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Abstract

Given an undirected graph with edge costs and a subset ofk � 3 nodes calledterminals, a multiway, ork-way, cut is
a subset of the edges whose removal disconnects each ter-
minal from the others. The multiway cut problem is to find
a minimum-cost multiway cut. This problem is Max-SNP
hard. Recently Calinescu, Karloff, and Rabani (STOC’98)
gave a novel geometric relaxation of the problem and a round-
ing scheme that produced a(3=2� 1=k)-approximation algo-
rithm.

In this paper, we study their geometric relaxation. In par-
ticular, we study the worst-case ratio between the value of
the relaxation and the value of the minimum multicut (the
so-called integrality gap of the relaxation). Fork = 3, we
show the integrality gap is12=11, giving tight upper and lower
bounds. That is, we exhibit a graph class with integrality gap12=11 � o(1) and give an algorithm that finds a cut of valueMT 12=11 times the relaxation value. This is the best possible
performance guarantee for any algorithm based purely on the
value of the relaxation and improves on Calinescu et al.’s fac-
tor of 7/6.

We also improve the upper bounds for all larger values ofk. Fork = 4; 5, our best upper bounds are based on computer
constructed and analyzed rounding schemes, while fork > 6
we give an algorithm with performance ratio1:3438 � �k.
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tional experiments that we also describe here.

1 Introduction

As the field of approximation algorithms matures, meth-
odologies are emerging that apply broadly to many NP-
hard optimization problems. One such approach (e.g., [7,
8, 1, 6, 5]) has been the use of metric and geometric
embeddings in addressing graph optimization problems.
Faced with a discrete graph optimization problem, one
formulates a relaxation that maps each graph node into a
metric or geometric space, which in turn induces lengths
on the graph’s edges. One solves this relaxation opti-
mally, and then derives from the relaxed solution a near-
optimal solution to the original problem.

This approach has been applied successfully [2] to
themin-cost multiway cut problem, a natural generaliza-
tion of the minimum(s; t)-cut problem to more than two
terminals. An instance consists of a graph with edge-
costs and a set of distinguished nodes (theterminals).
The goal is to find a minimum-cost set of edges whose
removal separates the terminals. If the number of termi-
nals isk, we call such a set of edges ak-way cut.

The first approximation algorithm for the multiway
cut problem in general graphs was given by Dahlhous,
Johnson, Papadimitriou, Seymour, and Yannakakis [4].
It used a traditional minimum(s; t)-cut algorithm as a
subroutine and had a performance guarantee of2�2=k.

In the work that prompted ours, Calinescu, Karloff,
and Rabani [2] used a novel geometric relaxation ofk-
way cut in a(3=2�1=k)-approximationalgorithm. Their
relaxation uses thek-simplex� = fx 2 Rk : x � 0;Pi xi = 1g, which hask vertices; theith vertex is the
pointx in � with xi = 1 (and all other coordinates 0).
The relaxation is as follows: map the nodes of the graph
to points in� such that terminali is mapped to theith
vertex of�. Each edge is mapped to the straight line be-
tween its endpoints. The goal is to minimize thevolume



of G,
vol(G) := X

edgese cost(e) � jej
wherejej denotes thelengthof the embedded edgee,
defined as half theL1 distance between its endpoints,
and cost(e) is the cross-sectional area of edgee.

To see that the above is a relaxation of minimumk-
way cut, consider anyk-way cut and letSi be the set
of nodes reachable from terminali in the graph with the
cut-edges removed. Consider a geometric embedding in
which all nodes inSi are mapped to vertexi of �. For
any edge, the distance between its edges is either 0, if
the endpoints lie in the sameSi, or 1, if the endpoints lie
in distinct setsSi. Hence the volume of this embedding
equals the cost of thek-way cut.

The algorithm of Calinescu et al. finds a minimum
volume embedding by linear programming. It then uses
a randomized rounding scheme to extract a cut from this
embedding. Ignoring the graph, the scheme chooses
(from a carefully selected distribution) ak-way cut of
the simplex—a partition of the simplex intok subsets,
each containing exactly one vertex of the simplex. Thek-way cut of the simplex naturally induces ak-way cut
in the embedded graph—namely, the set of edges with
endpoints in different blocks of the partition. This cut
has expected cost at most3=2 � 1=k times the volume
of the embedding.

Our results. Our goal is to further understand the ge-
ometric relaxation, with the hope of developing better
approximation algorithms. We aim to determine thein-
tegrality gapof the relaxation and to find an algorithm
whose approximation ratio matches the integrality gap.
Note the the integrality gap is the best approximation ra-
tio we can achieve for an algorithm that compares itself
only to the embedding volume.

In this paper, we resolve this question for3-cut and
provide improved results for the generalk-cut problem.
For k = 3 we give a rounding algorithm with perfor-
mance ratio12=11, improving Calinescu et al.’s bound
of 3=2�1=3 = 7=6. We also show that12=11 is the best
possible bound, exhibiting a graph with a gap of12=11
between its embedded volume and minimum3-way cut.
Thus, fork = 3, we determine the exact integrality gap
and give an optimal algorithm.

For largerk, we obtain results based on both compu-
tation and analysis. Fork = 4; 5, we use LP-derived and
-analyzed rounding schemes to give bounds of1:1539
and 1:2161 respectively, improving the corresponding
bounds of Calinescu et al. of1:25 and1:3. For largerk
we give a single algorithm obtaining a (analytic) bound
of 1:3438 � �k where�k > 0. The quantity�k can be
evaluated computationally for any fixedk; we use this
to prove that1:3438� �k < 3=2� 1=k for all k.

Our efforts to find geometric cutting schemes that
achieve good guarantees were guided by experiments:
we formulated the problem of determining an optimal
probability distribution onk-way cuts of the simplex as
an infinite-dimensional linear program, and solved dis-
crete approximations of this linear program and its dual.
From these solutions we were able to deduce the lower
bound and, using that, the upper bound fork = 3. These
experiments also guided our search for cutting schemes
that work for larger values ofk.

The upper and lower bounds fork = 3 were discov-
ered independently by Cunningham and Tang [3].

Presentation overview. In Section 2 we discuss the
geometric ideas underlying the problem. In Section 3
we describe the computational experiments we under-
took and the results it gave for smallk. In Sections 4
and 5 we solve the 3-terminal case, giving matching up-
per and lower bounds. Finally, in Section 6, we present
our improved algorithm for generalk.

