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Abstract

Computing optimal routes in road networks is one of the showpieces of real-
world applications of algorithmics. In principle, we could use Dijkstra’s
algorithm—the ‘classic’ solution from graph theory. But for large road net-
works this would be far too slow. Therefore, there is considerable interest
in speedup techniques, which typically invest some time into a preprocess-
ing step in order to generate auxiliary data that can be used to accelerate all
subsequent route planning queries.

Following the paradigm of algorithm engineering, we design, imple-
ment, and evaluate three highly-efficient and provably accurate point-to-
point route planning algorithms—all of which with different benefits—and
one generic many-to-many approach, which computes for given node sets
S and T the optimal distances between all node pairs (s, t) ∈ S × T in
a very efficient way. The evaluation is done in an extensive experimental
study using large real-world road networks with up to 33 726 989 junctions.

Highway hierarchies exploit the inherent hierarchical structure of road
networks and classify roads by importance. A point-to-point query is then
performed in a bidirectional fashion—forwards from the source and back-
wards from the target—, disregarding more and more less important streets
with increasing distance from source or target. Highway-node routing is
a related bidirectional and hierarchical approach. Its conceptual simplicity
and fast preprocessing allows the implementation of update routines that are
able to react efficiently to unexpected events like traffic jams. Transit-node

routing provides extremely fast query times by reducing most requests to
a few table lookups, exploiting the observation that when driving to some-
where ‘far away’, the current location is always left via one of only a few
‘important’ traffic junctions. Our generic many-to-many algorithm can be
instantiated based on certain bidirectional route planning techniques, for
example, highway hierarchies or highway-node routing. It computes a com-
plete |S| × |T | distance table, basically performing only |S| forward plus
|T | backward queries instead of |S| times |T | bidirectional queries.

Among all route planning methods that achieve considerable speedups,
we currently provide the one with the fastest query times, the one with the
fastest preprocessing, and the one with the lowest memory requirements.
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1

Introduction

1.1 Motivation

Computing best possible routes in road networks from a given source to a
given target location is an everyday problem. Many people frequently deal
with this question when planning trips with their cars. There are also many
applications like logistic planning or traffic simulation that need to solve a
huge number of such route queries.

Current commercial solutions usually are slow or inaccurate. The gath-
ering of map data is already well advanced and the available road networks
get very big, covering many millions of road junctions. Thus, on the one
hand, using simple-minded approaches yields very slow query times. This
can be either inconvenient for the client if he has to wait for the response
or expensive for the service provider if he has to make a lot of computing
power available. On the other hand, using aggressive heuristics yields inac-
curate results. For the client, this can mean a waste of time and money. For
the service provider, the developing process becomes a difficult balancing
act between speed and suboptimality of the computed routes. Due to these
reasons, there is a considerable interest in the development of more efficient

and accurate route planning techniques.

1.1.1 The Shortest-Path Problem

A road network can easily be represented as a graph, i.e., as a collection of
nodes V (junctions) and edges E (road segments) where each edge connects
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two nodes. Each edge is assigned a weight, e.g. the length of the road or an
estimation of the time needed to travel along the road. In graph theory, the
computation of shortest1 paths between two nodes is a classical problem.
Actually, we can distinguish between several variants of this problem:

• point-to-point: compute the shortest-path length from a given source node
s ∈ V to a given target node t ∈ V ;

• single-source: for a given source node s ∈ V , compute the shortest-path
lengths to all nodes v ∈ V ;

• many-to-many: for given node sets S, T ⊆ V , compute the shortest-path
length for each node pair (s, t) ∈ S × T ;

• all-pairs: a special case of the many-to-many variant with S := T := V .

In this thesis, we concentrate on the point-to-point (Chapters 3, 4, and 6) and
the many-to-many variant (Chapter 5). Optionally, we might want to com-
pute not only the shortest-path length, but also a description of the shortest
path itself.

From a worst-case perspective, the problem has largely been solved in
1959 by Dijkstra [20], who gave an algorithm that solves the single-source
shortest-path problem using O(m+n) priority queue operations for a graph
G = (V,E) with n nodes and m edges.

1.1.2 Speedup Techniques

In practice, when we deal with very large road networks and the point-to-
point problem, the running times of Dijkstra’s algorithm are not satisfying.
There are several aspects that suggest that we can do better:

1. In a sense, Dijkstra’s algorithm is an overkill since it computes the short-
est paths from a given node s to all nodes v ∈ V and not only to one

given node t. For the point-to-point problem, this can be improved by
stopping Dijkstra’s algorithm as soon as the shortest path to t is found,
but still the shortest paths from s to all nodes v that are closer to s than t
are determined (Figure 1.1).

1Note that, depending on the chosen edge weights, ‘shortest’ can refer not only to ‘spatial
distance’, but also, for instance, to ‘travel time’.
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ts

Figure 1.1: Schematic representation of the search space of Dijkstra’s algo-
rithm.

2. In many applications, we have to compute a lot of point-to-point queries
on the same road network. Therefore, it can pay to invest some time
for a preprocessing step that generates auxiliary data that can be used to
accelerate all subsequent queries.

3. We do not deal with general graphs, but with road networks, which have
certain properties. For instance, it is quite unusual for a node in a road
network to have degree five or more, i.e., a road network is a very sparse

graph. Furthermore, road networks are almost planar (because there are
only a few bridges and tunnels in comparison to the total number of road
segments) and usually a layout is given, i.e., the geographic coordinates
of each node are known. Moreover, road networks exhibit hierarchical

properties: for example, there are ‘more important’ streets (e.g. motor-
ways) and ‘less important’ ones (e.g. urban streets).

These observations can be exploited to design speedup techniques that
achieve considerably better query times than Dijkstra’s algorithm when ap-
plied to real-world road networks. There are several requirements that such
a speedup technique should ideally fulfil:

• The query times should be as fast as possible.

• The result should be accurate, i.e., a provably optimal2 path should be
computed.

• The method should be scale-invariant, i.e., it should be optimised not
only for long paths. In other words, the running time of the computation

2w.r.t. the available data
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of a shortest path (e.g. from Karlsruhe to Saarbrücken) in a large graph
(e.g. Western Europe) should be not much higher than the running time
of the same computation in a smaller graph (e.g. Germany).

• If the approach uses some preprocessing, it should be sufficiently fast so
that we can deal with very large road networks.

• Precomputed auxiliary data should occupy only a moderate amount of
space.

• Updating some edge weights (e.g., due to a traffic jam) or replacing the
entire cost function (e.g., switching to a different speed profile yielding
different travel time estimates) should be supported.

Often these requirements are at conflict with each other. For example, faster
query times might require larger preprocessing times and a larger memory
consumption. The challenge is to find a method that represents a good com-
promise between all these requirements.

1.2 Related Work

1.2.1 Classical Results and Simple Techniques

Dijkstra’s Algorithm [20] maintains an array of tentative distances for
each node. The algorithm visits (or settles) the nodes of the road network
in the order of their distance to the source node and maintains the invariant
that the tentative distance is equal to the correct distance for visited nodes.
When a node u is visited, its outgoing edges (u, v) are relaxed: the tentative
distance of v is set to the length of the path from s via u to v provided that
this leads to an improvement. Dijkstra’s algorithm can be stopped when the
target node is visited. The size of the search space is O(n) and n/2 nodes
on the average. We will assess the quality of route planning algorithms by
looking at their speedup compared to Dijkstra’s algorithm, i.e., how many
times faster they can compute shortest-path distances.

