

Gutenberg School of Management and Economics

& Research Unit “Interdisciplinary Public Policy”

Discussion Paper Series

Route Feasibility Testing and Forward Time

Slack for the Synchronized Pickup and

Delivery Problem

Timo Gschwind

May 2015

Discussion paper number 1503

Johannes Gutenberg University Mainz
Gutenberg School of Management and Economics

Jakob-Welder-Weg 9
55128 Mainz

Germany
wiwi.uni-mainz.de

http://www.wiwi.uni-mainz.de/

All discussion papers can be downloaded from http://wiwi.uni-mainz.de/DP

Contact details

Timo Gschwind

Lehrstuhl für BWL insb. Logistikmanagement

Johannes-Gutenberg-Universität Mainz

Jakob-Welder-Weg 9

55128 Mainz

gschwind@uni-mainz.de

http://wiwi.uni-mainz.de/DP
mailto:gschwind@uni-mainz.de

Route Feasibility Testing and Forward Time Slack for the Synchronized

Pickup and Delivery Problem

Timo Gschwinda

aChair of Logistics Management, Gutenberg School of Management and Economics,

Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The temporal constraints of the Synchronized Pickup and Delivery Problem (SPDP) impose a complex
scheduling problem for the service times at the customer locations. This makes the efficient feasibility
checking of routes intricate. We present two different route feasibility checks for the SPDP and compare
their practical runtime on a huge number of randomly generated routes. Furthermore, we generalize the
concept of forward time slack, which has proven a versatile tool for feasibility testing of VRP variants, to
the SPDP.

Key words: Vehicle routing, Temporal synchronization, Feasibility testing, Forward time slack

1. Introduction

The Synchronized Pickup and Delivery Problem (SPDP) (Gschwind, 2014) is the prototypical Vehicle
Routing Problem (VRP) with temporal intra-route synchronization constraints. It seeks to find a set of
minimum-cost routes servicing n user-specified transportation requests from origin (or pickup) to destination
(or delivery) points subject to pairing and precedence, capacity, and time-window constraints. Moreover, the
service times at the pickup and delivery locations of the customer requests are synchronized in the following
way: After completing the service at a pickup point, the corresponding delivery has to be performed within
prespecified minimum and maximum time lags (called Ride Times, RT). From a modeling point of view,
the SPDP generalizes the Dial-A-Ride Problem (DARP, see Cordeau and Laporte, 2007, for a survey) in
which no minimum RT are present.

Because of the complex temporal constraints of the SPDP, deciding whether or not a given route is feasible
is a non-trivial task. The efficient feasibility testing of routes, however, is a crucial part in many exact and
heuristic algorithms for VRPs. Sophisticated feasibility tests for a DARP with an additional constraint on
the maximum waiting time at the customer nodes have been proposed in (Tang et al., 2010) and (Firat and
Woeginger, 2011). The time complexity of these approaches is O (n2) and O (n), respectively. In the SPDP,
the additional presence of minimum ride-time constraints further complicates the route feasibility problem.

Another crucial aspect for some solution approaches to VRP variants is the ability to quickly evaluate
the feasibility of insertions of single nodes or requests into a given (feasible) route. The concept of Forward

Time Slack (FTS) originally introduced in (Savelsbergh, 1992) for the VRP with Time Windows (VRPTW)
can be a useful tool for this kind of evaluation. Generalized versions of the FTS have been used to asses
the feasibility of insertions in heuristic algorithms, e.g., for the DARP (Cordeau and Laporte, 2003) and the
Pickup and Delivery Problem with Transfers (PDPT, Masson et al., 2013). In a companion paper (Gschwind,
2014), the FTS principle is used within a dynamic-programming labeling algorithm for the solution of the
column-generation subproblem of the SPDP.

The contribution of this note is twofold. First, we derive two different route feasibility checks for the
SPDP by adapting the approaches for the DARP presented in (Firat and Woeginger, 2011) and (Tang et al.,

Email address: gschwind@uni-mainz.de (Timo Gschwind)

Technical Report LM-2015-01 May 22, 2015

2010) and conduct a computational study over a large number of randomly generated routes to compare the
practical runtime of the two procedures. Our results indicate that the algorithm with the inferior worst-case
complexity shows on average a better practical performance even on very long routes. Second, we generalize
the concept of FTS to the SPDP and demonstrate why the definition of the FTS is not unique for problems
with maximum RT constraints.

