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Abstract. We consider the problem of optimal next-hop selection in a
route between two vehicles, for a simple scenario of Vehicular ad hoc
networks (VANETs) on a highway. For a given approximation of the
optimal number of hops, we seek the optimal choice of next-hop based
on its speed and inter-node distances, so as to maximize the expected
route lifetime. Under a Markovian assumption on the process of speed of
nodes, we show that the optimal choice of speeds attempts to equalize
the lifetimes of adjacent links. A monotone variation property of the
speed of relay nodes under the optimal policy is proved. These properties
have been confirmed with simulations. The optimal policies and their
structures can assist in enhancing the performance of existing VANET
routing protocols.
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1 Introduction

Vehicular Ad Hoc Networks (VANETs) [1, 2, 3, 4] tend to exhibit a drastically
different behavior from the usual mobile ad hoc networks (MANETs) [6]. High
speeds of vehicles, mobility constraints on a straight road and driver behavior are
some factors due to which VANETs possess very different characteristics from the
typical MANET models. Broadly speaking, four such characteristics are rapid
topology changes, frequent fragmentation of the network, small effective net-
work diameter and limited temporal and functional redundancy [6]. Due to this
fundamental behavioral difference between MANETs and VANETs, topology-
based routing protocols developed for the former cannot be directly used in the
latter. Topology-based protocols are the table-driven proactive protocols and
on-demand reactive protocols [7]. For example authors in [10] have shown that
TORA (an on-demand protocol) is completely unsuitable for VANETs. Instead,
position-based routing protocols such as LAR, DREAM or GPSR [11, 12, 13] that
require a-priori knowledge of vehicles’ geographic location (from a GPS service)
could be used for VANETs for faster route discovery and improved performance.
But position-based routing protocols suffer from geographic routing failures due
to presence of topology holes [14] and authors in [14] propose spatially aware
routing for VANETs to overcome this drawback. However optimality of spatially
aware routing has not been proved and it could be further enhanced in order to
improve performance.
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A routing protocol usually has three main functions: route discovery, optimal
route selection (among various candidate routes discovered) and route mainte-
nance. Once an optimal route from a source to its destination has been discovered
and selected, route maintenance must be carried out, in order to track link fail-
ures (due to movement of relay nodes) and perform route re-discovery. Route
maintenance and re-discovery are expensive in signalling and computation, and
hence it is desirable to choose the optimal route comprising links with maxi-
mum possible lifetimes during the optimal route selection phase. In this paper
we propose an optimal route selection criteria from an analytical viewpoint, for
the simple scenario of a VANET on a straight line highway. Our optimal route
selection criteria consists of the optimal choice of next-hop, based on maximum
route lifetime. The proposed optimal next-hop selection criteria based on maxi-
mum route lifetime is not a competitor to the optimal route selection methods
in any of the existing routing protocols, but rather it can be used in conjunction
with them. Our goal is not to propose a complete routing protocol along with
its implementation aspects. We rather focus to gain an analytical insight into
the route lifetime dynamics of a VANET by considering only a simple scenario
and our observations on the structural characteristics of the optimal policies can
assist in enhancing the performance of any of the existing routing protocols men-
tioned before or spatially aware routing in particular, for VANETs. As discussed
before, optimal route selection in VANETs can be very different from that in
MANETs and designing a routing protocol for VANETs can be very complex due
to the rapidly changing topology and frequent link breakdowns. In our model,
we introduce certain simplifying assumptions, as compared to a real life scenario,
in order to gain an analytical insight into the dynamics of vehicle mobility and
route lifetimes in VANETs. Without these simplifying assumptions it can be very
hard to study these dynamics. For instance, a VANET in city traffic scenario
can be very hard to model and our analysis does not hold good for this case.
The contributions of this paper are twofold. Firstly, the heuristics and struc-
tural characteristics of the optimal hop selection policies developed in this paper
can assist in better understanding the dynamics of route lifetime in VANETs.
Secondly, the results can serve in enhancing the performance of existing routing
protocols for VANETs.

