
Routability­Driven Placement and White Space Allocation

Chen Li⋆, Min Xie†, Cheng­Kok Koh⋆, Jason Cong†, Patrick H. Madden‡
⋆ECE Purdue University, †CSD UCLA, ‡CSD SUNY Binghamton

{li35,chengkok}@ecn.purdue.edu {xie,cong}@cs.ucla.edu pmadden@cs.binghamton.edu

ABSTRACT

In this paper, we present a congestion-driven placement flow. First,

we consider in the global placement stage the routing demand to re-

place cells in order to avoid congested regions. Then we allocate

appropriate amounts of white space into different regions of the

chip according to the congestion map. Finally, a detailed placer is

applied to legalize placements while preserving the distributions of

white space. Experimental results show that our placement flow

can achieve the best routabilities with shorter routed wirelengths

among publicly available placement tools. Moreover, our white

space allocation approach can significantly improve the routability

of placements generated by other placement tools.

1. INTRODUCTION
Minimizing half-perimeter wirelength is the most typical objec-

tive of a placement tool. However, even with a smart congestion-

aware router to avoid a congested region by detours, a placement

with shorter half-perimeter wirelength (HPWL) may still be un-

routable because the routing resources and routing demands at some

parts of the chip are not matched. Routability can be optimized by

either reducing routing demands or increasing routing resources at

congested regions in a placement.

One approach to routability control is by reducing the routing de-

mand. Minimizing the wirelength of a placement may reduce the

total routing demands of the placement. However, routing failures

can still occur in some congested regions. Reduction the routing

demands in a congested region is usually performed in the global

placement stage, as the cell locations are adjusted only slightly in

the detailed placement step. In addition, net topology manipulation

can also be considered for optimization, so that good routability

can be obtained without much sacrifice of wirelength. In [15], the

congestion of a placement bin, which is estimated by Rent rule

implicitly, is incorporated into the half-perimeter wirelength cost

function in a simulated annealing flow. The approach reserves rout-

ing resources for global nets by avoiding excessive use of local

nets. However, the congestion contributed by internal nets within

a bin is ignored, which makes the congestion estimation inaccu-

rate. Furthermore, the topology of the global nets are also ignored.

[20] uses a post-processing step of moving cells with Steiner tree

reconstructions during placement. The cell movement is limited

and reconstructing a Steiner tree on each movement is still expen-

sive. mPG [10] also incorporates congestion, which is estimated

by a tree-based global router, into its cost function in a multi-level

simulated annealing flow. It reduces the routing overflow by 50%.

However, the runtime is increased by at least 5 times due to the

high complexity involved in the construction of routing trees.

Orthogonal to routing demand reduction is the approach by in-

creasing routing resource in congested regions. In fixed-die place-

ment, where white space is typically present, allocating white space

to increase routing resources in congested regions is a common

method to relieve congestion. White space allocation can be done

both during the global placement stage (or near the end of global

placement), or during the detailed placement stage. Depending on

the specific stage, the congestion estimation method as well as the

bin granularity may differ. Allocating white space to congested re-

gion can be achieved by inflating cells [5, 14]. In BonnPlace [5],

congestions of initial partitions are first estimated by taking both

inter-region nets and intra-region nets into account. Congestion

due to inter-region nets is estimated by a probabilistic method us-

ing a routing grid structure, and congestion due to intra-region nets

is estimated by pin density within this region. After that, white

space is allocated by expanding cell areas in the congested regions.

In [19], congestion in the horizontal or vertical direction is relieved

by expanding the region in that direction and shrinking the region

in the orthogonal direction in a quadratic placement framework. In

[23], expansion of congested regions is formulated as an integer

programming problem. Congestion-driven Dragon [22] allocates

white space by two steps. White space is first distributed into rows

and further into bins within a row. As that may increase the row

imbalance, Dragon imposes a lower bound and an upper bound on

the amount of white space available in a row.

We also notice that modern designs may contain various amount

of white space. It is obvious that evenly distributed or randomly

distributed white space may increase the wirelength. To avoid that,

white space management methods in [4] and [1] were proposed. In

[4], an analytical placement technique is used to generate the con-

straints for the partitioner during the partitioning-based placement

flow. In [1], some part of white space is inserted as filler cells be-

fore global placement. However, as these white space management

methods are not guided by congestion information, they may not

be effective in reducing congestion.

In this paper, we present a routability-driven placement flow. We

propose a congestion-driven multilevel global placement method

that enhances the routability during global placement by re-place

cells to avoid congested regions. Experiments showed that com-

pared with its wirelength driven mode, it significantly reduces the

global routing overflow and enhances the detailed routing com-

pletion rate. Final routed wirelengths are also reduced. We also

propose a congestion-driven white space allocation method after

global placement stage that allocate white space to provide ap-

propriate routing resources to congested regions without a great

perturbation on wirelength. Experiments show that it can signifi-

cantly improve routability of placements generated by various lat-

est placement tools. Combined with our global placement, we

achieve placements with the best routability among the publicly

available placement tools, with all IBM v2 easy and hard bench-

mark circuits [22] successfully routed .

2. CONGESTION ESTIMATION
Existing congestion estimation methods can be divided into two

categories: topology-based methods (TP-based), where routing trees

are explicitly constructed on some routing grid, and topology-free

methods (TP-free), where no explicit routing is needed.

Among the two categories, TP-free modeling is usually faster.

This category includes bounding-box (BBOX)-based modeling [12],

probabilistic analysis-based modeling [17, 14], Rent’s rule-based

modeling [24], and pin density-based modeling [5]. TP-based mod-

eling methods usually construct Steiner tree for each net in the

netlist. Such modeling method can generate an upper bound for

the routability estimation. If the topology generated by a TP-based

modeling method is similar to what the after-placement-router does,

high fidelity of the modeling can be expected. The Steiner trees

can be either precomputed [18], or constructed dynamically [10].

In this work, we take the TP-based approach developed in [10] and

construct spanning tree based routing topology to estimate conges-

tion.

2.1 Routing Resource Estimation
In our workflow, we calculate the resource in a routing region as

RRr =
n

∑
i=1

Ai

wi+ si
,

where n is the number of routing layers, wi and si are width and

space of metal wires in layer i, respectively. Ai denotes the area of

layer i available for routing over the region r. In particular, layer 1

and layer 2 might be utilized for routing within the cells; thus, part

of these two layers might not be available for signal routing. Layer

3 and above are typically available for signal routing.