2 The geometric problem

Finding the integrality gap of and a rounding scheme for
the relaxation turns out to be expressible as a geometric
question. That is, we can express integrality gaps and
algorithmic performance purely in terms of the simplex,
without considering particular graphs or embeddings.

As general notation, we lete` denote the intervalfx`je 2 eg. Thenmin e` = minx2e x`, max e` =maxx2e x`, and je`j = max e` � min e`. Finally, we
have defined the lengthjej of an edgee to be half itsL1
norm, so jej = kX̀=1 je`j=2:

MT

2.1 Density

Recall that ak-way cut of the simplex is a partition of
the simplex intok subsets, each containing a unique ver-
tex of the simplex, and that such a cut induces ak-way
cut of any embedded graph. By acutting scheme, we
mean a probability distributionP on k-way cuts of the
simplex. For any line segmente, the density ofP on
segmente, denoted�k(P; e), is the expected number of
times a random cut fromP cutse, divided by the length1jej of e. Define themaximum density ofP , �k(P ) and
theminimal maximum density��k as follows:�k(P ) := supe �k(P; e) and ��k = infP �k(P );
It is easy to see that the maximum density line segment
will in fact be an edge of infinitesimal length, since any

1By analogy to the length of an edge, the length of a segment is
defined as half theL1 distance between its endpoints.



segment can be divided into two edges, one of which
has density no less than the original. Thus, in the re-
mainder of this paper, we will focus discussion on such
infinitesimal segments.

The relevance of��k is the following (this is implicit
in the work of Calinescu et al.):

Lemma 2.1 For any cutting schemeP and embedded
graphG, the expected cost of thek-way cut ofG induced
by a randomk-way cut fromP is at most�k(P ) times
the cost of the embedding ofG.

Corollary 2.2 Any cutting schemeP yields an approxi-
mation algorithm with approximation ratio at most�k(P ).
Proof Sketch: The endpoints of any edgee are em-
bedded at two points in the simplex, so the edge corre-
sponds to a segment connecting those two points. The
expected number of times the edge is cut is�k(P; e) � jej.
By the Markov inequality this upper bounds the proba-
bility that the edge is cut. Thus, the expected cost of
the k-way cut is at most

Pe(�k(P; e) � jej)cost(e) ��k(P )P jej � cost(e) = �k(P )vol(G).
In fact, one can show that��k is both the integral-

ity gap of the geometric relaxation and the best per-
formance guarantee obtainable by any cutting scheme.
That is, there is an embedded graph whose volume is ar-
bitrarily close to��k times its minimumk-way cut and
there is a cutting scheme with maximal density (and
therefore performance guarantee) arbitrarily close to��k .
This is a consequence of Yao’s principle (i.e. von Neu-
mann’s min-max theorem, or equivalently strong linear
programming duality, applied in the context of complex-
ity theory). It also follows that a cutting scheme with
optimum integrality gap can be defined obliviously, in-
dependent of the input graph.

Calinescu et al.’s algorithm gives a cutting scheme
showing that��k � 3=2 � 1=k. In this paper we show
that��3 = 12=11, and that, for allk, ��k � 1:3438:
2.2 Alignment

We have just argued that the key question to study is the
maximum density of line segments relative to a cutting
scheme. Calinescu et al. showed that one can restrict
attention to segments in certain orientations. We say a
segmente in � is i; j-alignedif e is parallel to the edge
connecting verticesi andj of �. We say it isaligned
if it is i; j-aligned for some pair of vertices. Calinescu
et al. observed that since length is proportional to theL1-norm, and since the aligned edges are the geodesics
of the norm, the endpoints of any segmente can be
connected by a piecewise linear path of total lengthjej
whose segments are aligned. The segmente is cut iff
some edge on this path is cut. Given any embedding of

a graph, Calinescu et al. apply this transformation sep-
arately to each segment connecting two embedded ver-
tices, without changing the volume of the embedding.
Thus, without loss of generality one may restrict atten-
tion to embeddings in which all edges are aligned.

Fact 2.3 Segmente is i; j-aligned if and only ifjej =jeij = jej j andje`j = 0 for ` 6= i; j. MT

2.3 Side parallel cuts (SPARCS)

In this paper, we mainly restrict attention to a particular
set of cutting schemes. Define�xi=� := fx 2 � :xi = �g and�xi�� := fx 2 � : xi � �g. Note
that�xi=� is a hyperplane that runs parallel to the face
opposite terminali and is at distance� from that face; it
divides the simplex into two parts, of which�xi�� is the
“corner” containing terminali. An i; j-aligned segment(x; y) is cut by the hyperplane�x`=� iff ` 2 fi; jg and� is betweenx` andy`.

We define aside-parallel cut (sparc)of the simplex:

1. Choose a permutation� of the vertices;

2. For each vertexi in order by� (except possibly the
last), choose some�i 2 [0; 1];

3. Assign to vertexi all points of�xi�� not already
assigned to a previous terminal. We say terminali
capturesall these points, and that terminali cutsan
edgee if it captures some but not all ofe.

Thus we are slicing up the simplex using hyperplanes�xi=�. In this context, we call each�xi=� a slice.
We consider algorithms that sample randomly from

some probability distribution over sparcs. Our restric-
tion to sparcs was motivated by several factors. The
rounding algorithm of Calinescu et al. uses only sparcs.
Furthermore, our computational study of the 3-terminal
problem (discussed below) and some related analytic
work gave some evidence that the optimal algorithm was
a distribution over sparcs. Lastly, sparcs have concise
descriptions (as a sequence ofk � 1 slicing distances)
that made them easy to work with computationally and
analytically. It is conceivable, though, that one might do
better with cuts that are not sparcs.

The key properties of SPARCS are expressed in the
following fact. For segmente, let e` be the intervalfx`jx 2 eg. MT

Fact 2.4 An i; j-aligned segmente is cut by a sparc if
and only if it is cut by terminali or j. Furthermore, for` 2 fi; jg, the following conditions are all necessary for
segmente to be cut by terminal̀:

(1) �` 2 e`
(2) For all terminalsh preceding̀ , �h > min eh.



