
Published in Image Processing On Line on 2011–09–13.
Submitted on 2011–00–00, accepted on 2011–00–00.
ISSN 2105–1232 c© 2011 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2011.g_rmdi

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

Roussos–Maragos Tensor-Driven Diffusion for Image

Interpolation

Pascal Getreuer

CMLA, ENS Cachan (pascal.getreuer@cmla.ens-cachan.fr)

Communicated by Jean-Michel Morel Demo edited by Pascal Getreuer

Abstract

Roussos and Maragos proposed a method for image interpolation in “Reversible interpolation
of vectorial images by an anisotropic diffusion-projection PDE.” An earlier version was also
published in conference paper (Roussos and Maragos, “Vector-Valued Image Interpolation by
an Anisotropic Diffusion-Projection PDE,” 2007).
Given a discretely sampled image v, the method finds an image u such that vn = (h ∗u)(n), for
all n ∈ Z

2, where h is the (assumed known) point spread function and ∗ denotes convolution.
The method is inspired by tensor-driven diffusion works of Tschumperlé and Weickert. Roussos
and Maragos propose interpolation by evolving a diffusion equation to steady state, ∂tu =
P0

(

div(T∇u)
)

where T is a tensor determined from image structure tensor and the diffusion is
orthogonally projected to agree with the observed data. This diffusion is based on the general
anisotropic diffusion model proposed by Weickert. The method can be applied to grayscale,
color, or general vector-valued images.

Source Code

ANSI C source code to produce the same results as the demo is accessible on the article web page
https://doi.org/10.5201/ipol.2011.g_rmdi. Future software releases and updates will be
posted at http://dev.ipol.im/~getreuer/code.

Keywords:

Pascal Getreuer, Roussos–Maragos Tensor-Driven Diffusion for Image Interpolation, Image Processing On Line, 1 (2011), pp. 178–186.
https://doi.org/10.5201/ipol.2011.g rmdi

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2011.g_rmdi
https://doi.org/10.5201/ipol.2011.g_rmdi
http://dev.ipol.im/~getreuer/code

Roussos–Maragos Tensor-Driven Diffusion for Image Interpolation

1 Initial Interpolation

First, an initial interpolation u0 is computed by Fourier zero-padding with deconvolution,

û0(ξ) =

1

ĥ(ξ)

∑

n∈Z2

vne
−i2πnξ, if ξ ∈ [−1

2
,+1

2
]× [−1

2
,+1

2
],

0 otherwise,

(1)

where ĥ is the two-dimensional Fourier transform of the point spread function h,

ĥ(ξ) :=

∫

R2

h(x)e−i2π(x·ξ) dx. (2)

For the division, it is assumed that ĥ(ξ) 6= 0 in [−1
2
,+1

2
]× [−1

2
,+1

2
].

This interpolation is used as an initialization for the tensor-driven diffusion because it satisfies
vn = (h ∗ u0)(n) for all n. It is well-known that Fourier interpolation produces significant ringing
artifacts, so the goal of the diffusion is to remove the ringing.

2 Structure Tensor

As introduced by Bigün and Granlund [1] and Förstner and Gülch [2], the image structure tensor is

J(∇u) :=

(

∂x1u

∂x2u

)

(

∂x1u ∂x2u
)

. (3)

At each point in the image, J(∇u) is a 2× 2 symmetric matrix. Roussos and Maragos [8, 9] use the
smoothed structure tensor,

Jρ(∇uσ) = Gρ ∗ J
(

∇(Gσ ∗ u)
)

, (4)

where Gσ and Gρ are Gaussians with standard deviations σ and ρ, which control the amount of
pre- and post-smoothing. The post-smoothing convolution with Gρ is applied separately to each
component of the tensor. The image gradient ∇u can be discretized using centered differences.
Alternatively, the gradient may be incorporated into the pre-smoothing convolution as

∇(Gσ ∗ u) = (∇Gσ) ∗ u, (5)

and then approximated with discrete convolutions.
For a color image, the smoothed structure tensor is computed as the sum of the smoothed structure

tensors for each channel.
Next, at every point in the image, the eigenvectors and eigenvalues of the the 2×2 matrix Jρ(∇uσ)

are computed. Since the matrices are guaranteed to be symmetric and real, the eigenvalues are real
and the eigenvectors are real and orthogonal. Following Tschumperlé [6, 7], Roussos and Maragos
construct the tensor T according to this eigensystem,

T
(

Jρ(∇uσ)
)

=
(

1 + 1
K2 (λ1 + λ2)

)−1/2
J(w1

|w1|
)

+
(

1 + 1
K2 (λ1 + λ2)

)−1
J(w2

|w2|
),

(6)

where K is a parameter, λ1 ≤ λ2 are the eigenvalues and w1 and w2 are the corresponding eigenvec-
tors. The tensor is recomputed every n time steps of the diffusion.

