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Abstract. The search complexity of a separating system H ⊆ 2[m] is
the minimum number of questions of type “x ∈ H? ” (where H ∈ H)
needed in the worst case to determine a hidden element x ∈ [m]. If we
are allowed to ask the questions in at most k batches then we speak
of the k-round (or k-stage) complexity of H, denoted by ck(H). While
1-round and m-round complexities (called non-adaptive and adaptive
complexities, respectively) are widely studied (see for example Aigner
[1]), much less is known about other possible values of k, though the cases
with small values of k (tipically k = 2) attracted significant attention
recently, due to their applications in DNA library screening. It is clear
that |H| ≥ c1(H) ≥ c2(H) ≥ . . . ≥ cm(H). A group of problems raised
by G. O. H. Katona [6] is to characterize those separating systems for
which some of these inequalities are tight. In this paper we are discussing
set systems H with the property |H| = ck(H) for any k ≥ 3. We give a
necessary condition for this property by proving a theorem about traces
of hypergraphs which also has its own interest.
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1 Preliminaries

We denote the set of the first m positive integers by [m]. A set system A ⊆ 2[m]

is said to be a separating system if for any pair of distinct elements x, y ∈ [m]
there exists a set in A that contains exactly one of them. A separating system
A is minimal if no B ⊂ A is separating.

A hypergraph is a pair (V, E), where V is a finite set, called the vertices of
the hypergraph and E is a collection of subsets of V , called the (hyper)edges of
the hypergraph. Notice that E is not necessarily a set, that is, hyperedges may
have multiplicity greater than 1. If every hyperedge has multiplicity 1 then the
hypergraph is called simple. It is obvious that edge sets of simple hypergraphs
and set systems are the same. If the restriction of a simple hypergraph to any
proper subset of the vertices is not simple then we speak of a minimal simple
hypergraph. The set of all minimal simple hypergraphs on the vertex set [n]
having m hyperedges is denoted by MSH(n, m). The multiplicity of a set of
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vertices X in a hypergraph H is the number of occurences of X as an edge and
is denoted by mH(X). Sometimes, if it does not cause any misunderstanding we
identify hypergraphs by their edge set.

Let H = (V, E) be a hypergraph and consider any linear order of V and E .
The incidence matrix of H is a 0-1 matrix MH = (mij)|E|,|V |, where mij is 1

if and only if the ith edge contains the jth vertex. The incidence matrix of a
set system A ⊆ 2S is defined as the incidence matrix of the simple hypergraph
having vertex set S and edge set A and is denoted by MA. It is obvious that
any row and column permutation of an incidence matrix of a hypergraph (set
system) is also an incidence matrix of the same hypergraph (set system) and
that any 0-1 matrix is an incidence matrix of some hypergraph. The dual of a
hypergraph H is the hypergraph H∗ whose incidence matrix is MT

H. The dual
of a set system A is the collection of edges of the hypergraph whose incidence
matrix is MT

A . Note that A∗ is not necessarily a set system.
It is obvious that a hypergraph H is simple if and only if MH has no identical

rows and that a set system A is separating if and only if MA contains no identical
columns.

A set system A of cardinality k + 1 is called a k-star if it contains a set A
such that for any B ∈ A, B 6= A : A ⊆ B and |B \ A| = 1.

A set system A ⊆ 2[m] is said to be hereditary if A ∈ A and B ⊆ A implies
B ∈ A.

A set system A ⊆ 2[m] is said to be a representation of a set system B ⊆ 2[m] if
there exist a linear order of the sets of A (A1, A2, . . . , Ar) and B (B1, B2, . . . , Br)
and a permutation π of the elements of [m], such that for any i ≤ r = |B| we
have either Ai = {π(j) : j ∈ Bi} or Ai = {π(j) : j 6∈ Bi}. In other words,
A is a representation of B if they have the same cardinality and their incidence
matrices can be transformed to each other by row and column permutations and
by complementing some rows (but not columns), where complementing a row
means that we change the 1 entries of the row to 0 entries and vice versa.