2 Optimization Parameters

We consider VANETs on a straight line highway in which a vehicle can establish
connectivity only with other vehicles traveling in the same direction of its motion.
In other words we consider ad hoc networks formed by only those vehicles that
are moving on the same side of a high way and not the opposite side. Assume
vehicles (nodes) traveling on an infinitely long straight highway with L lanes,
moving in the same direction on either side of the highway. Each lane i has
an associated speed limit si. Assume that in a given lane, the nodes travel
with a speed corresponding to the speed limit of that lane. In other words, it
is assumed that all nodes move on the highway with a discrete set of speeds
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which consists of the speed limits of each lane. We follow the convention that
s1 < s2 < . . . < sL. When a node transits to an adjacent lane due to driver’s
natural behavior, it now travels with the speed associated with the new lane.
Now consider 2 tagged nodes, a source and a destination moving in any two
(possibly same) lanes, traveling in the same direction. At time 0, these nodes
are assumed to be distance D apart. If D is large enough then these nodes may
not be able to communicate with each other directly. Intermediate relay nodes
are required for these two tagged nodes to form a VANET. However more than
one options (vehicles in front of transmitting vehicle moving with identical or
different speeds in the same lane or adjacent lanes, respectively) for the choice of
next hop may be available. How would one decide whether to choose the vehicle
in the same lane or in adjacent lanes as the next hop. In this paper we address
the problem of coming up with an optimal choice of next hop (relay node) such
that the associated link lifetime and hence the route lifetime, is maximized. The
constraints under which this decision should be made are mentioned in detail in
Section 3, but here we emphasize on the fact that making such a decision may not
be as simple as it seems at first. An evident reason being that the underlying
state space over which the route lifetime has to be optimized is composed of
different parameters, each representing as a component parameter of the overall
optimization problem. Following are the possible optimization parameters that
should be considered and the motivation behind their choice is discussed in a
predecessor research report [5] on this work:

1. Optimization over Number of Relay Nodes
2. Optimization over Inter-node Distances
3. Optimization over Speeds of the Intermediate Nodes

In the present work, we assume that nodes (vehicles) are equipped with a
GPS receiver and we also assume that the optimal number of relay nodes and
the speeds of the source and destination nodes are somehow known in advance.
Avoiding relatively large values for number of relay nodes, an optimal choice
on number of relay nodes can be fairly approximated from the knowledge of
transmission range R and position of source and destination nodes obtained
from the GPS receiver. Approximate speeds of source and destination nodes can
also be obtained from a GPS service. Given this information, we are interested
in obtaining the optimal inter-node distances and optimal speeds of relay nodes
that result in a maximum possible route lifetime.

3 System Dynamics and Model

3.1 Dynamics of Individual Nodes

The process of changing speed of any individual node due to lane change on the
highway is assumed to be an independent stationary ergodic stochastic process.
We are thus also implicitly assuming that the vehicles do not leave the highway.
It is assumed as well that the vehicles do not change their direction of motion
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since we consider VANETs formed by only those vehicles that are traveling on the
same side of highway in the same direction. In this paper, we restrict ourselves to
the case where the changing speed of any node can be modeled as an irreducible
aperiodic Markov process, taking a finite set of constant values {s1, s2, . . . , sL}.
We assume that a node continues to move in lane i with an associated speed
si, 1 ≤ i ≤ L for an exponential amount of time before changing its lane, or
its speed equivalently. This time is exponentially distributed with rate μi and
we denote that a node in lane i transits to another lane j with probability
Pi,j with Pi,i = 0. Even though our analysis holds good for generic transition
probabilities Pi,j , we assume the following natural structure on node transitions
in our highway scenario: from state (or, lane) i, a node can transit only to the
states (i − 1) ∨ 1 or (i + 1) ∧ L. Clearly, from state 1 a node can transit only to
state 2 and from state L the only possible transition is to state L − 1.

3.2 Placement of Nodes

We assume that node spread-out along the highway is dense in the sense that in a
sufficiently small neighborhood of any point on a lane we can always find at least
one node on the same lane. This is like assuming that the transmission range R of
a node is significantly large as compared to the distances between two successive
nodes in any lane. Most of the results in this paper can be extended to the case
where we assume that the existence of a node at any point on a lane is itself a
stochastic process. However, since we are more interested in the structural results
of optimal distances and speed selections, we will assume that this stochastic
process is a constant process, i.e., there is always a node at any given point
on any lane. It is also assumed that the width of the lanes on an highway is
negligible when compared to the transmission range of mobile nodes along the
length of highway. We call this assumption as the straight line communication
assumption.

3.3 Evolution of Inter-node Distances and Node Connectivity

Consider any two nodes i and j (node j is ahead of node i) moving in any two
lanes with both the nodes moving in the same direction. Assume that the two
nodes have speeds vi(t) and vj(t) respectively at time t. Since the two nodes
are moving and also have their speeds changing with time due to lane change,
the distance between these nodes will also vary with time. Let us denote the
distance of node j from node i (measured in the direction of motion) at time t
as dij(t). Assume that node i is the source of transmissions meant for node j.
We say that a direct link or single hop route exists between nodes i and j as
long as 0 ≤ dij(t) ≤ R, where R is the maximum possible transmission range of
a node i.e. a node can successfully transmit at any range ≤ R.

The distance between any two adjacent nodes i and i+1 (node i+1 is ahead
of node i) of a route denoted simply by di(t), forms a stochastic process that
begins with an initial value of di(0) = di and whose evolution over time, di(t),
depends on the initial speeds of the two nodes. We assume that two successive
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nodes i and i + 1 of a route remain connected only until when di(t) takes a
value outside the interval [0, R] for the first time (see Figure 1). The convention
followed is that the link between two successive nodes i and i + 1 of a route,
breaks, if either, 1) node i+1 overtakes node i in the direction of motion and the
distance between node i and node i + 1 exceeds R so that node i + 1 is outside
the maximum transmission range of node i, or, 2) node i overtakes node i+1 in
the direction of motion. This convention can be easily relaxed to incorporate the
case where the link between node i and i + 1 breaks only when node i overtakes
node i+1 by a distance R, in the direction of motion. The results of our analysis
will still hold good with this relaxed convention.

