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Roundoff Error Analysis of the Fast Fourier Transform

By George U. Ramos

Abstract. This paper presents an analysis of roundoff errors occurring in the floating-

point computation of the fast Fourier transform. Upper bounds are derived for the ratios of

the root-mean-square (RMS) and maximum roundoff errors in the output data to the RMS

value of the output data for both single and multidimensional transformations. These

bounds are compared experimentally with actual roundoff errors.

1. Introduction. The fast Fourier transform (FFT) is a very efficient algorithm

for computing

JV-l

(1.1) y(j) -  E exp(i2TJk/N)x(k)        0 - 0, 1, ••• , N - 1),

where x(k) is a given set of complex numbers and / = V — 1. Let y' = (y(0), • ■ ■ ,

y(N — 1)) and fl(y)be the floating-point representation of y. In this paper, we derive

bounds for

l|fl(y)-y||HMB/l|y||BM8   and   ||fi(y) - y|U/llylUs,

where

IMUmb = ((C \z(k)\2)/ Nj        and    [|z||. = max \z(k)\.

These bounds include the effect of roundoff in computing sines and cosines and are

obtained for both single and multidimensional transformations. Special consideration

is given to cases when N is a multiple of 2 or 4.

The subject of roundoff error in the FFT has been studied and reported by others

but with less generality or using a different approach. By comparing upper bounds,

Gentleman and Sande [1] show that accumulated floating-point roundoff error is

significantly less when one uses the FFT than when one computes (1.1) directly.

In [2], Welch derives approximate upper and lower bounds on the RMS error in a

fixed-point power-of-two algorithm. Weinstein [3] uses a statistical model for floating-

point roundoff errors to predict the output-noise variance. Kaneko and Liu [4] also

use a statistical approach and derive expressions for the mean-square error in a

floating-point power-of-two transformation.

In the following sections, (1) the FFT algorithm is described in terms of a matrix

factorization, (2) error bounds are derived, and (3) experimental comparisons of

actual errors with error bounds are presented.

2. Matrix Factorization and the Fast Fourier Transform. In 1958, a matrix

factorization for an algorithm similar to the FFT was described in a paper by I. J.
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758 GEORGE U. RAMOS

Good [15]. This paper led to the 1965 paper of Cooley and Tukey [5] in which the

fast Fourier transform was introduced. Since then, many authors have presented

matrix factorizations for the FFT. (See, for example, [6], [7], [8], [9], [13], and [14].)

Consider the complex Fourier transform of (1.1). This transform can alternatively

be expressed as the matrix-vector equation

(2.1) y = Tx

where T is an Mh-order matrix of complex exponentials

7X/, k) = exp(i2xy/c/N)       (j, k = 0, 1, • • • , N - 1).

If this were to be computed directly, it would require N2 complex multiplications and

N(N — 1) complex additions. Instead, one can make use of the fact that

(2.2) T = Pm+i(BmPm)(F)m-iBM-iPm-i) ■ ■ ■ (D^Pi),

where P¡ (I = 1, 2, • • • , M + 1) are permutation matrices, D¡ (/ = 1, 2, • • • , M — 1)

are diagonal matrices of complex exponential elements (called rotation factors by

Singleton [13], twiddle factors by Gentleman and Sande [1]), and B,(l = 1, 2, • • • , M)

are block-diagonal matrices whose blocks on the diagonal are identical square

submatrices, each the matrix of a complex Fourier transform of dimension N¡. In

this case, the required number of operations is reduced to N(M — 1 + 22f-i Ni)

complex multiplications and N(22î'-i (N¡ — 1)) complex additions.

Description of the fast Fourier transform as a matrix factorization simplifies the

following roundoff error analysis; but, before proceeding, a few remarks are in order.

First, most factored-matrix formulations include only a single permutation matrix.

The additional permutation matrices of (2.2) preserve diagonality. Second, the

factors D¡B, can be combined. The required multiplication count would then be

^(Ei^i ^0- Third, the above operation counts do not take into account the fact

that many of the complex exponentials are ±1 or ±V — 1. And fourth, (2.2) holds

for the Sande-Tukey algorithm as well as the Cooley-Tukey algorithm but with

different diagonal matrices, Z>¡ (see [1]).

3. Roundoff Errors in the Fast Fourier Transform. In this section, we first

explain the roundoff error models used and then state and prove a theorem bounding

the RMS and maximum errors.

