius puzzle” illustrates how our limited knowledge of hadron structure also

limits high precision tests of QED in atomic systems. The 12 GeV JLab addresses this puzzle with

the PRAD electron scattering experiment [95]. PRAD uses a windowless hydrogen gas target and a

downstream electromagnetic calorimeter to push to the smallest possible scattering angles, and thus

to the smallest possible values of Q2 (down to Q2 = 2 × 10−4 GeV2) to constrain the proton charge

radius. The MUSE experiment at the Paul Scherrer Institut (PSI) will address this puzzle with muon

scattering.

Measurements of both proton and neutron form factors over a wide kinematic range allow for

flavor separation of charge and magnetization to distance scales deep inside the nucleon. There are a

variety of QCD inspired models that can describe the existing form factor data for both the up quark

and down quark in the proton at moderate values of Q2. However, these models diverge significantly

at larger values of Q2 as illustrated in Fig. 9. The high Q2 region will be probed with high precision

by several approved 12 GeV experiments designed to measure the electromagnetic form factors of

both the proton and the neutron [96–101]. For the neutron, these new data will nearly triple the range

6Based on the contribution by T. Horn.
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Figure 9. Existing data and projected uncertainties for the ratio of the μpG
p

E
/G

p

M
Sachs form factors of the

nucleon.

of momentum transfers. The “Super-Bigbite Spectrometer” (SBS) in JLab’s Hall A with its open

geometry and novel GEM detectors will play an important role in the effort to push measurements to

the highest possible values of Q2 ∼ 15 GeV2 [102, 103]. These high-precision data will also provide

constraints on parameterizations of the GPDs.

Figure 10. Predictions for Q2Fπ(Q
2) vs. existing and projected data. Solid curve (A) shows the prediction of

Ref. [104]. Remaining curves, from top to bottom: dashed curve (B) monopole form fitted to data in Ref. [105],

with mass-scale 0.74 GeV; dashed-dotted-dotted curve (C) perturbative QCD prediction using a modern, dilated

pion distribution amplitude given by Eq. (40) in [106]. The filled circles and triangle indicate the projected reach

and accuracy of forthcoming experiments [107, 108].

The pion is the lightest quark system, with a single valence quark and a single valence antiquark.

It is also the particle responsible for the long range character of the strong interaction that binds the

atomic nucleus together. A general belief is that the rules governing the strong interaction are left-

right, i.e., chirally, symmetric. If this were true, the pion would have no mass. The chiral symmetry of

massless QCD is broken dynamically by quark-gluon interactions and explicitly by inclusion of light

quark masses, giving the pion and kaon mass [106, 109]. The pion and kaon are thus seen as the key

to confirm the mechanism that dynamically generates nearly all of the mass of hadrons and central to

the effort to understand hadron structure [104].
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The 12 GeV JLab 12 features new instrumentation that allows for pushing precision meson form

factor measurements to the highest momentum transfers to date. Planned experiments aim for preci-

sion measurements of the pion form factor to Q2 = 6 GeV2 and also have the potential to determine

the pion form factor up to Q2 9 GeV2 [107, 108]. Fig. 10 illustrates the kinematic reach that nearly

quadruples the range of momentum transfers over which the pion form factor is currently known.

These measurements are made possible by the combination of the two moderate acceptance, magnetic

spectrometers the Super High Momentum Spectrometer (SHMS) and High Momentum Spectrome-

ter (HMS) pair in JLab’s Hall C. The experiments will probe a broad kinematic range over which

transition from the large-distance scales with confinement-dominated dynamics at modest Q2 to the

short-distance scales with perturbative-dominated dynamics at high Q2 is expected. The data may

also shed light on the experimental and theoretical controversy over the large Q2 results for the pion

transition form factor [110, 111] that has refocused attention on the need to understand the distribution

of momentum between the valence quark and antiquark. A classification of theoretical predictions for

this transition form factor vs. experimental data, obtained with various pion DAs, can be found in

[112].

6.2 3D Spatial Mapping - GPDs

GPDs encode the correlation between the quark/gluon transverse position in the nucleon and its lon-

gitudinal momentum, and can be measured directly in exclusive scattering processes at large Q2, in

which the nucleon is observed intact in the final state. It is recognized that DVCS and DVMP (illus-

trated in Fig. 4) are two powerful processes to probe GPDs. Together they offer a path to a full 3D

tomography of the nucleon structure.