Priority Queues. The main focus of theoretical work on shortest paths
has been how to reduce or avoid the overhead of priority queue opera-
tions. The original version of Dijkstra’s algorithm [20] runs in O(n2). This
bound has been improved several times, e.g., to O(m log n) using binary
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heaps [99], O(m + n log n) using Fibonacci heaps [24], O(m log log n)
[84, 87], and O(m+n log log n) using a sophisticated integer priority queue
[89, 91] that supports deleteMin operations in O(log log n) and all other
operations in constant time. For integer edge weights in a range from 0
to C , Dial proposed an O(m + nC) algorithm using buckets [19]. This
bound has been improved to O(m log log C) [93], O(m + n

√
log C) [2],

and O(m + n log log C) [89, 91]. Linear time algorithms for the single-
source shortest-path problem have been presented for planar [48] and undi-

rected graphs [85, 86]. Meyer [59] gives an algorithm that works in linear
time with high probability on an arbitrary directed graph with random edge
weights uniformly distributed in the interval [0, 1]. Similar results have been
obtained by Goldberg [27], whose algorithm is superior w.r.t. the worst-case
bound for integer edge weights.

Experimental studies [13] indicate that in practice even very simple pri-
ority queues like binary heaps only induce a factor 2–3 overhead compared
to highly tuned ones. In particular, it does not pay to accelerate decreaseKey

operations since they occur comparatively rarely in the case of sparse road
networks. In addition, our experiments indicate that the impact of priority
queue implementations diminishes with advanced speedup techniques since
these techniques at the same time introduce additional overheads and dra-
matically reduce the queue sizes.

Bidirectional Search executes Dijkstra’s algorithm simultaneously for-
wards from the source s and backwards from the target t (Figure 1.2). Once
some node has been visited from both directions, the shortest path can be de-
rived from the information already gathered [15]. In a road network, where
search spaces will take a roughly circular shape, we can expect a speedup
of around two—one disk with radius d(s, t) has twice the area of two disks

ts

Figure 1.2: Schematic representation of the search space of the bidirectional
version of Dijkstra’s algorithm.
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with half the radius. Many more advanced speedup techniques use bidirec-
tional search as an optional or sometimes even mandatory ingredient.

Complete Distance Table. An extreme case would be to precompute all
shortest paths. This allows constant time queries, but is prohibitive for large
graphs due to space and time constraints. Still, it turns out that for some
hierarchical approaches, this simple technique can be very useful when ap-
plied to the highest level of a hierarchy of networks.

1.2.2 Goal-Directed Search

Geometric A∗ Search. A∗ Search [35], a technique from the field of Arti-
ficial Intelligence, is a goal-directed approach, i.e., it adds a sense of direc-
tion to the search process. For each vertex, a lower bound on the distance
to the target is required. In each step of the search process, the node v is se-
lected that minimises the tentative distance from the source s plus the lower
bound on the distance to the target t. This approach can be combined with
bidirectional search [66]. The performance of the A∗ search depends on a
good choice of the lower bounds. If the geographic coordinates of the nodes
are given and we are interested in the shortest (and not in the fastest) path,
the Euclidean distance from v to t can be used as lower bound. This leads to
a simple, fast, and space-efficient method, which, however, gives only small
speedups. It gets even worse if we want to compute fastest paths. Then, we
have to use the Euclidean distance divided by the fastest speed possible on
any road of the network as lower bound. Obviously, this is a very conserva-
tive estimation. Goldberg et al. [29] even report a slow-down of more than a
factor of two in this case since the search space is not significantly reduced
but a considerable overhead is added.

Heuristic A∗ Search. In the last decades, commercial navigation systems
were developed which had to handle ever more detailed descriptions of road
networks on rather low-powered processors. Vendors resolved to heuristics
still used today that do not give any performance guarantees. One heuristic
is A∗ search with estimates on the distance to the target rather than lower
bounds.
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Landmark-Based A∗ Search. In [28, 29, 32], the ALT algorithm is pre-
sented that is based on A∗ search, Landmarks, and the Triangle inequality.
After selecting a small number of landmarks, for all nodes v, the distances
d(v,L) and d(L, v) to and from each landmark L are precomputed. For
nodes v and t, the triangle inequality yields for each landmark L two lower
bounds d(L, t) − d(L, v) ≤ d(v, t) and d(v,L) − d(t,L) ≤ d(v, t). The
maximum of these lower bounds is used during an A∗ search. For random
queries, using 16 landmarks suffices to achieve a speedup factor of around
27 in the Western European road network consisting of about 18 million
nodes. However, the landmark method needs a lot of space—two distance
values for each node-landmark pair. It is also likely that for real applica-
tions each node will need to store distances to different sets of landmarks
for global and local queries. Hence, landmarks have fast preprocessing and
reasonable speedups, but consume too much space for very large networks.
In Section 1.2.4, we will see that there is a way to reduce the memory con-
sumption by storing landmark distances only for a subset of the nodes.

In [28] it is briefly mentioned that in case of an edge weight increase,
the query algorithm stays correct even if the landmarks and the landmark
distances are not updated. To cope with drastic changes or edge weight
decreases, an update of the landmark distances is suggested. In [18], these
ideas are pursued leading to an extensive experimental study of landmark-
based routing in various dynamic scenarios.

Precomputed Cluster Distances. The Precomputed Cluster Distances
(PCD) technique [57] also uses precomputed distances for goal-directed
search, yielding speedups comparable to ALT, but using less space. The
network is partitioned into clusters and the shortest connection between any
pair of clusters is precomputed. Then, during a query, upper and lower
bounds can be derived that can be used to prune the search.

Signposts. Another goal-directed technique is to precompute for each
edge ‘signposts’ that support the decision whether the target can possibly
be reached on a shortest path via this edge. During a query, only promising
edges have to be considered.
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Geometric Containers. A concrete instantiation of this general idea
is the geometric containers approach [78, 79, 94, 98]. For each edge e,
the set S(e) is determined that contains all nodes that can be reached on a
shortest path starting with e. Then, a simple geometric container C(e) (e.g.,
a rectangular bounding box) is computed that contains at least all elements
of S(e). During the execution of Dijkstra’s algorithm, an edge e can be
ignored if the target node lies outside C(e). While this approach exhibits a
good query performance, the preprocessing step requires a very expensive
all-pairs shortest-path computation so that no experimental results for the
largest publicly available road networks have been published.

In [96], it is discussed how to modify geometric containers in order to
react to edge weight changes.

Edge Flags (also called arc flags) [54, 52, 60, 61, 53, 55, 36] repre-
sent a different instantiation of the general ‘signpost idea’.3 The graph is
partitioned into k regions. For each edge e and each region r, one flag is
computed that indicates whether e lies on a shortest path to some node in
region r. Dijkstra’s algorithm can take advantage of the edge flags: edges
have to be relaxed only if the flag of the region that the target node belongs
to is set. Obviously, inside the target region, the ‘signposts’ provided by
the edge flags get less useful. This problem can be avoided by performing
a bidirectional query so that forward and backward search can meet some-
where in the middle.

While the query algorithm is very simple, the preprocessing process is
more challenging. A naive procedure would have to perform an all-pairs
shortest-path computation in the complete graph. A considerably better
method reduces this effort to performing Dijkstra searches only from nodes
that are adjacent to some node in a different region. A further improvement
gets by with only one (though comparatively expensive) search for each re-
gion. Using this most advanced preprocessing technique, Hilger [36] is able
to preprocess the Western European road network with about 18 million
nodes in about 17 hours achieving query times that are several thousands
times faster than Dijkstra’s algorithm. Note that an all-pairs computation,

3Note that geometric containers and edge flags have been developed independently of
each other. However, since they share a common idea, we decided to subordinate both
methods to a more general ‘signpost approach’.
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which would be required for the naive procedure (or for precomputing geo-
metric containers), would take more than six years on the same network.

The space consumption of the edge flag method can be reduced by ex-
tending it to a multi-level approach [60, 61] or by exploiting the fact that
many edges are associated with the same flags (already briefly mentioned in
[54] and extensively studied in [36]).

Particular advantages of the edge flag approach are the simplicity of
the query algorithm, the good query performance, the low memory require-
ments, and the fact that a complete description of the shortest path can be
derived for free (while some other approaches including ours have to un-
pack a contracted representation of the shortest path). Disadvantages are
the still comparatively slow preprocessing times, which make attempts to
deal with changing edge weights difficult, and the somehow limited query
performance in case of medium-range queries (e.g., between nodes that are
not very close, but still in the same region or in adjacent regions).