(3) Terminal` is not last in the order

For probability distributionsP on sparcs, one can
obtain bounds on�k(P; e) by using Conditions 1–3 above.
For example, we can restrict our attention to Condition 1:
If �i and�j are uniformly distributed, Condition 1 holds
for terminali with probability jeij = jej, and similarly
for terminalj. Thus, by linearity of expectation, the ex-
pected number of timese is cut is at most2jej.MT

Next, consider adding Condition 3. Suppose that
the ordering of terminals is random, meaning thati is
last with probability1=k. The probability thate is cut
by i becomes(1 � 1=k)jej, so �k(P; e) � (2 � 2=k).
Thus, uniformly random�`’s and a random ordering
gives a performance guarantee of of2� 2=k, matching
the bound of Dahlhous et al. [4].

To improve these bounds, one must use Condition 2.
Calinescu et al. choose a sparc by selecting� uniformly
at random in[0; 1], setting�` = � for each terminal̀ ,
and slicing off terminals in random order. Conditions 1
and 3 again derive a density bound of1 � 1=k for ter-
minal i and j. Calinescu et al. improve this analysis
as follows. Suppose that the edge is farther fromj than
from i. We will argue that the density contribution from
terminalj is only 1/2. The point is that if� is such thatj
appears to cute, and if i (which is closer toe) preceedsj in the random slice ordering, theni will capture all ofe and preventj from cutting it. Formally, our assump-
tion is thatmin ei � max ej . With probabiltiy 1/2,i
preceedsj. If so, since�i = �j , Condition 1 -�j 2 ej
- contradicts Condition 2 fori - �i > min ei. Thuse
can only be cut by terminalj if j preceedsi, but then
by Condition 1, the density contribution is 1. Thus the
density contribution from terminalj is 1/2, as desired,
leading to a total density of3=2� 1=k. Finally note that
any i; j aligned edge can be split in two with one part
closer toi and one part closer toj, and our analysis then
applies to each part separately.

To improve on the 3/2 bound, we made stronger use
of Condition 2. The analysis of Calinescu et al. only
considers that a segment may be captured by the two
terminals with which it is aligned. We derive stronger
results by observing that other terminals may capture
the edge as well. To do so, we had to change the cut
distribution as well as the analysis. It can be shown
that no distribution that holds all�i equal can do bet-
ter in the limit than3=2 of Calinescu et al. The 3/2
can be improved somewhat in the limit by choosing the�i independently with a non-uniform density distribu-
tion. However, the best cutting schemes we have found
are based on different types of dependence between the�i. One such scheme for 3-way cut gives us a boundMT
of 12=11, which is optimal over all schemes for 3-way
cut. Another scheme gives us a bound of1:3438 that

holds for any numberk of terminals. This latter scheme
is designed for largek.

2.4 Additional Observations

We now mention some additional observations whose
full proofs must await the full paper.

What is the best embedding? Perhaps the first
natural question to ask is whether the embedding cho-
sen by Calinescu et al. is the best possible.

Lemma 2.5 Among all embeddings in the simplex that
minimize some norm (without adding other constraints)
theL1 norm has the smallest possible integrality gap.

Proof: Very precisely, we will show that for any cut-
ting distributionP , any other norm based distance mea-
sured will have a maximal density at least as high as
ours. First, for the embedding to be a relaxation, it is
required thatd(titj) � 1 for any two terminalsti andtj . However, since any norm based distance measure is
translation invariant and proportion preserving, this im-
plies that for anyi; j aligned edgee, thatd(e) � jej.
This, in terms, implies that the density ofe can only in-
crease. With ourL1 based distance measurej � j, we
know that the maximal density is achieved over aligned
edges, and hence a relaxation based ond cannot have a
smaller maximal density.

MT

Symmetry. A second observation is that there is no
benefit in trying to identify a “good terminal order” in
which to cut up the simplex.

Lemma 2.6 There is an optimum sparc cutting scheme
of the following form:

1. choose slice distances(d1; : : : ; dk�1) from some
probability distribution MT

2. apply the slice distances (in order) to a uniform
random permutation of the terminals

An analogous “order independence” statement holds for
the best possible (possibly non-sparc) algorithm.
Proof: Consider a best sparc with integrality gap�.
Consider any input embedding. We can “symmetrize”
the embedding, without changing its volume, by aver-
aging it over all permutations of the coordinates. Our
sparc achieves integrality gap� on the symmetrized em-
bedding. Since the embedding is symmetric, the order
in which the sparc slices terminals is irrelevant. So we
can assume it is some fixed order.

Note, however, that cut value achieved on the sym-
metrized graph but slicing in some fixed order is just the
expected cut value achieved by applying the same slices



to the original embedding under a random ordering of
the terminals.

The above lemma shows that there is no worst-case
benefit to considering specific terminal ordering. The
duality argument of Section 2.1 carries over to show that
a sparc with optimum expected integrality gap can be
specified simply as a distribution over slicing distances,
without reference to an input graph embedding.

3 Our Computational Study

Neal said: The section on ”LP results” disre-
gards the i nitial work done with Maple and
LP SOLVE (not cplex). I don’t know if we
care (is crediting the software important?)

We’ve overlooked the point that the dual solu-
tions were much more useful for the k=3 case
then the primal solutions. Further, we do not
describe the LOWER BOUND LP, which was
actually the most useful for k=3, and was not
the same as the upper bound LP that is de-
scribed now.

This is probably a subtle point not worth pur-
suing, but there is a more important related is-
sue. With k=3 we were able to extrapolate the
general solution to the dual, but not to the pri-
mal, from the computational results. Then we
figured out an analytic primal solution by rea-
soning about what it had to be like (accord-
ing to complimentary slackness) if the ana-
lytic dual solution (lower bound) was to be
tight. Recall we saw lots of optimal but very
different primal solutions (from our compu-
tations), whereas the dual solutions tended to
have a more canonical form. Maybe this is
particular to k=3, but maybe not. I think using
a lower bound LP (or at least the dual) might
be important for higher k as well.

In fact I think we should pursue this lead our-
selves by thinking carefully about the dual that
we obtain when we restrict to sparc cuts.

Mikkel: I don’t think we need to present this
to the reader, so I wouldn’t worry. Looking
at the duals ourselves could be interesting, but
first of all, I’d like this project to be completed
and the journal version submitted.

In this section we describe some computational ex-
periments we carried out to help us understand the be-
havior of the geometric embedding. One need read this
section in order to understand the following ones.