The key to extracting GPDs from experiment are QCD factorization theorems [63, 72], which

allow the amplitudes for deep exclusive processes to be expressed in terms of GPDs [59, 62, 76, 113]

(discussed in Sec. 4). The value of Q2 at which this formalism is valid experimentally needs to be

determined and the contributions of higher twist components to observables need to be quantified.

Deeply Virtual Compton Scattering is the cleanest or golden channel to study GPDs [76]. As the

DVCS process interferes with the Bethe-Heitler process, one can access the DVCS amplitudes. At

leading twist and leading order, one determines Compton Form Factors, which are integrals of GPDs

over Bjorken x with a kernel to describe the hard photon-quark interaction. Present analyses assume

dominance of several GPDs, validity of twist-2 dominance, and a leading-order formalism. To go

beyond this, one has to fully disentangle Compton scattering, Bethe-Heitler contributions, and their

interference (after subtracting the known Bethe-Heitler contribution).

The worldwide DVCS experimental program, including experiments at JLab with a 6 GeV elec-

tron beam and HERMES with 27 GeV electron and positron beams, has given the first insight into the

nucleon GPDs by allowing initial comparisons with models. These experiments have measured large

asymmetries, in the 10-20% range, and suggest an early approach to the hard scattering regime.

DVCS cross sections and polarized asymmetries can provide detailed and precise information

about GPDs, but are sensitive only to a particular flavor combination, as long as no evolution equations

are used. Exclusive meson production provides key additional information allowing the separation of

different quark and anti-quark flavors [66]. The theoretical description of these processes is more

complicated, and thus measurements that provide information about the reaction mechanism, e.g.,

tests of hard-soft factorization, are essential. In particular, the emerging transversity GPDs [114–116]

may be accessed if dominance of the transverse cross section at small values of t <0.3 GeV2 can be

experimentally verified.

To validate the meson factorization theorems and potentially extract flavor separated GPDs from

experiment, one has measure the separated longitudinal and transverse (L/T) cross sections and their t
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Figure 11. The upper panel shows the determination of the Compton form factor ImH in the valence region as

a function of t and x using DVCS data collected with CLAS at JLab and HERMES at DESY. The lower panel

shows the first 3D views of the nucleon in terms of the spatial charge densities of the proton in a plane (bx, by)

located at two different values of the quark longitudinal momentum x (taken from [70]).

and Q2 dependencies. Only L/T separated cross sections can unambiguously show the dominance of

longitudinal or transverse photons and allow one to determine possible correlations in t and Q2.The

onset of factorization for light mesons may be expected earlier than for heavier ones. Thus, if meson

factorization is to be observed it is most probable for pion and kaon.

Accessing GPDs requires a dedicated, long-term experimental effort [117]. GPDs are not mea-

sured directly, but enter into different combinations and weighted integrals over x as discussed above.

To disentangle them requires a diverse array of experiments measuring a variety of observables, in-

cluding cross sections, beam-spin asymmetries and target-spin asymmetries for both longitudinal and

transversely polarized targets. These measurements will be performed for a variety of channels, in-

cluding both DVCS and DVMP for mesons having different isospins at COMPASS-II at CERN and

the 12 GeV JLab.

The increased energy of the JLab electron beam to 12 GeV offers the kinematic reach where the

leading order GPD formalism is anticipated to be applicable. It also provides the highest polarized

luminosity for precision measurements of key polarization observables crucial in these studies. A set

of approved DVCS experiments planned in Hall B [118, 119] with CLAS12 and Hall A [120] and

Hall C [121] will provide the necessary high-precision data for different channels and reactions over

a wide kinematic range. These data will be critical in the extraction of GPDs and parametrizations,

while constraints from dispersion-relation techniques and from the lattice calculations of the moments

of GPDs, will minimize the model dependence in those parametrizations. Fig. 12 shows the projected

impact of the 12 GeV JLab data on our knowledge of the nucleon transverse spatial profile.