In brief, we consider nodes i and j to be connected if node j lies within the
maximum transmission range of node i only in the direction of motion and not
otherwise. Note that since the communication devices mounted in the vehicles
operate on car battery which is recharged by the vehicle engine, battery-life of
nodes is not an issue in our model. All these simplifying assumptions above
and in previous Section 2, have been adopted to avoid a very complex modeling
scenario, since the main focus is to get an approximate first glimpse of the
underlying dynamics of mobility of nodes and route lifetimes in a VANET.

Assume M relay nodes in a route between the source and its destination, with
the source being the 0th node and the destination as the (M + 1)th node. Let
v0 and vM+1 be the velocities of the source and destination nodes and let D be
the distance between them. For a given value of M , let di, 0 ≤ i ≤ M be the
distance between node i and node i + 1. We impose that

∑M
i=0 di = D so that

the last hop distance dM = D −
∑M−1

i=0 di. For a non-broken route formed by
nodes 0, 1, 2, . . . , M +1, we require that 0 ≤ di ≤ R and let vi, 0 ≤ i ≤ M +1 be
the velocity of the ith node with v0 and vM+1 known in advance. Note that vis
may take any one of the set of constant values {s1, . . . , sL} and there are LM

different possible values that the vector v = (v1, . . . , vM ) can take.

4 The Problem Formulation

In our model described in the previous section, we assume a dense vehicle traffic
scenario on the highway. Due to this assumption multiple candidate routes may
exist for choosing an optimal route. If multiple candidate routes are available
then we want to choose the route with the maximum lifetime. We are given that
there are M + 2 nodes, indexed 0, 1, . . . , M + 1, constituting a route. Node 0 is
the source node and node M + 1 is the destination node. Now consider any two
successive nodes i and i + 1 in the route, that are distance d apart at time zero.
Assume also that at time zero, node i is in lane k and node i+1 is in lane l such
that di(0) = d, vi(0) = sk and vi+1(0) = sl. Let T (d, vi, vi+1) be the expected
time after which the link between these two nodes breaks (see Section 3). We
refer to the quantity T (d, vi, vi+1) as the link lifetime of the link between the
successive nodes i and i + 1 in a route.

For a route comprised of M + 1 links, our problem is to find an optimal
inter-node distance assignment denoted by d∗ = (d0, . . . , dM−1), and an optimal



804 D. Kumar, A.A. Kherani, and E. Altman

speed assignment, denoted by v∗ = (v1, . . . , vM ), to the M relay nodes such that
maximum route lifetime is attained. We thus seek the optimal distance vector
d∗ and speed vector v∗ such that the least of the link lifetimes of the route is
maximized. Our optimization problem is therefore the following,

Maximize
v,d

Minimum
i=0..M

T (di, vi, vi+1) . (1)

Instead of solving the above problem directly, we can also attempt to opti-
mize a different, parameterized, objective function. This objective function will
coincide with the original one in Equation 1 when the parameter takes a special
value. We state here the following theorem whose proof can be found in [5].

Theorem 1. The solution of the optimization problem in Equation 1 is identical
to that of the optimization problem below as α → ∞.

Minimize
v,d

⎡

⎣
M∑

j=0

(T (dj , vj , vj+1))−α

⎤

⎦

1
α

, (2)

In fact, we can say something more about the relation between the two opti-
mization problems of Equation 1 and 2 in the following theorem.

Theorem 2. There exists a finite α∗ such that the maximizers of optimization
problem of Equation 1 are identical to that of Equation 2 for all values of α > α∗.

The proof of this theorem can be referred to in the research report [5]. Theorem 2
ensures that there is no discontinuity in the solution of the optimization problem
of Equation 2 with respect to the solution of Equation 1, as α → ∞. Working
with the objective function of Equation 2 in fact has an advantage that we can
optimize it for some finite value of α > α∗ and elegantly obtain the solution to
the optimization problem of Equation 1.

5 Determining the Expected Lifetimes

Having done with the problem formulation, here we seek to obtain explicit ex-
pressions for the link lifetimes, to be able to explicitly define the objective func-
tion of either Equation 1 or Equation 2. We study the expected lifetime of the
connection between two nodes that are d distance apart at time 0 and have
speeds si and sj respectively. We use the notation that a pair of nodes k and l is
in state sij when node k is in lane i with associated speed si and node l is in lane
j with associated speed sj . Here onwards, along with T (d, vk, vl), we will also use
the notation T (d, sij) for the link lifetimes of any two nodes, interchangeably.
With some abuse of notation we use the same notation for the state sij and the

relative speeds between the two nodes sij
Δ= sj − si, interchangeably. Consider

a pair of successive nodes forming a link in a route as shown in Figure 1. If the
second node is within the range R of the first node then using the straight line
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communication assumption mentioned before in Section 3, the expected remain-
ing link lifetime is given by T (d, sij) and we state the following theorem whose
proof can be referred to in [5].