The remainder of the paper is structured as follows: Section 2 defines the SPDP. Section 3 derives two
feasibility tests for individual routes and presents aggregated results comparing their practical runtime. The
adaptation of the FTS concept to the SPDP is described in Section 4. Short conclusions are drawn in
Section 5.

2. Problem Definition

The SPDP is defined on a complete digraph G = (V,A) with node set V and arc set A. The node set V

comprises the origin and destination depots 0 and 2n+1, the set of pickup nodes P = {1, ..., n}, and the set
of delivery nodes D = {n+1, ..., 2n}. For each node i ∈ V a time window [ai, bi], a service duration si, and
a demand qi with qi = −qi+n are given. A travel time tij and a routing cost cij are associated with each arc
(i, j) ∈ A. Both travel times and routing costs are assumed to satisfy the triangle inequality.

Each transportation request i = 1, ..., n consists of transporting a specific good from the pickup node
i ∈ P to the delivery node i+n ∈ D. A minimum RT Li and a maximum RT Li are associated with each
transportation request i.

A fleet K of homogeneous vehicles each with a capacity of Q is located at the origin depot 0 to serve
the transportation requests. The task of the SPDP is to find a set of |K| routes starting and ending at the
depot nodes 0 and 2n+1 such that each transportation request is performed exactly once. Thereby, vehicle
capacities have to be respected and the service at each node has to be started within its time window. If
a vehicle arrives prior to ai at node i, it has to wait until the time window opens. Moreover, waiting, i.e.,
voluntarily delaying the start of service, is allowed at any node at any time. For each transportation request
i, the pickup and delivery nodes have to be served on the same route and the pickup has to be serviced
before. Furthermore, the service at the delivery node i+n has to be started at least Li and at most Li units
of time after the service at the pickup has been completed.

3. Route Feasibility Testing

Consider a given route R = (h1, ..., hq) with h1 = 0 and hq = 2n+1. We use the notation hi ∈ R to
indicate that a node hi is part of route R. Furthermore, given a pickup (delivery) node hi ∈ P (hi ∈ D), we
indicate by hi− and i− (hi+ and i+) the corresponding delivery (pickup) node and its associated notation.

Testing the feasibility of a route R means checking its consistency with all constraints of the SPDP
that relate to individual routes. The verification of pairing and precedence and the capacity constraint is
independent of each other and of the temporal constraints and can be done straightforwardly in linear time.
We assume in the following that these constraints are respected. Checking whether or not the temporal
constraints are satisfied is intricate. Indeed, one has to verify if there exists a time schedule TR = (τ1, ..., τq)
satisfying

ahi
≤ τi ≤ bhi

∀hi ∈ R, (1)

τi + shi
+ thihi+1

≤ τi+1 ∀hi ∈ R, (2)

τi + shi
+ Lhi

≥ τi− ∀hi ∈ R ∩ P, (3)

τi + shi
+ Lhi

≤ τi− ∀hi ∈ R ∩ P, (4)

where τi denotes the start of service at node hi. This is called the scheduling problem of the SPDP.
Constraints (1) are time-window constraints. Consistency of the service times along the route is ensured
by constraints (2), while (3) and (4) are maximum and minimum RT constraints, respectively. For ease

2

of notation, we will assume service durations of zero and omit them in all formulae in the following. The
extension of all concepts to non-zero service durations is straightforward.

In (Tang et al., 2010) and (Firat and Woeginger, 2011), feasibility tests for a similar scheduling problem,
i.e., with constraints (1)–(3) and an additional constraint on the waiting time at each node hi ∈ R, were
presented. In the following, we sketch both algorithms and extend them to solve the scheduling problem of
the SPDP. Also, we highlight the increased complexity coming from the additional presence of the minimum
RT constraints that leads to increased worst-case running times of the adapted procedures.