We use models due to Wilkinson to mathematically represent the effect of round-

off in floating-point arithmetic operations. In [10] Wilkinson shows that the floating-

point sum and floating-point product of two floating-point numbers a and b can

always be expressed as

(3.1) fl(a + b) = a(l + 0e) + b(l + Be),

and

(3.2) f\(ab) = ab(l + Oe),

where e is a computer-dependent constant and 6 is a generic variable usually different

in value at each occurrence but always within the range — 1 to 1. (The error constant,

e, is 0.5/31"' for rounded operations or ß1'' for chopped operations, where ß is the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ROUNDOFF ERROR ANALYSIS OF FAST FOURIER TRANSFORM       759

number base of the floating-point computing system, t is the number of base-0

digits in the mantissa of the floating-point number, and at least t + 1 digits are used

to accumulate sums. For example, e = 16~5 in short-precision floating-point opera-

tions on the IBM 360. If sums are accumulated with only t digits, e = 0.5(1 -f- l/ß)ß1~'

for rounded operations or (1 + l/ß)ß1~' for chopped operations.)

To represent roundoff in computing sines and cosines, we could model either

the relative error or the absolute error. If the arguments of the sines and cosines are

carefully computed, either model will result in approximately the same bound.

However, small errors in the arguments can result in large relative error when the

sine or cosine is very small. In this case, an absolute error model gives a better bound.

Hence we introduce an absolute error constant, 7 g: 0, such that

fl(sin(fl(«))) = sin(a) + yde    and    fl(cos(fl(a))) = cos(a) + yde,

where 6 and e are above. This constant depends on how sines and cosines and their

arguments are computed for a transformation of a given order, but it is independent

of the input data.

Let x' = (x(0), ■■■ ,x(N-l)),y' = O(0), ■■■ ,y(N-l)) and fl(y) be the floating-
point representation of y and let

Nina = ((C \z(k)\2)/ N) '     and    ||z||. = max \z(k)\.

Then we have the following:

Theorem l.Ify=Txis computed by a floating-point fast Fourier transform of

order N = NiN2 • • • AV, then

a. ||fl(y) - ylUs/llyllRMs < K(N, y)e + 0(e2) and
b. ||fl(y) - ylMlylUs < VNK(N, y)e + 0(e2), where

M

K(N, y) =  22 «W) + (.M - 1)(3 + 27)
i-i

and

a(N,) = V2 (IV, = 2),

= 5 (TV, = 4),

= 2-s/Ni (Ni + y)     otherwise.

(In the case of radix-2 or radix-A algorithms the important constants are

K(2M, y) = (3 + V2 + 27)M - (3 + 27),    and

K(AM, y) = (8 + 2T)M - (3 + 2T).

These constants include the effect of separate multiplications by Dx (I = 1, 2, • • • ,

M - 1).)
Proof of a. First consider computation of the inner product v = 22l-i a(0"(0 by

the algorithm: begin v : = a(l) (x) u(l);for I : = 2 step 1 until ndov:= v + a(l) (x) u(I)

end where it is known that u is exactly representable in floating point while a satisfies
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fl(a(/)) = a(l) + y dt (l = 1, 2, ■ • • , ri) for y, 0 and e as above. By repeated application

of (3.1) and (3.2), as in Wilkinson [10], one finds that

ñ(v) = (a(l) + y6e)u(l)(l + 0e)n + (a(2) + y6t)u(2)(l + 6e)n

+ (a(3) + y6e)u(3)(l + de)"-1 + ■ ■ ■ + a(n)(l + y6t)u(n)(l + 0e)2.

Expanding factors (1 -f Be)1 and regrouping terms, this becomes

fl(u) = v + e[(a(l)«0 + yd)u(l) + (a(2)nd + yff)u(2)

+ (a(3)(n - 1)0 + 70)«(3) + • • • + (a(n)26 + y6)u(n)] + 0(e2),

where 0(t2) includes all terms of order e2. Thus, it follows that floating-point

computation of the matrix vector product v = Au, where fl(A(j, /)) = A(j, I) + y6e

and ft(u(l)) = u(I), is given exactly by

(3.3)

fl<e(D)

Ü(v(2))

v(D

o(2)