A comparison with our approaches can be found in Section 7.10.1. Very
recent developments cover combinations of edge flags with hierarchical
approaches—see Section 1.2.4. Moreover, using ideas from the edge flag
method could be used to further speed up our transit-node routing approach
(Section 6.5).

1.2.3 Hierarchical Approaches

Separators. Road networks are almost planar: compared to the total num-
ber of road segments, the number of bridges and tunnels is very small.4

Therefore, techniques developed for planar graphs will often also work for
road networks. Such techniques often partition the given graph, exploiting
the Planar Separator Theorem [56], which states that for any planar graph
with n nodes, there is a node set of size O(

√
n)—a so-called separator—

whose deletion leaves two components consisting of at most 2n/3 nodes
each.

Various approaches use the following basic idea: They recursively parti-
tion the graph into several pieces. For each piece, they compute the shortest

4One widely used test instance, the US road network based on the TIGER/Line Files [92]
(cp. Section 7.2.2), is even planarised, i.e., the data set wrongly contains a junction at points
where a bridge/tunnel crosses over/under a street.
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paths between all border nodes. Then, a shortest path search that passes
through a certain piece need not consider all nodes within the piece, but can
directly jump from border to border. For example, this idea can be recog-
nised in [25], where Fuchs et al. distinguish between a fine and a coarse
network representation. Another example is the construction and usage of
the so-called dense distance graph: using O(n log2 n) preprocessing time,
query time O(

√
n log2 n) can be achieved [21, 22, 49] for directed planar

graphs with nonnegative edge weights; in a dynamic scenario, queries can
be performed and edge weights can be updated in O(n2/3 log5/3 n) time per
operation. A third example is [23], where Flinsenberg relies on the same
basic idea and introduces modified versions of the A∗ algorithm in order to
compute routes for time-independent, time-dependent, and stochastic time-
dependent scenarios.

The Separator-Based Multi-Level Method [78, 79, 80, 77, 37, 38]
is a fourth example for an approach that uses the above mentioned basic
idea. Out of several existing variants, we mainly refer to [37, basic variant].
For a graph G = (V,E) and a node set V ′ ⊆ V , a shortest-path overlay

graph G′ = (V ′, E′) has the property that E′ is a minimal set of edges such
that each shortest-path distance d(u, v) in G′ is equal to the shortest-path
distance from u to v in G. In the separator-based approach, V ′ is chosen in
such a way that the subgraph induced by V \ V ′ consists of small compo-
nents of similar size. The overlay graph can be constructed by performing
a search in G from each separator node that stops when all neighbouring
separator nodes have been found. In a bidirectional query algorithm5, the
components that contain the source and target nodes are searched consider-
ing all edges. From the border of these components, i.e., from the separator
nodes, however, the search is continued considering only edges of the over-
lay graph. By recursing on G′, this idea is generalised to multiple levels.
Speedups around ten are reported for railway transportation problems [80]
and for road networks [98] that contain mostly nodes with degree two. In
a more recent paper [38], speedups up to a factor of 52 are obtained for a

5In [37], the query algorithm is presented in two stages: first, determine the subgraph
that should be searched; second, perform the search. We prefer to give a description with
only one stage, which is simpler and virtually equivalent to a fully bidirectional variant of
the original algorithm. Furthermore, analogies to highway-node routing (Chapter 4) will
become more visible.
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medium-sized road network. A limitation of this approach is that the graphs
at higher levels become much more dense than the input graphs, thus limit-
ing the benefits gained from the hierarchy. Also, computing small separators
can become quite costly for large graphs. Closely related approaches have
been suggested in [44, 45, 46, 47].

Bauer [6] observes that if the weight of an edge within some compo-
nent C changes, we do not have to repeat the complete construction process
of G′. It is sufficient to rerun the construction step only from some separator
nodes at the boundary of C . No experimental evaluation is given.

In a theoretical study on the dynamisation of shortest-path overlay
graphs [12], an algorithm is presented that requires O(|V ′|(n + m) log n)
preprocessing time and O(|V ′|(n+m)) space, which seems impractical for
large graphs.

One major part of this thesis is highway-node routing (Chapter 4), a
route planning technique that is related to the separator-based multi-level
method.

Thorup’s Oracle [88, 90] is a different separator-based and hierar-
chical approach. In a planar graph with integer edge weights in a range
from 0 to C , queries accurate within a factor (1 + ε) can be answered
in time O(log log(nC) + 1/ε) using O(n(log n)(log(nC))/ε) space and
O(n(log n)3(log(nC))/ε2) preprocessing time. Recently, this approach has
been efficiently implemented and experimentally evaluated on a road net-
work with one million nodes [64]. While the query times are very good
(less than 20 µs for ǫ = 0.01), the preprocessing time and space consump-
tion are quite high (2.5 hours and 2 GB, respectively).

Reach-Based Routing. Let R(v) := maxs,t∈V Rst(v) denote the reach

of node v, where Rst(v) := min(d(s, v), d(v, t)). Gutman [34] observed
that a shortest-path search can be pruned at nodes with a reach too small
to get to source or target from there. Speedups up to ten are reported for
graphs with about 400 000 nodes using more than two hours preprocessing
time. The basic approach was considerably strengthened by Goldberg et al.
[26, 30, 31], in particular by a clever integration of shortcuts [69, 70], i.e.,
single edges that represent whole paths in the original graph.

A dynamic version that handles a set of edge weight changes is pre-
sented in [6]. The basic idea is to rerun the construction step only from
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nodes within a certain area, which has to be identified first. So far, the con-
cept of shortcuts, which is important to get competitive construction and
query times, has not been integrated in the dynamic version. No experimen-
tal evaluation for the dynamic scenario is given in [6].

Heuristic Approaches. As an alternative to heuristic A∗ search (Sec-
tion 1.2.2), commercial navigation systems often use heuristic hierarchi-
cal approaches [41, 43], which perform bidirectional searches: While the
forward/backward search is inside some local area around source/target,
all roads of the network are considered. Outside these areas, however, the
search is restricted to some highway network consisting of the ‘important’
roads. This general idea can be iterated and applied to a hierarchy consisting
of several levels. The crucial point is the definition of the highway network.
The heuristic approaches use a definition that is based on a classification of
the streets according to their type (motorway, national road, regional road,
. . .). Such a classification requires manual tuning of the data and a delicate
trade-off between speed and suboptimality of the computed routes.

Highway Hierarchies. Inspired by the just mentioned heuristic ap-
proaches, we developed exact highway hierarchies [75, 69]. Instead of
blindly relying on the road types, we classify nodes and edges fully au-
tomatically in a preprocessing step in such a way that all shortest paths are
preserved. By this means, we win not only exactness, but also greater speed
since we can build high-performance hierarchies consisting of many levels
without worrying about the quality of the results.

The local area is defined to consist of the H closest nodes, where H is
a tuning parameter. Then, an edge (u, v) ∈ E has to belong to the highway
network if there are nodes s and t such that (u, v) is on some shortest path
from s to t, v is not within the H closest nodes from s, and u is not within
the H closest nodes from t. The resulting highway network can be pruned
by removing isolated nodes and trees attached to a biconnected component,
and by replacing paths consisting only of nodes with degree two (so-called
‘lines’) by single shortcut edges. After that, the construction process can
be iterated. A schematic representation of the search space is given in Fig-
ure 1.3.
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ts

Figure 1.3: Schematic representation of the search space of the highway
hierarchies approach.

Highway hierarchies are the first speedup technique that was able to han-
dle the largest available road networks giving query times measured in mil-
liseconds. There are two main reasons for this success: First, the road net-
work shrinks in a geometric fashion from level to level and remains sparse,
i.e., levels of the highway hierarchy are in some sense self similar. Sec-
ond, preprocessing can be done very efficiently, using limited local searches
starting from each node. Preprocessing is also the most nontrivial aspect
of highway hierarchies. In particular, long edges (e.g. long-distance ferry
connections) make simple-minded approaches far too slow. Instead, we use
fast heuristics that compute a supergraph of the highway network.