3.1. Adapted Feasibility Test of Firat and Woeginger

The basic idea of Firat and Woeginger (2011) is to rewrite the considered scheduling problem as a system
of difference constraints. It is well-known (see, e.g., Section 24.4 in Cormen et al., 2001) that such a system
has a solution if and only if an associated digraph (called constraint graph) has no negative-weight cycle.
Moreover, they formulate the difference-constraint system over an appropriate set of variables allowing the
cycle-detection test to be performed in linear time.

Before we sketch their algorithm, some additional notation is necessary. For each node hi ∈ R, the
constant Ti denotes the sum of the travel times along the route R up to node hi. The total waiting time up
to node hi ∈ R is given by xi.

Original Algorithm for the DARP. The first step of Firat and Woeginger is to rewrite constraints (1)–(3)
of the considered scheduling problem in terms of Ti and xi yielding

ahi
≤ Ti + xi ≤ bhi

∀hi ∈ R, (5)

xi − xi+1 ≤ 0 ∀hi ∈ R, (6)

xi− − xi ≤ Ti + Lhi
− Ti− ∀hi ∈ R ∩ P. (7)

Next, they introduce two additional dummy variables x0 and xq+1 representing values x0 = 0 and xq+1 =
b2n+1 − a0 = K, i.e., they constitute lower and upper bounds for all xi, i = 1, ..., q. Using x0 and xq+1,
constraints (5) can be written as the difference constraints

xq+1 − xi ≤ K + Ti − ahi
∀hi ∈ R, (8)

xi − x0 ≤ bhi
− Ti ∀hi ∈ R. (9)

The final set of difference constraints is (6)–(9) together with

xq+1 − x0 ≤ K, (10)

x0 − xq+1 ≤ −K, (11)

to enforce xq+1 − x0 = K. The constraint graph associated with this system has a node for each xi, i =
0, ..., q+1 and an arc with weight dij from node xj to node xi for each constraint xi−xj ≤ dij of the system
(6)–(11). It has O (n) nodes and O (n) arcs. Thus, negative-weight cycles can be detected in O (n2) using
the Bellman-Ford algorithm.

The key observation of Firat and Woeginger to obtain a linear-time feasibility check is the following:
They call an arc from xj to xi a forward arc if j < i, otherwise it is a backward arc. All arcs in the constraint
graph are either forward arcs with non-negative weights (otherwise the scheduling problem would be trivially
infeasible) or backward arcs with weight zero. The only exception is the arc corresponding to constraint
(11) which is a backward arc with negative weight. Using this structure, they are able to transform the
graph into a specific interval graph for which the cycle-detection test can be done in linear time.

Adapted Algorithm for the SPDP. The adaptation of the approach to the SPDP requires to perform the
same transformation described above also to constraints (4) yielding:

xi − xi− ≤ Ti− − Ti − Lhi
∀hi ∈ R ∩ P. (12)

3

The additional difference constraints (12) correspond to additional arcs in the constraint graph. Still, the
total number of arcs is O (n) and the application of the Bellman-Ford algorithm gives a O (n2) feasibility
test.

To show that feasibility testing in linear time is not possible for the SPDP (with the technique in Firat
and Woeginger, 2011), we have to analyze the new arcs: They are backward arcs and have non-negative
weight if Ti− −Ti ≥ Lhi

, i.e., if the minimum RT of request hi is trivially satisfied on the given route because
the travel time from hi to hi− is already larger. Otherwise, the arc weight is negative. As a result, the
specific structure of the constraint graph that was exploited to obtain a linear time cycle-detection test is
lost.

Summing up, the adaptation of the approach of Firat and Woeginger (2011) yields a O (n2) feasibility
test for the SPDP. However, the algorithm requires to build an extra network for each route which might
negatively affect the practical runtime.