As discussed above, our goal was to find a distribu-
tion over cuts of thek-simplex that minimized the den-

sity of any segment in the simplex. This problem can
be formulated as an infinite dimensional linear program,
with one variable per cut of the simplex, corresponding
to the probability that that cut is chosen, and one con-
straint for every (aligned, infinitesimally small) line seg-
ment inside the simplex, which measures the expected
number of times the chosen cut will cut that segment. Of
course, it is not tractable to solve the infinite LP compu-
tationally, but we expected that discretized versions of it
would be informative.

We applied this approach in two distinct ways. For
the 3-terminal case, we devised an LP that exploited
the planarity of the 3-terminal relaxation, and used it
to home in on the optimal solution, which we then an-
alytically proved to be optimal. For the general case,
we devised an LP whose solutions are (provable) up-
per bounds on the performance of certain rounding al-
gorithms. We solved this LP for small numbers of ter-
minals (3–9), deriving algorithms with (computer aided)
proofs of the best known performance ratios for these
problems. The solution suggested certain properties that
appear to hold in the “optimal” rounding scheme; we
used these suggestions in our development of (analytic)
solutions for arbitrary numbers of terminals.

3.1 The three-terminal case

For the3-terminal problem we exploited planarity. The
3-simplex can be viewed as a triangle in the plane. We
discretized the linear program by defining a triangular
mesh over the simplex and considering only edges of
the mesh instead of all line segments in the simplex.

To approximate the best cutting scheme, we com-
puted the best distribution over 3-way cuts of the mesh.
We used the planarity of the 3-simplex to simplify our
LP formulation. Any 3-way cut of the mesh corresponds
to a collection of paths (representing the boundary of
the cut) through the planar dual of the mesh. Thus the
distribution of cuts corresponds to a packing of these
paths, which can be seen as a kind of flow. So instead
of enumerating all possible cuts, we could define a lin-
ear program that assigned a (multicommodity) flow to
each edge of the dual mesh. This gave us a tractable
representation of the linear program.

We also found it helpful to solve the dual of our
flow-based linear program, which assigns weights to the
mesh edges to minimize the total weight such that every3-cut has value at least 1. Since each3-cut corresponds
to a set of two or three paths in the planar dual of the
mesh, the latter constraint can be represented efficiently
by constraining shortest-path lengths (as a function of
the variable edge lengths) in the planar dual. A solu-
tion to the dual can be interpreted as an embedded graph
demonstrating the integrality gap. The dual showed us
the important idea of “ball cuts” versus “corner cuts”



which we will discuss in the following sections, and thus
led to the discovery of the optimum cutting scheme for
three terminals.

3.2 The general case

In the general case, the lack of a planar embedding pre-
vented us from exploiting nice properties of its cuts; we
were faced with the problem of enumerating cuts as well
as edges. Based on the work of Calinescu et al. and
our own results for the optimal 3-terminal solution, we
decided to limit our exploration to sparcs as discussed
above.

There is still an infinite space of possible sparcs, so
we discretized our problem. Fix an integergrid sizeN .
A discrete sparcis described by a vector(q1; : : : ; qk�1)
where eachqi is an integer in the range[0; N�1]. Given
such a vector, we choose a random sparc by settingdi
uniformly in the range[qi=N; (qi + 1)=N ]. This defines
a probability distribution on (continuous) sparcs. We
now define a linear program to search for a probability
distribution over discrete sparcs (which induces a prob-
ability distribution over continuous sparcs). We define a
variable for each discrete sparc, which reflects the prob-
ability of choosing that discrete sparc, and provide con-
straints that aim to minimize the density of any segment
under the probability distribution.

There still appear to be infinitely many constraints
(segments) but we reduce this to a finite number as fol-
lows. The slices at distancesq=N for each terminal that
determine our sparc distribution partition the simplex
into cells. For a given distribution on the discrete sparcs,
we can compute a (linear) upper bound on the density
induced onanysegment with a given alignment within
a cell, and specify one constraint saying that this upper
bound should be small. Since the cells are small, we ex-
pect all segments with a given alignment to have roughly
the same density under our cutting scheme, so we hope
that the upper bound is reasonable tight. With this sim-
plification, the number of constraints is bounded by the
number of cells times the number of segment alignments
per cell, which is at mostk2Nk.

We determine the upper bound for a cell as follows.
For any discrete cut, the slices generated from it will fall
into one of three categories. If theith coordinate of the
discrete cut is different from that of the cell, then theith slice will not pass through that cell: depending on
whether the coordinate is larger or smaller it will either
capture the entire cell or none of the cell. If theith coor-
dinates are the same, then the slice might pass through
the cell; we can use that the slice is uniformly distributed
over a range to determine its density contribution.

If we consider ani; j-aligned segment, it can only be
cut if the slices for terminali or j go through its cell. If
only one of the two slices goes through the terminal then

its contribution to a segment’s density is at most1=N .
If both slices go through the cell, their contribution is at
most2=N . We ignore the fact that different slices within
the cell might capture the segment before it can be cut,
thus introducing some slack in our upper bound.

We can exploit symmetry to further reduce the num-
ber of constraints we consider. Since by assumption our
sparc slices terminals in random order, two segments
that are identical under permutation of coordinates will
have the same densities, so we need consider only one
of them. Thus, we restrict our constraints to1; 2-aligned
segments in which the remaining coordinates are in non-
decreasing order.

3.3 LP Results

Exploiting symmetry as discussed above, we were able
to solve relatively fine discretizations of the problem.
We wrote a simple program to generate the linear pro-
grams automatically, and used CPLEX to solve them.
While it is difficult to “prove” programs correct, our
computations did converge to the correct12=11 approx-
imation ratio for the 3-terminal case.

We give our results below in tabular form. We de-
rived improved bounds for4–9 terminals. Note that (un-
der the assumption that the programs were correct) these
are provable upper bounds. In fact, since the programs
output a particular distribution over discrete cuts, their
performance ratio could be proven analytically via a te-
dious case analysis (which we have not performed).k Grid LP Gap 3=2� 1=k corner cut probability

3 90 1.0941 1.16666 .2849
4 36 1.1539 1.25 .2891
5 18 1.2161 1.3 .3144
6 12 1.2714 1.33333 .3760
7 9 1.320 1.357 .3973
8 6 1.3322 1.375 .4146

Our experiments also revealed one interesting fact:
in all cases, the optimum cut distribution made use of
“corner cuts.” That is, the output distribution had the fol-
lowing form: with some probability, place each slice at
a distance chosen uniformly between 0 and1=3 from its
terminal; otherwise, use a (joint) distribution that places
every slice at distance greater than1=3 from its terminal.

