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Abstract tional experiments that we also describe here.

Given an undirected graph with edge costs and a subset of
k > 3 nodes callederminals a multiway, ork-way, cut is 1
a subset of the edges whose removal disconnects each ter-

minal from the others. The multiway cut problem is to find i ) . .
a minimum-cost multiway cut. This problem is Max-SNP As the field of approximation algorithms matures, meth-

hard. Recently Calinescu, Karloff, and Rabani (STOC’98) 0dologies are emerging that apply broadly to many NP-
gave a novel geometric relaxation of the problem and a round- hard optimization problems. One such approach (e.g., [7,
ing scheme that produced 3/2 — 1/k)-approximation algo- 8, 1, 6, 5]) has been the use of metric and geometric
rithm. embeddings in addressing graph optimization problems.
In this paper, we study their geometric relaxation. In par- Faced with a discrete graph optimization problem, one
ticular, we study the worst-case ratio between the value of formulates a relaxation that maps each graph node into a
the relaxation and the value of the minimum multicut (the metric or geometric space, which in turn induces lengths
so-called integrality gap of the relaxation). Her= 3, we on the graph’s edges. One solves this relaxation opti-

show the mtegrahty gap 'Q/ll' giving tight upper and onver mally, and then derives from the relaxed solution a near-
bounds. That is, we exhibit a graph class with integrality ga . ) S
optimal solution to the original problem.

12/11 — o(1) and give an algorithm that finds a cut of value
12/11 times the relaxation value. This is the best possible This approach has been applied successfully [2] to
performance guarantee for any algorithm based purely on the themin-cost multiway cut problema natural generaliza-
value of the relaxation and improves on Calinescu et ak’s fa  tion of the minimum(s, ¢)-cut problem to more than two
tor of 7/6. terminals. An instance consists of a graph with edge-
We also improve the upper bounds for all larger values of ~qsts and a set of distinguished nodes (ereninald.
k. Fork = 4,5, our best upper bounds are based on computer g goa| is to find a minimum-cost set of edges whose
constructed and analyzed rounding schemes, whilé for 6 removal separates the terminals. If the number of termi-

we give an algorithm with performance ratid438 — ¢j. nals isk, we call such a set of edged:avay cut
Our results were discovered with the help of computa- ' '

Introduction

The first approximation algorithm for the multiway

*MIT Laboratory for Computer Science, Cambridge, MA 02138. cut prob|em in genera| graphs was given by Dahlhous,
karger@cs. mt.edu. Research supported by NSF contract CCR-

9624239, an AIfr(_ed P. SIoane_Foundation Fellowship, andadend Lucille JOhI’]SOI’], Papadimitriou, Seymour, and Yannakakis [4]
PaCTkard Foundation Fellowship. It used a traditional minimunis, ¢)-cut algorithm as a
Brown University . kl ei n@s. br omn. edu. Research supported by :

NSF Grant CCR.9700146. subroutine and had a performance guarant@e-o2/k.
fDartmouth College. cl i ff @s. dart nout h. edu. Research sup- In the work that prompted ours, Calinescu. Karloff

ported by NSF Career award CCR-9624828. . T . !
8§ AT&T Labs—Research, Shannon Laboratory, 180 Park Avenlezh&m and Rapam [2] used a novel geor_netrlc rel_axatlom:of

Park, NJ 079320t hor up@ esear ch. at t. com way cutin a(3/2—1/k)-approximation algorithm. Their

by ngrtcn;?:é?xgﬁjggggg;dﬁfgtfmuth-edu- Research supported  rg|axation uses_thk-simplex_A = {z € R : 20,
>,z = 1}, which hask vertices; thei’" vertex is the
pointz in A with z; = 1 (and all other coordinates 0).
The relaxation is as follows: map the nodes of the graph
to points inA such that terminal is mapped to thet”
vertex ofA. Each edge is mapped to the straight line be-
tween its endpoints. The goal is to minimize thiume



of G,

vol(G) =

Z cos(e) - e

edges

where|e| denotes thdength of the embedded edge
defined as half thd.; distance between its endpoints,
and cosfe) is the cross-sectional area of edge

To see that the above is a relaxation of minimkm
way cut, consider ang-way cut and letS; be the set
of nodes reachable from terminiah the graph with the
cut-edges removed. Consider a geometric embedding in
which all nodes inS; are mapped to vertexof A. For
any edge, the distance between its edges is either 0, if
the endpoints lie in the santg, or 1, if the endpoints lie
in distinct setsS;. Hence the volume of this embedding
equals the cost of the-way cut.

The algorithm of Calinescu et al. finds a minimum
volume embedding by linear programming. It then uses
a randomized rounding scheme to extract a cut from this

Our efforts to find geometric cutting schemes that
achieve good guarantees were guided by experiments:
we formulated the problem of determining an optimal
probability distribution ork-way cuts of the simplex as
an infinite-dimensional linear program, and solved dis-
crete approximations of this linear program and its dual.
From these solutions we were able to deduce the lower
bound and, using that, the upper boundifer 3. These
experiments also guided our search for cutting schemes
that work for larger values df.

The upper and lower bounds fbr= 3 were discov-
ered independently by Cunningham and Tang [3].

Presentation overview. In Section 2 we discuss the
geometric ideas underlying the problem. In Section 3
we describe the computational experiments we under-
took and the results it gave for small In Sections 4
and 5 we solve the 3-terminal case, giving matching up-
per and lower bounds. Finally, in Section 6, we present

embedding. Ignoring the graph, the scheme choosesour improved algorithm for general

(from a carefully selected distribution) laway cut of

the simplex—a partition of the simplex int& subsets,
each containing exactly one vertex of the simplex. The
k-way cut of the simplex naturally inducescaway cut

in the embedded graph—namely, the set of edges with
endpoints in different blocks of the partition. This cut
has expected cost at maist2 — 1/k times the volume

of the embedding.

Our results. Ourgoalis to further understand the ge-
ometric relaxation, with the hope of developing better
approximation algorithms. We aim to determine ihe
tegrality gapof the relaxation and to find an algorithm
whose approximation ratio matches the integrality gap.
Note the the integrality gap is the best approximation ra-
tio we can achieve for an algorithm that compares itself
only to the embedding volume.