In this thesis (Chapter 3), we present a greatly improved version of high-
way hierarchies.

Jacob and Sachdeva [42] experimented with different node numberings
in order to obtain an I/O-efficient layout. They achieved a speed-up fac-
tor of around 1.3 compared to the default layout. In an experimental study
[8], Bauer et al. apply highway hierarchies (and many other speedup tech-
niques) to various types of graphs and not only to road networks. Their
results indicate that highway hierarchies work (reasonably) well on con-
densed and time-expanded long-distance railway networks, unit disk graphs,
and 2-dimensional grid graphs, while they fail on some local-traffic railway
networks, higher dimensional grid graphs, and small world graphs.

A heuristic approach to dealing with dynamic scenarios, which is based
on highway hierarchies, has been developed by Nannicini et al. [65].

Transit-Node Routing is based on two key observations: First, there is a
relatively small set of transit nodes—about 10 000 for the Western European
or the US road network—with the property that for every pair of nodes that
are ‘not too close’ to each other, the shortest path between them passes
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through at least one of these transit nodes. Second, for every node, the set
of transit nodes encountered first when going far—so-called access nodes—
is small. When distances from all nodes to their respective access nodes and
between all transit nodes have been precomputed, a ‘non-local’ shortest-
path query can be reduced to a few table lookups. An important ingredient
is a locality filter that decides whether source and target are too close so that
a special treatment is required to guarantee the correct result. In order to
handle such local queries more efficiently, further levels can be added to the
basic approach.

A generic framework for transit-node routing and a concrete instantia-
tion based on highway hierarchies have been introduced in [71, 4, 5]. The
generic framework is also a part of this thesis (Chapter 6), accompanied by
an instantiation based on highway-node routing6. In addition to the already
mentioned instantiations, there are two other implementations:

Separator-Based Transit-Node Routing. Using more space and pre-
processing time, the separator-based multi-level method can be extended to
implement transit-node routing: The separator nodes become transit nodes
and the access nodes of v are the border nodes of the component of v. Lo-
cal queries are those within a single component. Another level of transit
nodes can be added by recursively finding separators of each component.
Independently from our work, Müller et al. have essentially developed this
approach, using different terminology7 . Note that their first results [63]
were published before any other implementation of transit-node routing.
However, it took some time till reliable measurement data were available8

6Highway hierarchies (Chapter 3) and highway-node routing (Chapter 4) are two related
route planning techniques. When we implemented transit-node routing for the first time,
highway-node routing was not available yet. Therefore, the mentioned publications [71, 4, 5]
are based on highway hierarchies. After highway-node routing has been developed, we
reimplemented transit-node routing since by this means the preprocessing times could be
considerably reduced. We decided to include the most recent version (based on highway-
node routing) in this thesis.

7We chose to interpret their work using the transit-node terminology in order to point out
similarities to our work.

8In their implementation, the preprocessed data is stored on a hard disk. Using a more
compact representation, the data would fit into main memory. Therefore, when measuring
query times, it is justifiable to assume that the required data was in main memory. This
situation makes performing experiments more difficult.
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[16]. An interesting difference to generic transit-node routing is that the re-
quired information for routing between any pair of components is arranged
together. This takes additional space but has the advantage that the informa-
tion can be accessed more cache efficiently (it also allows subsequent space
optimisations).

Although separators of road networks have much better properties than
the worst case bounds for planar graphs would suggest, separator-based
transit node routing needs about 4–8 times as many access nodes as our
scheme (depending on the used metric) leading to much higher preprocess-
ing times. The main reason for the difference in number of access nodes is
that the separator approach does not take the ‘sufficiently far away’ criterion
into account that is so important for reducing the number of access nodes in
our implementations, in particular in case of the travel time metric.

Grid-Based Transit-Node Routing. Bast, Funke and Matijevic pro-
posed the transit-node routing approach based on a geometric grid [3]: The
network is subdivided into uniform cells. Border nodes of these cells that
are needed for ‘long-distance’ travel are used as access nodes. The union of
all access nodes forms the transit-node set. As a locality filter it is sufficient
to check whether source and target lie a certain number of cells apart.

They were the first to explicitly formulate the central observations and
concepts of transit-node routing9. Our work was completed a few weeks
later and has been accomplished largely independently from theirs except
for the fact that their observation that about ten access nodes per node were
sufficient motivated us to rethink our access node definition leading to a con-
siderable reduction from around 55 to about ten, which made an implemen-
tation for large graphs much more practicable, accelerated our development
process significantly and yielded very good query times. While most algo-
rithms described in [3] cater to the specific grid-based approach, we prefer
a more generic notion of transit-node routing and regard our implementa-
tions based on highway hierarchies and highway-node routing only as two
possible (and very successful) instantiations of transit-node routing.

9In particular, they introduced the term ‘transit node’. In a joint paper [4], we adopted
some formulations and terms from [3] to describe the generic approach. For the sake of
simplicity, we decided to keep these phrases in this thesis.
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In a joint paper [4], the grid-based implementation and the one based
on highway hierarchies are contrasted. One noticeable difference is that the
variant based on highway hierarchies deals with all types of queries in a
highly efficient way, while the grid-based variant only answers non-local
queries very quickly (which, admittedly, constitute a very large fraction
of all queries if source and target are picked uniformly at random). The
grid-based variant is designed for comparatively modest memory require-
ments, while our highway-hierarchy-based implementation has significantly
smaller preprocessing and average query times. Note that our implementa-
tion would need considerably less memory if we concentrated only on undi-
rected graphs and non-local queries as it is done in the grid-based implemen-
tation. Section 7.10.1 contains some concrete figures on the performance of
grid-based transit-node routing.

1.2.4 Combinations

Many of the above techniques can be combined. In [79], a combination of a
special kind of geometric container, the separator-based multi-level method,
and A∗ search yields a speedup of 62 for a railway transportation problem.
In [39, 98], combinations of A∗ search, bidirectional search, the multi-level
method, and geometric containers are studied: Depending on the graph type,
different combinations turn out to be best. For real-world graphs, a com-
bination of bidirectional search and geometric containers leads to the best
running times.

REAL. Goldberg et al. [26, 30, 31] have successfully combined their ad-
vanced version of REach-based routing with landmark-based A∗ search (the
ALt algorithm), obtaining the REAL algorithm. Its query performance is
similar to our highway hierarchies, while the preprocessing times are usu-
ally worse. In the most recent version [30, 31], they introduce a variant
where landmark distances are stored only with the more important nodes,
i.e., nodes with high reach values.10 By this means, the memory consump-
tion can be reduced significantly. Note that we developed a very similar idea
independently when we combined highway hierarchies with the ALT algo-
rithm [17] (Section 3.6). A comparison between REAL and our approaches
is included in Section 7.10.1.

10They have already briefly mentioned this idea in [26].
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SHARC [7] extends and combines ideas from highway hierarchies
(namely, the contraction phase, which produces SHortcuts) with the edge
flag (also called ARC flag) approach. The result is a fast unidirectional

query algorithm, which is advantageous in scenarios where bidirectional
search is prohibitive. In particular, using an approximative variant allows
dealing with time-dependent networks efficiently. Even faster query times11

can be obtained when a bidirectional variant is applied. The preprocessing
times are slower than those of highway hierarchies, but considerably faster
than those of the pure edge flag method.

Highway-Node Routing and Edge Flags. In his diploma thesis [73],
Schieferdecker combines highway-node routing (Chapter 4) with the edge
flag approach. Similarly to ideas used in other combinations of a hierar-
chical with a goal-directed approach (e.g., REAL (see above) or HH∗ (Sec-
tion 3.6)), preprocessing time and memory consumption can be kept low
when the edge flags are computed not for the complete graph, but only for
some level of the hierarchy. Query times of less than 100 µs are obtained
for the Western European road network. Schieferdecker also studies various
other combinations, for example graph contraction with ALT or reach-based
routing with edge flags.