Adding constraints that forced the corner cuts to op-
erate over a range other than 1/3 of the way from the ter-
minals worsened the computed performance ratio, hint-
ing that perhaps the optimal algorithm uses corners of
size exactly 1/3. This result is consistent with the op-
timal 3-terminal algorithm, however it could be a mis-
leading artifact of working with a discretized problem.



SSSSSSS
S��������

1
2 3sa bc dre f SSSSSSS

S��������
1

2 3SSSSsr SSSSSSS
S��������

1
2 3JJ 



Figure 1: This figure illustrates the cuts used for the casek = 3. The leftmost diagram shows howr might be chosen
for the ball cut. The middle diagram shows one possible resulting ball cut (in bold). The rightmost diagram shows a
corner cut (in bold).

4 Upper Bound for k = 3
Our analytic upper bound of12=11 for k = 3 comes
from a new cutting scheme that we call the ball/corner
scheme. Though for simplicity we present a non-sparc
scheme, there is a similar scheme using sparcs that achieves
the same bound.

For k = 3, the simplex� can be viewed as a trian-
gle in the plane, which simplifies our pictures. However,
we continue to use the original three-dimensional coor-
dinate system to locate points in the simplex. Our cut of
the simplex is determined by some lines and rays drawn
through the triangle; we refer to them asboundaries. We
will show that no segment has high density with respect
to our random choice of boundaries.

As illustrated in Figure 1, denote the vertices of the
simplex1; 2; 3. Let pointsa; b; : : : ; f divide the edges in
thirds, so thata–b–f–d–c–e–a is the hexagon in� with
side length1=3. Note that the hexagon is (a scaled ver-
sion of) the unit ball for our distance metric. The points
on the boundary of the hexagon are each at distance1=3
from the hexagon’s center.2 Outside the hex, we have a
corner for each terminali consisting of the pointsx withxi > 2=3MT

The ball/corner scheme chooses aball cutwith prob-
ability 8=11, otherwise it chooses acorner cut. These
two types of cuts are defined next. The scheme is illus-
trated in Figure 1.
Ball cut:Choose a pointr uniformly at random from ei-
ther linea–c or lineb–d. Consider the three lines�xi=ri
(i = 1; 2; 3) parallel to the triangle’s sides and passing
through the pointr. Each such line is divided at the
pointr into two rays. Thus we get six rays. Each side of
the triangle intersects two of these rays. For each side,
randomly choose of the two rays that hit it. This gives
three rays; they form the boundary of the3-way cut.
Corner Cut:Choose two terminals inf1; 2; 3g, and a
value� 2 (2=3; 1], uniformly at random. For each ofMT
the two chosen terminalsi, let li = �xi=�. The two
linesli form the boundaries of the3-way cut.

2Remember that we measure length as half theL1 norm.

Analysis. We first state two simple properties of the
ball cut that we need to analyze the performance of the
cutting scheme:

Fact 4.1 Each of the3 coordinates of the random pointr is uniformly distributed in[0; 2=3].
Fact 4.2 Oncer is chosen, each one of the six candidate
rays connectingr to one side of the triangle is chosen
with probability1=2.

Theorem 4.3 The maximum density of the ball/corner
scheme is12=11, so��3 � 12=11.

Proof: We show that the expected density of any seg-
mente is at mostjej � 12=11. For the ball cuts, we use
only the two facts claimed above. Since these two facts,
as well as the corner cut scheme, are symmetric with re-
spect to the three coordinates, it suffices to prove the
claim only for a1; 2-aligned segmente. Further, we
may assume assume thate is entirely contained either
in a corner, or in the hex; for otherwise, as discussed
in Section 2.1, we can just splite into corresponding
pieces, calculating the density for each piece separately. MT
We will consider several cases, depending on wheree is
located.

First, assumee is located entirely in the hex. Such a
segment cannot be cut by a corner cut, so we need only
consider the density when a ball cut is made and mul-
tiply by the probability of choosing a ball cut, namely8=11. Assume a ball cut is made. Thene can only be
cut by rays of in�xi=ri for i = 1; 2. By Fact 4.1,ri
is uniformly distributed in[0; 2=3]. Hence, the proba-
bility that �xi=ri goes throughe is jej=(2=3) sincee is1; 2-aligned. If�xi=ri touchese, it is at a single point.
By Fact 4.2, the ray of�xi=ri containing this point is
picked for the cut with probability1=2. Thus the ex-
pected number of timese is cut is 811 �2 � jej2=3 � 12 = 1211 jej.

Exactly the same argument applies if the edge is in
the corner closest to terminal3. The ball cut contributes
the same12=11 density, while the corner cut contributes



Figure 2: The lower bound fork = 3 (hereN = 7). The paths from2 to 3 are on the left. The entire graph is on the
right. On the border, overlapping paths are drawn side-by-side forclarity, so line width represents edge cost.

nothing (note that a1; 2-aligned edge is parallel to the
line�x3=ri , so cannot be cut by it).

Finally, suppose segmente is in the corner closestMT
to terminal1 (a symmetric argument applies ife is in
the corner closest to terminal2). In this case, if a ball
cut is made, the above analysis applies except that only
the line�x2=r2 can cute (the line�x1=r1 never enters
the corner), so the density contribution of the ball cut is
halved tojej 611 . But the edge can also be cut by a corner
cut. A corner cut is chosen with probability3=11. When
it is, two of the three terminals are chosen, so terminal1
is chosen with probability2=3. If terminal 1 is chosen,
then, since the cutting line near terminal 1 is of the form�x1=1�p, wherep is chosen uniformly in[0; 1=3], the
probability that the line cutse is jej=(1=3). Thus, the
expected number of times that the edgee is cut (by a
ball cut or corner cut) isjej 611 + 311 � 23 � jej1=3 = jej 1211 .

Finally, if e spans several regions (e.g. it lies in a
corner and in the hex),e can be partitioned into sub-
segments each contained entirely in one region, and the
previous analysis applied to the sub-segments.MT

5 Lower Bound for k = 3
Theorem 5.1 For k = 3, the minimum maximum den-
sity ��3 � 12=11. Hence, the integrality gap for the geo-
metric relaxation is12=11.