179

Pascal Getreuer

To compute the eigensystem of a matrix (a b
b c), the eigenvalues are

λ1 =
1
2
(a+ c)−

√

1
4
(a+ c)2 − (ac− b2), (7)

λ2 =
1
2
(a+ c) +

√

1
4
(a+ c)2 − (ac− b2), (8)

and provided b 6= 0, the eigenvector corresponding to λ1 is

w1 =

(

b

λ1 − a

)

. (9)

The other eigenvector w2 is found as the orthogonal complement.

3 Tensor-Driven Diffusion

The interpolation is diffused according to the tensor as

∂tu = div
(

(a b
b c)∇u

)

, (10)

where (a b
b c) denotes the components of the tensor field T from the previous section. To implement the

diffusion, one approach is proposed in Weickert’s book [3]. More recently, Weickert and Scharr [4]
proposed a method that is faster yet also simpler: define the derivative approximations

Fxu =
1

32

−3 0 3
−10 0 10
−3 0 3

 ∗ u, Fyu =
1

32

3 10 3
0 0 0
−3 −10 −3

 ∗ u, (11)

then the diffusion is implemented explicitly using these approximations as

unext = u+ dt
(

Fx(aFxu+ bFyu) + Fy(bFxu+ cFyu)
)

. (12)

The filters Fx and Fy have optimal approximate rotation invariance among all 3 × 3 linear filters.
Weickert and Scharr claim that rotation invariance is crucial to avoid blur artifacts in the diffusion.
Since Fx and Fy are 3 × 3 linear filters, the composition used in the formula above is effectively a
5× 5 scheme.

Note that Fx and Fy are separable filters and have only two different filter coefficient values, so
they can be implemented efficiently:

ũx(i, j) = u(i+ 1, j)− u(i− 1, j),

(Fxu)(i, j) =
10
32
ũx(i, j) +

3
32

(

ũx(i, j + 1) + ũx(i, j − 1)
)

,
(13)

and similarly for Fy.
For a color image, the diffusion scheme is applied independently to each channel. The channels

are nevertheless coupled since they are all guided by the same tensor field, which is computed jointly
over the channels.

4 Projection onto the Solution Set

The input is modeled as sampling the underlying continuous-domain image by v = sample(h ∗ u), so
the solution is required to belong to the affine set

Wv = {u : v(n) = (h ∗ u)(n), ∀n ∈ Z
2}. (14)

180

Roussos–Maragos Tensor-Driven Diffusion for Image Interpolation

To impose this requirement, the diffusion is orthogonally projected onto Wv,

∂tu = P0

(

div(T∇u)
)

. (15)

where P0 denotes orthogonal projection onto W0 and the initial interpolation u0 computed with
Fourier zero-padding is in Wv. Then u is in Wv for all t > 0.

For numerical implementation, the solution is projected onto Wv after every n time steps and
after the final time step. The projection is expensive to compute compared to the other steps of the
algorithm, so it is helpful to reduce the number of projections that need to be computed.

We use the following normalization of the Fourier transform,

f̂(ξ) =

∫

R2

f(x)e−2πix·ξ dx. (16)

Before the main iteration, a function ϕ is precomputed,

ϕ̂(ξ) =
(

∑

k∈Z2

|ĥ(ξ − k)|2
)−1/2

ĥ(ξ). (17)

The projection onto Wv can then be implemented as
(

Pv(u)
)

(̂ξ) = û(ξ)− ϕ̂(ξ)
∑

n∈Z2

ϕ̂(ξ − n)
(

û(ξ − n)− û0(ξ − n)
)

. (18)

4.1 Derivation of Pv

Let H denote the coarsening operation and H∗ its adjoint,

(Hu)(n) := (h ∗ u)(n), (H∗v)(x) =
∑

m∈Z2

h(m− x)vm. (19)

The orthogonal projection onto W0 = ker(H)⊥ is

P0(u) = u−H∗(HH∗)−1Hu. (20)