There is an equally ambitious program of experiments involving DVMP, which are able to ac-

cess GPDs, or combinations thereof, that are inaccessible to DVCS. In Hall B, in parallel with the

DVCS measurements of cross sections, structure functions and beam spin asymmetries both for vec-
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Figure 12. Nucleon transverse profile as function of the impact parameter of a quark relative to the center of the

nucleon at fixed Q2 and varying values of x. The profile becomes narrower as x increases. The blue band is the

projected error centered on the model GPD calculation.

tor mesons and pseudoscalar mesons will be explored over the largest phase space ever probed in

the valence regime [122]. Experiments in Hall C will focus on L/T separation for pion electroproduc-

tion [108], and for the first time make precision measurements of K+ cross sections adding strangeness

information to the DVMP program [123]. Measuring L/T separated cross sections places strong de-

mands on experimental facilities requiring rigorous control over systematic uncertainties. Hall C at

JLab with its precision focusing spectrometers and particle identification detectors is the only facility

available for carrying out these measurements.

6.3 3D Momentum Mapping - TMDs

One of the impacts of nucleon structure beyond the one-dimensional picture is the introduction of

possible orbital motion of partons. Increasingly precise studies of the nucleon spin sum rule by the

EMC, E155, HERMES, and STAR collaborations [73, 124–132] strongly suggest that the net spin

carried by quarks and gluons does not account completely to the net value of the spin of the nucleon,

and therefore an orbital angular momentum contribution of partons to the spin of the nucleon must

be significant. This in turn implies that transverse momentum of quarks should be non-zero and

correlated with the spin of the nucleon itself.

SIDIS is the method of choice to study TMDs [133–137]. At leading twist, the dependence of the

SIDIS cross section on the azimuthal angle of the electro-produced hadron with respect to the lepton

scattering plane and on the nucleon polarization azimuthal angle allows a term-by-term separation

of the different azimuthal contributions to the measured unpolarized and polarized cross sections and

spin asymmetries. Present analyses rely on the partonic interpretation [138] to be valid. The values of

Q2, x, and z at which this is true have to be experimentally determined. The kinematic dependencies

of the basic SIDIS cross section is the only unambiguous way to do that. Basic π0 cross sections have

experimental advantages to address this.

Among the eight possible TMD functions (see Table 1), the Sivers function and the Boer-Mulders

function have received much theoretical and experimental interest as they are responsible for large

observed single-spin asymmetries in SIDIS experiments. Both of these functions are related to the

imaginary part of the interference of wave functions having non-zero orbital angular momentum. They

describe unpolarized quarks in a transversely polarized nucleon, and transversely polarized quarks in

an unpolarized nucleon, respectively. The Sivers transverse momentum distribution function has been
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recently used [139] to infer the GPD E in the collinear limit in order to estimate the angular momentum

carried by quarks in the nucleon. In SIDIS the Sivers function is also responsible for “color lensing”,

which describes the overall color attraction between a struck quark on its way to becoming a hadron

and the remnant system [140]. Finally, an important prediction of QCD that needs to be confirmed in

experiment is that the Sivers function determined in SIDIS has the opposite sign to that measured in a

Drell-Yan experiment. Measurements with both electron beams at Jlab 12 GeV and hadron beams at

RHIC, Fermilab, and COMPASS-II at CERN will provide important information.

The multi-dimensional phase space of SIDIS is complex with potentially much unknown physics.

With its projected statistical accuracy and the extended kinematic reach the 12 GeV era at Jefferson

Lab has the potential to move SIDIS measurements to a new level of sophistication. Each experimental

hall brings an essential element to this effort: Hall B with the large-acceptance CLAS12 spectrometer

will provide multi-dimensional cross sections, azimuthal distributions and single- and double-spin

asymmetries on both polarized and unpolarized neutron and deuteron targets, and on unpolarized

nuclear targets. Hall A will provide much needed neutron information through their world-leading

polarized 3He target. Finally, Hall C will add precision cross sections and their ratios for both pions

and kaons with the SHMS-HMS and Neutral Particle Spectrometer (NPS).

Figure 13. The Sivers function for the up quark as a function of transverse momentum at different values of

longitudinal momentum fraction x, as projected for JLab 12 GeV with He-3 target. The red line is the model

profile of Ref. [141]. The data to be taken will show the actual shape of the distribution. The gray error bands

have been projected around the model profile.