3.2. Adapted Feasibility Test of Tang et al.

Tang et al. (2010) proposed a different feasibility test for the same scheduling problem as in (Firat and
Woeginger, 2011), but with weaker, quadratic worst-case runtime. However, their algorithm seems more
intuitive as it gradually constructs the schedule TR directly on the original network. This also means that
some information that is needed might already be available within the exact or heuristic approach in which
the feasibility test is necessary. Therefore, their algorithm might be sufficiently fast (or even faster than the
algorithm in Firat and Woeginger, 2011) in practice, especially if the given routes are not too long (see, e.g.,
Gschwind and Irnich, 2014).

Again, we first sketch the original algorithm before we present our adaptations to the SPDP.

Original Algorithm for the DARP. The algorithm of Tang et al. tries to construct a feasible schedule TR
satisfying (1)–(3) by traversing the route twice: once forward and once backward. If no feasible schedule
can be found the route is infeasible. Note that the third traversal of the original algorithm is redundant.

Algorithm 1: Algorithm of Tang et al.

Result: true if feasible schedule exists, false otherwise
// Pass 1 (forward)

1 τ1 := ah1

2 for i = 2, ..., q do

3 τi := max
{

τi−1 + thihi−1
, ahi

}

4 if τi > bhi
then return false

// Pass 2 (backward)

5 for i = q−1, ..., 1 do

6 if hi ∈ P then

7 ∆ := τi− − τi − Lhi

8 if ∆ > 0 then

9 τi := τi +∆
10 if τi > bhi

then return false
11 for k = i+ 1, ..., q do

12 τk := max
{

τk−1 + thkhk−1
, ahk

}

13 if τk > bhk
then return false

14 if τi− − τi − Lhi
> 0 then return false

15 return true

The whole procedure is described in Algorithm 1. The forward pass (Steps 1–4) builds a schedule of
service times τi that satisfy constraints (1) and (2). Thereby, all times are scheduled as early as possible.

4

The backward pass (Steps 5–14) checks for consistency with the maximum RT constraints (3) adjusting
some values τi if necessary: At each pickup node hi ∈ P it is checked if the current schedule satisfies the
maximum RT of request hi. If not, the algorithm tries to shift waiting time that occurs between pickup and
delivery of request hi before the pickup node hi in order to decrease the ride time of request hi. Thereto, the
service at node hi is delayed by as much as necessary to meet the maximum RT. This requires shifting the
service times τk of all succeeding nodes hk, k = i+1, ..., q forward in time and is done in the same fashion as
in the first pass, i.e., accounting for constraints (1) and (2). If there was not enough waiting time between
pickup and delivery of request hi, the maximum RT of hi cannot be satisfied and the route is infeasible
(Step 14). Note that this adjustment of the service times can never increase the RT of a request that is
picked up later than hi meaning that the maximum RT constraint of such a request never gets violated.
Thus, after traversing a pickup node hi in the backward pass we have a schedule that respects constraints (1)
and (2), and the maximum RT constraints (3) of those requests for which the pickup node is not before hi in
the route. Moreover, all service times are still scheduled as early as possible with respect to the constraints
that are satisfied at that point of the algorithm. Consequently, whenever a rescheduling results in a service
time τj > bhj

no feasible schedule exists and the route is infeasible.
Both forward and backward pass traverse the route once. Because of the inner forward loop (Steps 11–

13), the backward pass has a quadratic worst-case running time and, hence, the overall algorithm also has
time complexity O (n2).

Adapted Algorithm for the SPDP. Solving the scheduling problem of the SPDP with the technique of Tang
et al. (2010) requires the integration of the minimum RT constraints into the scheduling process. This can
be done as follows: In the forward pass, change Step 3 to

τi :=











max
{

τi−1 + thihi−1
, ahi

, τi+ + Lh
i+

}

if hi ∈ D,

max
{

τi−1 + thihi−1
, ahi

}

otherwise.
(13)

The resulting service times after the first pass satisfy constraints (1), (2), and (4) and they are scheduled in
an early-as-possible fashion.

In the backward pass, whenever a shifting of service times is necessary because of some violated maximum
RT (Steps 8–14), we need to change Step 12 in the same way as Step 3 in order to maintain feasibility with
respect to constraints (1), (2), and (4). In contrast to the original algorithm, however, the shifting of waiting
times can increase the RT of requests that are picked up later in the route. Decisive is that we might be
forced to re-introduce waiting time somewhere in the route due to the minimum RT constraints of other
requests. As a result, the property that after traversing a pickup node hi in the backward pass all maximum
RTs of requests which are not picked before hi are respected, is lost.