Let q be the discrete autocorrelation

qn =

∫

R2

h(x)h(x− n) dx, n ∈ Z
2, (21)

so that q ∗ u = H∗Hu. Then the inverse (HH∗)−1 can be expressed as

(

(HH∗)−1v
)

m
=

∑

n∈Z2

(q)−1
m−nvn, (22)

where (q)−1 is the discrete convolution inverse such that
(

(q)−1 ∗q
)

= 1 for n = 0 and zero otherwise.
Therefore, the projection onto W0 is

P0(u)(x) = u(x)−H∗(HH∗)−1Hu(x)

= u(x)−
∑

m∈Z2

h(m− x)
∑

n∈Z2

(q)−1
m−n(h ∗ u)(n),

(

P0(u)
)

(̂ξ) = û(ξ)− ĥ(ξ)

∑

n∈Z2 ĥ(ξ − n)û(ξ − n)
∑

n∈Z2 |ĥ(ξ − n)|2

= û(ξ)− ϕ̂(ξ)
∑

n∈Z2

ϕ̂(ξ − n)û(ξ − n), (23)

181

Pascal Getreuer

where the Fourier transform of the discrete image
(

(HH∗)−1Hu)n follows from the Poisson summation
formula,

∑

n∈Z2

f(n)e−2πin·ξ =
∑

n∈Z2

f̂(ξ − n). (24)

The projection onto Wv follows from P0 as

Pv(u) = u0 + P0(u− u0),
(

Pv(u)
)

(̂ξ) = û0(ξ) +
(

û(ξ)− û0(ξ)
)

− ϕ̂(ξ)
∑

n∈Z2

ϕ̂(ξ − n)
(

û(ξ − n)− û0(ξ − n)
)

= û(ξ)− ϕ̂(ξ)
∑

n∈Z2

ϕ̂(ξ − n)
(

û(ξ − n)− û0(ξ − n)
)

. (25)

5 Algorithm

Here we summarize the algorithm. First, the initial interpolation u0 is computed by Fourier zero-
padding with deconvolution and the projection function ϕ̂ is precomputed. The algorithm then
iterates the main projection-diffusion loop:

1. Compute the tensor T .

2. Perform n explicit time steps of ∂tu = div(T∇u) using the approximation

div
(

(a b
b c)∇u

)

≈ Fx(aFxu+ bFyu) + Fy(bFxu+ cFyu).

3. Orthogonally project the solution onto Wv with

(

Pv(u)
)

(̂ξ) = û(ξ)− ϕ̂(ξ)
∑

n∈Z2

ϕ̂(ξ − n)
(

û(ξ − n)− û0(ξ − n)
)

.

The loop stops when either ‖ucur − uprev‖2 ≤ tol or when a maximum number of iterations N is
reached.

For operations involving Fourier transforms, boundary artifacts are avoided by half-sample sym-
metric extension of the image. In the implementation, the image is extended by (5 × scalefactor)
pixels on each of the four borders of the image.

6 Examples

The following examples demonstrate the method for factor-4 interpolation. The parameters used are
point spread function h is a Gaussian with standard deviation 0.5 in units of input pixels, K = 1,
dt = 2, tol = 0.1, n = 5 iterations, and N = 50 maximum iterations.

In practice, the standard deviation of the Gaussian point spread function h must be tuned to
approximate how the input image was sampled. The examples are shown using standard deviation
0.5, which provides moderate antialiasing. In the online demo, the default value is 0.35, which is a
reasonable model of the blurriness of typical images.

182

Roussos–Maragos Tensor-Driven Diffusion for Image Interpolation

Input Image (86× 79) Tensor-Driven Diffusion, CPU time 5.216s

Input Image (86× 79) Tensor-Driven Diffusion, CPU time 2.149s

The next example demonstrates the method’s good performance on oriented textures. The top
row shows the input images and the bottom row shows the corresponding interpolations created
using the method.

Sweater Towel Grass Mud

Here we compare the interpolation with several existing methods. A high resolution image is
coarsened by convolving with h and the downsampling by factor 4 to create the input image. This

183

Pascal Getreuer

image is then interpolated with each of the methods and compared with the original using the PSNR
and MSSIM metrics. The time to compute the interpolation is also shown.