2.2 Routing Demand Estimation
To estimate the congestion of a placement, we build a routing

grid of m× n over the chip on each level. As for routing demand
estimation, the most accurate value usually comes from global rout-

ing itself. However, due to its complexity, global routing can not be

performed very frequently, whereas the placement can go through

many changes in each stage, changing the routing congestion at

the same time. The accuracy of global routing degrades with the

progress of the placement refinement. Therefore, full-blown global

routing at every step is both expensive and unnecessary. A conges-

tion estimator with good fidelity and high sensitivy to placement

changes is better suited for our purpose. In our framework, we start

from a minimum spanning tree for each net, and decompose multi-

pin nets into two-pin connections. Then we use the two-bend LZ

router developed in [10] to determine the topology for each two-pin

connection. This router uses auxiliary data structures to find good

quality routes by performing a binary search of the possible routes

for a two-pin net. The accuracy of this model is confirmed by a

previous study [21] that shows that a large portion of the nets in

the netlist are routed using L or Z shaped topology. Consequently,

it can be used to guide each step during placement.

Once the topology for each net is determined, the routing de-

mand by netk on grid cell gci j is calculated as:

RDnetk,gci j =







wnetk if netk crosses gci j;

α× pinnetk ×wnetk if netk is within gci j;

0 otherwise.

Here, wnetk is the wire width of netk , α is a user specified constant,
and pinnetk is the number of pins in netk . (We use α = 0.25 in our

experiments.) The routing demand on grid cell gci j and the average

routing demand on grid cell are calculated respectively as:

RDgci j = ∑
f orallnetk

RDnetk,gci j ,RDgc =

m

∑
i=1

n

∑
j=1

RDgci j

mn
.

After the estimation of routing demands on every grid cells gci j ,

we compute the routing demand for a rectangular region r as:

RDr = ∑
gci j∈r

RDgci j .

We define the overflow on a grid cell gci j and a region r as

OVLgci j =max
(

0,RDgci j −ηRRgci j
)

,

OVLr = max (0,RDr−ηRRr) ,

where η is an empirical multiplier. We determine η in a region r as
follows:

η =
krRDgc

RRr
,

where kr is the number of grid cells contained in region r.

We define the overflow caused by netk as:

OVLnetk = ∑
{gci j |OVLgci j>0}

RDnetk,gci j .

The overflow of a placement P is defined as:

OVLP =
m

∑
i=1

n

∑
i=1

OVLgci j .

Note that according to our definition, ∑ f orallnetk OVLnetk can be
greater than OVLP due to double counting.

3. ROUTABILITY CONTROL IN GLOBAL

PLACEMENT
The global placement in our workflow is built upon mPL [8, 9],

a multilevel standard cell placement engine. Fig. 1 shows its major

components, including a coarsening phase in which cells are recur-

sively aggregated into clusters, an initial placement generation at

the coarsest level, and a refinement phase that refines each coarser

level placement solution to get a finer level solution.

Coarsening Refinement

Initial Solution

Figure 1: Multilevel global placement. It consists of a coarsen-

ing phase, a initial solution generation, and a refinement phase.

Compared with other state-of-the-art placement tools, mPL pro-

duces competitive placement results in terms of HPWL. However,

mPL gives little consideration for routing congestion. The place-

ment it produces may be overly congested for subsequent routing.

Since refinement is its major stage where the cell locations as well

as the net topologies are determined, our focus for routability con-

trol is mainly on the refinement on each level.

Algorithm: Congestion Driven Cell Re-placement

Sort nets in descending order of overflow

Pick the first s nets such that
s

∑
i=1
OVLneti ≥OVLP

for i = 1 to s do

for each cell c connected by neti do

WLmin = ∞
Determine grid cell gi j for c’s optimal HPWL

for each neighboring grid cell gci′ j′ of g do

Place c in gci′ j′

Re-determine the topology of the nets incident on c

EvaluateWLc using (1)

ifWLmin >WLc do
gcmin = gci′ j′

WLmin =WLc
end if

end for

Place c in gcmin
end for

end for

Figure 2: Algorithm for congestion driven cell re-placement.

The congestion driven refinement during global placement be-

gins with a congestion estimation using a fast LZ router. This is

followed by a normal wirelength minimization step. In the end,

a subset of cells is chosen and re-placed to affect the topology of

the nets incident on them, so that the routing demand for current

placement can be reduced.

3.1 CongestionReductionwithCellRe­placement
To reduce the routing demand, after the wirelength minimiza-

tion step, we selectively re-place a subset of the cells, so that the

topology of the nets incident on them can be adjusted. A secondary

objective during this process is still to reduce the wirelength. Mi-

grating cells for routability enhancement has been proposed in [15,

10]. However, [15, 10] focus mainly on local net routing demand,

and ignores the routing topology of global nets. [10] make no dis-

crimination about the cells to move, resulting in prohibitive run-

time. In our workflow, we only pick candidates to move based on

the routing topology of nets incident on them.

Fig. 2 gives a description of this process. We sort the nets ac-

cording to the overflow they cause in descending order, and pick

the first s nets, such that the sum of their overflow is more than

the total overflow of the current placement. The cells connected by

these nets will be re-placed.

For a cell c, we first determine the grid cell gci j corresponding to

its optimal location for half-perimeter wirelength. Then we try to

place c in each of the neighboring grid cells within certain distance,

i.e.,
{

gci j| |i
′− i|+ | j′− j| ≤ d

}

. After c is placed in a grid cell,

the topology for the nets incident on it is re-determined using the

LZ router. The new placement for c is evaluated using a weighted

wirelength of all the nets incident on c:

WLc = ∑WGTnetk ×WLnetk ,

whereWGTnetk is the weight on netk, calculated as the average con-

gestion of the grids cell netk crosses andWLnetk is the half perimeter

wirelength of netk. In the end, c is placed in the region that results

in the shortest weighted wirelength. Fig. 3 shows an example of

this process. The legend corresponds to the congestion in different

routing regions. The optimal location for the half-perimeter wire-

length gives a weighted wirelength of 8.8 due to the congestion

on each route, whereas a neighboring region will give a smaller

weighted wirelength of 6.2.

The total cell area in a routing region might exceed its capacity

after this procedure. To slightly relieve this, we lock the recently re-

placed cells and try to rebalance the area density with ripple move.

This re-placement process is repeated for several passes before go-

ing to the next level.

c

0.5

1.2

2.0

WLc = 8.8 WLc = 6.2

c

Figure 3: Congestion driven cell re-placement. The legend cor-

responds to the congestion in different routing regions. We

start from the region gi, j corresponding to a cell’s optimal lo-

cation for half-perimeter wirelength , and search the neighbor-

hood for a region that gives the shortest weighted wirelength.

Placing c in the optimal location for half-perimeter wirelength

gives a weighted wirelength of 8.8, whereas placing it in a neigh-

boring region gives a weighted wirelength of 6.2.

4. WHITE SPACE ALLOCATION
In our global placement flow, the amount of white space in a

region may not accurately match its routing demand. Therefore, we

further apply a white space allocation step to allocate appropriate

amounts of white space into congested regions. In the context of

current fixed-die placement, this step does not increase the chip

area as white space is already present .