In this paper, we resolve this question fcut and
provide improved results for the genekatut problem.
For k = 3 we give a rounding algorithm with perfor-
mance ratiol2/11, improving Calinescu et al.’s bound
of3/2—1/3 = 7/6. We also show théit2 /11 is the best
possible bound, exhibiting a graph with a gaplef11
between its embedded volume and minimaxway cut.
Thus, fork = 3, we determine the exact integrality gap
and give an optimal algorithm.

For largerk, we obtain results based on both compu-
tation and analysis. Fér= 4, 5, we use LP-derived and
-analyzed rounding schemes to give bounds.@539
and 1.2161 respectively, improving the corresponding
bounds of Calinescu et al. @f25 and1.3. For largerk
we give a single algorithm obtaining a (analytic) bound
of 1.3438 — ¢, wheree;, > 0. The quantitye, can be
evaluated computationally for any fixéd we use this
to prove thatl.3438 — ¢, < 3/2 —1/k for all .

2 The geometric problem

Finding the integrality gap of and a rounding scheme for
the relaxation turns out to be expressible as a geometric
question. That is, we can express integrality gaps and
algorithmic performance purely in terms of the simplex,
without considering particular graphs or embeddings.

As general notation, we let, denote the interval
{z(le € e}. Thenmine, = min,e. ¢, maxey
max,ee £¢, and|e;] = maxe; — mine,. Finally, we
have defined the length| of an edge: to be half itsL,
norm, so

k

el = lecl/2.

=t MT

2.1 Density

Recall that ak-way cut of the simplex is a partition of
the simplex intdk subsets, each containing a unique ver-
tex of the simplex, and that such a cut inducds\aay
cut of any embedded graph. Bycatting schemewe
mean a probability distributio®? on k-way cuts of the
simplex. For any line segmeant the density ofP on
segment, denotedr (P, e), is the expected number of
times a random cut frorf? cutse, divided by the length

le| of e. Define themaximum density aP, 7 (P) and
theminimal maximum density; as follows:

T(P) = sup 7, (P,e) and 7 = ir;f 7, (P),
€

It is easy to see that the maximum density line segment
will in fact be an edge of infinitesimal length, since any

1By analogy to the length of an edge, the length of a segment is
defined as half thé,; distance between its endpoints.



segment can be divided into two edges, one of which a graph, Calinescu et al. apply this transformation sep-
has density no less than the original. Thus, in the re- arately to each segment connecting two embedded ver-
mainder of this paper, we will focus discussion on such tices, without changing the volume of the embedding.
infinitesimal segments. Thus, without loss of generality one may restrict atten-

The relevance of;; is the following (this is implicit
in the work of Calinescu et al.):

Lemma 2.1 For any cutting schemé& and embedded
graph@, the expected cost of thheway cut ofG induced
by a randomk-way cut fromP is at mostry (P) times
the cost of the embedding Gt

Corollary 2.2 Any cutting schem® yields an approxi-
mation algorithm with approximation ratio at most(P).

Proof Sketch: The endpoints of any edgeare em-
bedded at two points in the simplex, so the edge corre-
sponds to a segment connecting those two points. The
expected number of times the edge is cutid’, e) - |e].

By the Markov inequality this upper bounds the proba-
bility that the edge is cut. Thus, the expected cost of
the k-way cut is at mosd__ (7 (P, e) - |e|)cos(e) <
7e(P) Y le| - coste) = 7, (P)vol(G). 0

In fact, one can show thaf} is both the integral-
ity gap of the geometric relaxation and the best per-
formance guarantee obtainable by any cutting scheme.
That s, there is an embedded graph whose volume is ar-
bitrarily close tor} times its minimumk-way cut and
there is a cutting scheme with maximal density (and
therefore performance guarantee) arbitrarily closg to
This is a consequence of Yao’s principle (i.e. von Neu-
mann’s min-max theorem, or equivalently strong linear
programming duality, applied in the context of complex-
ity theory). It also follows that a cutting scheme with
optimum integrality gap can be defined obliviously, in-
dependent of the input graph.

Calinescu et al.’s algorithm gives a cutting scheme
showing thatr}; < 3/2 — 1/k. In this paper we show
that7y = 12/11, and that, for alk, 7;; < 1.3438.

2.2 Alignment

We have just argued that the key question to study is the
maximum density of line segments relative to a cutting

scheme. Calinescu et al. showed that one can restrict

attention to segments in certain orientations. We say a
segment in A isi, j-alignedif e is parallel to the edge
connecting vertices andj of A. We say it isaligned

if it is 4, j-aligned for some pair of vertices. Calinescu
et al. observed that since length is proportional to the

tion to embeddings in which all edges are aligned.

Fact 2.3 Segment is i, j-aligned if and only ifle] =

|ei|:|ej|and|eg|:0for€;«éz’,j. MT

2.3 Side parallel cuts (SPARCS)

In this paper, we mainly restrict attention to a particular
set of cutting schemes. Defing,,—, = {x € A :
z; = pyandA,;>, = {& € A : z; > p}. Note
thatA,,—, is a hyperplane that runs parallel to the face
opposite terminad and is at distance from that face; it
divides the simplex into two parts, of whick,, >, is the
“corner” containing terminad. An i, j-aligned segment
(z,y) is cut by the hyperplana,,—, iff £ € {i,j} and
p is betweernz, andy,.

We define aside-parallel cut (sparchf the simplex:

1. Choose a permutatienof the vertices;

2. For each vertekin order byo (except possibly the
last), choose someg € [0, 1];

3. Assign to vertex all points of A, >, not already
assigned to a previous terminal. We say terminal
capturesall these points, and that terminatutsan
edgee if it captures some but not all ef

Thus we are slicing up the simplex using hyperplanes
Ag;=,. In this context, we call each,,—, aslice

We consider algorithms that sample randomly from
some probability distribution over sparcs. Our restric-
tion to sparcs was motivated by several factors. The
rounding algorithm of Calinescu et al. uses only sparcs.
Furthermore, our computational study of the 3-terminal
problem (discussed below) and some related analytic
work gave some evidence that the optimal algorithm was
a distribution over sparcs. Lastly, sparcs have concise
descriptions (as a sequencekof- 1 slicing distances)
that made them easy to work with computationally and
analytically. Itis conceivable, though, that one might do
better with cuts that are not sparcs.