Theorem 3. T (d, sij) satisfies the following renewal-type recursions

sij > 0 T (d, sij) = e
−(μi+μj) R−d

sij
R − d

sij
+
� R−d

sij

0
(μi + μj)e−(μi+μj)u

�
u+

�
l

Pi,l
μi

μi + μj
T (d + siju, slj) +

�
l

Pj,l
μj

μi + μj
T (d + siju, sil)

�
du,

(3)

sij < 0 T (d, sij) = e
−(μi+μj) d

|sij | d

|sij |
+
� d

|sij |

0
(μi + μj)e−(μi+μj)u

�
u+

�
l

Pi,l
μi

μi + μj
T (d − |sij |u, slj) +

�
l

Pj,l
μj

μi + μj
T (d − |sij |u, sil)

�
du,

(4)

sij = 0 T (d, sij) =
� ∞

0
(μi + μj)e−(μi+μj)u

�
u +

�
l

Pi,l
μi

μi + μj
T (d, slj)+

�
l

Pj,l
μj

μi + μj
T (d, sil)

�
du.

(5)

Instead of solving the system of Equations 3, 4, and 5 explicitly in its most gen-
eral form, we solve it only for some special cases. The main reason for considering
only these special cases is that these are the only cases which are of relevance in
a real life highway scenario and solutions for cases other than these cannot be
applied to real life traffic movement on highways. Another interesting aspect of
considering these special cases is that the results that we obtain for these cases
constitute a simple form and provide important insights into the structure of
the corresponding optimal distance and speed policies. Later with the help of
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simulations we will attempt to validate the obtained structure for any general
case.

In the following sub-sections we attempt to solve the link lifetime recursion
equations for particular cases of L = 2 and L ≥ 3. The case L = 1 is trivial
because there is no breakdown of routes, since all nodes are always traveling
with the same speed s1. Firstly, we consider the case L = 2 and, assuming
μ1 = μ2, we obtain explicit expressions for the quantities T (d, sij)’s. We then
solve the optimization problem of Equation 1 directly for M = 1 and R

s12
< 1

2μ .
For values of M > 1, the global optimization problem can be solved by splitting
it into several optimization problems each one of them optimizing over a pair of
two adjacent links (i.e., M = 1). The solution of these split problems can then be
combined to obtain solution to the global optimization problem (for M > 1) after
taking care of certain coupling issues related to adjacent pairs of links. Second,
we consider the case with general values of L ≥ 3 and 1

μi
>> R

si
so that a node

remains in lane i for a very long period as compared to the lifetime of a link.
For this case we derive only the optimal speed assignment policy, an interesting
property of the optimal speed vector solution to the problem of Equation 1 and
develop some structural heuristics about the optimal speed vector solution to
the problem of Equation 2. Both these cases provide important guidelines on
optimally choosing the inter-node distances and speed of next hop.

5.1 L = 2

Consider the case where the number of lanes is L = 2. There are only two
possible speeds s1 and s2 in this case with s2 > s1. At any time t, let the source
have speed v0(t) and destination have speed vM+1(t). Recall that the processes
{v0(t)} and {vM+1(t)} are assumed to be independent Markov processes over
the state space {s1, s2}. The infinitesimal generator matrix is then given by:

s1 s2

s1 −μ1 μ1
s2 μ2 −μ2

Here μi is the rate of the exponentially distributed sojourn time when the process
{v0(t)} (or, {vM+1(t)}) is in state si. We state the following lemma without
proof.

Lemma 1. If μ1 = μ2 = μ then,

1. The process of the speed of destination node with respect to the source node,
i.e., {v0(t) − vM+1(t)} forms an irreducible periodic Markov process over
(finite) state space {0, s12, s21} with the mean sojourn time in any state
being exponentially distributed with rate 2μ.

2. The state transition probability matrix is of the form

s12 0 s21

s12 0 1 0
0 0.5 0 0.5
s21 0 1 0
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In words, from the states with non-zero relative speed, transition is always
to the one with a relative speed of 0 and from the state with relative speed 0,
the transition is to either of the other two states, each with probability 0.5.