Ü(v(n))J      Lv(n)J

A(\, \)nd + yd     A(\, 2)n6 + yd

A(2, l)n8 + yd    A(2, 2)n6 + y6
+

A(\, n)26 + yd

A(2, n)26 + yd

\_A(n, \)n6 + 70     A(n, 2)«0 + 70 A(n, n)26 + 70j|_«(«)

«(1)

u(2)
+

0(e2)

0(e2)

lO(e\

Next, consider computation of (1.1) without using the FFT. We write this complex

computation as its real equivalent:

y »

yi J

c ; -s Xr

cJLx,

where C and 5 are real matrices with elements C(j, k) = cos (2ir(j — l)(/c — l)/iV)

and S(j, k) = sin (2tt0' - l)(/c - l)/N) (j, k = 1, 2, • • • , N), and xR, xT, yR, y! are

the real and imaginary parts of x and y. Note that the RMS value of a complex

vector is \/2 times as large as the RMS value of its real equivalent and that the RMS

value of any vector is a multiple of the Euclidean norm and therefore is consistent

with the same matrix norms as the Euclidean norm. [I.e., if v = An, then

IMUms ú \\A\\ ||u||rms) where ||^|| is the Frobenius norm (the square root of the sum

of the squared magnitudes of all elements) or the spectral norm (the square root of the

largest eigenvalue of A*A). See Wilkinson [10] or Isaacson and Keller [11].] There-

fore, by (3.3) and the properties of norms,

(3.4) ||fl(y) - y||RMS g e \\M\\ ||x||RMS + 0(e2),

where M is the matrix of Fig. 1. Using the fact that \C(j, k)\2 + \S(j, k)\2 = 1, the
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C(l,l)2»0 + r0    C(l,2)2N0 + 70 ... C(l,N)(N+l)0+ 79

C(2,l)2Ne + 79

C(N,l)2N9+79

-S(1,1)N0 + 7Q-S(l,N)29+70

-S(2,N)29 + 79

• «

-S(W,N)29 + 70

C(l,N)29 + 79S(l,l)2N9 + 79

S(2,l)2N0 + 79

S(N,l)2N9+79 C(N,N)29 + 79

Figure 1. Direct Transformation Error Matrix

Frobenius norm of M is bounded by

\\M\\Ú {N[(2Nf + (27V)2 + (2N - l)2 +

< 2N(N + y)
(3.5)

+ 32 + 22U1/2 + 2A7

when N is greater than 2.

Finally, we analyze the fast Fourier transform. Let %i = D^PjX. Since the

permutation matrix simply reorders vector values, it introduces no roundoff error.

Assume fl(x) = x. Then

(3.6)
fliz,) - z, = W(Di ñ(BiPiX)) - DiBiPiX

= fl(Di fl(v)) - Di fl(v) + Di[il(BiU) - Biu],

where u = Pxx and v = 5,u. To bound fl(2?iu) — Bxvl, recall that Bx is a block-

diagonal matrix whose blocks are Fourier transform matrices of order Nu Let u,,

v, (/ = 1, 2, • • • , N/Ni) be AVvectors such that

u =

u,

u2

-Uat/JV,-

and    v =
v2

LV^/ArJ

Then by (3.4) and (3.5), ||fl(v,) - v,||aM8 g e27Y1(A^1 + 7)||u«||bmb + 0(e2)

(1 = 1, 2, • • • , N/Ni) when Ni is greater than 2. If iV, = 2, this inequality still holds.

In fact, we can do much better. Figs. 2 and 3 show the block-diagonal factor matrices
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1 1

1       -1

Figure 2. The Block-Diagonal Factor Matrix with 2nd-Order Blocks

1111

1 i -1 -i

1-1 1-1

1    -i    -1      i

111

1     -1     -i

-1    1   -1

-i    -1      i

Figure 3. The Block-Diagonal Factor Matrix with Ath-Order Blocks

for the cases when N has factors 2 or 4. By inspection, one can see that in these

cases no sines and cosines are computed, no multiplications are required, and there

are only A^ elements to be summed as compared with 27V, — 1 in other cases. Thus,

one can easily show that

l|fl(v,) - v.Ubmb Ú t VNia(Ni) ||u,||bmb + 0(t2)        (/ = 1, 2, ••• , N/NJ,

where

<x(Ni) = V2 (Ni = 2),

= 5 (Ni = A),

= 2\/Ni (Ni + 7)    otherwise.