Figure 14. Down quark momentum tomography of the Sivers function at x=0.1 for which a non-zero value

requires a non-vanishing orbital angular momentum of the quarks. The projected resolution of the JLab 12 GeV

experiments shows a clear deformation.
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High statistical precision measurements of semi-inclusive pion and kaon production with multi-

dimensional binning in the momentum transfer Q2, invariant mass of the unobserved system W, the

final tagged-hadron energy fraction z and transverse momentum PT , are essential for performing a

model-independent extraction of the TMDs. Such experiments have been proposed and approved

for the 12 GeV upgrade. Fig. 13 shows the impact of future data from experiments in Hall B with

CLAS12, in Hall A with Super-BigBite [142] and with SoLID [143, 144] complemented with pre-

cision SIDIS experiments in Hall C [145–147] on a precision determination of the Sivers function.

These measurements enable a high-resolution tomography of the Sivers function as shown in Fig. 14.

The tensor charge is an important intrinsic property of the nucleon, similar to its axial charge or

magnetic moment, and corresponds to the first moment in xB of the transversity distribution function

hT
1

(x). It offers a benchmark test for the most modern lattice QCD calculations. This distribution is

accessible in SIDIS, through the well-known Collins effect, by using transversely polarized targets.

The tensor charge has been extracted using world data from Hermes, COMPASS and JLab 6 GeV with

limited precision. It will be measured in Hall B using CLAS [148] and in Hall A using SoLID [144,

149] and will be determined with much improved precision in the 12 GeV era.

7 Facilities and Experiments - the Future

7 To understand how the properties and structure of all forms of nuclear matter emerge from the

dynamics encoded in QCD, it is essential to precisely image gluons and sea quarks, and to understand

the role they and their interactions play in protons, neutrons, and nuclei [24, 150, 151]. For this, a

new accelerator facility is required - the Electron-Ion Collider (EIC). The EIC will exceed the earlier

ep collider HERA by providing:

• Luminosity a factor of 100-1000 times higher, allowing unprecedented three-dimensional

imaging of the gluon and sea quark distributions and to explore correlations among them

• Extensive energy variability to explore the transition in nuclear properties from the region

of sea quarks to that of abundant gluons at low x, down to 0.001 or 0.0001

• Spin-polarized proton and light ion beams to explore the correlations of gluon and sea

quark distributions with the overall nucleon spin, and the contribution of gluons and sea quarks to

the nucleon-nucleon interaction

• Heavy-ion beams to reach much higher gluon densities than with proton beams, to study

the role and behavior of gluons in nuclei, and to enhance the discovery of collective effects of gluons

The EIC machine designs are described in, e.g. Refs. [24, 150, 151], and are aimed at achieving

• Highly polarized ( 70%) beams of electrons, protons and light nuclei

• Ion beams from deuteron to the heaviest nuclei (uranium or lead)

• Variable
√

s from ∼20 to ∼100 GeV, upgradable to ∼140 GeV

• High collision luminosity ∼1033−34 cm−2s−1

• Possibility to have more than one interaction region

The EIC is designed to provide insight into nucleon structure through multi-dimensional maps

of the distributions of partons in space, momentum (including momentum components transverse

to the nucleon momentum), spin, and flavor. Measurements enabling the multi-dimensional map-

ping of the partons, require high luminosity for sufficient statistical precision to be achieved in the

7Based on the contribution by T. Horn.
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multi-dimensional kinematics governing these studies. The 12 GeV JLab [152] and COMPASS at

CERN [153] will accomplish such studies, predominantly in the valence quark region and somewhat

extending into the sea quark region. The EIC will dramatically extend these programs enabling ex-

ploration of the role of the gluons and sea quarks in hadron structure and properties.

The EIC will enable measurements of:

• the distribution of sea quarks and gluons in momentum and in position space,

• their polarization and their orbital angular momentum, the latter being closely connected

with their transverse position and transverse motion since it is a cross product (�L = �r × �p),

• correlations between the polarization and distribution of partons in momentum or position

space, which may be regarded as the QCD analog of spin-orbit correlations in atomic or nuclear

physics.