The key properties of SPARCS are expressed in the
following fact. For segmeng, let e, be the interval

{z¢|z € €e}. MT

Fact 2.4 Ani, j-aligned segment is cut by a sparc if
and only if it is cut by terminad or j. Furthermore, for

L,-norm, and since the aligned edges are the geodesicd € {i,}, the following conditions are all necessary for

of the norm, the endpoints of any segmentan be
connected by a piecewise linear path of total length
whose segments are aligned. The segmestcut iff
some edge on this path is cut. Given any embedding of

segment to be cut by terminad:

(1) pe€er

(2) For all terminalsh preceding’, py, > min ey,
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(3) Terminall is not last in the order

For probability distributions? on sparcs, one can
obtain bounds om, (P, e) by using Conditions 1-3 above.
For example, we can restrict our attention to Condition 1:
If p; andp; are uniformly distributed, Condition 1 holds
for terminali with probability |e;| = |e|, and similarly
for terminalj. Thus, by linearity of expectation, the ex-
pected number of timesis cut is at mosg|e|.

Next, consider adding Condition 3. Suppose that
the ordering of terminals is random, meaning thé
last with probabilityl /k. The probability that is cut
by i becomeq1 — 1/k)|e|, sor,(P,e) < (2 — 2/k).
Thus, uniformly randonp,’s and a random ordering
gives a performance guarantee oRof 2/k, matching
the bound of Dahlhous et al. [4].

To improve these bounds, one must use Condition 2.
Calinescu et al. choose a sparc by selectimgiformly
at random in0, 1], settingp, = p for each terminal,
and slicing off terminals in random order. Conditions 1
and 3 again derive a density boundlof 1/k for ter-
minal ¢ andj. Calinescu et al. improve this analysis
as follows. Suppose that the edge is farther frothan
from . We will argue that the density contribution from
terminalj is only 1/2. The pointis that i is such thaj
appears to cut, and ifi (which is closer ta:) preceeds
j in the random slice ordering, theémwill capture all of
e and prevenjj from cutting it. Formally, our assump-
tion is thatmine; > maxe;. With probabiltiy 1/2,4
preceedg. If so, sincep; = p;, Condition 1 -p; € e;

- contradicts Condition 2 foi - p; > mine;. Thuse
can only be cut by termingl if j preceeds, but then
by Condition 1, the density contribution is 1. Thus the
density contribution from termingl is 1/2, as desired,
leading to a total density &/2 — 1/k. Finally note that
anyi, j aligned edge can be split in two with one part
closer toi and one part closer t and our analysis then
applies to each part separately.

To improve on the 3/2 bound, we made stronger use
of Condition 2. The analysis of Calinescu et al. only

considers that a segment may be captured by the two

terminals with which it is aligned. We derive stronger
results by observing that other terminals may capture

the edge as well. To do so, we had to change the cutProof:

distribution as well as the analysis. It can be shown
that no distribution that holds afi; equal can do bet-
ter in the limit than3/2 of Calinescu et al. The 3/2
can be improved somewhat in the limit by choosing the
p; independently with a non-uniform density distribu-

holds for any numbek of terminals. This latter scheme
is designed for largé.

2.4 Additional Observations

We now mention some additional observations whose
full proofs must await the full paper.

What is the best embedding? Perhaps the first
natural question to ask is whether the embedding cho-
sen by Calinescu et al. is the best possible.

Lemma 2.5 Among all embeddings in the simplex that
minimize some norm (without adding other constraints)
the L; norm has the smallest possible integrality gap.

Proof: Very precisely, we will show that for any cut-
ting distributionP, any other norm based distance mea-
sured will have a maximal density at least as high as
ours. First, for the embedding to be a relaxation, it is
required thati(¢;t;) < 1 for any two terminalg; and

t;. However, since any norm based distance measure is
translation invariant and proportion preserving, this im-
plies that for anyi, j aligned edge:, thatd(e) < [e|.
This, in terms, implies that the density @tan only in-
crease. With out,; based distance measure|, we
know that the maximal density is achieved over aligned
edges, and hence a relaxation based eannot have a
smaller maximal density. 0

MT

Symmetry. A second observation is that there is no
benefit in trying to identify a “good terminal order” in
which to cut up the simplex.

Lemma 2.6 There is an optimum sparc cutting scheme
of the following form:

1. choose slice distancéd,...,d;_1) from some
probability distribution MT

2. apply the slice distances (in order) to a uniform
random permutation of the terminals

An analogous “order independence” statement holds for
the best possible (possibly non-sparc) algorithm.
Consider a best sparc with integrality gap
Consider any input embedding. We can “symmetrize”
the embedding, without changing its volume, by aver-
aging it over all permutations of the coordinates. Our
sparc achieves integrality gamn the symmetrized em-
bedding. Since the embedding is symmetric, the order

tion. However, the best cutting schemes we have found in which the sparc slices terminals is irrelevant. So we
are based on different types of dependence between thecan assume it is some fixed order.

pi- One such scheme for 3-way cut gives us a bound
of 12/11, which is optimal over all schemes for 3-way
cut. Another scheme gives us a boundldi438 that

Note, however, that cut value achieved on the sym-
metrized graph but slicing in some fixed order is just the
expected cut value achieved by applying the same slices



to the original embedding under a random ordering of sity of any segment in the simplex. This problem can
the terminals. 0 be formulated as an infinite dimensional linear program,
with one variable per cut of the simplex, corresponding
The above lemma shows that there is no worst-caseto the probability that that cut is chosen, and one con-
benefit to considering specific terminal ordering. The straint for every (aligned, infinitesimally small) line seg-
duality argument of Section 2.1 carries over to show that ment inside the simplex, which measures the expected
a sparc with optimum expected integrality gap can be number of times the chosen cut will cut that segment. Of
specified simply as a distribution over slicing distances, course, it is not tractable to solve the infinite LP compu-

without reference to an input graph embedding.

3 Our Computational Study

Neal said: The section on "LP results” disre-
gards the i nitial work done with Maple and
LP_SOLVE (not cplex). | don't know if we
care (is crediting the software important?)

We've overlooked the point that the dual solu-
tions were much more useful for the k=3 case
then the primal solutions. Further, we do not
describe the LOWER BOUND LP, which was
actually the most useful for k=3, and was not
the same as the upper bound LP that is de-
scribed now.