Unlike Dragon’s two-step allocation approach [22], we assign

appropriate amounts of white space to congested regions in a hier-

archical flow. We first construct a slicing tree based on the geomet-

ric locations of all cells. We estimate the congestion level at each

node of the tree and then adjust the cut line location at each node

in a top-bottom fashion to distribute the white space to two child

nodes. After white space allocation, we apply a detailed placement

to remove overlaps and further reduce HPWL while preserving the

white space distribution. In the rest of this section, we describe this

flow in details.

4.1 Slicing Tree and Congestion Estimation
Given any global or detailed placement, we first construct a slic-

ing tree using a method that is similar to a partitioning-based global

placement flow. The difference is that the partitioning here is per-

formed based on the geometric locations of the cells (instead of the

minimization of cut size).

We recursively partition the placement, starting from the full

chip level until every region contains a small number of cells. Cut

directions are determined by comparing the aspect ratio of this re-

gion with a fixed value. Each cut line geometrically bisects a re-

gion evenly. For a region, once its cut direction and cut location

are determined, all cells whose centers are located at the left of the

cut line (if cut vertically) or above the cut line (if cut horizontally)

form the left child of that tree node. The rest of cells in the region

form the right child of that node. This slicing tree adopts a data

structure similar to the slicing tree in floorplanning (as shown in

Fig. 4(a)). Every node in the tree maintains its cut direction, cut

location, congestion, total cell area as well as cell list.

Now, we estimate the congestion level of the nodes in the slicing

tree in a bottom-up fashion. The congestion level of a leaf node can

be estimated by the total routing overflow of the grid cells contained

in this leaf node. The congestion level of an internal node can then

be computed through a post-order traversal of the tree by adding up

the congestion levels of two child nodes.

4.2 Cut Line Adjustment
After performing congestion analysis on all tree nodes, we shift

cut line locations in the nodes of the slicing tree by traversing

the nodes in a top-down fashion such that the amounts of white

space allocated to the two child nodes are linearly proportional to

their congestion levels. Consider a region r with lower-left cor-

ner (x0,y0), upper-right corner (x1,y1) and the original vertical cut
direction at xcut = (x0 + x1)/2. Thus, the area of this region is
Ar = (x1− x0)(y1− y0). Assume that the total area of cells for left
subregion r0 and right subregion r1 are S0 and S1, and the cor-

responding congestion levels are OVL0 and OVL1, respectively.

We want to distribute the total amount of white space, which is

(Ar−S0−S1), to the two subregions such that the amounts of white
space in the two subregions are linearly proportional their conges-

tion levels. Thus, the amount of white space allocated to subregion

r0 is (Ar−S0−S1)
OVL0

OVL0+OVL1
. Then, the new cut line location x′cut

can be derived as follows:

γ =
S0+(Ar−S0−S1)

OVL0
OVL0+OVL1

Ar
,

x′cut = γx1+(1− γ)x0,

where γ is the ratio of the left subregion area to Ar after the cut line
adjustment.

This step is similar to a top-down partitioning-based global place-

ment except that the cut direction, the cut location and sub-netlists

are all known. We also constrain all cells to stay at the center of the

region to which they belong during this top-down flow. After this

step, we obtain a global placement that contains overlaps. More-

over, cells may be not placed along a row. We illustrate the region

changes before and after cut line adjustment by an example in Fig.

4(b). In this example, we show the total cell area and congestion

level at every tree node of the slicing tree. Cut lines are adjusted

from top to bottom such that white spaces in the subregions are

proportional to their congestion levels.

5. DETAILED PLACEMENT
After white space allocation, the cells may overlap and they may

not be placed along rows. We need a detailed placer to legalize

the placement. This detailed placer should be able to maintain the

locations of white spaces such that the white spaces will not be

greatly redistributed. As the detailed placer DOMINO [13] gener-

ates packed placements to minimize half-perimeter wirelength, it

does not fit our purpose.

We propose a detailed placer to preserve white space distribu-

tion and further reduce HPWL.We first adopt a greedy legalization

algorithm [16] to remove the overlaps, then we locally minimize

HPWL using a sliding window approach [7, 2]. We slide a single-

row or double-row window across the entire chip, and perform cell

swappings within the window. White space inside the window is

treated as dynamic-width pseudo-cells such that the window can

accommodate swapping in order to achieve a better HPWL.

6. EXPERIMENTAL RESULTS
In the following, we use mPL-R to denote our global placement

flow, and WSA to denote our white space allocation followed by

cut direction

cut location

congestion

cell area

cell list

congestion

cell area

cell list

root

leaf

A
 B

C
 D

E
 F

G
 H

A
 B
C
 D
E
 F
G
 H

(a)

A
 B

C
 D

E
 F

G
 H

root

B
C
 D
E
 F
G
 H
A

30/5
 24/4
 30/6
 32/13
30/10
28/24
32/16
34/10

cell area/congestion

54/9
 62/19
 58/34
 66/26

116/28

124/60

240/88

(b)

Figure 4: (a) A slicing tree and its corresponding cut lines and

regions. (b) A slicing tree after congestion estimation and re-

gions after cut lines adjustment.

detailed placement. mPL-R+WSA denotes the placement flow of

mPL-R following by WSA.

We evaluate the effectiveness of our tools (mPL-R and WSA) in

achieving routability by comparing with several placement tools.

These placement tools include state-of-the-art academic tools Dragon

3.01 [22], CAPO 8.8 [6], Feng Shui 2.2 [2], and mPG 1.0 [11],

a leading-edge industrial placement tools Cadence QPLACE (in

SEULTRA 5.3).1

All experiments are performed on the complete set of IBM-Dragon

version 2 easy and hard benchmarks. These benchmarks were con-

verted from ISPD98 [3] by mapping cells to commercial standard

cell library by authors of Dragon [22] to evaluate routability of

placements. The relative amounts of white space in these bench-

marks are shown in Table 1.

All placement tools are run five times for each benchmark with

the exception that our tools and QPLACE are run only once for

each benchmark as different runs of our tools and QPLACE gener-

ate the same placement. Dragon, CAPO, Feng Shui are run on Pen-

tium4 2.6GHz CPU with 512M memory. mPG, Cadence QPLACE

and WROUTE are run on an UltraSpacII 450MHz CPU with 1GB

memory.