1.2.5 Many-to-Many Shortest Paths

So far, the related-work section concentrated on the point-to-point prob-
lem. In this subsection, we deal with the many-to-many variant of the
shortest-path problem, where we want to compute an |S| × |T | distance
table. As a naive solution, we can either solve |S| single-source problems
using Dijkstra’s algorithm or we can employ any point-to-point speedup
technique |S| × |T | times. There are results that accelerate many-to-many
shortest paths for rather dense graphs with m≫ n (e.g., [97]), which, how-
ever, are not useful for road networks (or any other kind of sparse graphs).
In his diploma thesis [50], Knopp adapted bidirectional search, geometric
A∗ search, and the ALT algorithm to the many-to-many case, yielding in
the first two cases speedup factors up to 2 or 3 and in the third case factors
up to 3 or 4 (depending on the type of input).

11We do not quote exact numbers since the final version of the paper is not ready yet.
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1.2.6 Further Remarks

Some approaches (e.g. geometric containers) require for each node its geo-
graphic coordinates, which might not always be available. However, there
are studies that indicate that it is possible to generate a layout of a graph so
that speedup techniques can be applied successfully. In some cases (where
an original layout is available), generated layouts even result in a slightly
higher speedup than the original layout does. [10, 11] deals with the spe-
cial case of a timetable information system; a more general approach is
presented in [95].

1.3 Main Contributions

1.3.1 Overview

We present three different point-to-point route planning techniques that
compute provably optimal results. Our approaches exhibit various bene-
fits and provide different kinds of trade-offs between preprocessing time,
space consumption and query times. In addition, we introduce an algo-
rithm that deals with the many-to-many variant. In an extensive experimen-
tal study, we evaluate our algorithms using real-world road networks with
up to 33 726 989 nodes. We do not only give average query times, but also
detailed analyses of queries with different degrees of difficulty, per-instance
worst-case upper bounds, and comparisons to other speedup techniques. For
our standard test case, a network of Western Europe with about 18 mil-
lion nodes, our lowest observed average query time is 4.3 µs on a 2.0 GHz
machine, which corresponds to a speedup of 1.4 million compared to Dijk-
stra’s algorithm. Our fastest preprocessing time is 13 minutes and the lowest
memory overhead is 0.7 bytes per node.12 By setting a few tuning parame-
ters appropriately, we can provide several good compromises between fast
preprocessing, low memory consumption, and fast query times, which seem
very reasonable for a wide range of practical applications. In selected cases,
we also deal with a distance and a unit metric (instead of the usual travel
time metric), turning restrictions, and outputting complete path descriptions.

12Note that these optima w.r.t. query time, preprocessing time, and memory consumption
cannot be reached at the same time.
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Moreover, we can handle dynamic scenarios: we can replace the en-
tire cost function typically in less than two minutes or we can update only
affected parts of the precomputed data structures if unexpected events like
traffic jams occur: such an update operation takes about 40 ms in case of
a single traffic jam on a motorway. Alternatively, we can even do without
updating the data structures and instead perform a ‘prudent’ (and somewhat
slower) query that takes the changed situation into account so that it still
computes an optimal path.

Our many-to-many algorithm can compute a 10 000 times 10 000 dis-
tance table in 23 seconds. Using Dijkstra’s algorithm, the same task would
take more than one day.

All algorithms that we present in this thesis are closely related. Fig-
ure 1.4 gives an overview of the various relations.

TNR based on HNR

MtoM based on HNR

Transit-Node Routing (TNR)

very fast queries
Chapter 6

instantiates

TNR based on HH

Highway Hierarchies (HH)

well-balanced
Chapter 3

instantiates

MtoM based on HH

Many-to-Many (MtoM)

computes distance tables
Chapter 5

uses

instantiates

instantiates

Highway-Node Routing (HNR)

can handle dynamic scenarios
Chapter 4

Landmark-Based A∗ Search

combines

Highway Hierarchies Star

slightly faster queries
Section 3.6

based on

based on
uses

based on

based on
uses

Figure 1.4: Overview of the relations between the route planning algorithms
presented in this thesis. (Note that the landmark-based A∗ search is not part
of this thesis.)
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1.3.2 Highway Hierarchies

The first version of highway hierarchies [75, 69] (Section 1.2.3) was a pro-
totype, where we made several simplifying assumptions, in particular we
dealt only with undirected graphs. While keeping the basic definition of the
highway network and the idea to alternate between an edge reduction step
(construction of the highway network) and a node reduction step (removing
nodes of small degree), in this thesis, we greatly improve and generalise the
highway hierarchies approach:

1. We fully support directed graphs. We even did some preliminary experi-
ments where we also support turning restrictions.

2. The definition of the ‘local area’ has been generalised. Now, we can pick
for each node an arbitrary individual neighbourhood radius that defines
the neighbourhood (i.e., the local area) of that node.

3. We generalised the node reduction phase, extending the old trees-and-
lines concept. The new method is not only simpler and directly applica-
ble to directed graphs, but also more flexible and more effective. It has
been successfully adopted by other route planning techniques, e.g. [31].

4. We give a simpler and more precise formulation of the query algorithm.
It is very similar to bidirectional Dijkstra search with the difference that
certain edges need not be expanded when the search is sufficiently far
from source or target.

5. We present a complete proof of correctness that also rigorously handles
the case that the shortest paths in the graph are not unique.

6. An all-pairs distance table for the topmost level L of the hierarchy is
introduced. Forward and backward search can be stopped as soon as
all entrance points to level L have been found. Then, the remaining
gap can be bridged by performing a moderate number of simple table
lookups. By this means, the query times are considerably improved.
Furthermore, this optimisation can be seen as a pre-stage of transit-node
routing (Section 1.2.3).

7. At the same time, we achieve an improvement w.r.t. preprocessing times,
memory consumption, and query times. Using somewhat more mem-
ory, we obtain average query times below one millisecond on a 2.0 GHz
machine—even for a road network with more than 30 million nodes.
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8. We still cannot give a general worst-case bound better than Dijkstra’s. So
far, this drawback applies to all other exact speedup techniques where an
implementation is available as well. However, in contrast to most of
them, we can provide per-instance worst-case guarantees, i.e., we can
give an upper bound for the search space size for any source-target query
in a given graph without performing all n2 possible queries, which would
be prohibitive in a large road network. This is feasible since forward and
backward search can be run independently from each other. Thus, we
perform n forward and n backward searches and combine the observed
search space sizes in an appropriate way.

9. The shortest paths that are determined by our query algorithm typically
contain shortcut edges that have been created during the node reduction
phase; each shortcut represents a path in the original graph. If we are in-
terested not only in the shortest path length, but in the shortest path itself,
we have to unpack the contained shortcuts, i.e., we have to determine the
represented subpaths. We introduce space-efficient data structures that
accomplish this task in a highly efficient manner.

Combination with Goal-Directed Search. Since highway hierarchies
lack any sense of goal direction, a combination with a goal-directed ap-
proach suggests itself. We went for a combination with landmark-based A∗

search, which we call highway hierarchies star. Note that in case of high-
way hierarchies—in contrast to plain bidirectional Dijkstra or reach-based
routing—, we are not allowed to abort the search as soon as forward and
backward search meet. This fact turned out to be problematic for a combi-
nation with A∗ search. Still, we managed to achieve a slight improvement
w.r.t. query times. When using a distance metric (instead of the usual travel
time metric) or when dealing with approximate queries, we even get con-
siderable improvements. Furthermore, we introduce the idea to determine
the landmarks not in the original graph, but in some level of the highway
hierarchy. Since already the first node reduction phase typically leads to
a network with less than one sixth of the original nodes, this accelerates
the landmark selection considerably without observing a significant loss in
quality of the selected landmark set. We can also compute and store the
landmark distances only in some level k of the highway hierarchy, which re-
duces the memory consumption. When we use this optimisation, the query
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works in two phases: in an initial phase, we perform a non-goal-directed
highway query until all entrance points to level k have been discovered; for
the remaining search, the landmark distances are available so that we can
use the combined algorithm in the main query phase. Note that Goldberg et
al. [30, 31] have independently applied similar ideas to their combination of
reach-based routing with landmark-based A∗ search (Section 1.2.4).

