

ROUNDED CONSTANT DIVISION VIA ADD-SHIFT IN VERILOG

Fouziah Md Yassin
1
, Ag. Asri Ag. Ibrahim

3
, Noor Syamimi Abd Manah

1
,

Zaturrawiah Ali Omar
2
 and Saturi Baco

1

1
Physics with Electronics Programme

2
Mathematics and Graphics Programme

Faculty of Science and Natural Resources

Universiti Malaysia Sabah (UMS), Jalan UMS,

88400 Kota Kinabalu, Sabah, Malaysia
3
Faculty of Computer and Informatics,

Universiti Malaysia Sabah, Labuan International Campus,

Kampung Sungai Pagar, 87000 Labuan, Malaysia

Email: fouziahy@ums.edu.my / fouziahy@yahoo.com (*Corresponding Author)

Abstract: An implementation of division in hardware is expensive. One of the alternatives is

by replacing it with cheaper adder and shifter. This paper presents the condition of add-shift

schemes that had been modifiedfrom existing algorithm. The constant denominators are 3, 5,

6, 7 and 9. The modifications are to eliminate the integer multiplication and to round the

unsigned result to the nearest integer. The comparison results of the outputs between C++ and

Verilog codes are used to verify the accuracy of the division process. Verilog code needs to

be changed for any incorrect results. The required results were obtained. The outputs

(div_out) of all denominators (deno) have been rounded to the nearest integer. However, the

maximum bit widths of numerators (n) are only 13 except for the divisor of 3 that produces

the maximum bit width up to 16.

Keywords: Constant division, add-shift, Verilog.

Introduction

Integer division instructions are considerably slower than multiplication while multiplication

instructions are several times slower than addition (Möller and Granlund, 2011). Therefore, a

lot of work has been done on optimizing constant division. Digit recurrence division is simple

and has a lower complexity compared to other division methods (Kaur et al., 2013). The digit

recurrence is a subtractive division technique that uses addition or subtraction and shift in a

manner similar to paper-and-pencil approach (Chiang et al., 2000). It gives out a fixed

number of quotient bits in iteration. Schwarzbacher et al., 2000, had published a paper to find

the best algorithm of division with add-shift design to optimise the area, speed and power

consumption of the integrated circuit.

International Journal of Science, Environment ISSN 2278-3687 (O)

and Technology, Vol. 4, No 2, 2015, 440 – 445 2277-663X (P)

Received Mar 16, 2015 * Published April 2, 2015 * www.ijset.net

441 Fouziah Md Yassin, Ag. Asri Ag. Ibrahim, Noor S. Abd Manah, Z. Ali Omar and Saturi Baco

The output of unsigned division in Verilog is normally rounded towards zero. However,

certain algorithm of block requires the division value to be rounded to the nearest integer.

This paper presents the development of algorithm round the division output to the nearest

integer using add-shift scheme. The algorithm was inspired by the problem encountered in

designing block that applies division in Verilog and the concept done by Warren (2012).

Overview of Add-Shift Scheme in Constant Division

Srinivasan and Petry (1994) proposed a constant division algorithm which is an iterative

algorithm for a division of the form 2
n
±1. They found that the optimum formula can be

generalised as:

 � = � ∑ 2��	

	�� = � ∗ (2�� + 2�
 + 2�� + 2��) (1)

whereQ is quotient and A is dividend. Equation (1) shows that the division by three is

reducible to a multiplication by value, which is a close approximation of 1/3.

Warren (2012) also proposed a quite similar design where the constant division is changed

into a sequence of shift and adds instruction. In addition, he also proposed an approximation

of reciprocal of 3 that can be described in equation2 below:

 q=(n≫2)+ (n≫4)+ (n≫6)+ …+(n≫30) (2)

where q is quotient and n is dividend. However, he found that when the first term shifts out

two bits, the next four bits and so on, it will result of almost 1 in the least significant bits. The

shifts may contribute an error of almost sixteen as there are sixteen terms and resulting

maximum total error of sixteen (Warren, 2012). As a result, a faster and more accurate

method is used as shown in equation 2.3. The method results only five shifts operations and

contributes only five maximum total errors which are lower and better than procedure in

equation (3).

q=(n≫2)+ (n≫4)

q=q+(q≫4)

q=q+(q≫8)

 q=q+(q≫16) (3)

The remainder (r) can be calculated as shown in equation 4.

 r=n-q*3 (4)

The a/b must be greater than 1/3 when 3 as a divisor, so that a shift result will be the same

with the normal division. A sequence of approximations had been defined. Usually a small

fraction of the sequence is easier to count. Therefore, the selected fraction is the smallest

 Rounded Constant Division via Add-Shift in Verilog 442

fraction and the best in this case is 11/32 (Warren, 2012). So, the division output of q is as in

equation 5 below.

 q=q+(11*r≫5) (5)

Methods

Division of using add-shift method was developed to eliminate the multiplier

component and to obtain the output that could be rounded up to the nearest integer. This

simplifies the process in ASIC implementation while still producing the same output

accuracy. This process is able to save the repetition time in the division operation. The

division algorithm process of using adder and shift are as below:

i- Determine the divisor number; 3, 5, 6, 7 and 9.

ii- Calculate the output of the division for each divisor. It is changed from

decimal to binary so that the value could be shifted according to the binary 2
n
 and

further the quotient equation could be determined. The equations are arranged as

shown in equation 5.

iii- Replace the multipliers component which is used for remainder (r) with adders

in simple equation.

iv- Determine the equation of remainder and use the pattern of the remainder to

get new quotient which the value is rounding to the nearest integer. Therefore, any

output that have decimal point equal or more than 5, the output is added by one (1) in

Verilog. The equation can be written as div_out<= div_out+1;

The constant division program was produced in both C++ and Verilog for functional

verification as shown in Figure 1. As a result, their outputs could be compared and recorded.