It immediately follows that
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(3.7) \\ñ(Bi*) - Tí.uIUms è eVNi a(Nt) ||u||RMS + 0(e2)

for a(Ni) as above.

In the same way, we obtain a bound on the error in multiplication by the complex-

diagonal matrix Du The bound is given by

(3.8) \\ñ(Di fl(v)) - Di fl(v)||RMS g e(2V2 + 2T) [|fl(v)||RMS + 0(e2).

From (3.7) it follows that ||fl(v)||RMS = ||v||RMs + 0(e). Furthermore, the spectral

norms of Du Bu and Pi are 1, y/Nu and 1, respectively, since D\Di = I, B^Bi = NJ

and P*Pi = I, where I is the N-hy-N identity matrix. So from (3.6), (3.7) and (3.8),

we get

||n(Zl) - Zl||RMS ^ eVA^i (a(Ni) +3 + 27) ||x||Rms + 0(t2),

where a(Ni) is given above.

The next step is to let z2 = D2B2P2Zi. Then

fl(z2) - z2 = ñ(D2B2P2 fl(z,)) - D2B2P2 fl(Zl) + fl2J52P2[fl(z1) - z,]

and

||fl(z2) - z2||RMS g e(NiN2)1/2(a(Ni) + a(N2) + 2(3 + 27)) ||x||RM8 + 0(e2).

The proof of part a is completed by continuing in this manner and using (2.2).

Proof of b. The proof is extremely simple. Let e(j) = ñ(y(J)) — y(j). Then

max |e(/)I2 ú  ¿ \e(j)\\
i i-0

from which it follows that

max \e(j)\ g ^N ||e||RMs-
í

Substituting the bound of part a for ||e||RMa completes the proof.

It is not necessary to obtain a bound on the maximum error by using part a.

Instead, one can use matrix infinity norms in the same fashion that matrix spectral

norms were used above. But the infinity norms of the factor matrices, B,, are pro-

portional to N¡ rather than \/N¡, and so a higher bound results.

4. Roundoff Errors in Multidimensional Transformations. The efficiency of the

fast Fourier transform has made it economically feasible to compute higher-dimen-

sional Fourier transformations in applications such as picture processing and x-ray

diffraction studies. In this section, bounds on roundoff errors in multidimensional

FFT's are derived.
The problem is to bound roundoff errors in computing

Y(h, t2, ■■■ ,tm)=  22 Z • • • 12 e(MiM + s2t2/N2 + • • ■ + smtjNm)

X(Si, s2, • • •   , sm)

(s„ U = 0, 1, • • • , Ni - 1; / = 1, 2, • • • , m).
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764 GEORGE U. RAMOS

Let

E(h, t2, ■■• , tj = fl(Y(h, t2, ■■■ , tm)) -  Y(ti, t2, ■■■ , tm),

[ñ(Y)~ y]RMS = {(£ S • • S \E(h, t2, ■ ■ ■ , fjfJM/v, • • • Nmy/2,

and

[ñ(Y) -   y]MAx =       max      \E(ti, t2, ■ ■ ■ , fj|.
li.l..¡m

Then we have
Theorem 2. The RMS and maximum error due to roundoff in a multidimensional

fast Fourier transform are bounded by

a. [ñ(Y) - y]RMS/TRM8 á « J2T-1 Wi, 7) + 0(e2) and

b. [ñ(Y) -  y]MAx/TRMS g e(NN2 ■■■ Nmf'2 £7-i Wu y) + 0(e2), where

K(Nt, y) (I = 1,2, • • • , m) is the error constant given in Theorem 1.

Proof. Let (4.1) be rewritten as the system of equations

•^I-lCSl» ■ ■ '  » sl-l< ti. ■ ■ ■  > t„)

=  }2 e(Sltt/N¡)Z,(si, ■■■ ,s,, ti + i, •■■ ,tm)        (I = 1, 2, • • • , m)
si

with Z0 = Y and Zm = X, and describe this system of equations by the notation

Z,_, = r,Z,        (/ = 1, 2, ••• , m).

Then by adding and subtracting identical terms to the equation

fl( Y) -   Y = ñ(Ti ñ(T2 • • • fl(TmX)    ■))- TiT2    ■■  TmX,

one gets

fl( Y)-  Y = ñ(Ti fl(Z,)) - Ti ñ(Zi)

+ Ti ñ(T2 Ü(Z2)) - TiT2ñ(Z2)

+ TiT2 ñ(T3 fl(Z3)) - TiT2T3 ñ(Z3)

+ • • • + TiT2 ■ ■ ■ Tm-i ñ(TmX) - TiT2 ■■■ TmX.