Original Image (332× 300) Input Image (83× 75)

Bicubic Fractal Zooming [11]

PSNR 24.36, MSSIM 0.6311, CPU time 0.012s PSNR 24.50, MSSIM 0.6317

184

Roussos–Maragos Tensor-Driven Diffusion for Image Interpolation

Fourier Zero-Padding with Deconvolution TV Minimization [5]

PSNR 25.70, MSSIM 0.7104, CPU time 0.049s PSNR 25.87, MSSIM 0.7181, CPU Time 2.72s

Contour Stencils [10] Tensor-Driven Diffusion

PSNR 25.99, MSSIM 0.7256, CPU Time 0.077s PSNR 26.01, MSSIM 0.7303, CPU Time 2.23s

Acknowledgments

This material is based upon work supported by the National Science Foundation under Award
No. DMS-1004694. Work partially supported by the Office of Naval Research under grant N00014-
97-1-0839 and by the European Research Council, advanced grant “Twelve labours.”

Image Credits

Steve Kelly, Kodak Image Suite, images 5 and 23 (http://r0k.us/graphics/kodak/)

Pascal Getreuer

185

http://r0k.us/graphics/kodak/

Pascal Getreuer

John D. Willson, USGS Amphibian Research and Monitoring Initiative, Public Domain (http://

armi.usgs.gov/gallery/detail.php?id=323)

References

[1] J. Bigün and G. Granlund. “Optimal orientation detection of linear symmetry.” In IEEE First

International Conference on Computer Vision, London, Great Britain, pp. 433–438, 1987.

[2] W. Förstner and E. Gülch. “A fast operator for detection and precise location of distinct points,
corners, and centers of circular features.” In Proceedings of the Intercomission Conference on

Fast Processing of Photogrammetric Data, pp. 281–305, 1987.

[3] J. Weickert. Anisotropic Diffusion in Image Processing. ECMI Series, Teubner-Verlag, Stuttgart,
Germany, 1998. ISBN:3519026066, http://www.mia.uni-saarland.de/weickert/book.html

[4] J. Weickert and H. Scharr. “A Scheme for Coherence-Enhancing Diffusion Filtering with Op-
timized Rotation Invariance.” Journal of Visual Communication and Image Representation,
vol. 13, no. 1–2, pp. 103–118, 2002. http://dx.doi.org/10.1006/jvci.2001.0495

[5] F. Malgouyres and F. Guichard. “Edge direction preserving image zooming: A mathematical
and numerical analysis.” SIAM Journal on Numerical Analysis, 39, pp. 1–37, 2002. http://dx.
doi.org/10.1137/S0036142999362286

[6] D. Tschumperlé. “PDE’s based regularization of multivalued images and applications.”
Ph.D. Thesis, University of Nice-Sophia Antipolis, 2002. http://tel.archives-ouvertes.fr/
tel-00002396

[7] D. Tschumperlé and R. Deriche. “Vector-Valued Image Regularization with PDE’s: A Common
Framework for Different Applications.” IEEE Pattern Analysis and Machine Intelligence, vol. 27,
no. 4, pp. 506–517, 2005. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.87

[8] A. Roussos and P. Maragos. “Vector-Valued Image Interpolation by an Anisotropic Diffusion-
Projection PDE.” In Lecture Notes in Computer Science, SSVM proceedings, vol. 4485, pp. 104–
115, 2007. http://dx.doi.org/10.1007/978-3-540-72823-8_10

[9] A. Roussos and P. Maragos. “Reversible interpolation of vectorial images by an anisotropic
diffusion-projection PDE.” International Journal of Computer Vision, 2008. http://dx.doi.
org/10.1007/s11263-008-0132-x

[10] P. Getreuer. “Image Interpolation with Geometric Contour Stencils.” Image Processing On Line,
2011. DOI: http://dx.doi.org/10.5201/ipol.2011.g_igcs

[11] onOne software. “Genuine Fractals.” http://www.ononesoftware.com

186

http://armi.usgs.gov/gallery/detail.php?id=323
http://armi.usgs.gov/gallery/detail.php?id=323
http://www.mia.uni-saarland.de/weickert/book.html
http://dx.doi.org/10.1006/jvci.2001.0495
http://dx.doi.org/10.1137/S0036142999362286
http://dx.doi.org/10.1137/S0036142999362286
http://tel.archives-ouvertes.fr/tel-00002396
http://tel.archives-ouvertes.fr/tel-00002396
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.87
http://dx.doi.org/10.1007/978-3-540-72823-8_10
http://dx.doi.org/10.1007/s11263-008-0132-x
http://dx.doi.org/10.1007/s11263-008-0132-x
http://dx.doi.org/10.5201/ipol.2011.g_igcs
http://www.ononesoftware.com

	Initial Interpolation
	Structure Tensor
	Tensor-Driven Diffusion
	Projection onto the Solution Set
	Derivation of Pv

	Algorithm
	Examples