The output of C++ with normal division is used as the main reference. Adjustment of Verilog

codes are required if the incorrect outputs detected. The process is repeated until the accurate

result obtained.

Since the denominators of 3, 5, and 6 are using the same instructions as shown in Figure 2

(a), simplification could be done when compiling all the denominators. Same goes to the

denominators of 7 and 9 that are using the same instructions as shown in Figure 2 (b). The

simplification might be able to reduce the area size in ASIC implementation.

443 Fouziah Md Yassin, Ag. Asri Ag. Ibrahim, Noor S. Abd Manah, Z. Ali Omar and Saturi Baco

Figure 1: The process of output comparison to verify the accuracy of the division output in

Verilog

 (a) (b)

Figure 2: Line of instructions for (a) 3, 5 and 6 as denominators (b) 7 and 9 as denominators

Results and Discussion

The functional verifications are done using Modelsim. The required results are successfully

obtained for all selected denominators with the maximum numerator are 8191. Multiplier

component in remainder (r) has been replaced with add-shift scheme. For an example is as

shown in equation 6 for 3 as the denominator (deno).

 r <= n5- ((q3<<1)+q3); (6)

 Rounded Constant Division via Add-Shift in Verilog 444

The simulation results can be seen from the waveform shown in Figure 3 and 4. The

numerator (n) is 13-bit wide which means it can calculate maximum number of 8191 while

the denominator (deno) is 3-bit wide as 9 is the maximum constant number. Figure 3 shows

the output of divide-by-3. From Figure 3(a), it shows that the output validation signal

(out_sig) is asserted seven cycles after input signal (in_sig) is asserted. Both, Figure 3(a) and

3(b) shows that the output (div_out) is rounded to the nearest integer. For an example, 2/3 is

0.666 but whenever r= 2 is detected, the output (div_out) is added by 1 making the output

become 1 instead of 0.Figure 4 shows the output of divide-by-7. From Figure 7(a), it shows

that the output validation signal (out_sig) is also asserted seven cycles after input signal

(in_sig) is asserted. Both, Figure 4(a) and 4(b) shows that the output (div_out) is added by 1

whenever r is greater or equal 4 and r is smaller or equal 6 (4≤ r ≤ 6).

 The similar routines occurred for the denominators of 5, 6 and 9. The difference

between these denominators is the value of r. It determines whether the ouput should be

added by 1 or remains the value.

Figure 3 (a): The timing diagram when denominator=3 after in_sig is asserted.

Figure 3 (b): The timing diagram when denominator=3 after in_sig is deasserted.

Figure 4 (a): The timing diagram when denominator=7 after in_sig is asserted.

445 Fouziah Md Yassin, Ag. Asri Ag. Ibrahim, Noor S. Abd Manah, Z. Ali Omar and Saturi Baco

Figure 4 (b): The timing diagram when denominator=7 after in_sig is deasserted

Conclusion

It has been shown that the implementation constant division via add-shift scheme in Verilog

producing outputs that is rounded to the nearest integer. However, the numerators are limited

to 13 bit width and the denominators are only for 3, 5, 6, 7 and 9. The output can only be

obtained in seven cycles after in_sig is asserted. The validation of the outputs is indicated by

out_sig.

Acknowledgements

This research was funded by Universiti Malaysia Sabah under Skim Pensyarah Lantikan Baru

(SLB0013-TK-2012)

References

[1] Chiang, J-S., Chung, H-D.& Tsai M-H.(2000), Carry-Free Tadix-2 Subtractive Division

Algorithm and Implementation of the Divider. Tamkang Journal of Science and Engineering,

3(4), 249-255.

[2] Kaur, S., Suman, Manna, M.S. & Agarwal, R. (2013).VHDL Implementation of Non

Restoring Division Algorithm Using High Speed Adder/ Subtractor. International Journal of

Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(7), 3317-

3324.

[3] Möller, N. & Granlund, T. (2011).Improved Division by Invariant Integers.IEEE

Transactions on Computers, 60(2), 165-175.

[4] Schwarzbacher, A. Th., Brutscheck, M., Schwingel, O. & Foley, J.B. (2000).

Optimisation of Constant Divider Structures of the Form 2
˄

n±1 for VLSI Implementation.

Irish Systems and signals Conference Proceeding.

[5] Srinivasan, P. & Petry, F. (1994). Constant-division Algorithms. IEEE Proceedings on

Computers and Digital Techniques, 141(6), 334-340.

[6] Warren, H.S. (2012). Hacker’s Delight (Second Edition). Pearson Education.