The results are given in Table 1-4. All data are obtained by aver-

aging over the runs except the column “S/V/F”. In Table 1, 3, and 4,

the column “r-WL”, “vias”, “vlts”, “o.c.%” and “r-time” show the

routed wirelength, number of vias, number of violations, percent

of over-capacity gcells and routing time reported by WROUTE,

respectively. The column “S/V/F” shows the total number of dif-

ferent status of routing results for five runs or one run. The status

of a routing result can be one of the following: successful rout-

ing without violation (denoted as ‘S’), finished routing with some

violations (denoted as ‘V’), and failed routing due to too many vi-

1Dragon is run with -fd option for congestion-driven mode. CAPO
is run with rowironing turned off. mPG is run using the wirelength
objective instead of the congestion minimization objective due to
the huge runtime of congestion-driven mPG. As mPG generates
global placements with overlaps, we apply QPLACE ECO mode to
obtain the final placements.

olations or too long a routing time (denoted as ‘F’). For example,

“1/0/4” means that there are 1 successful routing, 0 finished rout-

ing, and 4 failed routings in five runs. The column “r-time” shows

the average for only successful or finished routings. Failed routings

are excluded in the routing time comparison, as they have either a

very short routing time or a time of 24 hours (the runtime limit for

the router), which if included would skew the comparison. The

row “summary” shows the summary of these placement tools on

this suite of benchmarks. The column “S/V/F” in this row shows

the total number of successful routing, finished routing and failed

routing on easy and hard benchmarks. The column “vlts” shows

the average violation of all easy and hard benchmarks.

6.1 Routability Comparison
FromTable 1, we observe that our placement flow of mPL-R+WSA

obtains all successful routing results for one run of 16 benchmarks,

whereas other tools can only have partial successful routing results.

For example, for 5 runs of 16 benchmarks, Dragon obtains 52 suc-

cessful, 18 finished and 10 failed routing results. CAPO obtains 25

successful, 24 finished and 31 failed routing results. For one run

of 16 benchmarks, QPLACE obtains 12 successful and 4 finished

routing results. Moreover, among all tools, our placement flow ob-

tains the smallest routed wirelengths, whereas those of Dragon and

QPLACE are 5.2% and 8.2% longer. We also obtain fewer vias and

fewer over-capacity gcells. We conclude that our placement flow

of mPL-R+WSA is the best in terms of routability.

The runtime of various placement tools including mPL-R and

WSA on these benchmarks are shown in Table 2. In the row “sum-

mary”, we show the ratios of runtimes among these tools with re-

spect to that of our flow on both easy and hard benchmarks. Among

these tools, Dragon, QPLACE and mPL-R+WSA achieve better

routability on these IBM benchmarks. Comparing among these

three tools, QPLACE is most scalable in terms of runtime and

Dragon is the least scalable.

6.2 Impacts of Various Routability Optimiza­
tion Techniques

Table 3 compares the impacts of each technique in our work-

flow. A summary is given at the end of table. It can be seen that

both routability control technique during global placement stage

and white space allocation technique after global placement stage

are effective in relieving routing congestion. Compared to the orig-

inal mPL, these two techniques can reduce the overflowed global

routing cells by 83% and 72%, and improve the completion rate

from zero successful routings to 14 and 9 successful routings out of

16 routings, respectively. The combined flow has all the successful

routings on these benchmarks. Routed wirelengths are improved

significantly by 11.6%. Overall, the combined workflow is the best

in terms of final completion rate and routed wirelength.

6.3 Impact of White Space Allocation
We evaluate the impact of our white space allocation and de-

tailed placement by applying it on the placements generated by

other tools. After applying WSA on these placements, routability

results are shown in Table 4.

Table 4 shows that our approach can greatly improve the routabil-

ity of a placement, especially on those placements generated by

wirelength-driven placement tools. After applying our approach,

Dragon obtains 52 successful, 26 finished and 2 failed routing re-

sults, CAPO obtains 48 successful and 27 finished and 5 failed

routing results, and similar results are found for Feng Shui, mPG

and QPLACE. Compared to the tools without our white space al-

location and detailed placement, we consistently reduce the routed

wirelength by 1.1% to 8.0%. We also reduce the number of vias,

violations and significantly reduce the over-capacity gcells (with

the exception of QPLACE).

7. CONCLUSION
We propose a congestion-driven global placement that enhances

the routability by considering routing resource demand reduction.

We also propose a congestion-driven white space allocation ap-

proach can further allocate appropriate amounts of white space into

congestion regions to increase routing resources. Experimental re-

sults show that our placement flow can greatly improve routability.

We achieve successful routings on all IBM easy and hard bench-

mark circuits with the best routed wirelength and competitive run-

time.

Acknowledgements: This research is partially supported by the

Semiconductor Research Corporation under Contract 2003-TJ-1091

and Project 947.1, National Science Foundation under Awards CCR-

0096383 and CCR-9984553, and an IBM faculty partnership award.

8. REFERENCES

[1] S. Adya, I. Markov, and P. Villarrubia. On whitespace and

stability in mixed-size placement and physical synthesis. In

Proc. Int. Conf. on Computer Aided Design, pages 311–318,

2003.

[2] A. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur,

S. Ono, and P. H. Madden. Fractional cut: Improved

recursive bisection placement. In Proc. Int. Conf. on

Computer Aided Design, pages 307–310, 2003.

[3] C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc.

Int. Symp. on Physical Design, pages 80–85, 1998.

[4] C. J. Alpert, G.-J. Nam, and P. G. Villarrubia. Effective free

space management for cut-based placement via analytical

constraint generation. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems,

22(10):1343–1353, 2003.

[5] U. Brenner and A. Rohe. An effective congestion driven

placement framework. In Proc. Int. Symp. on Physical

Design, pages 6–11, 2002.

[6] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can

recursive bisection alone produce routable placements? In

Proc. Design Automation Conf., pages 477–482, 2000.

[7] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Optimal

partitioners and end-case placers for standard-cell layout.

IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 19(11):1304–1313, 2000.

[8] T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel

optimization for large-scale circuit placement. In Proc. Int.

Conf. on Computer Aided Design, pages 171–176, 2000.

[9] T. Chan, J. Cong, T. Kong, J. Shinnerl, and K. Sze. An

enhanced multilevel algorithm for circuit placement. In Proc.

Int. Conf. on Computer Aided Design, pages 299–306, 2003.

[10] C.-C. Chang, J. Cong, Z. Pan, and X. Yuan. Physical

hierarchy generation with routing congestion control. In

Proc. Int. Symp. on Physical Design, pages 36–41, 2002.

[11] C.-C. Chang, J. Cong, Z. Pan, and X. Yuan. Multilevel global

placement with congestion control. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems,

22(4):395–409, 2003.

[12] C.-L. E. Cheng. RISA: accurate and efficient placement

routability modeling. In Proc. Int. Conf. on Computer Aided

Design, pages 690–695, Nov. 1994.