2 Introduction

Let H ⊆ 2[m] be an arbitrary separating system (called the question sets) and
x ∈ [m] an unknown element. Our aim is to find x by asking questions of type
“x ∈ H? ”, where H ∈ H. A sequence of questions is called a search algorithm
(or shortly an algorithm) if given the answers we can determine x uniquely.

An algorithm is said to be adaptive (or dynamic) if the choice of a question
set may depend on the values obtained until then. If the questions are all fixed
beforehand then we speak of a non-adaptive (or static) algorithm. More gen-
erally, if we are allowed to ask the questions in at most k batches (that is, we
ask some questions, receive the answers, ask again some questions, receive the
answers, and so on, at most k times) then we speak of a k-round (or k-stage)
algorithm.

The length of an algorithm A for the element x, denoted by lx(A) is l if the
sequence contains l questions and the first l − 1 answers does not determine x
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uniquely. The (worst case) cost of an algorithm A is g(A) = maxx∈[m] lx(A).
The adaptive (search) complexity of the set system H is c(H) = min g(A) con-
sidering all adaptive algorithms A. The non-adaptive, and k-round complexities
are defined similarly and are denoted by cna(H) and ck(H), respectively. Notice
that since H is separating, these definitions are correct. For a detailed treatment
of adaptive and non-adaptive search the reader is referred to the book by Aigner
[1]. Much less is known about k-round search for arbitrary values of k, though
the cases with small values of k (tipically k = 2) attracted significant attention
recently, due to their applications in DNA library screening.

It is obvious that

|H| ≥ cna(H) = c1(H) ≥ c2(H) ≥ . . . ≥ cm(H) = c(H). (1)

A problem raised by G. O. H. Katona [6] is to characterize those separating
systems H ⊆ 2[m] for which certain inequalities of (1) are tight. In the present
paper our aim is to examine separating systems H ⊆ 2[m] with the property
|H| = ck(H) for any k ≥ 3.

More precisely, we will show that if ck(H) = |H| for some k ≥ 3 then the

dual of H contains a ⌈ n2

2m−n−2⌉-star, where n = |H|.

3 Results

We would like to examine separating systems H ⊆ 2[m] for which ck(H) = |H|
for some k ≥ 3. This condition implies c(H) = |H|, from which |H| ≤ m − 1
follows easily. It is more interesting that even c1(H) = |H| implies |H| ≤ m− 1,
in other words, a minimal separating system H ⊆ 2[m] contains at most m − 1
sets, as it was first observed by Bondy [4]. Notice that both results are sharp,
just consider H = {{1}, {2}, . . . , {m − 1}}.

Using Bondy’s result it is not difficult to characterize those systems whose
k-round complexity is m − 1 for any k ≥ 2.

Lemma 1. Let k ≥ 2. For a separating system H ⊆ 2[m], ck(H) = m− 1 if and
only if M = {{1}, {2}, . . . , {m − 1}} is a representation of H.

The main theorem of this paper is the following.

Theorem 1. Let H ⊆ 2[m] be a separating system for which ck(H) = |H| for

some k ≥ 3 and let n = |H|. Then H∗ contains a ⌈ n2

2m−n−2⌉-star.

Proof. If for some k ≥ 3 we have ck(H) = |H| then c3(H) = |H|. We show that

this implies that H∗ contains a ⌈ n2

2m−n−2⌉-star.
The proof is based on the following theorem about hypergraphs.

Theorem 2. Let A ∈ MSH(n, m). Then there exists a subset X ⊆ [n] of car-

dinality ⌈ n2

2m−n−2⌉, such that deleting X we obtain a hypergraph where every

hyperedge has multiplicity at most ⌈ n2

2m−n−2⌉ + 1.
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The sketch of the proof of Theorem 2 can be found in Section 4.