Consider the example given in Table 1. The travel times between all nodes are assumed to be 10. The
maximum RTs of requests i and m are 30. The minimum RT of request j is 31. The time window of each
node is specified in Table 1. All other constraints are assumed to be never binding.

Table 1 gives the service times at each node at different stages of the algorithm. Waiting times at nodes
are in brackets. After the first pass of the algorithm, the maximum RT constraint of request i is violated
by 1 unit of time. Therefore, the second pass delays the service τi at i by 1 unit trying to shift waiting
time that occurs between i and i+ n before i. However, the removed waiting time at node k decreases the
RT of request j so that it has to be re-introduced before starting the service at node j + n. Otherwise, the
minimum RT constraint of j would be violated. As a consequence, the RT of request m increases and the
schedule after the backward pass is infeasible which, however, does not imply that the route is infeasible.

A straightforward way to fix this defect of the algorithm is to loop over the second pass as long as an
adjustment of the service times was necessary because of a violated maximum RT. For the example above,
one additional backward pass identifies a feasible schedule (see Table 1). Clearly, this change of the algorithm
leads to a significant deterioration of the worst-case complexity, especially if the number of iterations of the
backward pass cannot be bound.

5

Node 0 i j k i− m j− k− m− 2n+1

[a
·
, b

·
] [0, 100] [10, 20] [20, 30] [31, 41] [41, 51] [51, 61] [61, 71] [71, 81] [81, 91] [0, 100]

After pass 1 τ
·

0 10 20 (1) 31 41 51 61 71 81 91
Pass 2, at node i τ

·
0 (1) 11 21 31 41 51 (1) 62 72 82 92

After add. pass 2 τ
·

0 (1) 11 21 31 41 (1) 52 62 72 82 92

Table 1: Example showing the necessity to loop over second pass in Algorithm 1

Node 0 i j m i− j− m− 2n+1

[a
·
, b

·
] [0, 100] [10, 20] [20, 30] [31, 41] [41, 51] [51, 61] [61, 71] [0, 100]

After pass 1 τ
·

0 10 20 (1) 31 41 51 61 71
Pass 2, at node i τ

·
0 (1) 11 21 31 41 (1) 52 62 72

2nd pass 2, at node m τ
·

0 (1) 11 21 (1) 32 42 52 62 72
2nd pass 2, at node i τ

·
0 (2) 12 22 32 42 (1) 53 63 73

Table 2: Example showing nested requests causing a worst-case complexity greater than O (n2)

Consider the example as given in Table 2. The time windows of the nodes are specified in the table.
All other data is equivalent to the previous example. Apparently, the three requests i, j, and m are nested
in a way that the adapted Algorithm 1 alternatively shifts waiting times that occur in between pickup and
delivery of the requests i and m. In general, this can lead to an unbounded number of iterations and, hence,
a superlinear runtime of the algorithm. In case of integer inputs for the temporal data, e.g., the total number
of iterations that can be caused by this behavior can be bounded by M = maxi∈P∪D(bi − ai). The runtime
of the algorithm is then given by O (Mn2). Overall, the worst-case complexity of the adapted algorithm
seems to be prohibitively large for frequent calls. However, in the computational tests of a companion paper
(Gschwind, 2014), we found that the described algorithm can solve the scheduling problems arising within
a proposed branch-and-cut-and-price approach to the SPDP sufficiently fast. Note that the paths arising in
the instances considered in (Gschwind, 2014) are typically very short (not more than 10–15 requests). We,
therefore, conduct a more comprehensive computational study with much longer routes in the following.

3.3. Computational Comparison

To compare the practical performance of the approaches of Sections 3.1 and 3.2, we evaluate their runtime
over a huge number of randomly generated paths with lengths reaching from 15 to 200 requests. A separate
analysis is conducted for integer and double precision input parameters. Details on the generation of the
paths and more detailed results can be found in Section A of the appendix. Note that in our analysis we do
not include instances that are identified as infeasible already in the first pass of the adapted Algorithm 1.