This is probably a subtle point not worth pur-
suing, but there is a more important related is-
sue. With k=3 we were able to extrapolate the
general solution to the dual, but not to the pri-
mal, from the computational results. Then we
figured out an analytic primal solution by rea-
soning about what it had to be like (accord-
ing to complimentary slackness) if the ana-
lytic dual solution (lower bound) was to be
tight. Recall we saw lots of optimal but very
different primal solutions (from our compu-
tations), whereas the dual solutions tended to
have a more canonical form. Maybe this is
particular to k=3, but maybe not. | think using
a lower bound LP (or at least the dual) might
be important for higher k as well.

In fact | think we should pursue this lead our-
selves by thinking carefully about the dual that
we obtain when we restrict to sparc cuts.

Mikkel: I don’t think we need to present this
to the reader, so | wouldn't worry. Looking
at the duals ourselves could be interesting, but
first of all, I'd like this project to be completed
and the journal version submitted.

tationally, but we expected that discretized versions of it
would be informative.

We applied this approach in two distinct ways. For
the 3-terminal case, we devised an LP that exploited
the planarity of the 3-terminal relaxation, and used it
to home in on the optimal solution, which we then an-
alytically proved to be optimal. For the general case,
we devised an LP whose solutions are (provable) up-
per bounds on the performance of certain rounding al-
gorithms. We solved this LP for small numbers of ter-
minals (3-9), deriving algorithms with (computer aided)
proofs of the best known performance ratios for these
problems. The solution suggested certain properties that
appear to hold in the “optimal” rounding scheme; we
used these suggestions in our development of (analytic)
solutions for arbitrary numbers of terminals.

3.1 The three-terminal case

For the3-terminal problem we exploited planarity. The
3-simplex can be viewed as a triangle in the plane. We
discretized the linear program by defining a triangular
mesh over the simplex and considering only edges of
the mesh instead of all line segments in the simplex.

To approximate the best cutting scheme, we com-
puted the best distribution over 3-way cuts of the mesh.
We used the planarity of the 3-simplex to simplify our
LP formulation. Any 3-way cut of the mesh corresponds
to a collection of paths (representing the boundary of
the cut) through the planar dual of the mesh. Thus the
distribution of cuts corresponds to a packing of these
paths, which can be seen as a kind of flow. So instead
of enumerating all possible cuts, we could define a lin-
ear program that assigned a (multicommodity) flow to
each edge of the dual mesh. This gave us a tractable
representation of the linear program.

We also found it helpful to solve the dual of our
flow-based linear program, which assigns weights to the
mesh edges to minimize the total weight such that every
3-cut has value at least 1. Since ed&ebut corresponds
to a set of two or three paths in the planar dual of the

In this section we describe some computational ex- mesh, the latter constraint can be represented efficiently

periments we carried out to help us understand the be-by constraining shortest-path lengths (as a function of
havior of the geometric embedding. One need read thisthe variable edge lengths) in the planar dual. A solu-
section in order to understand the following ones. tion to the dual can be interpreted as an embedded graph
As discussed above, our goal was to find a distribu- demonstrating the integrality gap. The dual showed us
tion over cuts of th&-simplex that minimized the den-  the important idea of “ball cuts” versus “corner cuts”



which we will discuss in the following sections, and thus
led to the discovery of the optimum cutting scheme for
three terminals.

3.2 The general case

In the general case, the lack of a planar embedding pre-
vented us from exploiting nice properties of its cuts; we
were faced with the problem of enumerating cuts as well
as edges. Based on the work of Calinescu et al. and
our own results for the optimal 3-terminal solution, we
decided to limit our exploration to sparcs as discussed
above.

There is still an infinite space of possible sparcs, so
we discretized our problem. Fix an integgid size V.

A discrete spards described by a vectdy, . .., gx—1)
where eacly; is an integer in the rangé, N —1]. Given
such a vector, we choose a random sparc by sedting
uniformly in the rangeq; /N, (¢; + 1) /N]. This defines

a probability distribution on (continuous) sparcs. We
now define a linear program to search for a probability
distribution over discrete sparcs (which induces a prob-
ability distribution over continuous sparcs). We define a
variable for each discrete sparc, which reflects the prob-
ability of choosing that discrete sparc, and provide con-
straints that aim to minimize the density of any segment
under the probability distribution.

There still appear to be infinitely many constraints
(segments) but we reduce this to a finite number as fol-
lows. The slices at distancegNV for each terminal that
determine our sparc distribution partition the simplex
into cells. For a given distribution on the discrete sparcs,
we can compute a (linear) upper bound on the density

its contribution to a segment’s density is at mbgiv.

If both slices go through the cell, their contribution is at
most2/N. We ignore the fact that different slices within
the cell might capture the segment before it can be cut,
thus introducing some slack in our upper bound.

We can exploit symmetry to further reduce the num-
ber of constraints we consider. Since by assumption our
sparc slices terminals in random order, two segments
that are identical under permutation of coordinates will
have the same densities, so we need consider only one
of them. Thus, we restrict our constraintdt@-aligned
segments in which the remaining coordinates are in non-
decreasing order.

3.3 LP Results

Exploiting symmetry as discussed above, we were able
to solve relatively fine discretizations of the problem.
We wrote a simple program to generate the linear pro-
grams automatically, and used CPLEX to solve them.
While it is difficult to “prove” programs correct, our
computations did converge to the corré2f 11 approx-
imation ratio for the 3-terminal case.

We give our results below in tabular form. We de-
rived improved bounds fot—9 terminals. Note that (un-
der the assumption that the programs were correct) these
are provable upper bounds. In fact, since the programs
output a particular distribution over discrete cuts, their
performance ratio could be proven analytically via a te-
dious case analysis (which we have not performed).

induced ornany segment with a given alignment within

a cell, and specify one constraint saying that this upper
bound should be small. Since the cells are small, we ex-
pect all segments with a given alignment to have roughly
the same density under our cutting scheme, so we hoped
that the upper bound is reasonable tight. With this sim-

k | Grid | LPGap| 3/2 —1/k | corner cut probability
3 90 | 1.0941 | 1.16666 .2849
4 36 | 1.1539 | 1.25 .2891
5 18 | 1.2161 | 1.3 3144
6 12 | 1.2714 | 1.33333 .3760
7 9 | 1.320 1.357 .3973
8 6 | 1.3322 | 1.375 4146

plification, the number of constraints is bounded by the
number of cells times the number of segment alignments
per cell, which is at most> N*.