Let us denote the number ⌈ n2

2m−n−2⌉ by r. Consider now the set system
H∗. Since H is separating, H∗ is also a set system (that is, it contains distinct
sets), in other words it is the hyperedge set of a simple hypergraph G on the
vertices corresponding to the sets of H. Observe now that cna(H) = |H| (because
c3(H) = |H|), so H is a minimal separating system, thus G is a minimal simple
hypergraph having n vertices and m hyperedges. Now applying Theorem 2 for
G we see that there exists a subset of the vertices X, |X| = r, such that deleting
X we obtain a hypergraph where every hyperedge has multiplicity at most r+1.
This subset X of the vertices of H∗ correspond to a subset X of the original
set system H. Considering the incidence matrix of H one can see that deleting
the rows corresponding to X we obtain a matrix where every column appears at
most r + 1 times.

Suppose now that we ask the sets of H \ X in the first round of a 3-round
search algorithm. Given the answers we know that the unknown element is one
from a set Y ⊆ [m], where |Y | ≤ r + 1, because no column appears more than
r + 1 times in the incidence matrix of H \ X .

Since c3(H) = |H|, we have to ask all the remaining sets of H in two more
rounds to determine the hidden element. That is, we have to ask |X | = r sets
in two rounds to find an element in Y , which has at most r + 1 elements. By
Lemma 1 this is possible if and only if Y = r + 1 and the restriction of X to
Y contains only one-element sets. In other words, the incidence matrix of the
restriction of X to Y is an r × r identity matrix plus an all-zero column. Since
for the elements of Y we received the same answers in the first round, these
elements form an r-star in H∗.

4 Sketch of proof of Theorem 2

Let H be a hypergraph on the vertex set [n]. Let us denote the hypergraph
obtained from H by deleting a subset X of the vertices (that is, taking the
restriction of H to X = [n] \X) by H|X . Recall that mH(E) denotes the multi-
plicity of the hyperedge E in the hypergraph H.

The following lemma can be proved using the down-compression technique
of Alon [2] and Frankl [5].

Lemma 2. The following two statements are equivalent.

1. For every A ∈ MSH(n, m) there exists a set X ⊆ [n] of cardinality r, such
that for any set S ⊆ X we have mA|

X
(S) ≤ s.

2. For every hereditary A ∈ MSH(n, m) there exists a set X ⊆ [n] of cardinal-
ity r, such that for any set S ⊆ X we have mA|

X
(S) ≤ s.

By Lemma 2 we only have to prove that for a hereditary minimal simple
hypergraph having n vertices and m hyperedges there exists a subset of the

vertices X of cardinality ⌈ n2

2m−n−2⌉, such that deleting X we obtain a hypergraph

where every hyperedge has multiplicity at most ⌈ n2

2m−n−2⌉ + 1.
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Let A be such a hypergraph. Observe that every vertex v is contained in some
hyperedge, otherwise A would not be minimal, thus by the hereditary property
all 1-element sets are hyperedges of A.

This means that the number of hyperedges of A containing at least two
elements is m − n − 1 (since A contains n 1-element hyperedges and also the
empty set). Consider now the graph G on the vertex set [n] whose edges are the
2-element sets of A. G has n vertices and at most m − n − 1 edges, thus by a
corollary of Turán’s theorem [7], [3, p. 282.] it contains a stable set X of size

⌈ n2

2(m−n−1)+n
⌉ = ⌈ n2

2m−n−2⌉. We show that mA|
X

(S) ≤ ⌈ n2

2m−n−2⌉ + 1 for any

S ⊆ [n]. Actually, it suffices to show that mA|
X

(∅) ≤ ⌈ n2

2m−n−2⌉+1, since by the
hereditary property of A we have mA|

X
(∅) ≥ mA|

X
(S) for any S ⊆ [n].

By definition, mA|
X

(∅) = |{A ∈ A : A ⊆ X}| = |A|X |.
If i, j ∈ X (i 6= j), then {i, j} /∈ A, since X is stable in G. Furthermore, there

is no hyperedge in A that contains both i and j, because A is hereditary. Thus
A|X does not contain sets of size greater than 1, so the number of distinct sets

in A|X is at most |X| + 1 = ⌈ n2

2m−n−2⌉ + 1.
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