An important consequence of the observation of Lemma 1 is that the function
T (d, vi, vj) depends on vi and vj only via vi − vj with vi − vj ∈ {0, s12, s21}.
We will see later that the observation of Lemma 1 also helps us to compute
the function T (d, 0) directly via a simple application of Wald’s lemma [8, Chap-
ter 7] without solving any integral equation for T (d, 0). We have the following
recursions for T (d, s12) and T (d, s21) from Equations 3 and 4:

T (d, s12) = e−2μ
(R−d)

s
R − d

s
+
� R−d

s

u=0
(u + T (d + su, 0))2μe−2μudu, for

s12 > 0, s = s2 − s1

(6)

T (d, s21) = e−2μ d
s

d

s
+
� d

s

u=0
(u + T (d − su, 0))2μe−2μudu, for s21 < 0, s = s2 − s1

(7)

For obtaining T (d, 0) we follow the approach of random walks. Recall that
T (d, 0) is the expected time for which the distance between the two nodes re-
mains in the interval [0, R], starting with distance d apart and 0 relative speed.
Clearly, the distance between the nodes can change only when the relative speed
between the two nodes is non-zero. The periods of zero and non-zero relative
speed alternate and the instants of the beginning of zero relative speed form
renewal instants for the relative speed process.

Consider a particle starting at point d. As in random walks, in each time unit
the particle moves to either left or right (each with probability 1

2 ) and moves
by an exponentially distributed amount. The mean of the jump size is 1

m where
m = 2μ. Let Sn, n ≥ 1 be the position of particle just after nth jump. It is then
seen that Sn = d +

∑n
i=1 Xi where |Xi|s are exponentially distributed random

variables (with rate m) corresponding to the jump sizes (see Figure 2). Xi takes
negative and positive values with probability 1

2 each. Let N be the random
variable corresponding to the number of jumps required by the particle to exit
the interval [0, R] with R > d. Let q be the probability that the particle exits via
R. The treatment of [8, Chapter 7] can then be used to show that, since |Xi|s
are independent and identically distributed, E

∑N
i=1 |Xi| = E[N ]E[|X1|] and

E[(SN − d)2] = E[N ]E[|X1|2]. To compute E
∑N

i=1 |Xi|, we need E[N ] which is
derived from the second relation above as follows. Since |Xi| are exponentially
distributed, we can invoke the memoryless property of exponential distribution
to see that

SN − d =
{

R − d + Y w.p. q
−d − Y w.p. 1 − q

, (8)

where Y is an exponentially distributed random variable with rate m. Hence,
E[(SN − d)2] = E[N ]E[|X1|2] = qE[(R − d + Y )2] + (1 − q)E[(d + Y )2]
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= (d2 + E[Y 2] + 2dE[Y ]) + q(R − 2d)[R + 2E[Y ]]. From the above expression,
since E[Y ] = E[X1] = 1

m , we can obtain E[N ] if we know q. We now obtain
q using the fact that E[SN − d] = E

∑N
i=1 Xi = E[N ]E[X1] = 0 [8]. Now, us-

ing the possible values of SN − d mentioned in Equation 8, E[SN − d] = 0 =
q(R−d+E[Y ])+(1−q)(−d−E[Y ]), hence q = d+E[Y ]

R+2E[Y ] = md+1
mR+2 where we have

used the fact that E[Y ] = 1
m . From this value of q, we get (using the fact that

E[Y ] = 1
m and E[X2

1 ] = 2
m2 ) E[N ] = ((R−2d)(d+ 1

m )+d2+ 2
m2 +2 d

m )m2

2 . Assum-
ing s = 1 with out loss of generality, it is then seen that T (d, 0) = E[

∑N
i=1(Zi +

|Xi|) − (
∑N

i=1 Xi − (R − d))I
{R−d<

N�

i=1
Xi}

− (−d −
∑N

i=1 Xi)I
{−d>

N�

i=1
Xi}

], where

Zis are also exponentially distributed random variables with rate m and they
correspond to the time when the distance between the two nodes does not
change because of zero relative speed (see Figure 2). Using the memoryless
property of exponential distribution, we see that if I

{R−d<
N�

i=1
Xi}

= 1 then

∑N
i=1 Xi − (R − d) is (independent and) exponentially distributed with rate

m. Similarly, if I
{−d>

N�

i=1
Xi}

= 1, then (−d −
∑N

i=1 Xi) is exponentially dis-

tributed with rate m. Also, E[I
{R−d<

N�

i=1
Xi}

] = q = 1 − E[I
{−d>

N�

i=1
Xi}

]. Hence,

T (d, 0) = 2E[N ]
m − 1

m = (R−d)md+R+ 1
m . We can thus write explicit expressions

for the link lifetimes from Equations 6 and 7 as T (d, 1) = md(R − d) + 2(R − d)
and T (d, −1) = md(R − d) + 2d, respectively.