1.3.3 Highway-Node Routing

Currently, highway hierarchies can handle only static road networks: when
some edge weights change (e.g., due to a traffic jam), the precomputed hi-
erarchy becomes obsolete. Since the procedure that constructs a highway
network consists only of local searches, we anticipate that a highway hier-
archy can be efficiently updated when edge weight changes occur since we
need to repeat only the local searches that are potentially affected. Never-
theless, a proper realisation of this idea is nontrivial. One reason is that we
would have to take care of two concepts, the edge reduction and the node
reduction. Therefore, we aimed at the development of an even simpler route
planning technique by factoring out some of the complications of highway
hierarchies into a pre-preprocessing step. The result is an approach, called
highway-node routing, that is useful both in static and in dynamic scenarios.

Highway-node routing is a generalisation of the separator-based multi-
level method [37] (Section 1.2.3): we define overlay graphs using arbitrary
node sets V ′ ⊆ V rather than separators. New preprocessing and query
algorithms are required since removing V ′ will in general not partition the
graph into small components. To deal with this problem, we systematically
investigate the graph theoretical problem of finding all nodes from V ′ that
can be reached on a shortest path from a given node without passing another
node from V ′. The resulting algorithms form the crucial part of highway-
node routing. The main remaining difficulty is to choose the highway nodes
V ′. The idea is that important nodes used by many shortest paths will lead to
overlay graphs that are more sparse than for the separator-based approach.
This will result in faster queries and low space consumption. The intuition
behind this idea is that the number of overlay graph edges needed between
the separator nodes bordering a region grows quadratically with the number
of border nodes (see also [38]). In contrast, important nodes are uniformly
distributed over the network and connected to only a small number of nearby
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important nodes.13 While there are many ways to choose important nodes,
we capitalise on previous results and use highway hierarchies to define the
required node sets.14

Our method is so far the most space-efficient speedup technique that al-
lows query times several thousand times faster than Dijkstra’s algorithm. A
direct comparison to the separator-based variant is difficult since previous
papers use comparatively small graphs15 and it is not clear how the origi-
nal approach scales to very large graphs. Compared to highway hierarchies,
highway-node routing has only slightly higher preprocessing times and sim-
ilar query times.

Note that highway-node routing is conceptually simpler than highway
hierarchies. In particular, we have only one construction step (overlay graph
construction) instead of two (edge reduction and node reduction). This
greatly simplifies dealing with dynamic scenarios. The idea is that in prac-
tice, a set of nodes important for one weight function will also contain most
of the important nodes for another ‘reasonable’ weight function. The ad-
vantage is obvious when the cost function is redefined: all we have to do
is to recompute the edge sets of the overlay graphs, which is by far faster
than recomputing the underlying highway hierarchy. We also discuss two
variants of the scenario when a few edge weights change: In a server setting,
the affected parts of the overlay graphs are updated so that afterwards the
static query algorithm will again yield correct results. In a mobile setting,
the data structures are not updated. Rather, the query algorithm searches
at lower levels of the node hierarchy, (only) where the information at the
higher levels might have been compromised by the changed edges.

Together with [18], we were the first to present an approach that tackles
such dynamic scenarios and to demonstrate its efficiency in an extensive
experimental study using a real-world road network.

13This observation is also relevant for transit-node routing (cp. Section 1.2.3).
14Thus, the construction of a highway hierarchy constitutes a pre-preprocessing step of

highway-node routing.
15For a subgraph of the European road network with about 100 000 nodes, [38] gives

a preprocessing time of “well over half an hour [plus] several minutes” and a query time
22 times faster than Dijkstra’s algorithm. For a comparison, we take a subgraph around
Karlsruhe of a very similar size, which we preprocess in seven seconds. Then, we obtain a
speedup of 94.
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1.3.4 Many-to-Many Shortest Paths

In order to solve the many-to-many shortest-path problem, we present a
generic algorithm that can be instantiated on the basis of any bidirectional
and non-goal-directed point-to-point algorithm. The main idea is to perform
only |S|+|T | unidirectional queries instead of |S|×|T | bidirectional queries
in order to compute an |S| × |T | distance table. Basically, this is done
in the following way: We associate with each node in the graph a bucket
that can store the distances to all reachable targets (and the node IDs of
the corresponding targets). We perform |T | backward searches: during a
backward search from t ∈ T , we store the distance to t at each visited node.
Then, we perform for each node s ∈ S a forward search: at each visited
node u, we scan its bucket and for each entry, we sum up the just computed
distance from s to u and the stored distance from u to t; if applicable, we use
the resulting sum to improve the minimum distance from s to t computed
so far.

In order to get an efficient approach, we instantiate the generic algo-
rithm using highway hierarchies and highway-node routing. Moreover, we
introduce several optimisations; in particular, it turns out that a consider-
able asymmetry between forward and backward search is useful: we can
accept larger forward search spaces if we can, in exchange, reduce the back-
ward search space sizes because this decreases the number of bucket entries,
which is advantageous since bucket scanning can become the bottleneck for
large distance tables.

1.3.5 Transit-Node Routing

As already mentioned in Section 1.2.3, the central ideas of transit-node rout-
ing appear in three different realisations that have been developed largely
(but not completely) independently of each other. Our starting point has
been our highway hierarchies enhanced with an all-pairs distance table for
the topmost level (Section 1.3.2). Sufficiently long shortest paths are com-
posed of three parts: from the source to the forward entrance point to the
topmost level, from the forward to the backward entrance point, and from
the backward entrance point to the target. The distances of the first and the
third part are computed during the query, the distance of the second part is
looked up in the distance table. The essential step that leads to transit-node
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routing is to precompute also the distances of the first and the third part. We
had to tackle three problems that remained:

1. We need to decide whether we can use the precomputed distances. If
source and target are too close, we have to fall back to some special
treatment, e.g., a local query. We implement such a locality filter using
geometric disks that have the property that the disks of source and target
overlap if the nodes are too close.

2. Originally, when we constructed a highway hierarchy of our Western
European road network with a topmost level consisting of around 10 000
nodes, we observed about 55 entrance points to the topmost level. Al-
though we consider this as an already quite small number, storing the
distances from each node to all entrance points would have required so-
phisticated compression techniques to obtain data structures that still fit
into main memory. Motivated by the results by Bast et al. [3], we realised
that it is possible to jump to the topmost level earlier yielding fewer ‘en-
trance points’ (around 10), which we call ‘access nodes’ to distinguish
them from the original entrance points. The reduced memory require-
ments simplified the implementation of transit-node routing based on
highway hierarchies.

3. The redefinition of the access nodes requires that the all-pairs distance
table contains the correct distances w.r.t. the original graph and not only
w.r.t. the topmost level.16 Computing the desired distance table can be
done efficiently using our many-to-many algorithm (Section 1.3.4).

In addition to our concrete realisation based on highway hierarchies, one
of our main contributions is to formulate a generic framework for transit-
node routing that covers all existing implementations and that can be used as
starting point for future instantiations. In particular, our framework extends
transit-node routing to a hierarchical approach that consists of several lev-
els: each level can have its own access nodes, an (only partly filled) distance
table, and a locality filter. This way, all types of queries can be answered
very efficiently.

16Note that in contrast to highway-node routing, a level of a highway hierarchy is not
necessarily an overlay graph, i.e., it is not guaranteed that all distances in a highway network
agree with the corresponding distances in the original graph.
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After highway-node routing has been developed, we added a new instan-
tiation of transit-node routing based on highway-node routing. It provides
considerably smaller preprocessing times. Since both instantiations are con-
ceptually very similar, in this thesis, we concentrate on the realisation based
on highway-node routing since its performance is superior.

At the 9th DIMACS Implementation Challenge [1], our implementation
based on highway hierarchies was the fastest participating speedup tech-
nique. The current version presented in this thesis is even slightly faster.