Note that this theorem applies to all cutting schemes, not
just sparcs.
Proof: Fix N to be any positive integer. We construct
an embedded weighted graphGN with no 3-way cut of
cost less than12N � 3, but with an embedding of cost11N +3. This implies that no cutting scheme has maxi-
mum density less than(12N�3)=(11N+3), because by
Lemma 2.1 such a cutting scheme applied toGN would
yield a3-way cut with expected cost less than12N � 3,
a contradiction. SinceN is arbitrary, the result follows.
Our construction (forN = 7) is shown in Figure 4.

For any pair of distinct terminalsi; j and numberd 2 [0; 1], define embedded pathp(i; j; d) as follows.
Let ` be the terminal inf1; 2; 3g � fi; jg; let a be the

point on segmenti` at distanced from i; let b be the
point on segmentj` at distanced from j. Thenp(i; j; d)
is the union of the three segmentsia, ab, andbj.

We form the graph from9N pathsp(i; j; d) for 0 �d � 2=3; whered is an integer multiple of1=(3N).
Although we describe the graph as a set of paths, tech-
nically it is a planar graph consisting of nodes and edges
as follows: for every point in� whose coordinates are
integer multiples of1=(3N), there is a node in the graph
embedded at that point; for every pair of nodes embed-
ded1=(3N) units apart,G has an edge with cost equal
to the number of paths that pass through both nodes.

With this understanding, we now specify the graph.
For each of the3 distinct pair of terminalsi; j, there
are3N paths. Of these paths,N run directly between
the terminals; that is, there areN copies ofp(i; j; 0).
The remaining2N paths are the pathsp(i; j;m=(3N))
wherem = 1; 2; : : : ; 2N .

The total cost of the embedding is the total length
of the paths. Since a pathp(i; j;m=(3N)) has length1 + m=(3N), a direct calculation shows that the total
length of the paths is11N=3+ 1.

Next we lower bound the cost of any 3-way cut.
Since the graph is planar, any minimal 3-way cut cor-
responds either to a disconnected cut (meaning that the
cut is the union of two disjoint 2-way cuts, each separat-
ing some terminal from both other terminals), like our
upper bound’s corner cut, or a connected cut (meaning
that the cut edges give, in the planar dual, three paths
connected at some central node and going to the three
sides of the triangle), like our upper bound’s ball cut.

Any 3-way cut must cut all of the9N paths at least
once. To finish the proof, we will argue that for either
type of 3-way cut (connected or not), at least3N � 3
paths are cut twice, so that the edges cut by the 3-way
cut cost at least12N � 3. This is easy to verify for a
disconnected cut: a disconnected cut is the union of two
2-way cuts, so the3N paths running between the two
terminals that are cut off must be cut twice.

Now consider any connected cut. In the planar dual
of GN , the connected cut corresponds to a central node
and three paths from the node to each side of the trian-



gle. Letx = (x1; x2; x3) be any point inside the face ofGN corresponding to the central node. Consider a pathp(i; j; d) such thatd � x`, where` 6= i; j. That is,X
is inside the cycle formed by the union ofp(i; j; d) andp(i; j; 0). Then the pathp(i; j; d) is cut twice by the con-
nected cut. For fixedi andj, the number of such paths
(with d � x`) is at least(2=3� x`)N=3� 1. Thus, the
total number of such paths is at least(2=3�x1+2=3�x2 + 2=3� x3)3N � 3 = 3N � 3.

6 Improvement for general k
Theorem 6.1 For all k, ��k � 1:3438. Moreover, there
is ak-way cut approximation algorithm with an approx-
imation guarantee of1:3438.

Our bound improves on the Calinescu et. al. bound of1:5 � 2=k for all k � 14. For 3 < k < 14, we can
also obtain improvements by taking advantage ofk be-
ing small (see Section 6.1).

As discussed in Section 2.3, the essential observa-
tion in this analysis is that many slices can capture an
edge before it has a chance to be cut.

We will use a (sparc) cutting scheme called ICUT:
we choosek slicing thresholds�i, and apply the slices�xi=�i to a random permutation� of the terminals.

To bound the cutting density of our scheme, we will
bound the density of every segment. As justified in Sec-
tion 2.2, we consider a segment of length� > 0, and let� approach zero. As in the ball/corner scheme, by sym-
metry we can assume without loss of generality that the
segment is1; 2-aligned.

Definedk(x1; : : : ; xk) to be the density which which
ICUT cuts a1; 2-aligned segment of infinitesimal length
located atx1; x2; : : : ; xk. We will show:

Theorem 6.2dk(x1; : : : ; xk) � � 2:012096 if x1; x2 � 6=1111=12 otherwise.

The final cutting scheme chooses to ICUT with proba-
bility � = 0:66719 and otherwise chooses a corner cut.
The corner cut is chosen by the natural generalization of
the scheme fork = 3: choose a value� 2 [6=11; 1].
Thek-cut consists of the hyperplanesli = �xi=�, for
eachi. Note that the last corner cut need not technically
be made but it simplifies the analysis.

This combined scheme gives a maximum density
of maxf(2:012096)�; (11=12)�+ (11=5)(1 � �)g �1:3438, proving Theorem 6.1. It remains to prove The-
orem 6.2.

The cumulative probability distribution function for
any�i is isF (z) = minf(11=6)z; 1g. The correspond-

ing probability density function isF 0(z) = � 11=6 if z 2 [0; 6=11]0 otherwise.

Consider a1; 2-aligned segment of length� with one
endpoint fixed atx1; x2; : : : ; xk. As � goes to zero, the
density of this segment goes todk(x1; : : : ; xk)= 1k!X�  F 0(x1) Yi:�(i)<�(1) [1� F (xi)]+ F 0(x2) Yi:�(i)<�(2) [1� F (xi)]! (1)

where the sum is over allk! orderings of the terminals.
This formula follows from Fact 2.41-2. Particularly, it
accounts for the probability of the1; 2-aligned edge be-
ing captured by the terminals going before 1 or 2, and
this saving is crusial for improving the factor of 3/2
for largek. The formula assumes thatF is continuous
around eachxi and thatF 0 is continuous in an open re-
gion aroundx1 andx2. The latter is not the case around6=11. However, as discussed Section 2.1, we may ass-
sume that all segmentse considered have been subdi-
vided so that for eachi = 1; 2, eithermaxxi � 6=11 orminxi > 6=11. MT

Note thatdk(x1; : : : ; xi; 0; : : : ; 0) = di(x1; : : : ; xi)
(providedi � 2), becausexj = 0 implies terminalj
cannot save the edge. Note also thatdk is symmetric
with respect to the variablesxi for i > 2. DefineDk(x1; x2) := maxx3;:::;xk dk(x1; x2; : : : ; xk)Ck(x1; x2) := dk(x1; x2; c; : : : ; c)

wherec = (1� x1 � x2)=(k � 2);D1(x1; x2) := limk!1Dk(x1; x2);C1(x1; x2) := limk!1Ck(x1; x2):
In these definitions,(x1; x2; : : : ; xk) is required to lie in
thek-simplex.Dk is the maximum density of any1; 2-aligned in-
finitesimal segment with an endpoint whose first two co-
ordinates arex1; x2. Note that the maximum is well-
defined and achieved by somex3; : : : ; xk because the
simplex is closed under limit.