Optimal Speed Vector Solution to Optimization Problem of Equa-
tion 1 for the case of R

s
< 1

m
. We consider the case where R

s < 1
m . This sce-

nario is of relevance since in normal real life highway traffic, a node remains in its
lane for an average time greater than the lifetime of the link formed by this node
and its next hop. Assuming s = 1 with out loss of generality, it is easy to see that
for this case T (d, 1) ≤ T (d, 0), d ≤ R, and T (d, −1) ≤ T (d, 0), d ≤ R. Now,
let the distance between the source and destination be D such that R < D < 2R.
Thus one needs at least two hops or equivalently one intermediate relay node for
communication. Let the number of intermediate relay nodes be M = 1. Also, let
the speed of destination with respect to the source be s = 1 (i.e. sij > 0). Here
we find the optimal speed assignment for a fixed inter-node distance assignment
and then later in the next paragraph, we optimize over inter-node distances.
So for a given distance d between the source and the intermediate node, the
decision is to be made on the speed v of the only intermediate relay node. Let
the expected lifetime of the link between source and relay node be L1(v) and
that of the link between relay node and destination be L2(v). The value of these
quantities then are

v L1(v) L2(v)
s1 T (d, 0) T (D − d, 1)
s2 T (d, 1) T (D − d, 0)
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Now, T (D − d, 0) − T (d, 0) = m(D − R)(2d − D) and T (D − d, 1) − T (d, 1) =
(m(D−R)+2)(2d−D). Hence, for d > D

2 , argmaxv∈{s1,s2}(L1(v)∧L2(v)) = s1

and for d < D
2 , arg maxv∈{s1,s2}(L1(v) ∧ L2(v)) = s2. Thus, we see that by the

solution to the optimization problem of Equation 1, for sij > 0 the speed of the
intermediate node should be the same as the speed of the farther node. Similarly,
it is easy to derive that when the source node has speed s2 and destination node
has speed s1 (i.e. sij < 0) the speed of the intermediate node should be the same
as the speed of the nearer node.

Optimal Distance Vector Solution to Optimization Problem of Equa-
tion 1 for the case of R

s
< 1

m
. As before, let the distance between the source

and destination be D such that R < D < 2R. Let the number of intermediate
relay nodes be M = 1 and without loss of generality, let the speed of destination
with respect to the source be normalized with s = 1. Then for d > D

2 , it has
been shown in the previous paragraph that the optimal speed selection is s1.
Now, it can be shown after simple algebra that for T (d, 0) < T (D − d, 1) to
hold good we must have d >

D(m(D−R)+2)−R+ 1
m

2(m(D−R)+2) . Let us denote the RHS of the
previous equation by K. Now, if m is such that K < R (and D

2 < K). Then for
d < K we have min(T (d, 0), T (D − d, 1)) = T (D − d, 1). For obtaining optimal
d∗ we differentiate T (D − d, 1) w.r.t. d and equate it to zero, from which we get
d∗ = D −

(
R
2 − 1

m

)
. For d > K we have min(T (d, 0), T (D − d, 1)) = T (d, 0).

For obtaining optimal d∗ we differentiate T (d, 0) w.r.t. d and equate it to zero
to get d∗ = R

2 . For d < D
2 , it has been shown in the previous paragraph that

the optimal speed selection is s2. It can be shown after simple algebra that for
T (d, 1) < T (D − d, 0) to hold good we must have d >

m(D−R)D+R− 1
m

2(m(D−R)+2) . Denote
the RHS of the previous equation by K ′. Now, if m is such that K ′ > D−R (and
K ′ < D

2 ) then for d > K ′ we have min(T (d, 1), T (D − d, 0)) = T (d, 1). For ob-
taining optimal d∗ we differentiate T (d, 1) w.r.t. d and equate it to zero. We thus
get d∗ = R

2 − 1
m . For d < K ′ we have min(T (d, 1), T (D − d, 0)) = T (D − d, 0).

For obtaining optimal d∗ we differentiate T (D − d, 0) w.r.t. d and equate it to
zero and get d∗ = D − R

2 .

5.2 L ≥ 3

Some Properties of Solution to Optimization Problem of Equation 2
with R

si
<< 1

µi
. Here we derive some structural properties of the solution to

the optimization problem of Equation 2 for the particular case of interest when
R
si

<< 1
μi

so that a node stays in its lane for a time much greater than its link
lifetimes. Assume any value of L ≥ 3 and consider the link lifetime dynamics
of two nodes in lanes i and j that are separated by an initial distance d < R.
It can be easily seen that for i 	= j and R

si
<< 1

μi
, Equations 3 and 4 can be

rewritten as T (d, sij) = R−d
sij

∀sij > 0 and T (d, sij) = d
sij

∀sij < 0. If both
the nodes are initially in the same lane, then the distance between these two
nodes remains constant till the instant when any one of them changes lanes, so
that ∀sii = 0, T (d, sii) = 1

2μi
+

∑
j �=i

Pi,j

2 (T (d, sij) + T (d, sji)). Now consider
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a route consisting of M intermediate nodes so that the source and destina-
tion nodes have speeds v0 and vM+1 respectively, and let the distance vector
d = (d0, . . . , dM ) be fixed. For obtaining the speed vector v = (v1, . . . , vM ) that
maximizes the route lifetime, we can consider minimizing the objective function
of Equation 2. Let us make a simplifying assumption here that T (d, 0) = ∞
so that 1