Table 1: Routability comparison of our tool with various placement tools. All wirelengths are scaled by 108.
bench- tools routed by Cadence WROUTE bench- tools routed by Cadence WROUTE

marks S/V/F r-WL vias vlts o.c.% r-time marks S/V/F r-WL vias vlts o.c.% r-time

ibm01 Dragon-fd 1/0/4 0.929 146773 5346 5.64 1:26:47 ibm01 Dragon-fd 0/0/5 0.904 145770 6998 6.63 N/A

-easy CAPO 0/0/5 0.887 140529 9397 6.61 N/A -hard CAPO 0/0/5 0.899 142496 11594 8.26 N/A

FS 0/0/5 0.852 142195 21295 10.01 N/A FS 0/0/5 0.870 142812 21900 10.70 N/A

14.88% mPG+ECO 0/0/5 1.003 147230 23225 10.40 N/A 12.00% mPG+ECO 0/0/5 1.001 148382 29628 11.95 N/A

QPLACE 1/0/0 0.875 132250 0 3.21 0:28:01 QPLACE 0/1/0 0.831 133469 20 3.90 1:18:17

mPL-R+WSA 1/0/0 0.772 127969 0 1.57 0:28:37 mPL-R+WSA 1/0/0 0.751 129648 0 2.38 0:38:57

ibm02 Dragon-fd 5/0/0 2.18 313289 0 1.07 1:17:19 ibm02 Dragon-fd 2/2/1 2.24 321523 2045 2.59 2:48:18

-easy CAPO 1/1/3 2.41 321415 9979 5.06 4:55:39 -hard CAPO 0/0/5 2.45 328943 24031 8.42 N/A

FS 0/0/5 2.37 321705 15440 4.93 N/A FS 0/0/5 2.40 325003 19036 6.29 N/A

9.58% mPG+ECO 0/0/5 2.55 338704 31894 9.14 N/A 4.72% mPG+ECO 0/0/5 2.59 349984 58670 13.89 N/A

QPLACE 1/0/0 2.11 289985 0 0.27 0:31:02 QPLACE 0/1/0 2.20 317981 1 1.59 1:49:20

mPL-R+WSA 1/0/0 1.89 284396 0 0.43 0:40:44 mPL-R+WSA 1/0/0 1.94 296290 0 0.97 0:58:21

ibm07 Dragon-fd 4/1/0 4.55 593637 4.4 0.68 1:46:48 ibm07 Dragon-fd 4/1/0 4.77 624005 0.8 2.51 3:34:02

-easy CAPO 0/4/1 4.93 614172 186 3.19 8:59:29 -hard CAPO 0/0/5 5.36 642462 33980 7.78 N/A

FS 0/2/3 4.49 617027 1042 3.65 22:00:27 FS 0/1/4 4.58 611699 6193 4.12 16:35:49

10.05% mPG+ECO 0/0/5 5.67 666646 83489 10.91 N/A 4.70% mPG+ECO 0/0/5 5.54 677474 113178 12.29 N/A

QPLACE 0/1/0 4.67 561838 2 0.31 1:16:59 QPLACE 1/0/0 5.07 607972 0 2.17 2:43:00

mPL-R+WSA 1/0/0 4.29 548765 0 0.35 1:28:13 mPL-R+WSA 1/0/0 4.43 579157 0 1.71 2:22:12

ibm08 Dragon-fd 5/0/0 4.78 696404 0 0.08 0:59:25 ibm08 Dragon-fd 3/2/0 4.71 721215 0.4 0.28 2:01:41

-easy CAPO 2/3/0 5.16 724992 30.6 0.98 7:00:34 -hard CAPO 0/1/4 5.59 782283 22841 3.97 18:17:42

FS 0/3/2 5.19 767378 12947 3.31 18:53:31 FS 0/4/1 5.08 760494 248 2.41 13:01:35

9.97% mPG+ECO 0/1/4 5.56 784389 23700 4.28 13:17:23 4.84% mPG+ECO 0/0/5 5.50 788772 45339 5.95 N/A

QPLACE 1/0/0 5.32 706212 0 0.37 1:27:59 QPLACE 1/0/0 5.18 713999 0 0.28 1:44:54

mPL-R+WSA 1/0/0 4.58 661733 0 0.06 0:59:52 mPL-R+WSA 1/0/0 4.49 684910 0 0.24 1:28:55

ibm09 Dragon-fd 5/0/0 3.81 594621 0 0.03 0:53:27 ibm09 Dragon-fd 5/0/0 3.70 603149 0 0.04 0:58:36

-easy CAPO 4/1/0 3.77 581190 0 0.04 0:56:30 -hard CAPO 4/1/0 3.84 602751 0.2 0.09 1:04:06

FS 3/2/0 3.56 586891 0.4 0.06 1:01:49 FS 5/0/0 3.66 593298 0 0.10 1:06:24

9.76% mPG+ECO 5/0/0 4.00 616150 0 0.21 1:16:47 4.88% mPG+ECO 4/1/0 4.28 653824 2.2 0.86 2:21:01

QPLACE 1/0/0 4.04 561859 0 0.01 47:27 QPLACE 1/0/0 3.90 578085 0 0.03 1:03:50

mPL-R+WSA 1/0/0 3.50 549568 0 0.02 0:50:32 mPL-R+WSA 1/0/0 3.65 570032 0 0.02 0:59:52

ibm10 Dragon-fd 3/2/0 7.46 934786 7.2 0.04 1:53:43 ibm10 Dragon-fd 5/0/0 7.16 939199 0 0.08 1:43:38

-easy CAPO 4/1/0 7.54 934359 7.6 0.19 3:27:54 -hard CAPO 2/3/0 7.87 990705 0.8 0.66 5:13:37

FS 4/1/0 7.02 937774 9.6 0.22 3:29:00 FS 1/4/0 7.02 931323 24.8 0.17 4:17:50

9.78% mPG+ECO 3/1/1 7.91 990337 376 1.03 4:16:29 4.92% mPG+ECO 1/1/3 8.26 1051147 8752 2.27 22:09:05

QPLACE 1/0/0 7.32 877598 0 0.02 1:13:10 QPLACE 1/0/0 7.47 916207 0 0.06 2:01:55

mPL-R+WSA 1/0/0 6.84 873311 0 0.02 1:28:06 mPL-R+WSA 1/0/0 6.76 902026 0 0.06 1:57:34

ibm11 Dragon-fd 2/3/0 5.68 780344 0.8 0.05 1:09:08 ibm11 Dragon-fd 4/1/0 5.57 795088 0.2 0.17 1:29:21

-easy CAPO 4/1/0 5.65 767643 0.2 0.21 1:34:16 -hard CAPO 3/2/0 5.85 811186 0.6 0.85 2:24:01

FS 3/2/0 5.41 774667 0.4 0.23 1:44:42 FS 5/0/0 5.43 770152 0 0.28 1:42:40

9.89% mPG+ECO 3/2/0 5.93 813960 0.4 0.89 2:36:53 4.67% mPG+ECO 0/4/1 6.54 902662 6958 3.70 12:55:47

QPLACE 1/0/0 6.05 745184 0 0.08 1:04:44 QPLACE 1/0/0 6.10 779713 0 0.22 1:50:30

mPL-R+WSA 1/0/0 5.16 714824 0 0.03 1:02:26 mPL-R+WSA 1/0/0 5.15 745015 0 0.18 1:41:09

ibm12 Dragon-fd 3/2/0 10.61 1141524 0.4 0.22 2:36:56 ibm12 Dragon-fd 1/4/0 10.50 1162650 0.8 0.48 3:44:46