1.4 Outline

In Chapter 2, we present basic concepts from graph theory, priority queues,
and Dijkstra’s algorithm. The terminology and notation introduced in that
chapter will be used throughout this thesis.

The arrangement of the main chapters of this thesis (Chapters 3–6) re-
flects the dependencies that are shown in Figure 1.4. We start with highway

hierarchies (Chapter 3) that all other methods (more or less) rely on. In or-
der to be self-contained, we give a complete account that also covers parts
that have already been included in [75] and, thus, are not an official part of
this thesis due to formal reasons.

Highway-node routing is presented in Chapter 4, followed by the many-

to-many approach (Chapter 5). Transit-node routing somehow employs all
other techniques. It is presented in Chapter 6. In spite of the existing depen-
dencies, the main chapters are written in such a way that they can be read
largely independently of each other.

In Chapter 7, we present an extensive experimental study that covers all
route planning techniques introduced in this thesis. We also include some
remarks on the implementation—more details concerning the implementa-
tion can be found in Appendix A.

This thesis is concluded in Chapter 8, which also contains some notes
on possible future work.
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Preliminaries

In this chapter, we introduce basic data structures, algorithms, and some no-
tation that is used throughout this thesis. The presented concepts are covered
in more detail by virtually any textbook on algorithms, e.g. [14, 83].

2.1 Graphs and Paths

We expect a directed graph G = (V,E) with a node set V of size n and an
edge set E ⊆ V × V of size m as input. A weight function w : E → R

+
0

assigns a nonnegative weight w((u, v)) to each edge (u, v). We usually just
write w(u, v) instead of w((u, v)).

A path P in G from a node u1 to a node uk is a sequence of edges
(u1, u2), (u2, u3), . . . , (uk−1, uk). We often interpret such a path as a node
sequence 〈u1, u2, . . . , uk〉 or as a node set {u1, u2, . . . , uk} if this simplifies
the notation. The length w(P ) of a path P is the sum of the weights of the
edges that belong to P . P ∗ = 〈s, . . . , t〉 is a shortest path if there is no path
P ′ from s to t such that w(P ′) < w(P ∗). The distance dG(s, t) from s to
t in G is the length of a shortest path from s to t or ∞ if there is no path
from s to t. We just write d(s, t) instead of dG(s, t) if G is clear from the
context. If P = 〈s, . . . , s′, u1, u2, . . . , uk, t

′, . . . , t〉 is a path from s to t,
then P |s′→t′ = 〈s′, u1, u2, . . . , uk, t

′〉 denotes the subpath of P from s′ to
t′. We use u ≺P v to denote that a node u precedes1 a node v on a path

1This does not necessarily mean that u is the direct predecessor of v.
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P = 〈. . . , u, . . . , v, . . .〉; we just write u ≺ v if the path P that is referred to
is clear from the context. An example for these concepts is given in Fig. 2.1.

s t

t′u2u1

s′

3

6

6

3 2 1
4

3

a node

an edge with weight 6

P

P ∗

P |s′→t′

54

Figure 2.1: A directed graph with n = 10 nodes and m = 10 edges. There
are two paths P and P ∗ from node s to node t. The length w(P ) of P
is 22; w(P ∗) = 15. P ∗ is a shortest path. The distance from s to t is
d(s, t) = w(P ∗) = 15. The edges of the subpath P |s′→t′ of P from s′ to t′

are represented by thick arrows. s′ precedes u2 on P , i.e., s′ ≺P u2.

2.2 Priority Queues

A priority queue Q manages a set of elements with associated totally or-
dered priorities and supports the following operations:

• insert – insert an element into the priority queue,

• deleteMin – retrieve the element with the smallest priority and remove it
from the priority queue,

• decreaseKey – set the priority of an element that already belongs to the
priority queue to a new value that is less than the old value.

There are various ways to implement a priority queue (see also Sec-
tion 1.2.1), for example using a simple binary heap that supports all oper-
ations in O(log(|Q|)) or a considerably more complicated Fibonacci heap

[24] that supports insert and decreaseKey in constant time and deleteMin in
logarithmic amortised time.
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2.3 Dijkstra’s Algorithm

Single-Source Shortest-Path Problem. Dijkstra’s algorithm [20] can be
used to solve the single-source shortest-path (SSSP) problem, i.e., to com-
pute the shortest paths from a single source node s to all other nodes in a
given graph. Starting with the source node s as root, Dijkstra’s algorithm
grows a shortest-path tree2 that contains shortest paths from s to all other
nodes. During this process, each node of the graph is unreached, reached,
or settled. A node that already belongs to the tree is settled. If a node u
is settled, a shortest path P ∗ from s to u has been found and the distance
d(s, u) = w(P ∗) is known. A node that is adjacent to a settled node is
reached. Note that a settled node is also reached. If a node u is reached, a
path P from s to u, which might not be the shortest one, has been found and
a tentative distance δ(u) = w(P ) is known. A node u that is not reached is
unreached; for such a node, we have δ(u) =∞. The nodes that are reached
but not settled are managed in a priority queue. The priority of a node u
in the priority queue is u’s tentative distance δ(u). Reached but not settled
nodes are also called queued.

Initially, s is inserted into the priority queue with the tentative distance 0.
Thus, s is reached, all other nodes are unreached. While the priority queue
is not empty, the node u with the smallest tentative distance is removed
(deleteMin) and added to the shortest-path tree, i.e., u becomes settled. Fur-
thermore, u’s outgoing edges are relaxed:

• if an edge (u, v) leads to an unreached node v, v is added to the priority
queue (insert); now, v is reached;

• if an edge (u, v) leads to a queued node v, v’s key in the priority queue is
updated (decreaseKey) provided that the length of the path from s via u
to v is less than v’s old key;

• if an edge (u, v) leads to a settled node v, it is ignored.

In case that the shortest paths in a graph are not unique, Dijkstra’s algo-
rithm can be easily modified to determine all shortest paths between s and
any node u ∈ V . This means that not a shortest-path tree is grown, but a
shortest-path directed acyclic graph (DAG).

2When we consider variants of Dijkstra’s algorithm that are no longer guaranteed to only
find shortest paths, we use the term search tree to denote the tree that the algorithm grows.
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Dijkstra’s algorithm involves n insert, n deleteMin, and at most m de-

creaseKey operations, yielding a runtime complexity of O(m + n log n) if,
for example, Fibonacci heaps are used.

Point-to-Point Queries. If we are interested only in the shortest path(s)
from the source node s to a single target node t, Dijkstra’s algorithm can be
stopped as soon as t has been settled.

A bidirectional version of Dijkstra’s algorithm can be used to accelerate
a shortest-path query from a given node s to a given node t. Two Dijkstra
searches are executed in parallel: one searches from the source node s in
the original graph G = (V,E), also called forward graph and denoted as−→
G = (V,

−→
E ); another searches from the target node t backwards, i.e., it

searches in the reverse graph
←−
G = (V,

←−
E ),
←−
E := {(v, u) | (u, v) ∈ E}.

The reverse graph
←−
G is also called backward graph. When both search

scopes meet, a shortest path from s to t can be easily derived by considering
all elements that are currently queued.

Dijkstra Rank. Let us fix any rule that decides which element Dijkstra’s
algorithm removes from the priority queue in the case that there is more than
one queued element with the smallest key. Then, during a Dijkstra search
from a given node u, all nodes are settled in a fixed order. The Dijkstra

rank rku(v) of a node v is the rank of v w.r.t. this order. u has Dijkstra rank
rku(u) = 0, the closest neighbour v1 of u has Dijkstra rank rku(v1) = 1,
and so on.