T (d,0) = 0. Though this assumption is not necessary for the analysis
that follows, it is well justified here for the case under consideration. We see
that the objective function of Equation 2 for any given value of α is given by,
[∑M

j=0

[
1

T (dj,vj ,vj+1)

]α] 1
α

. Define fi(x, y) = 1
T (di,vi,vj)

such that x = vi and
y = vj . Clearly, if it is allowed to chose an intermediate node i with any ar-
bitrary continuum speed x (thus not restricting to the discrete set of speeds
si, 1 ≤ i ≤ L), the following condition should be satisfied for an optimal speed
assignment to node i, d

dx [(fi−1(vi−1, x))α + (fi(x, vi+1))α]
1
α = 0. This implies,

in particular, that fi−1(vi−1,x)
fi(x,vi+1)

=
[
− dfi(x,vi+1)

dfi−1(vi−1,x)

] 1
α−1

. Now it is easy to show

that dfi(x,vi+1)
dfi−1(vi−1,x) < 0. Taking α → ∞, we see that we need fi−1(vi−1,x)

fi(x,vi+1)
= 1,

implying that the lifetimes of adjacent links should be equalized in order to op-
timize the objective function of Equation 2. Note that this is only a necessary
condition and not a sufficient one, i.e., not all configurations that result in equal
lifetimes of adjacent links will be the solution of the optimization problem under
consideration. However, any solution of the optimization problem will satisfy the
above mentioned property. This property also holds good for the case where the
speeds of the relay nodes are restricted to a finite discrete set. However, it is
obvious that exact equalization of the lifetimes of adjacent links is not achieved
due to the lack of the choice of continuum set of speeds for the relay nodes. This
issue and another property of monotone transition of speeds of relay nodes in
an optimal policy has been discussed with detail in [5].

Generic Formula for choice of Optimal Speed of Relay Nodes when
R
si

<< 1
µi

. Here we derive a generic formula for the choice of optimal speed
of a relay node (solution to the optimization problem of Equation 1) for the
particular case of interest when R

si
<< 1

μi
so that a node stays in its lane

for a time much greater than its link lifetimes. Assume any value of L ≥ 3
and consider the link lifetime dynamics of two nodes in lanes i and j that are
separated by an initial distance d ≤ R. As before, it can be shown that for i 	= j
and R

si
<< 1

μi
, Equations 3 and 4 can be rewritten as T (d, sij) = R−d

sij
∀sij > 0

and T (d, sij) = d
sij

∀sij < 0. Let the speed of source and destination nodes
be sS and sD and for a 2-hop communication we have M = 1. Now, if we
assume continuum set of relay node speeds, then for a fixed distance vector,
the relay node speeds should be such that the link lifetimes of both links are
equal (as seen in the previous paragraph). Therefore if s denotes the continuum
speed of the relay node and R < D < 2R then from R−d

s−sS
= R−D+d

sD−s we get

s = sD(R−d)+sS(R−D+d)
2R−D . This shows that the relay node’s optimal speed is a

convex combination of speeds of source and destination for a two hop route. In
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particular, at d = R we have s = sS and at d = D − R we have s = sD. To
approximate this continuum speed s with one of the available discrete speeds,
we take the following approach. Let si be the best approximation to s and let
expected lifetimes of the two links be denoted by L1(v) and L2(v), where v is
speed of relay node.

Case s < si: If s < si then s can either be approximated by si or si−1. For
the choice of si we have L1(si) = R−d

si−sS
, L2(si) = R−D+d

sD−si
and L1(si) < L2(si).

Similarly, we also have L1(si−1) > L2(si−1). Therefore for si to satisfy the
optimality of Equation 1 we must have L1(si) > L2(si−1) which results in the
following condition on d, d < R(sD−si−1)+(D−R)(si−sS)

sD−si−1+si−sS
.

Case s > si: As in the previous case, with s > si, s can be approximated by
si+1 or si. For the choice of si+1 we have L1(si+1) < L2(si+1) and for si we have
L1(si) > L2(si). Now for si to satisfy the optimality of Equation 1 we should
have L1(si+1) < L2(si) which gives the bound, d > R(sD−si)+(D−R)(si+1−sS)

sD−si+si+1−sS
.

Combining the two aforementioned cases and generalizing for any L ≥ 3, fol-
lowing is a generic formula for the choice of optimal speed of a relay node. Choose
si as the speed of the intermediate node, if
d ∈

[
R(sD−si)+(D−R)(s(i+1)∧L−sS)

sD−si+s(i+1)∧L−sS
,

R(sD−s(i−1)∨1)+(D−R)(si−sS)
sD−s(i−1)∨1+si−sS

]
. Note that here

sS < sD and sS and sD can take any values from s1, . . . , sL. For M = 1, if we
assume continuum set of intermediate node speeds as before, then for a fixed
distance vector, the intermediate node speeds should be such that the link life-
times of both links are equal (as seen in the previous paragraph). This implies
(it can be shown after some algebra) that the link lifetimes are independent of
the choice of inter-node distances, thus implying a non-unique solution for the
choice of relay node speeds.