To understand ICUT, our first goal is to characterizeDk. We considerCk as it is one candidate forDk.

Lemma 6.3 Dk(x1; x2) � Dk+1(x1; x2) for all k.

Proof: dk(x1; : : : ; xk) = dk+1(x1; : : : ; xk ; 0);



Thus theDk are a nondecreasing sequence bounded
from above (by 2). This implies thatD1 is well-defined.
We will see later thatC1 is also well-defined.

Next we show that for fixedx1 andx2, the worst
case occurs at either the “central point”x1; x2; c; c; : : : ; c
or the “three-terminal” pointx1; x2; 1�x1�x2; 0; : : : ; 0.
(Analogous results hold foranyconvex or concaveF .)

Lemma 6.4dk(x1; : : : ; xk) � �Ck(x1; x2) if 8i > 2 : xi � 6=11C3(x1; x2) if 9i > 2 : xi � 6=11.

Proof: Fix x1 andx2. Let c = (1� x1 � x2)=(k � 2).
Claim 1: Among allx3; : : : ; xk such that0 � xi �6=11 for all i > 2 (andx1; x2; : : : ; xk is in the simplex),

the unique maximizer ofdk(x1; x2; x3; : : : ; xk) satisfiesx3 = x4 = � � � = xk. Suppose for contradiction that
some other suchx3; x4; : : : ; xk maximizesdk. Thenxi < xj for somei; j > 2. Considered just as a function
of xi andxj (holding the other coordinates fixed)dk(x1; : : : ; xk) = p+ q[1� F (xi)] + r[1� F (xj)]+s[1� F (xi)][1� F (xj)] (2)

wherep, q, r ands are nonnegative and independent ofxi andxj . Furthermoreq = r becausedk is symmetric
in xi andxj . Consider increasingxi and decreasingxj
at equal rates. This maintains0 � xi; xj � 6=11 but
increasesdk at a rate proportional toq[F 0(xj)� F 0(xi)]+ s�F 0(xj)[1� F (xi)]� F 0(xi)[1� F (xj)]�:
This is positive becauseF 0(z) = 11=6 for z � 6=11

andF (xj) > F (xi) (recall thatxi < xj � 6=11). This
contradicts the choice ofx3; : : : ; xk.

Claim 2:Among allx3; : : : ; xk such thatxi � 6=11
for somei > 2 (andx1; : : : ; xk is in the simplex), the
unique maximizer ofdk(x1; x2; x3; : : : ; xk) satisfiesxi =1� x1 � x2 andxj = 0 for j 6= i. Suppose for contra-
diction that some other suchx3; x4; : : : ; xk maximizesdk. Fix somej > 2 such that0 < xj < 6=11 �xi. SinceF (xi) = 1, the expression (2) reduces top+ q(1� F (xj)). If we increasexi and decreasexj at
the same rate, the rate of increase indk is qF 0(xj) > 0,
contradicting the choice ofx3; : : : ; x4.

The two claims together prove the lemma.

Lemma 6.5 For k � 4, Ck(x1; x2) � Ck+1(x1; x2).
Proof:Ck(x1; x2) = dk(x1; x2; c; : : : ; c)= dk+1(x1; x2; c; : : : ; c; 0)� Ck+1(x1; x2):

Herec = (1 � x1 � x2)=(k � 2). The last inequality
follows from Lemma 6.4 (usingc � 1=2 < 6=11).

An immediate corollary is thatC1(x1; x2) is well-
defined andCk(x1; x2) � C1(x1; x2) for all k. Using
this and Lemma 6.4, to boundD1 it suffices to boundC3 andC1. We begin withC1.

Lemma 6.6C1(x1; x2) � � 2:012096 if x1; x2 � 6=1111=12 otherwise.

Proof: Fix x1 andx2. Our first goal is to derive a
closed-form expression forCk(x1; x2) for anyk. Fix k
for now and letxi = c = (1 � x1 � x2)=(k � 2) fori > 2.

For j = 1; 2, let Sj denote the probability that the
segment at(x1; x2; : : : xk) is not captured by a terminal
other thanj before thejth cut is made:Sj := 1k!X� Yi:�(i)<�(j) 1� F (xi):
ThenCk(x1; x2) = S1F 0(x1) + S2F 0(x2).

We will derive a closed-form expression forS1 (and
by symmetry forS2). Recall thatxi = c for i > 2. We
thus rewriteS1 = 1k k�1Xq=0 qk � 1 (1� F (c))q�1[1� F (x2)]+ (1� qk � 1 ) (1� F (c))q:
Here we condition onq, the number ofj such that�(j) <�(1). Note thatq is uniform in [0; k � 1] while qk�1 is
the probability that�(2) < �(1), givenq.

A change of variables and rewriting giveS1 = �1 + 1� F (x2)k � 1 � k�2Xq=0 (1� F (c))qk� F (x2) k�2Xq=0 q(1� F (c))qk2 � 2k :
Now we let k ! 1. The two sums above have

standard closed forms that tend respectively to[1� e�a]a�1 and [1� (1 + a)e�a] a�2;
wherea := limk!1 k F (c) = (1�x1�x2)F 0(0). Thus,S1 ! [1� e�a]a�1 � F (x2)[1� (1 + a)e�a] a�2:
Of courseS2 is the above withx1 replacingx2. This
gives us our closed-form expression forC1(x1; x2):C1(x1; x2) = [F 0(x1) + F 0(x2)]� 1� e�aa� [F 0(x1)F (x2) + F 0(x2)F (x1)]� 1� (1 + a)e�aa2 :

(3)



wherea = (1� x1 � x2)F 0(0).
The above equality holds for anyF . Using this closed

form and our particular choice ofF , we now show the
two desired bounds onC1.