Table 3 summarizes our results. Each row aggregates over a total of 50 000 paths. Firat and Tang denote
the adapted feasibility checks of Firat and Woeginger and Tang et al., respectively. Table 3 reports over all
instances the average, maximum, and minimum times in milliseconds needed by the algorithms to solve an
instance 10 000 consecutive times. Furthermore, we give the average, maximum, and minimum number of
restarts of the second pass of the adapted Algorithm 1.

Table 3 reveals that there are paths, for which a huge number of iterations of the second pass of the
adapted Algorithm 1 is necessary, especially for instances with double precision parameters. For these
instances the runtime of Tang is very long. However, this seems to happen only very rarely so that the
average number of iterations is small. Moreover and in contrast to the theoretical worst-case complexity,
the average runtime of Tang is significantly better than that of Firat.

4. Forward Time Slack

The concept of FTS was originally introduced by Savelsbergh (1992) in the context of the VRPTW. Let
TR = (τ1, ..., τq) be a feasible schedule for route R. Savelsbergh defines the FTS Fi for a node hi ∈ R as

6

Solution time # Restarts
Param. Algo. avg. max min avg. max min

integer
Firat 2 160.3 19 081 15 - - -
Tang 95.6 21 590 <1 3.1 420 0

double
Firat 1 937.4 21 684 15 - - -
Tang 111.6 176 016 <1 6.0 12 425 0

Table 3: Aggregated computational results.

the maximum value by which the start of service τi at hi can be increased without causing the route to
become infeasible. Different authors have generalized the concept of FTS to other problems, e.g., Cordeau
and Laporte (2003) for the DARP or Masson et al. (2013) for the PDPT.

VRPTW. The slack at a node hj , j ≥ i with respect to node hi is given by the cumulative waiting time
between hi and hj and the difference between the end of the time window and the start of service at node
hj . The FTS Fi at node hi is the minimum of all slacks at nodes hj with i ≤ j ≤ q. Denote by Wi the
waiting time at node hi ∈ R. Then (Savelsbergh, 1992):

Fi = min
i≤k≤q







∑

i<p≤k

Wp + (bhk
− τk)







. (14)

Note that this definition of Fi is independent of the service times τk, k < i, i.e., it is unique with respect
to the route segment preceding hi. This can be an important property for feasibility testing when inserting
pairs of nodes (as, e.g., in Masson et al., 2013, for the PDPT).

DARP. For problems with RTs, shifting the start of service at some node may cause infeasibilities also with
respect to the RT constraints. This has to be incorporated in the definition of the FTS for such problems.
For example, postponing the service at node hi may increase the RT of a request hk with k < i and k− > i.
Consequently, Cordeau and Laporte (2003) define the following generalization of the FTS for the DARP:

Fi = min
i≤k≤q







∑

i<p≤k

Wp +min (bhk
− τk, Sik)







, (15)

where Sik is given by Lh
k+

− (τk − τk+) if hk ∈ D; i > k+ and +∞ otherwise.
In contrast to (14), the FTS (15) of a node hi for the DARP (and similarly for other problems with

maximum RTs) is not unique with respect to the route segment preceding hi. Indeed, it may be possible for
some hk ∈ D with k+ < i and k > i to increase τk+ such that τi stays constant while Sik and Fi also increase.
For that reason, feasibility checking of request insertions based on FTS (as, e.g., proposed in Masson et al.,
2013) is problematic.

Consider the route given in Table 4. Feasibility of the insertion of another request k is to be evaluated.
Assume a travel time of ten between all nodes, Li = 40, and time window [0, 20] at the pickup node k.
Inserting node k before i and node k− before j− results in a feasible route. When using the FTS-values of
the earliest-as-possible schedule, however, the insertion appears to be infeasible because τj− is increased by
10 > Fj− = 0. Considering FTS-values that allow delaying τi to time 20 correctly determines feasibility of
this route. On the other hand, using these FTS-values results in misjudging the insertion of k before j and
k− before j− as feasible because Fj− = 10 relies on τi = 20 which is not possible in the new route.