6 Simulation Study of a VANET

In order to validate the analysis, we have developed a simulator for a VANET.
With this simulator we study and validate only the structural characteristics of
the optimal speed assignment policies assuming a fixed inter-node distance as-
signment. Due to the limitations of this simulator, we do not study the optimal
inter-node distance solution. The simulator is based on the model and assump-
tions proposed in Section 3 and is implemented such that the nodes move in their
lanes in a discrete time space. A node in lane i transits to any of the adjacent
lanes at the beginning of a time slot of length 0.1 seconds and the transition
takes place with probability 1 − pi. Given that a node in lane i transits, the
transition is to lane j with the same lane transition probability Pi,j . For our
simulations we consider the probabilities p1 = · · · = pL = p to be identical for
all the lanes. The probability p is related to μi by the relation 1

1−p = 0.1
μi

and
for R

si
<< 1

μi
, it is equivalently said that p → 1. The simulator computes the

expected link lifetimes of all possible links by exhaustively simulating over all
possible speed assignments v of the intermediate nodes for a given scenario of M
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intermediate nodes, L lanes, the inter-node distance vector d, speeds of source
and destination v0 and vM+1, transmission range R, source and destination sep-
aration D and the probability p. Once an exhaustive set of link lifetimes for all
possible values of v is obtained by employing this brut-force method, either of
the objective functions of Equation 1 or 2 is applied over this set to obtain an
optimal speed assignment policy.

6.1 Simulation Scenarios

A car battery operated mobile device has a typical transmission range of around
200 meters. We therefore consider the possible space of inter-node distances in
a VANET to vary from 140 to 200 meters and transmission range of 200 meters
is considered for all the simulation scenarios. It has been shown in a previous
work [9] that large number of hops in an ad hoc network can significantly degrade
the TCP throughput performance. Based on this result, we consider the number
of hops (M +1) to vary from 2 to 7 only and the distance between the source and
destination nodes is varied from 800 to 1200 meters. We perform simulations for
the number of lanes L varying from 2 to 6 and unless explicitly stated in the
discussion on the simulation results, the associated speeds are taken as shown
in the table that follows,

l 1 2 3 4 5 6
sl (m/s) 14 17 22 30 42 55

≈ sl (km/hr) 50 60 80 110 150 200

In the following part of this section we discuss some of the scenarios that
were simulated and compare their results with the structural results obtained
analytically. A more comprehensive simulation study can be found in [5].

1. Structure of Optimal Policy for L = 2 (Section 5.1): Figure 3 shows plots
of optimal policies obtained from Equation 1 for L = 2, M = 1, p = 0.9995,
D = 300m and d = (158, 142). The figure clearly illustrates that under
optimality, an intermediate node is assigned the speed of the farther node
for sij > 0 and that of the nearer node for sij < 0.

2. Lifetime Equalization over Continuum set of Speeds for L ≥ 3 and R
si

<<
1
μi

(Section 5.2): In Figure 4 we consider the scenario L = 3, M = 1,
v0 = s3 = 22m/s, v2 = s1 = 14m/s, p = 0.99999, D = 300m and d =
(143, 157). In order to be able to validate the equalizing structure obtained
in Section 5.2 over a continuum set of intermediate node speeds, we vary
the speed associated with lane 2 from 14m/s to 30m/s in small steps of
1m/s and plot the link lifetimes for each such speed of lane 2 separately.
This allows the only intermediate node 1 to be assigned one of the quasi-
continuum set of speeds for the optimization problem of Equation 2. It is
seen in the figure that under optimality, for varying values of v1, the optimal
lifetimes of the links between node 0 and 1 and node 1 and 2 are different.
However at v1 = 23m/s the optimal lifetimes of the two adjacent links
are almost equal thus confirming our result obtained in Section 5.2 that
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of speeds

the lifetimes of adjacent links should be equalized in order to optimize the
objective function of Equation 2. In fact, it can be observed that we obtain
the maximum of the least of the two lifetimes for speed v1 = 23m/s and
the optimal lifetimes obtained for other values of v1 are not truly optimal
because of the unavailability of the choice of speed 23m/s in those scenarios.

7 Conclusion

Designing efficient routing protocols for VANETs is quite a challenging task
owing to the fast speed of nodes and mobility constraints on the movement
of nodes. An attempt has been made in this paper to help accomplish this
task better. Under some simplifying assumptions, the analysis of this paper has
established that the solution of the optimization problem under consideration
tends to equalize the lifetimes of adjacent links in a route. Moreover, there is a
monotone variation of the speeds of intermediate relay nodes under the optimal
policy. These solution structures have also been confirmed with simulations. The
structures obtained are of considerable practical interest as they reduce the space
over which an existing VANET routing algorithm would search for the optimal
routing policy.
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