We determine the upper bound for a cell as follows.
For any discrete cut, the slices generated from it will fall
into one of three categories. If thi& coordinate of the
discrete cut is different from that of the cell, then the
it" slice will not pass through that cell: depending on
whether the coordinate is larger or smaller it will either
capture the entire cell or none of the cell. If & coor-

Our experiments also revealed one interesting fact:
in all cases, the optimum cut distribution made use of
“corner cuts.” That s, the output distribution had the fol-
lowing form: with some probability, place each slice at
a distance chosen uniformly between 0 arid from its
terminal; otherwise, use a (joint) distribution that places
every slice at distance greater thigf3 from its terminal.

Adding constraints that forced the corner cuts to op-

dinates are the same, then the slice might pass througherate over a range other than 1/3 of the way from the ter-

the cell; we can use that the slice is uniformly distributed
over a range to determine its density contribution.

If we consider an, j-aligned segment, it can only be
cut if the slices for terminal or j go through its cell. If
only one of the two slices goes through the terminal then

minals worsened the computed performance ratio, hint-
ing that perhaps the optimal algorithm uses corners of
size exactly 1/3. This result is consistent with the op-
timal 3-terminal algorithm, however it could be a mis-
leading artifact of working with a discretized problem.
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Figure 1: This figure illustrates the cuts used for the dase3. The leftmost diagram shows howmight be chosen
for the ball cut. The middle diagram shows one possible resultfigcht (in bold). The rightmost diagram shows a
corner cut (in bold).

4 Upper Bound for k =3 Analysis. We first state two simple properties of the
ball cut that we need to analyze the performance of the

Our analytic upper bound af2/11 for £ = 3 comes cutting scheme:

from a new cutting scheme that we call the ball/corner
scheme. Though for simplicity we present a non-sparc Fact 4.1 Each of the3 coordinates of the random point
scheme, there is a similar scheme using sparcs that achievgsyniformly distributed irf0, 2/3]
the same bound.

Fork = 3, the simplexA can be viewed as a trian-  Fact 4.2 Oncer is chosen, each one of the six candidate
gle in the plane, which simplifies our pictures. However, rays connecting: to one side of the triangle is chosen
we continue to use the original three-dimensional coor- ith probability1/2.

dinate system to locate points in the simplex. Our cut of

the simplex is determined by some lines and rays drawn Theorem 4.3 The maximum density of the ball/corner

through the triangle; we refer to themlasundaries We scheme i42/11, so7 < 12/11.

will show that no segment has high density with respect -

to our random choice of boundaries. . Proof: We show that the expected density of any seg-
As illustrated in Figure 1, denote the vertices of the mente is at mostle| - 12/11. For the ball cuts, we use

simplexl,2,3. Letpointsa, b,..., f divide the edgesin  gnly the two facts claimed above. Since these two facts,

thirds, so that—b—f—d——c—ais the hexagon i with a5 well as the corner cut scheme, are symmetric with re-

side lengthl /3. Note that the hexagon is (a scaled ver- spect to the three coordinates, it suffices to prove the

sion of) the unit ball for our distance metric. The points  ¢|aim only for a1, 2-aligned segmen¢. Further, we

on the boundary of the hexagon are each at distafie  may assume assume thais entirely contained either
from the hexagon’s centérOutside the hex, we have a in a corner, or in the hex; for otherwise, as discussed

corner for each terminalconsisting of the points with in Section 2.1, we can just splitinto corresponding
x> 2/3 ) pieces, calculating the density for each piece separately.
The ball/corner scheme choosdsadl cutwith prob-  \we will consider several cases, depending on whése

ability 8/11, otherwise it chooses eorner cut These located.
two types of cuts are defined next. The scheme is illus- First, assume is located entirely in the hex. Such a

trated in Figure 1. . ~ segment cannot be cut by a corner cut, so we need only
Ball cut: Choose a point uniformly at random from ei-  ¢onsider the density when a ball cut is made and mul-
ther linea—c or lineb—d. Consider the three lines,, —,, tiply by the probability of choosing a ball cut, namely

(¢ = 1,2,3) parallel to the triangle’s sides and passing 8/11. Assume a ball cut is made. Thercan only be
through the point-. Each such line is divided at the by rays of inA,,_,. fori = 1,2. By Fact 4.1
pointr into two rays. Thus we get six rays. Each side of g uniformly distributed in0,2/3]. Hence, the proba-
the triangle intersects two of these rays. For each Side:bility that A,,—,, goes through is |e|/(2/3) sincee is
randomly choose of the two rays that hit it. This gives 2-aligned.ZIfAZw:r, touches:, it is at a single point.
three rays; they form the boundary of thevay cut. By Fact 4.2, the ray of\,,_,. containing this point is
COILVCUt;Cgofse t\_/\f/o telrmmals (ljf{l, 2:3}' andha f picked for the cut with probabilityt /2. Thus the ex-
valuep € ,1], uniformly at random. For each o e ; e

p € (2/3,1] y pected number of timesis cutis £ -2- 1. . 1

el 112y
the two chosen terminals let l; = Ag=. The wo Exactly the same argument a Iiéégif ihe é(1:i|€(|a is in
linesi; form the boundaries of th&way cut. y 9 PP 9

the corner closest to terminal The ball cut contributes
2Remember that we measure length as halfitherorm. the samd 2/11 density, while the corner cut contributes

MT
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Figure 2: The lower bound fdt = 3 (hereN = 7). The paths fron2 to 3 are on the left. The entire graph is on the
right. On the border, overlapping paths are drawn side-by-sidedaty, so line width represents edge cost.

nothing (note that 4, 2-aligned edge is parallel to the point on segment/ at distanced from i; let b be the

line A,,—,,, SO cannot be cut by it). point on segment/ at distancel from j. Thenp(i, j, d)
Finally, suppose segmeatis in the corner closest is the union of the three segmends ab, andbj.

to terminall (a symmetric argument appliesdfis in We form the graph fromdN pathsp(i, j, d) for 0 <

the corner closest to termind). In this case, if aball 4 < 2/3; whered is an integer multiple ofl/(3N).