SPDP. The presence of minimum RT raises two additional issues compared to the DARP. First, shifting
the service time at a pickup node is constrained by the minimum RT of the request. Second, not necessarily
all of the cumulative waiting time between two nodes hi and hk is slack. Decisive is that some waiting time
may have to be included between them because of the minimum RT of some requests. Denote by UWik the

7

Node 0 i j j− i− 2n+1

[a
·
, b

·
] [0, 100] [10, 30] [30, 50] [40, 60] [50, 70] [0, 100]

Earliest as possible schedule τ
·

0 10 (10) 30 40 50 60
FTS for nodes after hi with τi = 10 F

·
− − 0 0 0 40

FTS for nodes after hi with τi = 20 F
·

− − 10 10 10 40

Table 4: Example instance for which feasibility checking of request insertions based on FTS is problematic

usable waiting time between hi and hk, i.e., the waiting time between hi and hk that can be incorporated
into the slack. Then, the FTS for a node hi is given by

Fi = min
i≤k≤q

{UWik +min (bhk
− τk, Sik)} , (16)

with

Sik =











bh
k−

−
(

Lhk
+ τk

)

if hk ∈ P,

Lhk
− (τk − τk+) if hk ∈ D; i > k+,

+∞ otherwise.

(17)

To determine UWik, we first define the needed waiting time NWk = (Lk −
∑

k<j≤k−
tj−1,j)

+ for request
hk which is the amount of waiting time that inevitably occurs between pickup and delivery of request hk ∈ R

and, hence, can never be part of the slack between nodes hi and hk− if k > i. When there is another request
hj with positive NWj in between hi and hk, care has to be taken not to consider the overlapping needed
waiting times NWj and NWk twice in the definition of UWik. Therefore, we define for each delivery node
hj after hi the already included waiting time between them as

IWij =
∑

i<p<j

hp∈D,p+≥i,j+<p

(NWp+ − IWip). (18)

Then, the usable waiting time UWik is given by

UWik =
∑

i<p≤k

Wp −
∑

i<p≤k

hp∈D,p+≥i

(

NWp+ − IWip

)+
. (19)

Note that a direct adaptation of the technique of Masson et al. (2013) using the FTS (16) does not lead
to a valid feasibility check of request insertions for the SPDP because of the non-uniqueness of the FTS as
described above. Still, the technique can be used to obtain a constant-time verifiable, sufficient condition.
A feasibility check of request insertions for the SPDP and likewise for other problems with maximum RT
that is more efficient than checking the resulting routes from scratch, e.g., with the algorithms of Section 3,
is an open question.

5. Conclusions

In this note, we derived two route feasibility checks for the SPDP and extended the concept of FTS to
this problem. Because of the prototypical character of the SPDP, we believe that the presented concepts
are also relevant for other routing problems with temporal synchronization constraints. For example, the
feasibility test of Section 3.1 can be adapted to a SPDP with transfer possibilities between routes in a
straightforward way. Likewise, the proposed definition of the FTS can be generalized to the problem with
transfer possibilities using the technique in (Masson et al., 2013).

8

n Cust. loc. Horizon TW Min RT Max RT

15 [10, 10]×[10, 10] 450 60 2 10
25 [10, 10]×[10, 10] 750 100 2 10
50 [10, 10]×[10, 10] 1500 200 2 10
100 [10, 10]×[10, 10] 3000 400 2 15
200 [10, 10]×[10, 10] 6000 500 2 30

Table 5: Details on the parameters used for instance generation

References

Cordeau, J.-F. and Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation

Research Part B, 37(6), 579–594.
Cordeau, J.-F. and Laporte, G. (2007). The dial-a-ride problem: models and algorithms. Annals of Operations Research,

153(1), 29–46.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction To Algorithms. MIT Press.
Firat, M. and Woeginger, G. J. (2011). Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh. Operations Research

Letters, 39(1), 32–35.
Gschwind, T. (2014). A comparison of column-generation approaches to the synchronized pickup and delivery problem.