-easy CAPO 1/4/0 10.99 1172164 51.4 1.35 11:56:53 -hard CAPO 0/2/3 10.99 1231308 374.6 2.69 21:45:52

FS 0/0/5 10.47 1219168 55275 5.33 N/A FS 0/1/4 10.56 1234216 56301 6.31 21:15:16

14.78% mPG+ECO 0/0/5 13.25 1397195 266038 14.63 N/A 9.94% mPG+ECO 0/0/5 12.95 1437522 357235 18.22 N/A

QPLACE 0/1/0 11.98 1210849 122 2.40 9:44:26 QPLACE 1/0/0 11.09 1174369 0 1.46 4:48:27

mPL-R+WSA 1/0/0 10.52 1127925 0 0.34 3:54:03 mPL-R+WSA 1/0/0 10.13 1107551 0 0.40 3:49:26

summary Dragon-fd 52/18/10 1.052× 1.037× 901 2.01× 1.38× Except for “vlts”, which is the average number of violations per run,

CAPO 25/24/31 1.102× 1.052× 7030 8.06× 4.30× results in the summary row are normalized with respect to mPL-R+WSA.

FS 21/20/39 1.043× 1.049× 13107 11.2× 5.89×
mPG+ECO 16/10/54 1.204× 1.137× 65530 29.7× 3.63×
QPLACE 12/4/0 1.082× 1.000× 9.1 2.12× 1.19×
mPL-R+WSA 16/0/0 1.000 1.000 0 1.00 1.00

Table 2: Runtime comparison among various placement tools.
benchmarks Dragon CAPO FS mPG QPLACE mPL mPL-R WSA benchmarks Dragon CAPO FS mPG QPLACE mPL mPL-R WSA

ibm01easy 10:30 0:59 2:32 10:49 2:13 4:16 5:40 0:40 ibm01hard 10:23 0:55 2:48 11:04 2:45 4:28 5:45 0:37

ibm02easy 16:20 2:02 4:51 25:51 4:51 9:32 20:03 1:27 ibm02hard 16:16 1:47 5:29 22:06 6:05 9:55 18:43 1:18

ibm07easy 40:11 5:25 11:46 40:16 10:05 20:48 29:02 2:24 ibm07hard 26:08 7:07 12:52 48:18 12:28 21:52 27:54 2:06

ibm08easy 1:39:40 6:49 14:22 58:37 13:17 28:51 40:44 3:46 ibm08hard 1:04:54 5:57 15:26 1:04:44 17:07 30:24 40:19 3:21

ibm09easy 1:13:38 7:42 13:31 54:57 11:20 24:26 25:22 3:04 ibm09hard 49:57 7:26 14:26 52:42 14:34 24:45 25:31 2:23

ibm10easy 2:05:00 13:00 19:14 1:20:03 17:50 38:24 53:57 5:01 ibm10hard 1:21:34 11:19 21:02 1:23:55 23:05 39:42 50:59 3:54

ibm11easy 1:23:17 13:41 18:48 1:18:19 15:35 30:21 38:52 4:00 ibm11hard 54:12 11:43 20:31 1:10:39 19:02 32:29 37:38 3:07

ibm12easy 2:22:28 13:42 20:25 1:23:06 19:42 43:09 1:19:25 6:24 ibm12hard 1:32:41 12:23 21:25 1:28:52 20:17 44:53 1:16:16 4:50

summary 1.55 0.19 0.37 1.49 0.36 0.67 1.00 Runtimes are normalized with respect to mPL-R+WSA in the summary row.

Table 3: Impacts of various routability optimization techniques in our flow. All wirelengths are scaled by 108.
bench- tools routed by Cadence WROUTE bench- tools routed by Cadence WROUTE

marks S/V/F r-WL vias vlts o.c.% r-time marks S/V/F r-WL vias vlts o.c.% r-time

ibm01 mPL 0/0/1 0.886 143828 16055 7.83 N/A ibm01 mPL 0/0/1 0.884 143940 16124 8.33 N/A

-easy mPL-R 1/0/0 0.821 137894 0 3.22 1:07:36 -hard mPL-R 1/0/0 0.789 137511 0 3.45 1:30:38

mPL+WSA 1/0/0 0.852 140841 0 3.23 1:56:39 mPL+WSA 1/0/0 0.815 140886 0 4.18 1:38:34

mPL-R+WSA 1/0/0 0.772 127969 0 1.57 0:28:37 mPL-R+WSA 1/0/0 0.751 129648 0 2.38 0:38:57

ibm02 mPL 0/0/1 2.26 318566 13405 4.66 N/A ibm02 mPL 0/0/1 2.34 326682 24554 8.50 N/A

-easy mPL-R 1/0/0 1.96 297454 0 0.42 0:37:40 -hard mPL-R 0/1/0 2.08 320952 45 2.17 4:31:47

mPL+WSA 1/0/0 2.06 302274 0 0.80 0:51:10 mPL+WSA 0/0/1 2.22 312616 10721 5.13 N/A

mPL-R+WSA 1/0/0 1.89 284396 0 0.43 0:40:44 mPL-R+WSA 1/0/0 1.94 296290 0 0.97 0:58:21

ibm07 mPL 0/0/1 4.51 654818 1887 3.29 N/A ibm07 mPL 0/0/1 5.10 642796 30539 6.85 N/A

-easy mPL-R 1/0/0 4.35 574541 0 0.34 1:15:28 -hard mPL-R 0/1/0 4.52 607782 0 1.98 3:18:34

mPL+WSA 1/0/0 4.17 559221 0 0.24 1:03:24 mPL+WSA 0/1/0 4.45 605580 2 2.41 3:20:19

mPL-R+WSA 1/0/0 4.29 548765 0 0.35 1:28:13 mPL-R+WSA 1/0/0 4.43 579157 0 1.71 2:22:12

ibm08 mPL 0/1/0 5.13 806862 69 2.39 16:26:36 ibm08 mPL 0/0/1 5.44 791936 47979 6.08 N/A

-easy mPL-R 1/0/0 4.65 693206 0 0.07 0:57:52 -hard mPL-R 1/0/0 4.61 717951 0 0.39 2:50:48

mPL+WSA 0/1/0 4.85 708107 2 0.23 1:42:33 mPL+WSA 0/1/0 5.11 780562 21 2.28 9:54:36

mPL-R+WSA 1/0/0 4.58 661733 0 0.06 0:59:52 mPL-R+WSA 1/0/0 4.49 684910 0 0.24 1:28:55

ibm09 mPL 0/1/0 3.95 645890 82 0.07 5:14:37 ibm09 mPL 0/1/0 4.00 673932 77 0.17 6:59:18