Now take the RMS value of both sides and use the Cauchy-Schwarz inequality

to get

[fl( Y) -  y]RMS g [fl(7\ fl(Zi)) - Ti fl(Z1)]RMS

(4.2) + [TiW(T2 fl(Z2)) - T2 fl(Z2)]]RMS

+ ••• + [TiT2 ■■■ Tm.i[f\(TmX) - rmZ]]RMS.

Using Theorem 1, it is not difficult to prove that

(4.3) LTKZ,-,) - Z^Ws/lZJbms Ú eVNtKW, y) + 0(e2).

Nor is it difficult to prove

(4-4) [Z^Lms = VN, [Z,]RM8.

Therefore, by (4.2), (4.3) and (4.4),
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\ñ(Y) -   y]RMS ú e{(Ni)w2K(Ni,y)[ñ(Zi)]RK8

+ (NiN2)1/2K(N2,y)[ñ(Z2)]RMS

+ ••• + (NiN2 •••  Nm)1/2K(Nm,y)[ñ(X)]aMa} + 0(t2).

But by (4.3), [ñ(Zt)]RU8 = [Z,]RMS + 0(e) (I = 1, 2, • ■ • , m - 1), and by (4.4),

[Z,]RMS = (N,+iNl+2 •■• Nm)1/2[X]RMa. Assuming that fl[(Z)]RMS = [X]RliS, or at

least [fl(X)]RMs = [I]ems + 0(e), the proof of part a is complete.

Part b is proved by arguments identical to those used in the proof of part b of

Theorem 1.

5. Experimental Results. Roundoff error bounds are always pessimistic—

sometimes so much so that they give no indication of the true error. To find out how

pessimistic the error bounds of Section 3 are, the following experiment was performed.

Using two different FORTRAN programs, one by N. M. Brenner [12] and the other

by R. C. Singleton [13], a mixed radix fast Fourier transform of Gaussian data with

mean 0 and variance 2 was computed in both short and long precision on the

Stanford IBM 360/67. The actual error was computed as the difference between the

short precision results and the truncated long precision results. The constant y,

used in determining the error bound, was computed by taking the difference between

short precision and truncated long precision numbers representing sines and cosines.

The results of this experiment are given in Table 1. Note that the RMS error bound

is roughly 20 times larger than the RMS error and the MAX error bound is roughly

2 orders of magnitude larger than the MAX error. Also note the relative size of the

error bounds with respect to values of the transformed data. Even though the bounds

are pessimistic, they might be used as a threshold for deciding what confidence to

place in transformed data of relatively small magnitude.

6. Conclusion. In the preceding sections, roundoff errors in the floating-point

fast Fourier transform have been analyzed. Bounds on RMS and maximum errors

in transformed data were determined for both single and multidimensional transforms,

and in the case of a one-dimensional transform results of a computational experiment

show how close these bounds are to the actual roundoff errors. The bounds include

the effect of roundoff in computing sines and cosines and, if contributions to the

actual errors are in the same proportion as to the error bounds, a close look at the

error bounds shows that the effect of roundoff in computing sines and cosines is not

negligible but in fact contributes the same order of magnitude to the total error as

the roundoff in additions and multiplications.

So far, nothing has been said about floating-point representation of input data.

It was assumed that these numbers were exactly representable in machine precision.

If not, an additional term must be added to the roundoff error to account for round-

ing input data. Suppose fl(x) = x + 5. Then the additional term is

||ro||RMsá VJV||8||RMB.

On the other hand, suppose that the input data is known to a number of significant

digits fewer than that of machine precision. For example, the data might have come

from an analog device of limited accuracy. Then the bounds on roundoff error can
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be used in reverse as suggested by the following: Let the roundoff error be given

exactly by the complex TV-vector e. This vector can be considered the exact solution

of the equation e = T5 for some fictional S bounded by

ll&IUs =  ||e||RMSA/JV^ *K(N,y) ||x||RMS + 0(e2),

and

||8|U ^ *VN K(N,y) \\x\\RMa + 0(e2).

If it should turn out that e\/NK(N, 7)||x||RMS is smaller than the least significant

digit of the input data, the roundoff error is negligible.
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