Such measurements will provide unique information on the differences of these distributions when

going from small x (a few × 0.0001) to large x (a few × 0.1). This will allow one to compare the

characteristics of gluons, sea and valence quarks to understand their relation and dynamical interplay,

as well as quark flavor dependence. This is of particular interest when comparing light-sea quark

flavor distributions, i.e., ū with d̄, s̄ with (ū + d̄)/2, or s with s̄. Significant differences between these

distributions are a direct signature of nonperturbative dynamics because perturbative parton radiation

is not able to generate them. This re-emphasized special interest in the polarization carried by sea

quarks of different flavors, regardless of their contribution to the overall spin of the proton.

A prominent TMD example, closely connected with the process of dynamical chiral symmetry

breaking, is the quark Sivers function f
q

1
(x, kT , S T ). It describes how the transverse momentum dis-

tribution of unpolarized quarks is correlated with the transverse polarization vector of the nucleon.

As a result of this, the quark distribution will be azimuthally asymmetric in the transverse momentum

space. Fig. 15 illustrates the resulting deformations of the up (left) and down (right) quark distribu-

tions using a model calculation consistent with current experimental HERMES, COMPASS and JLab

data [135, 154]. The center panel of Fig. 15 illustrates the achievable statistical precision of the quark

Sivers function from EIC kinematics, ranging from x ∼ 0.001 to a few × 0.1.

Figure 15. The density in the transverse-momentum plane for unpolarized up quarks (left) and down quarks

(right) with longitudinal momentum fraction x = 0.1 in a transversely polarized proton moving in the z-direction,

while polarized in the y-direction. The azimuthal asymmetry due to the proton polarization is described by a

model for the Sivers function [154]. The color code indicates the probability of finding the up quarks. The red

(blue) shades indicate large negative (positive) values for the Sivers function. Center: The transverse-momentum

profile of the up quark Sivers function at five values of x as accessible to the EIC, and corresponding statistical

uncertainties.

There are eight TMDs for gluons. Experimentally, the gluon TMDs and in particular the gluon

Sivers function are completely unexplored so far. At an EIC many processes could be used to probe
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the transverse momentum dependent gluon distributions. One example is electroproduction of a heavy

open-charm meson pair (DD̄), γ∗N(S T )→ D(k1) + D̄(k2) + X, where N(S T ) represents a transversely

polarized nucleon, and D and D̄ are the two mesons with momenta k1 and k2, respectively. Similar

to the Sivers effect in semi-inclusive hadron production, the gluon Sivers function will introduce an

azimuthal asymmetry correlating the total transverse momentum kT of the (DD̄) pair with the trans-

verse polarization vector S T of the nucleon. This will result in a single-spin azimuthal asymmetry.

It has been shown that such measurements are feasible at an EIC and in principle have sensitivity

to the gluon Sivers function. This would constitute a first measurement of a gluon (TMD) Sivers

effect [150].

With its broad range of collision energies, its high luminosity and nearly hermetic detectors, the

EIC could image the proton with unprecedented detail and precision from small to large transverse

distances. The accessible parton momentum fractions x extend from a region dominated by sea quarks

and gluons to one where valence quarks become important, allowing a connection to the precise

images expected from the 12 GeV JLab and COMPASS at CERN. The kinematic access the EIC

provides for a range in x transitioning from the region of valence quarks, above x ∼ 0.1, through the

region where the sea quarks may contribute to nonperturbative nucleon structure, approximately 0.01

< x ≤ 0.3, into the region where gluons are abundant, down to about x = 0.0001 or 0.001. To have

sufficient resolution, hermeticity and luminosity to measure deep exclusive reactions over this range

has been one of the fundamental hypotheses of the EIC design.

The EIC will make possible measurements of deep exclusive processes over an unparalleled large

range in x and Q2 > 10 GeV2. For example, the detection of exclusive J/Ψ meson production would

provide unprecedented maps of the gluons transverse spatial distributions within a plane perpendicular

to the parent proton motion. Such particular maps encode vital information, inaccessible without EIC,

on the amount of proton spin associated with the gluons’ orbital motion through the correlation of a

longitudinal momentum component x and a transverse spatial position bT .

Measurements of the transverse spatial and momentum distributions of gluons in nuclei could

also be performed in a variety of nuclei entering the regime where the onset of collective behavior of

gluons, and/or the onset of saturation, is found. This would open a new QCD frontier where the onset

towards a universal form of gluon matter with characteristic collective behavior can be observed. In

general, the EIC can explore the 3D sea quark and gluon structure of a fast moving nucleus, and verify

if such structure differs from that of a free nucleon.