cut is made, the above analysis applies except that only Although we describe the graph as a set of paths, tech-
the lineA,,—,, can cute (the lineA,,—,, neverenters nically it is a planar graph consisting of nodes and edges
the corner), so the density contribution of the ball cutis as follows: for every point im\ whose coordinates are
halved tole| . But the edge can also be cut by a corner integer multiples oi / (31V), there is a node in the graph
cut. A corner cutis chosen with probabilBy11. When embedded at that point; for every pair of nodes embed-
itis, two of the three terminals are chosen, so terminal  ded1/(3V) units apartG has an edge with cost equal
is chosen with probabilitg/3. If terminal 1 is chosen,  to the number of paths that pass through both nodes.
then, since the cutting line near terminal 1 is of the form With this understanding, we now specify the graph.
Ag,=1-p, Wherep is chosen uniformly irf0,1/3], the  For each of the3 distinct pair of terminals, j, there
probability that the line cuts is |¢|/(1/3). Thus, the  are3N paths. Of these pathsy run directly between
expected number of times that the edgis cut (by 8 the terminals; that is, there arné copies ofp(i, j, 0).
ball cut or corner cut) ige| & + 2 - 2 - % = le|12. The remainin® N paths are the pathgi, j,m/(3N))
Finally, if e spans several regions (e.g. it lies in a wherem =1,2,...,2N.
corner and in the hex) can be partitioned into sub- The total cost of the embedding is the total length
segments each contained entirely in one region, and theof the paths. Since a pai(i, j, m/(3N)) has length
previous analysis applied to the sub-segments. [ 1+ m/(3N), a direct calculation shows that the total
length of the paths i$1V/3 + 1.

Next we lower bound the cost of any 3-way cut.

5 Lower Bound for k =3 Since the graph is planar, any minimal 3-way cut cor-

Theorem 5.1 For k — 3. the minimum maximum den- 'ésponds either to a disconnected cut (meaning that the

sity7; > 12/11. Hence, the integrality gap for the geo- cut is the union of two disjoint 2-way cuts, each separat-
metric relaxation isl2/11. ing some terminal from both other terminals), like our

upper bound’s corner cut, or a connected cut (meaning
Note that this theorem applies to all cutting schemes, not that the cut edges give, in the planar dual, three paths

just sparcs. connected at some central node and going to the three
Proof: Fix N to be any positive integer. We construct Sides of the triangle), like our upper bound's ball cut.
an embedded weighted graghy with no 3-way cut of Any 3-way cut must cut all of th@ N paths at least

cost less than2N — 3, but with an embedding of cost once. To finish the proof, we will argue that for either
11N + 3. This implies that no cutting scheme has maxi- type of 3-way cut (connected or not), at leas{ — 3
mum density less thari2N —3) /(11N +3),because by ~ paths are cut twice, so that the edges cut by the 3-way

Lemma 2.1 such a cutting scheme appliedte would cut cost at least2N — 3. This is easy to verify for a
yield a3-way cut with expected cost less th&V — 3, disconnected cut: a disconnected cut is the union of two
a contradiction. Sincé is arbitrary, the result follows. ~ 2-way cuts, so th& N paths running between the two
Our construction (fotN = 7) is shown in Figure 4. terminals that are cut off must be cut twice.

For any pair of distinct terminalg 5 and number Now consider any connected cut. In the planar dual
d € [0,1], define embedded pajiii, j, d) as follows. of G, the connected cut corresponds to a central node

Let ¢ be the terminal in{1, 2,3} — {7, j}; leta be the and three paths from the node to each side of the trian-



gle. Letx = (z1, z2, z3) be any point inside the face of  ing probability density function is

G corresponding to the central node. Consider a path

p(i, j,d) such thatd > z,, wherel # i,j. Thatis, X F(z) = { 11/6 if z €[0,6/11]

is inside the cycle formed by the union gfi, j, d) and 0 otherwise.

p(i, 7,0). Thenthe patlp(i, 5, d) is cut twice by the con-

nected cut. For fixed andj, the number of such paths ~ Consider al, 2-aligned segment of length with one
(with d > ;) is at least(2/3 — 2,)N/3 — 1. Thus, the ~ endpoint fixed at;, x5, ..., z. ASe goes to zero, the

total number of such paths is at leé®f3 — z; +2/3 — density of this segment goes to
2 +2/3 - 13)3N — 3 =3N — 3. 0O P

1 , _
6 Improvement for general k& TR Z (F (21) ) (_1;[ " (1= Flel
Theorem 6.1 For all k£, 77 < 1.3438. Moreover, there )
is a k-way cut approximation algorithm with an approx- + F'(22) H (1 — F(z)] @
imation guarantee of .3438. i (i)<o(2)

where the sum is over al! orderings of the terminals.
This formula follows from Fact 2.41-2. Particularly, it
accounts for the probability of thig 2-aligned edge be-
ing captured by the terminals going before 1 or 2, and
this saving is crusial for improving the factor of 3/2
for largek. The formula assumes thatis continuous
around eachy; and thatF” is continuous in an open re-
gion aroundr; andz-. The latter is not the case around
6/11. However, as discussed Section 2.1, we may ass-
sume that all segmentsconsidered have been subdi-
vided so that for each= 1, 2, eithermaxz; < 6/11 or
minx; > 6/11. MT
Note thatdk(xl,. .z, 0, .. ,0) = di(l‘l,. .. ,.75,‘)
(provided: > 2), becauser; = 0 implies terminaly
" cannot save the edge. Note also thatis symmetric
with respect to the variables for i > 2. Define

Our bound improves on the Calinescu et. al. bound of
1.5 —2/k forall k > 14. For3 < k < 14, we can
also obtain improvements by taking advantagé bfe-

ing small (see Section 6.1).

As discussed in Section 2.3, the essential observa-
tion in this analysis is that many slices can capture an
edge before it has a chance to be cut.

We will use a (sparc) cutting scheme called ICUT:
we choosé slicing thresholdg;, and apply the slices
Ag;=p; 1o arandom permutatian of the terminals.

To bound the cutting density of our scheme, we will
bound the density of every segment. As justified in Sec-
tion 2.2, we consider a segment of lengtty 0, and let
e approach zero. As in the ball/corner scheme, by sym
metry we can assume without loss of generality that the
segmentid, 2-aligned.