-easy mPL-R 1/0/0 3.57 580005 0 0.02 0:49:55 -hard mPL-R 1/0/0 3.74 601755 0 0.04 0:57:17

mPL+WSA 1/0/0 3.76 584530 0 0.03 0:57:09 mPL+WSA 1/0/0 3.71 596700 0 0.04 0:55:18

mPL-R+WSA 1/0/0 3.50 549568 0 0.02 0:50:32 mPL-R+WSA 1/0/0 3.65 570032 0 0.02 0:59:52

ibm10 mPL 0/1/0 6.98 947526 42 0.17 6:48:56 ibm10 mPL 0/1/0 8.05 1071552 55 1.27 14:20:44

-easy mPL-R 1/0/0 6.94 910034 0 0.02 1:22:47 -hard mPL-R 1/0/0 6.85 933290 0 0.06 1:53:46

mPL+WSA 1/0/0 6.80 894979 0 0.03 1:41:30 mPL+WSA 0/1/0 7.47 974989 80 0.30 5:14:43

mPL-R+WSA 1/0/0 6.84 873311 0 0.02 1:28:06 mPL-R+WSA 1/0/0 6.76 902026 0 0.06 1:57:34

ibm11 mPL 0/1/0 5.62 866097 132 0.40 10:34:03 ibm11 mPL 0/1/0 6.07 918744 91 1.39 10:41:14

-easy mPL-R 1/0/0 5.25 757252 0 0.03 0:59:50 -hard mPL-R 0/1/0 5.28 786186 1 0.09 1:25:06

mPL+WSA 1/0/0 5.29 755682 0 0.05 1:09:15 mPL+WSA 1/0/0 5.34 784769 0 0.22 1:25:01

mPL-R+WSA 1/0/0 5.16 714824 0 0.03 1:02:26 mPL-R+WSA 1/0/0 5.15 745015 0 0.18 1:41:09

ibm12 mPL 0/0/1 11.16 1208277 2569 2.65 N/A ibm12 mPL 0/0/1 11.61 1262711 64083 6.07 N/A

-easy mPL-R 1/0/0 10.48 1155284 0 0.41 4:21:03 -hard mPL-R 1/0/0 10.27 1151207 0 0.67 4:27:59

mPL+WSA 0/1/0 10.42 1137643 77 0.39 8:38:46 mPL+WSA 0/1/0 11.12 1229005 82 1.98 18:22:55

mPL-R+WSA 1/0/0 10.52 1127925 0 0.34 3:54:03 mPL-R+WSA 1/0/0 10.13 1107551 0 0.40 3:49:26

summary mPL 0/7/9 1.000 1.000 3564 1.00 1.00 Except for “vlts”, which is the average number of violations per run,

mPL-R 14/2/0 0.905× 0.915× 2.9 0.17× 0.13× results in the summary row are normalized with respect to mPL.

mPL+WSA 9/6/1 0.933× 0.926× 687 0.28× 0.18×
mPL-R+WSA 16/0/0 0.884× 0.870× 0 0.13× 0.14×

[13] K. Doll, F. M. Johannes, and K. J. Antreich. Iterative

placement improvement by network flow methods. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and

Systems, 13(10):1189–1200, 1994.

[14] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu, and W. Kao.

A new congestion-driven placement algorithm based on cell

inflation. In Proc. Asia South Pacific Design Automation

Conf., pages 605–608, 2001.

[15] B. Hu and M. Marek-Sadowska. Congestion minimization

during placement without estimation. In Proc. Int. Conf. on

Computer Aided Design, pages 739–745, 2002.

[16] A. Khatkhate, C. Li, A. Agnihotri, M. Yildiz, S. Ono, C.-K.

Koh, and P. Madden. Recursive bisection based mixed block

placement. In Proc. Int. Symp. on Physical Design, pages

84–89, 2004.

[17] J. Lou, S. Krishnamoorthy, and H. Sheng. Estimating routing

congestion using probabilistic analysis. In Proc. Int. Symp.

on Physical Design, pages 112–117, 2001.

[18] S. Mayrhofer and U. Lauther. Congestion-driven placement

using a new multi-partitioning heuristic. In Proc. Int. Conf.

on Computer Aided Design, pages 332–335, 1990.

[19] P. N. Parakh, R. B. Brown, and K. A. Sakallah. Congestion

driven quadratic placement. In Proc. Design Automation

Conf., pages 275–278, 1998.

[20] R.-S. Tsay, S. Chang, and J. Thorvaldson. Early wirability

checking and 2-D congestion-driven circuit placement. In

Proc. Int. Conf. on ASIC, pages 50–53, 1992.

[21] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic

congestion prediction. In Proc. Int. Symp. on Physical

Design, pages 204–209, 2004.

[22] X. Yang, B.-K. Choi, and M. Sarrafzadeh. Routability-driven

white space allocation for fixed-die standard-cell placement.

IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, 22(4):410–419, 2003.

[23] X. Yang, R. Kastner, and M. Sarrafzadeh. Congestion

reduction during placement based on integer programming.

In Proc. Int. Conf. on Computer Aided Design, pages

573–576, 2001.

[24] X. Yang, R. Kastner, and M. Sarrafzadeh. Congestion

estimation during top-down placement. IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems,

21(1):72–80, 2002.

Table 4: Routability results after applying our approach WSA to placements generated by various tools. All wirelengths are scaled

by 108.
bench- tools routed by Cadence WROUTE bench- tools routed by Cadence WROUTE

marks S/V/F r-WL vias vlts o.c.% r-time marks S/V/F r-WL vias vlts o.c.% r-time

ibm01 Dragon-fd+WSA 5/0/0 0.813 137717 0 2.79 1:19:12 ibm01 Dragon-fd+WSA 1/3/1 0.827 140233 1215 4.23 2:00:40

-easy CAPO+WSA 5/0/0 0.775 127369 0 2.14 0:41:39 -hard CAPO+WSA 3/2/0 0.787 130241 7.8 3.57 1:28:57

FS+WSA 4/1/0 0.859 138136 6.8 3.78 1:18:53 FS+WSA 0/0/5 0.870 138896 6505 5.42 N/A

mPG+WSA 1/0/4 0.903 141236 4866 4.41 1:48:07 mPG+WSA 0/0/5 0.894 141761 9166 6.44 N/A

QPLACE+WSA 0/1/0 0.848 138959 1 2.76 1:10:09 QPLACE+WSA 1/0/0 0.818 138995 0 3.84 1:29:43

ibm02 Dragon-fd+WSA 3/2/0 2.13 310411 14.2 1.35 2:55:17 ibm02 Dragon-fd+WSA 2/2/1 2.18 322273 2225 2.79 5:20:51