With its wide kinematic reach, combined with the capability to probe a variety of nuclei in DIS,

semi-inclusive DIS, diffractive and deep exclusive scattering measurements, the EIC allows for ex-

ploring the internal 3D sea quark and gluon structure of a fast-moving nucleus. To date it is now

known how gluons are distributed in space, for example, if they follow the confinement radius prede-

termined by quarks, or if they contribute to nuclear structure. The momentum distributions of gluons

in nuclei has been elusive in a similar way. Due to a near-complete lack of experimental constraints,

there is not much knowledge about possible modifications of the gluon distributions in nuclei. It is not

known if gluons follow the nuclear modifications noted for the quark momentum distributions, known

as the nuclear EMC effect. Similarly, in the region of smaller x it remains unclear to what extent the

gluons are influenced by shadowing effects noted in ratios of nuclear structure functions.

With the EIC’s excellent hermetic forward detector capabilities for recoil nuclei, extractions of the

spatial distributions of gluons in nuclei could be possible from coherent φ vector meson production

in eA scattering. Fig. 17 (right) shows an example for diffractive φ production in an electron-gold

scattering process. These measurements could be performed in a variety of nuclei entering the regime

where the onset of collective behavior of gluons, and/or the onset of saturation, is found.
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Figure 16. Left panel. Schematic view of a parton with longitudinal momentum fraction x and transverse position

bT in the proton. Right panel. The projected precision of the transverse spatial distribution of gluons as obtained

from the cross-sections of exclusive J/Ψ production at an EIC [150]. The distance of the gluon from the center

of the proton is bT in femtometers, and the kinematic quantity xV = xB(1 + M2
J/Ψ/Q

2) determines the gluon’s

momentum fraction.

Figure 17. Left panel. The unintegrated gluon distribution (gluon TMD) of a large nucleus due to classical gluon

fields (solid line). The dashed curve denotes the lowest-order perturbative result and rises like ∼ 1/kT . When

the gluon density increases, this rise must be tamed. Right panel. Differential cross section dσ/dt distributions

for exclusive φ production in coherent and incoherent events in diffractive e+Au collisions. Predictions from

saturation and non-saturation models are shown in Ref. [150].

8 Summary and Conclusions

Rutherford has laid the foundation for the modern description of the nucleon and nuclei by inventing

the proton and the neutron. But as it turned out later, also these particles are not elementary bur are

composites of quarks, while the binding dynamics involve also gluons within the framework of QCD.

For years, one had only a longitudinal perception of the proton, which was revealed in deep inelastic

scattering experiments in terms of longitudinal momentum PDFs and helicity densities. Subsequent
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progress shed light on elastic form factors and the transverse charge and current densities. Much more

recently, this simple picture was extended significantly to provide a nucleon image in the transverse

plane, thus giving rise to (2+1)D tomography, parameterized in terms of 3D quark momentum (kT )

structure (TMDs) and 3D spatial (bT ) quark structure (GPDs) functions. Besides, because quarks and

gluons are spin-dependent, one has to understand how the spin of the proton is distributed among its

constituents — a still open question.

Several aspects, including TMDs, gluon polarization, etc., have already been measured at

COMPASS-I at CERN (2002-2011), while DVCS, unpolarized SIDIS and TMD effects, as well as

Drell-Yan studies are planned to be carried out in the COMPASS-II experiment (2012-2017). The

transverse structure of the nucleon in terms of transverse-position (bT ) dependent GPDs in hard ex-

clusive photon and meson production, and transverse-momentum (kT ) dependent TMDs in SIDIS

and Drell-Yan processes will be further explored at COMPASS-II and also at JLab 12 GeV. The

high-energy frontier to study the polarized quark and gluon structure is provided by the RHIC Spin

Program and the planned EIC projects using high-luminosity polarized beams. The hope is that all

these developments will allow us to obtain a deeper understanding of the quark-gluon dynamics and

their manifestations in the spatial configuration of the proton structure, both in momentum and impact

parameter space, in the near future.

Bottom line: Our knowledge of the internal structure of hadrons and their properties has evolved

continuously. Over the last two decades our ability to probe the hadron’s interior and to develop a

clear picture of its internal structure has received a great boost from experiments enabled by modern

facilities. A multipronged approach is required, involving constructive feedback between experiment

and theory in studies of, e.g. the hadron elastic and transition form factors; generalized and transverse

momentum dependent parton distributions. Experimental data from JLab 12 GeV, COMPASS, and

the future EIC will be essential in this effort.