Definedy (1, . - ., x)) to be the density which which Di(@1,22) = max dy(z1,s,...,o5)
ICUT cuts al, 2-aligned segment of infinitesimal length ’ T3,k e
located atey, z2, . . ., 2. We will show: Cr(x1,22) = di(z1,29,c,...,0)
Theorem 6.2 wherec = (1 — 21 — 22)/(k — 2),

. Do (x1,22) = lim Dy(x1,x2),
dy(x o) < 2.012096 if z1,z5 < 6/11 _ k'—>°°

RUEL -0 Tk) > 911/12 otherwise. Oxc(xr,2) = lim Cy(z1,z2).

The final cutting scheme chooses to ICUT with proba- |nthese definitiongzy, o, . . ., 21) is required to lie in

bility v = 0.66719 and otherwise chooses a corner cut. the k-simplex.
The corner cutis chosen by the natural generalizationof  p, is the maximum density of any, 2-aligned in-

the scheme fok = 3: choose a valug € [6/11,1]. finitesimal segment with an endpoint whose first two co-
The k-cut consists of the hyperplangs= A=, for ordinates arer;, z». Note that the maximum is well-
eachi. Note that the last corner cut need not technically gefined and achieved by soms, .. ., z; because the
be made but it simplifies the analysis. simplex is closed under limit.

This combined scheme gives a maximum density T ynderstand ICUT, our first goal is to characterize
of max{(2.012096)c, (11/12) a + (11/5)(1 — )} < D;.. We consider, as it is one candidate fdp.
1.3438, proving Theorem 6.1. It remains to prove The-
orem 6.2. Lemma 6.3 Dy (z1,z3) < Dyyy (1, ,) forall k.
The cumulative probability distribution function for
anyp; isis F(z) = min{(11/6)z,1}. The correspond-  Proof: dj(x1,...,zx) = dp41(21,. .., 2k, 0), 0



Thus theD,, are a nondecreasing sequence boundedHerec = (1 — z; — z2)/(k — 2). The last inequality

from above (by 2). Thisimplies th#, is well-defined.
We will see later tha€', is also well-defined.

Next we show that for fixee:; andxz,, the worst
case occurs at either the “central point’, 2>, ¢, c, ..., ¢
or the “three-terminal” point, , z2, 1—z1 —2,0, ..., 0.
(Analogous results hold fanyconvex or concavé'.)

Lemma6.4

Cr(z1,22)
Cs(x1,x2)

ifVi>2:2; <6/11

dk(wl,...,wk)ﬁ{ if 3 >2:2; >6/11.
Proof: Fix z; andzs. Letc = (1 — 1 — z2)/(k — 2).

Claim 1: Among allzs, ..., z; such that) < x; <
6/11foralli > 2 (andzy, s, ...,z iS in the simplex),
the unique maximizer @f; (z1, z2, 3, . - .,z ) satisfies
T3 = x4 = -+ = xp. Suppose for contradiction that
some other suchs, zy4,...,2; Mmaximizesd,. Then
x; < x;j forsomei, j > 2. Considered just as a function
of «; andz; (holding the other coordinates fixed)
di(z1, ... p+q[l — F(x;)] +r[l — F(x;)]
+s[l = F(zy)][l - F(z;)] (2
wherep, ¢, r ands are nonnegative and independent of
x; andz;. Furthermoregy = r becausel;, is symmetric
in z; andz;. Consider increasing; and decreasing;

at equal rates. This maintaifs< z;,z; < 6/11 but
increased;, at a rate proportional to

dlF(a;) = F' (@)
+5(F/(@)lL = Fa)] = F'@)ll - Fla)).

71'16) =

This is positive becausg’(z) = 11/6 for z < 6/11
andF'(z;) > F(z;) (recall thatz; < z; < 6/11). This
contradicts the choice afs, . . ., zy.

Claim 2: Among allzs, . . ., xy, such thatz; > 6/11
for some; > 2 (andzy, ...,z is in the simplex), the

unique maximizer ofy, (z1, z2, z3, . . ., x) Satisfies; =
1 —2; — 2y andz; = 0 for j # 4. Suppose for contra-
diction that some other sucky, x4, ...,z maximizes

dp. Fix somej > 2 such that0 < z; < 6/11 <
x;. SinceF(x;) = 1, the expression (2) reduces to
p+q(l — F(z;)). If we increaser; and decrease; at
the same rate, the rate of increaséjnis ¢F"'(z;) > 0,
contradicting the choice afs, ..., 4.

The two claims together prove the lemma. [

Lemma6.5 For k Z 4, Ck(.’L'l,;L‘Q) S C]H_l(l'l,l'g).

Proof:Cy(zy,20) = di(z1,22,¢,...,¢)
= dgt1(21,22,0,...,¢,0)

Ck+1 ($1>$2)-

N

follows from Lemma 6.4 (using < 1/2 < 6/11). ]

An immediate corollary is that'y, (z1, z2) is well-
defined and’y (z1, z2) < Coo(z1,z2) for all k. Using
this and Lemma 6.4, to bounfd, it suffices to bound
C5 andC,. We begin withC.

Lemma6.6

2.012096
Coo(1,22) < {

11/12

If r1,T2 S 6/11
otherwise.

Proof: Fix z; andxz,. Our first goal is to derive a
closed-form expression fdry (z1,z2) for anyk. Fix k
for now and letr; = ¢ = (1 — z; — x2)/(k — 2) for
> 2.

Forj = 1,2, let.S; denote the probability that the
segment atxy, x2, . . . x) i not captured by a terminal
other thanj before thejth cut is made:

sji%Z [I 1-F).

o iio(i)<o(j)
Thean (.%‘1,.7)2) = SlF’(.’L'l) + S2F’(.’L‘2).
We will derive a closed-form expression 8¢ (and
by symmetry forS,). Recall thate; = cfori > 2. We
thus rewrite

k—1
_ 1 q q—1
S = p 2 pi (= F) = Flew)

q _ q
)1 -F)".
Here we condition og, the number of such that () <
o(1). Note thatg is uniform in [0, £ — 1] while % is
the probability that (2) < o(1), giveng.
A change of variables and rewriting give

1—F(x» ~ (1 - F(c))
Sl:<1+ il )) 3" @=Fe)

q=0

k—2 p

+(1-

Now we letk — oo. The two sums above have
standard closed forms that tend respectively to

[l—e “la ! and[l—(1+a)e “]a ?,
wherea = limg_,o0 k F(¢) = (1—z1—22)F'(0). Thus,
S; = [1—eat — F(x)[l — (1 4+ a)e™ a2

Of courseS; is the above withe; replacingz.. This
gives us our closed-form expression &y, (z1, z2):

Coo (w1, 22) = [F'(21) + F'(2)] x =5

a
1—(1+a)e

“ B

— [F'(x1) F(2) + F'(x2) F(21)] %



wherea = (1 — z; — x2)F'(0).