Case 1: x1; x2 � 6=11. In this casea = 11=6(1�x1 � x2), F 0(x1) = F 0(x2) = 11=6, andF (x1) +F (x2) = 11=6(x1 + x2) = 11=6� a. So (3) givesC1(x1; x2) = 11=3 1� e�aa� 12136 �1� 611 a�1� (1 + a) e�aa2
wherea = 11=6 (1 � x1 � x2) soa 2 [0; 11=6]. LetC(a) = C1(x1; x2). In the rest of this case (Case 1),

we will prove thatC(a) � 2:012096 for a 2 (0; 11=6).
The casesa = 0 anda = 11=6 follow by the conti-
nuity of C. The claim is “obvious” from a plot but the
somewhat technical proof appears below.

We show thatC(a) is strictly concave fora 2 (0; 11=6).
It therefore has a unique maximum at somea0, whereC 0(a0) = 0. By substitution,C 0(:294) � 0:00045 > 0
andC 0(:295) � �0:00009 < 0, soa0 2 (:294; :295).
Hencemaxa2[0;11=6]C(a) � C(:295)�0:001�C 0(:295) � 2:012096
To showC(a) is strictly concave, we show thatC 00(a) is
strictly negative. Now,C 0(a) = 1136 7 e�aa2�18 a�4 e�aaa3 +1136 6 e�aa3+22�22 e�aa3 andC 00(a) = � 1136a4 (7 e�aa3 +3 e�aa2 � 36 a� 30 e�aa+ 6 e�aa4 + 66� 66 e�a):

To show thatC 00(a) is negative, it suffices to prove
thatD(a) = �7 e�aa3 � 3 e�aa2 + 36 a+ 30 e�aa� 6 e�aa4 � 66 + 66 e�a
is negative. By substitution,D(0) = 0 andD(11=6) =0, so it suffices to show thatD0 has only one zeroa1,D0(a) < 0 for a < a1 andD0(a) > 0 for a > a1. HereD0(a) = �17 e�aa3 � 18 e�aa2 � 36 e�aa+ 36� 36 e�a + 6 e�aa4
andD00(a) = e�aa2(�6a2 + 41a � 33). For a 2(0; 11=6], D00 has only one zeroa2 = 41�p88912 � 0:93

andD00(a) < 0 for a < a2 andD00(a) > 0 for a > a2.
That is,D0 is first decreasing and then increasing. SinceD0(0) = 0 andD0(11=6) � 4:108 > 0 it follows thatD0 has only one zeroa1 for a 2 (0; 11=6].
Case 2: x1 or x2 � 6=11. Assumex1 � 6=11 (the
casex2 � 6=11 is symmetric). In this case,F 0(x1) = 0
andF (x1) = 1, so we getC1(x1; x2) = 116 1� e�aa � 116 1� (1 + a) e�aa2 :

As before, letC(a) = C1(x1; x2). We will prove thatC(a) � 11=12 for a 2 [0; 11=6]. First, lima!0 C(a) =11=12, soC(a) � 11=12 follows if we can show thatC 0(a) � 0 for a 2 (0; 11=6]. We haveC 0(a) = 116a3 (�a� e�aa+ 2� 2 e�a):
DefineE(a) = �a� e�aa+2� 2 e�a. Since 116a3 > 0
for a > 0, C(a) � 0 if and only if E(a) � 0. SinceE(0) = 0, we can inferE(a) � 0 if E0(a) � 0 for alla 2 (0; 11=6]. We haveE0(a) = �1+e�a(a+1). Note
thatE0(0) = 0, soE0(a) � 0 follows if E00(a) � 0 fora 2 (0; 11=6]. We haveE00(a) = �e�aa, soE00(a) �0. We conclude thatC1(x1; x2) � 11=6 if x1 > 6=11.

Lemmas 6.4 through 6.6 prove that, forx such thatxi � 6=11 for all i > 2,dk(x1; : : : ; xk) � C1(x1; x2)� � 2:012096 if x1; x2 � 6=1111=12 otherwise.

The remaining case is whenxi � 6=11 for somei > 2.
In this case by Lemma 6.4,dk(x1; : : : ; xk) � C3(x1; x2) = d3(x1; x2; 1� x1 � x2)
andx1 + x2 � 5=11. Thus, to finish the proof of the
theorem, it suffices to show the following lemma.

Lemma 6.7 If x1 + x2 � 5=11,C3(x1; x2) � 11=6:
Proof: Let x3 = 1� x1 � x2 � 6=11.

ThenF (x3) = 1 while F (x1) = 11=6x1, F (x2) =11=6x2, andF 0(x1) = F 0(x2) = 11=6.
By inspection of (1),C3(x1; x2) = d3(x1; x2; x3) =(1=6) (11=6) (6� 11=6 (x1 + x2)) � 11=6.

This proves Theorem 6.2.

6.1 Improvements for small values of k
For particular values ofk it is possible to refine the anal-
ysis in the proof of Theorem 6.1 to get improved bounds.
In this case it is useful to modify the algorithm so that it
only usesk � 1 cuts instead ofk. In particular, we do
not use the cut for the terminalj with �(j) = k. The
analysis for this case goes similarly, with our definitions
appropriately modified to reflect that we are usingk� 1
instead ofk cuts.

Then, instead of passing to the limit,Ck(x1; x2) can
be evaluated directly. Following this approach we ob-
tained the following performance guarantees for partic-
ulark:



k corner p ratio
3 0.641 0.675 1.131
4 0.607 0.663 1.189
5 0.588 0.659 1.223
6 0.576 0.659 1.244
7 0.565 0.657 1.258
8 0.557 0.656 1.269
9 0.557 0.659 1.277

10 0.557 0.661 1.284
12 0.554 0.661 1.293
20 0.554 0.666 1.314
35 0.550 0.666 1.327

Here, “corner” is the placement of the corner (anal-
ogous to6=11), p is the probability of choosing ICUT,
and “ratio” is an upper bound on the resulting ratio. The
corner sizes andp’s are approximate and only close to
optimal and the ratios were evaluated numerically with-
out formal verification.
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