Acknowledgements

All authors of this document would like to thank their respective collaborators. The work of T. Horn was sup-

ported in part by NSF Grant PHY-1306227. The lattice QCD results reported here (C. Alexandrou) were enabled

through a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s540 as well as through

computational resources from the John von Neumann-Institute for Computing on JUROPA and JUQUEEN

partly using the PRACE allocation, which included Curie (CEA), Fermi (CINECA), and SuperMUC (LRZ).

H. Moutarde obtained some of the results and insights described here with collaborators throughout the world

and is grateful to all of them. This work was supported in part by the Commissariat à l’Energie Atomique et aux

Energies Alternatives and by the French National Research Agency (ANR) under Grant ANR-12-MONU-0008-

01. I. Scimemi is pleased to acknowledge fruitful discussions with Miguel G. Echevarria and Alexey Vladimirov.

His work was supported in part by the Spanish MECD Grant FPA2014-53375-C2-2-P. N. G. Stefanis wants to

thank the Alexander von Humboldt-Stiftung for a travel grant that led to this document.

References

[1] R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956)

[2] G.P. Lepage, S.J. Brodsky, Phys. Rev. D22, 2157 (1980)

[3] V.L. Chernyak, A.R. Zhitnitsky, Phys. Rept. 112, 173 (1984)

[4] N.G. Stefanis, Eur. Phys. J. direct C7, 1 (1999), hep-ph/9911375

[5] N. Brambilla, S. Eidelman, P. Foka, S. Gardner, A.S. Kronfeld et al., Eur. Phys. J. C74, 2981

(2014), 1404.3723

   
 

 
DOI: 10.1051/, 01003 (2017) 713701003137EPJ Web of Conferences epjconf/201

XII th  Quark Confinement & the Hadron Spectrum

27



[6] D.H. Coward et al., Phys. Rev. Lett. 20, 292 (1968)

[7] E.D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969)

[8] M. Breidenbach, J.I. Friedman, H.W. Kendall, E.D. Bloom, D.H. Coward, H.C. DeStaebler,

J. Drees, L.W. Mo, R.E. Taylor, Phys. Rev. Lett. 23, 935 (1969)

[9] D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

[10] H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

[11] J.C. Collins, D.E. Soper, G.F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988),

hep-ph/0409313

[12] G. Altarelli, G. Parisi, Nucl. Phys. B126, 298 (1977)

[13] V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

[14] Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

[15] J. Collins, Foundations of perturbative QCD (Cambridge University Press,

2013), ISBN 9781107645257, 9781107645257, 9780521855334, 9781139097826,

http://www.cambridge.org/de/knowledge/isbn/item5756723

[16] X.d. Ji, F. Yuan, Phys. Lett. B543, 66 (2002), hep-ph/0206057

[17] A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B656, 165 (2003), hep-ph/0208038

[18] D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B667, 201 (2003), hep-ph/0303034

[19] J.C. Collins, Phys. Lett. B536, 43 (2002), hep-ph/0204004

[20] S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B530, 99 (2002), hep-ph/0201296

[21] I.O. Cherednikov, A.I. Karanikas, N.G. Stefanis, Nucl. Phys. B840, 379 (2010), 1004.3697

[22] N.G. Stefanis, I.O. Cherednikov, A.I. Karanikas, PoS LC2010, 053 (2010), 1010.1934

[23] B.U. Musch, P. Hägler, M. Engelhardt, J.W. Negele, A. Schäfer, Phys. Rev. D85, 094510

(2012), 1111.4249

[24] D. Boer et al. (2011), Gluons and the quark sea at high energies: Distributions, polarization,

tomography, 1108.1713

[25] J.C. Collins, D.E. Soper, G.F. Sterman, Nucl.Phys. B250, 199 (1985)

[26] M.G. Echevarria, A. Idilbi, I. Scimemi, JHEP 07, 002 (2012), 1111.4996

[27] M.G. Echevarria, A. Idilbi, I. Scimemi, Phys. Lett. B726, 795 (2013), 1211.1947