The above equality holds for ady. Using this closed
form and our particular choice df, we now show the
two desired bounds ofi..

Case 1: z;,z2 < 6/11. In this cases = 11/6(1 —
Ty — 372), F,(ml) = Fl(il'z) = ].]./6, andF(iEl) +
F(z9) =11/6(z1 + z2) = 11/6 — a. So (3) gives

1—e™¢

Coo(wl,wz) = 11/3

121 6 1—(14a)e™®
R AGEDES
wherea = 11/6 (1 — z; — x2) S0a € [0,11/6]. Let
C(a) = Cx(z1,22). Inthe rest of this case (Case 1),
we will prove thatC'(a) < 2.012096 for a € (0,11/6).
The casess = 0 anda = 11/6 follow by the conti-
nuity of C'. The claim is “obvious” from a plot but the
somewhat technical proof appears below.

We show that’(a) is strictly concave fow € (0,11/6).
It therefore has a unique maximum at some where
C'(ap) = 0. By substitution("(.294) > 0.00045 > 0
andC’(.295) < —0.00009 < 0, soay € (.294,.295).
Hence

max Cf(a) < C(.295)—0.001-C’(.295) < 2.012096
a€[0,11/6]

To showC'(a) is strictly concave, we show th&t’ (a) is
strictly negative. Now("(a) = L Ze“a®=18a—te "a

36 a3
% 6e*f1a3+a232722e*° andC"” (a) = _3%(114 (767%3 +
3e %a? —36a—30e “a+6e %+ 66 —66e ).
To show thatC"'(a) is negative, it suffices to prove
that

—7e % —3e % +36a+30e %a
—6e “a" —66+ 66

D(a) =

is negative. By substitutiod)(0) = 0 andD(11/6) =
0, so it suffices to show thad’ has only one zera;,
D'(a) < 0fora < a; andD'(a) > 0 fora > a;. Here
—17e¢ %a® — 18¢™"a”® — 36¢e™%a + 36
—36e “+6e “a’

D'(a) =

andD"(a) = e %a*(—6a® + 41a — 33). Fora €
(0,11/6], D" has only one zera, = X=Y52 ~ (.93
andD"'(a) < 0fora < az andD"(a) > 0fora > as.

Thatis,D’ is first decreasing and then increasing. Since

D'(0) = 0 andD’(11/6) > 4.108 > 0 it follows that
D' has only one zera, fora € (0,11/6].

Case 2: x; Orzy > 6/11. Assumex; > 6/11 (the
caser, > 6/11 is symmetric). In this caséy’ (z1) =0
andF(z;) = 1, so we get

B 111-(1+a)e®
6 a 6 a? '

As before, letC(a) = C (21, z2). We will prove that
C(a) < 11/12fora € [0,11/6]. First,limg— C(a) =
11/12, soC(a) < 11/12 follows if we can show that
C'(a) < 0fora € (0,11/6]. We have

_u
"~ 6a3

C'(a) (—a—e %a+2—-2e7").
DefineE(a) = —a — e %a+ 2 — 27 Sincegs > 0
fora > 0, C(a) < 0if and only if E(a) < 0. Since
E(0) = 0, we can inferE(a) < 0if E'(a) < 0 for all
a € (0,11/6]. We haveE'(a) = —1+e %(a+1). Note
thatE'(0) = 0, SOE'(a) < 0 follows if E"(a) < 0 for
a € (0,11/6]. We haveE" (a) = —e~*a, SOE"(a) <
0. We conclude thal's (1, z2) < 11/6if 1 > 6/11.
U

Lemmas 6.4 through 6.6 prove that, feisuch that
z; < 6/11foralli > 2,

dk(wl,...,wk) S Coo(l‘l,l‘g)
< 2.012096 if 1,22 < 6/11
= 11/12 otherwise.

The remaining case is when > 6/11 for somei > 2.
In this case by Lemma 6.4,

de(z1,...,28) < Cs(x1,22) = dz(21, 22,1 — 21 — 22)

andz; + z2 < 5/11. Thus, to finish the proof of the
theorem, it suffices to show the following lemma.

Lemmab.7 If T, + a2 < 5/11,03(1’1,1’2) < ].]./6

Proof: Letzs =1—1z7 —x9 > 6/11.

ThenF(z3) = 1 while F(z;) = 11/6x1, F(z2) =
].]./6372, andF’(iL’l) = Fl(il'z) = ].]./6

By inspection of (1)(C's(z1, x2) = d3(x1,x2,x3) =
(1/6) (11/6) (6 — 11/6 (w1 + 2)) < 11/6. O

This proves Theorem 6.2.

6.1 Improvements for small values of k

For particular values ¢k it is possible to refine the anal-
ysis in the proof of Theorem 6.1 to get improved bounds.
In this case it is useful to modify the algorithm so that it
only usesk — 1 cuts instead ok. In particular, we do
not use the cut for the terminglwith o(j) = k. The
analysis for this case goes similarly, with our definitions
appropriately modified to reflect that we are using 1
instead oft cuts.

Then, instead of passing to the limit; (z,, z2) can
be evaluated directly. Following this approach we ob-
tained the following performance guarantees for partic-
ulark:



k corner p ratio

3 0641 0.675 1.131
4 0.607 0.663 1.189
5 0.588 0.659 1.223
6 0576 0.659 1.244
7 0565 0.657 1.258
8 0.557 0.656 1.269
9 0.557 0.659 1.277
10 0557 0.661 1.284
12 0554 0.661 1.293
20 0.554 0.666 1.314
35 0.550 0.666 1.327

Here, “corner” is the placement of the corner (anal-

ogous to6/11), p is the probability of choosing ICUT,
and “ratio” is an upper bound on the resulting ratio. The
corner sizes ang's are approximate and only close to
optimal and the ratios were evaluated numerically with-
out formal verification.
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