-easy CAPO+WSA 4/1/0 2.26 303751 0.2 1.77 1:48:40 -hard CAPO+WSA 1/0/4 2.35 313349 12962 5.82 3:02:48

FS+WSA 5/0/0 2.24 307941 0 1 1:03:03 FS+WSA 0/0/5 2.34 317854 11127 3.99 N/A

mPG+WSA 3/1/1 2.31 324779 2722 2.71 1:54:40 mPG+WSA 0/0/5 2.37 330634 20209 7.31 N/A

QPLACE+WSA 1/0/0 2.11 300843 0 0.53 52:42 QPLACE+WSA 1/0/0 2.21 318476 0 2.61 1:38:56

ibm07 Dragon-fd+WSA 4/1/0 4.24 568607 0.2 0.34 1:34:53 ibm07 Dragon-fd+WSA 2/3/0 4.57 603704 6.4 2.21 4:01:08

-easy CAPO+WSA 5/0/0 4.46 539314 0 0.39 1:32:33 -hard CAPO+WSA 0/5/0 5.03 613347 87.8 3.78 11:38:58

FS+WSA 4/1/0 4.11 548362 0.2 0.19 1:00:03 FS+WSA 4/1/0 4.27 579719 3.6 1.33 2:45:30

mPG+WSA 1/4/0 5.18 642264 41.4 3.62 6:58:00 mPG+WSA 0/0/5 5.14 643011 26043 7.39 N/A

QPLACE+WSA 1/0/0 4.55 578504 0 0.29 1:22:02 QPLACE+WSA 1/0/0 5.01 626628 0 2.70 3:41:43

ibm08 Dragon-fd+WSA 5/0/0 4.56 675424 0 0.05 1:04:36 ibm08 Dragon-fd+WSA 2/3/0 4.53 703690 3.6 0.22 1:54:45

-easy CAPO+WSA 5/0/0 4.89 669344 0 0.21 1:37:19 -hard CAPO+WSA 1/3/1 5.26 741922 107 1.58 8:41:32

FS+WSA 2/3/0 5.05 708435 0.8 0.37 1:58:41 FS+WSA 2/3/0 4.94 728869 6 0.71 3:25:28

mPG+WSA 2/3/0 5.13 738545 7.4 0.61 3:31:36 mPG+WSA 1/3/1 5.08 777426 391 1.67 10:36:57

QPLACE+WSA 0/1/0 5.25 733071 33 0.48 3:23:22 QPLACE+WSA 1/0/0 5.15 739152 0 0.62 2:52:51

ibm09 Dragon-fd+WSA 4/1/0 3.58 577418 0.2 0.02 0:57:08 ibm09 Dragon-fd+WSA 4/1/0 3.51 586582 0.2 0.03 0:58:38

-easy CAPO+WSA 5/0/0 3.64 544475 0 0.02 0:52:49 -hard CAPO+WSA 4/1/0 3.63 557845 0.2 0.04 1:01:01

FS+WSA 4/1/0 3.63 569627 0.2 0.02 0:50:50 FS+WSA 5/0/0 3.65 582507 0 0.04 0:57:59

mPG+WSA 4/1/0 3.81 595976 0.2 0.04 1:01:03 mPG+WSA 4/1/0 3.85 613259 0.2 0.13 1:14:52

QPLACE+WSA 1/0/0 4.02 594290 0 0.03 1:00:55 QPLACE+WSA 0/1/0 3.87 603929 1 0.04 1:02:23

ibm10 Dragon-fd+WSA 3/2/0 7.04 901956 0.4 0.03 1:43:20 ibm10 Dragon-fd+WSA 4/1/0 6.80 910968 8.2 0.07 1:31:27

-easy CAPO+WSA 3/2/0 7.14 870728 0.4 0.04 1:52:26 -hard CAPO+WSA 2/3/0 7.07 902358 22.6 0.16 4:18:28

FS+WSA 4/1/0 7.05 887832 0.2 0.02 1:19:55 FS+WSA 5/0/0 6.98 907629 0 0.07 1:53:17

mPG+WSA 3/2/0 7.25 925947 1.6 0.10 2:06:01 mPG+WSA 1/4/0 7.48 973529 1.4 0.45 4:49:18

QPLACE+WSA 0/1/0 7.22 908286 1 0.05 2:22:02 QPLACE+WSA 0/1/0 7.39 940473 1 0.13 2:55:11

ibm11 Dragon-fd+WSA 4/1/0 5.34 752803 0.2 0.05 1:14:31 ibm11 Dragon-fd+WSA 5/0/0 5.27 769995 0 0.17 1:31:27

-easy CAPO+WSA 4/1/0 5.37 708570 0.2 0.04 1:11:20 -hard CAPO+WSA 4/1/0 5.40 732870 0.2 0.20 1:38:58

FS+WSA 5/0/0 5.47 740837 0 0.04 1:06:28 FS+WSA 5/0/0 5.40 753572 0 0.11 1:23:39

mPG+WSA 4/1/0 5.51 773710 0.2 0.10 1:22:34 mPG+WSA 5/0/0 5.77 813468 0 0.61 2:07:40

QPLACE+WSA 1/0/0 5.95 779237 0 0.10 1:20:40 QPLACE+WSA 0/1/0 6.05 818762 1 0.43 2:37:54

ibm12 Dragon-fd+WSA 3/2/0 9.98 1092302 0.4 0.13 2:46:13 ibm12 Dragon-fd+WSA 1/4/0 9.83 1115038 3.4 0.30 4:18:31

-easy CAPO+WSA 3/2/0 10.46 1085250 6.2 0.27 4:28:06 -hard CAPO+WSA 0/5/0 11.18 1118348 11.6 0.65 6:13:47

FS+WSA 3/2/0 10.39 1099236 0.4 0.22 2:52:37 FS+WSA 3/2/0 10.37 1155815 30.8 0.99 8:59:24

mPG+WSA 0/0/5 12.59 1317614 59217 6.25 N/A mPG+WSA 0/0/5 12.34 1356588 111453 10.81 N/A

QPLACE+WSA 1/0/0 11.82 1200326 0 0.74 5:48:34 QPLACE+WSA 1/0/0 11.02 1211434 0 1.16 11:10:59

summary Dragon-fd+WSA 52/26/2 0.944× 0.968× 218 0.80× 1.18× Except for “vlts”, which is the average number of violations per run,

CAPO+WSA 48/27/5 0.932× 0.924× 825 0.33× 0.55× results in the summary row are normalized with respect to each original tool

FS+WSA 55/15/0 0.983× 0.953× 1105 0.28× 0.45× without applying WSA. See Table 1 for the detailed results of

mPG+WSA 29/20/31 0.920× 0.948× 14633 0.32× 1.23× the original tools.

QPLACE+WSA 10/6/0 0.989× 1.034× 2.4 1.53× 1.50×