[28] M.G. Echevarria, A. Idilbi, I. Scimemi, Phys. Rev. D90, 014003 (2014), 1402.0869

[29] C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart, Phys. Rev. D63, 114020 (2001),

hep-ph/0011336

[30] C.W. Bauer, D. Pirjol, I.W. Stewart, Phys. Rev. D65, 054022 (2002), hep-ph/0109045

[31] M. Beneke, A.P. Chapovsky, M. Diehl, T. Feldmann, Nucl. Phys. B643, 431 (2002),

hep-ph/0206152

[32] A.V. Manohar, I.W. Stewart, Phys. Rev. D76, 074002 (2007), hep-ph/0605001

[33] J.C. Collins, A. Metz, Phys. Rev. Lett. 93, 252001 (2004), hep-ph/0408249

[34] M.G. Echevarria, I. Scimemi, A. Vladimirov, Phys. Rev. D93, 054004 (2016), 1511.05590

[35] M.G. Echevarria, I. Scimemi, A. Vladimirov (2016), 1604.07869

[36] I.O. Cherednikov, N.G. Stefanis, Phys. Rev. D77, 094001 (2008), 0710.1955

[37] I.O. Cherednikov, N.G. Stefanis, Nucl. Phys. B802, 146 (2008), 0802.2821

[38] I.O. Cherednikov, N.G. Stefanis, Phys. Rev. D80, 054008 (2009), 0904.2727

[39] A. Idilbi, I. Scimemi, Phys. Lett. B695, 463 (2011), 1009.2776

[40] M. Garcia-Echevarria, A. Idilbi, I. Scimemi, Phys. Rev. D84, 011502 (2011), 1104.0686

   
 

 
DOI: 10.1051/, 01003 (2017) 713701003137EPJ Web of Conferences epjconf/201

XII th  Quark Confinement & the Hadron Spectrum

28



[41] M.G. Echevarria, I. Scimemi, A. Vladimirov, Phys. Rev. D93, 011502 (2016), [Erratum: Phys.

Rev. D94, no.9, 099904 (2016)], 1509.06392

[42] A. Vladimirov (2016), Soft factors for double parton scattering at NNLO, 1608.04920

[43] S. Catani, M. Grazzini, Eur. Phys. J. C72, 2013 (2012), [Erratum: Eur. Phys.

J.C72,2132(2012)], 1106.4652

[44] S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, Eur. Phys. J. C72, 2195 (2012),

1209.0158

[45] S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, Nucl. Phys. B881, 414 (2014),

1311.1654

[46] T. Gehrmann, T. Lubbert, L.L. Yang, Phys. Rev. Lett. 109, 242003 (2012), 1209.0682

[47] T. Gehrmann, T. Luebbert, L.L. Yang, JHEP 06, 155 (2014), 1403.6451

[48] A.A. Vladimirov (2016), Soft-/rapidity- anomalous dimensions correspondence, 1610.05791

[49] Y. Li, H.X. Zhu, Submitted to: Phys. Rev. Lett. (2016), 1604.01404

[50] I. Scimemi, A. Vladimirov (2016), Power corrections and renormalons in Transverse Momen-

tum Distributions, 1609.06047

[51] G.P. Korchemsky, A.V. Radyushkin, Nucl. Phys. B283, 342 (1987)

[52] J.y. Chiu, A. Jain, D. Neill, I.Z. Rothstein, Phys. Rev. Lett. 108, 151601 (2012), 1104.0881

[53] J.Y. Chiu, A. Jain, D. Neill, I.Z. Rothstein, JHEP 05, 084 (2012), 1202.0814

[54] Z.B. Kang, F. Ringer, I. Vitev, JHEP 11, 155 (2016), 1606.07063

[55] Z.B. Kang, F. Ringer, I. Vitev, JHEP 10, 125 (2016), 1606.06732

[56] R. Bain, Y. Makris, T. Mehen, JHEP 11, 144 (2016), 1610.06508

[57] M. Burkardt, Phys. Rev. D62, 071503 (2000), [Erratum: Phys. Rev. D66, 119903 (2002)],

hep-ph/0005108

[58] J.P. Ralston, B. Pire, Phys. Rev. D66, 111501 (2002), hep-ph/0110075

[59] D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořešji, Fortsch. Phys. 42, 101 (1994),
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