Technical Report LM-2014-01, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes
Gutenberg University Mainz, Mainz, Germany.

Gschwind, T. and Irnich, S. (2014). Effective handling of dynamic time windows and its application to solving the dial-a-ride
problem. Transportation Science.

Masson, R., Lehuédé, F., and Péton, O. (2013). Efficient feasibility testing for request insertion in the pickup and delivery
problem with transfers. Operations Research Letters, 41(3), 211–215.

Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: Minimizing route duration. INFORMS Journal

on Computing, 4(2), 146–154.
Tang, J., Kong, Y., Lau, H., and Ip, A. W. H. (2010). A note on “efficient feasibility testing for dial-a-ride problems”. Operations

Research Letters, 38(5), 405–407.

Appendix

A. Detailed Computational Results

In this section, we give additional details on the computational comparison of the two feasibility checks
of Sections 3.1 and 3.2. The algorithms were tested on a huge number of randomly generated paths using
Euclidean distances (rounded down in the case of instances with integer inputs) as travel times between the
nodes. Minimum and maximum RTs are specified proportional to the Euclidean distances between pickup
and delivery location. Details on the parameters used for the generation of the paths are given in Table 5.
The columns have the following meaning:

n Number of requests

Cust. loc. Intervals from which the customer locations are drawn. The depots are located at (0, 0).

Horizon Time horizon

TW Mean value for the length of the time windows

Min RT Mean value for the factor specifying the minimum RT

Max RT Mean value for the factor specifying the maximum RT

For each value of n we generate paths with different characteristics regarding the number of requests
that are open at the nodes in the following way: At each node another request is picked up with probability
p, otherwise one of the open requests is delivered. The considered values of p reach from 0.15 to 0.50 in steps
of 0.05. For each probability p, a pretest filters 625 feasible and 625 infeasible instances so that a total of
10 000 paths is considered for each value of n. Note that we consider only instances that are not identified
as infeasible already in the first pass of the adapted Algorithm 1.

Table 6 summarizes our results. The columns have the following meaning:
9

Firat Tang

Max # open Solution time Solution time # Restarts
Param. n avg. max min avg. max min avg. max min avg. max min

integer

15 2.7 6 1 57.2 146 15 5.8 115 <1 1.0 45 0
25 3.3 8 1 137.9 312 31 11.4 319 <1 1.6 76 0
50 4.2 11 2 513.9 1 046 78 33.0 1 810 <1 2.2 162 0
100 5.5 19 2 2 077.7 4 477 281 125.0 10 936 15 4.4 364 0
200 6.8 23 2 8 014.9 19 081 726 302.7 21 590 31 6.4 420 0

double

15 2.7 6 1 49.8 125 15 8.9 15 459 <1 3.3 7 596 0
25 3.3 6 1 115.8 312 31 18.2 14 492 <1 4.2 3 628 0
50 4.2 11 1 438.4 1 123 78 37.8 15 116 <1 4.1 4 979 0
100 5.5 19 2 1 787.5 4 556 203 161.6 140 994 <1 9.0 12 425 0
200 6.8 23 2 7 295.4 21 684 624 331.5 176 016 15 9.7 9 548 0

Table 6: Detailed Computational Results

Param. Type of input data (integer or double precision) of the instances

n Number of requests

Max # open The maximum number of open requests at a node; we give average, maximum, and minimum
values over the instances

Firat The adapted feasibility check of Firat and Woeginger (Section 3.1)

Tang The adapted feasibility check of Tang et al. (Section 3.2)

Solution time The time in milliseconds needed by the respective algorithm to solve an instance 10 000
consecutive times; we present average, maximum, and minimum values over the instances

Restarts The number of restarts of the second pass of Algorithm 1

10

	Titelseite 1503
	LM-2015-01_v2
	Introduction
	Problem Definition
	Route Feasibility Testing
	Adapted Feasibility Test of Firat.2011
	Adapted Feasibility Test of Tang.2010
	Computational Comparison

	Forward Time Slack
	Conclusions
	Detailed Computational Results