3

Highway Hierarchies

3.1 Central Ideas

Let us consider the following naive route planning method:

1. Look for the next reasonable motorway.

2. Drive on motorways to a location close to the target.

3. Leave the motorway and search the target starting from the motorway
exit.

Of course, it is true that this fast method does not always yield the optimal
solution, but, in many cases, we obtain a reasonable approximation (pro-
vided that source and target are not too close together and that we travel in a
country whose motorway network is well developed). This naive route plan-
ning method is based on a simple rule of thumb: when we are on our way
to a remote target and pass by a city on a motorway, it usually does not pay
to leave the motorway and look for a faster way through the city; in other
words, usually, we can safely ignore all ‘less important’ city streets and
stick to the ‘more important’ motorway since we know that the motorway
provides the fastest way. The approach that is used by some commercial
route planning systems is based on the above idea:

1. Search from the source and target node (‘bidirectional’) within a certain
radius (e.g. 20 km), consider all roads.

2. Continue the search within a larger radius (e.g. 100 km), consider only
national roads and motorways.
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3. Continue the search, consider only motorways.

Note that the actual implementations of this approach are more sophisticated
than our simplified presentation suggests. Again, we get a method which is
fast, but still returns inaccurate results—albeit better ones than those of the
naive route planning method. We cannot guarantee exact results because we
cannot exclude that sometimes it actually might be better to leave a ‘more
important’ road (e.g. a motorway) and use some ‘less important’ street (e.g.
a local road) that provides some kind of shortcut. In other words, a street
that we considered to be ‘less important’ might turn out to be ‘more impor-
tant’ than its category suggests. This observation is the starting point of our
approach.

Similar to the commercial approach, we first perform a search in some
local area around source and target; then, we switch to searching in a high-

way network that is much thinner than the complete graph. The crucial
distinction of our approach is the fact that we define the notion of local area

and highway network appropriately so that exact shortest paths can be com-
puted. This is quite simple. For each node u, we set some neighbourhood

radius and we define the neighbourhood of u (i.e., the local area around
u) to consist of all nodes whose shortest-path distance from u does not ex-
ceed the neighbourhood radius. In our experiments, we do not use the same
neighbourhood radius for each node, but we determine for each node its in-
dividual neighbourhood radius so that each neighbourhood contains the H
closest nodes, where H is a tuning parameter. This is reasonable since road
networks typically are quite heterogeneous: it would hardly be possible to
pick a fixed neighbourhood radius that is suitable for both the city centre of
Berlin and a rural area in Norway.

Our objective to obtain an exact algorithm requires the following defi-
nition of the highway network: An edge (u, v) ∈ E belongs to the highway
network if there are nodes s and t such that (u, v) is on some shortest path
from s to t and not entirely within the neighbourhood of s or t. When we
recall the intended query algorithm and consider the example in Figure 3.1,
it gets obvious that this definition makes sense: During the forward search
in the local area around s, we reach the node u; during the corresponding
backward search, we reach v. Then, the search is continued only in the
highway network. Thus, in order to guarantee that the shortest path can be
found, all edges between u and v must belong to the highway network.
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N←ℓ (t)N→ℓ (s)

s tu v

Highway

Figure 3.1: A shortest path from a node s to a node t. Edges that are not
entirely within the neighbourhood of s or t are highway edges.

At first glance it might appear that a (prohibitively expensive) all-pairs
shortest-path computation is needed to find the highway network. However,
we will see that each highway edge is also within some local shortest-path
tree B rooted at some s ∈ V such that all leaves of B are ‘sufficiently far
away’ from s.

Typically, a highway network contains a lot of nodes of small degree.
For example, consider a motorway, which consists of a lot of road segments.
The motorway is usually more important than the associated access ramps so
that only the motorway might belong to the highway network, constituting a
path of degree-2 nodes. In order to reduce the number of nodes, we contract
the highway network by bypassing nodes with a small degree, introducing
new shortcut edges, as illustrated in Figure 3.2. The result is a contracted

highway network, also called core.

contracted network ("core")
= non−bypassed nodes
+ shortcuts

bypassed
nodes

Figure 3.2: The core of a highway network consists of the subgraph in-
duced by the set of non-bypassed nodes (solid) and additional shortcut edges
(dashed).
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Both concepts, the construction (which we also call edge reduction) and
the contraction (which we also call node reduction) of the highway network,
can be iterated, i.e., on the first core, we define local areas and construct a
second highway network, contract it to obtain the second core, and so on.
We arrive at a multi-level highway network—a highway hierarchy. The
example in Table 3.1 illustrates the interaction of edge and node reduction.
Each node reduction step increases the average node degree, while an edge
reduction step decreases it again. All in all, the degree tends to go up from
level to level, but the growth rate is very small. It is important to note that
the shrinking factors do not change significantly from level to level (except
for the very first and last level, perhaps).

Table 3.1: Construction of a highway hierarchy of the Western European
road network with neighbourhood size H = 70, starting with a node reduc-
tion step. Note that the edge counters also include edges that can be only
used in a backward search.

reduction
#nodes

shrink
#edges

shrink average
type factor factor degree

18 029 721 44 448 388 2.5
node 2 739 750 6.6 21 311 324 2.1 7.8
edge 1 672 200 1.6 5 376 800 4.0 3.2
node 327 493 5.1 3 766 415 1.4 11.5
edge 270 606 1.2 1 109 315 3.4 4.1
node 72 787 3.7 981 297 1.1 13.5
edge 58 008 1.3 248 142 4.0 4.3
node 14 791 3.9 212 427 1.2 14.4
edge 11 629 1.3 53 744 4.0 4.6
node 2 941 4.0 46 632 1.2 15.9
edge 2 452 1.2 12 340 3.8 5.0
node 647 3.8 10 844 1.1 16.8
edge 569 1.1 3 076 3.5 5.4
node 163 3.5 2 808 1.1 17.2
edge 160 1.0 798 3.5 5.0
node 31 5.2 574 1.4 18.5

The query algorithm basically works in the following way: first, perform
a local search in the original graph (level 0); second, switch to the highway
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network (level 1) and perform a local search in the highway network; then,
switch to the next level of the highway hierarchy, and so on. Figure 3.3
gives a real-world example.

Figure 3.3: Search space for a query from Limburg (a German city) to a
location 100 km east of the source node. Source and target are marked by
a circle. The thicker the line, the higher the search level. Note that edges
representing long subpaths are not drawn as direct shortcuts, but by showing
the actual geographic route taken.

3.2 Definition

A highway hierarchy of a graph G consists of several levels
G0, G1, G2, . . . , GL, where the number of levels L + 1 is given. We will
provide an inductive definition of the levels:

• Base case (G′0, G0): level 0 (G0 = (V0, E0)) corresponds to the original
graph G; furthermore, we define G′0 := G0.

• First step (G′ℓ → Gℓ+1, 0 ≤ ℓ < L): for given neighbourhood radii, we
will define the highway network Gℓ+1 of a graph G′ℓ.

• Second step (Gℓ → G′ℓ, 1 ≤ ℓ ≤ L): for a given set Bℓ ⊆ Vℓ of bypass-

able nodes, we will define the core G′ℓ of level ℓ.
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First step (highway network). For each node u, we choose nonnegative
neighbourhood radii r→ℓ (u) and r←ℓ (u) for the forward and backward graph,
respectively. To avoid some case distinctions, we set r→ℓ (u) and r←ℓ (u) to
infinity for u 6∈ V ′ℓ (Radius Property R1) and for ℓ = L (R2). In all other
cases, neighbourhood radii have to be 6=∞ (R3).

The level-ℓ neighbourhood of a node u ∈ V ′ℓ is N→ℓ (u) := {v ∈ V ′ℓ |
dℓ(u, v) ≤ r→ℓ (u)} with respect to the forward graph and, analogously,
N←ℓ (u) := {v ∈ V ′ℓ | d←ℓ (u, v) ≤ r←ℓ (u)} with respect to the backward
graph, where dℓ(u, v) denotes the distance from u to v in the forward graph
Gℓ and d←ℓ (u, v) := dℓ(v, u) in the backward graph

←−
Gℓ.

The highway network Gℓ+1 = (Vℓ+1, Eℓ+1) of a graph G′ℓ is defined
by the set Eℓ+1 of highway edges: an edge (u, v) ∈ E′ℓ belongs to Eℓ+1 iff
there are nodes s, t ∈ V ′ℓ such that the edge (u, v) appears in some shortest
path 〈s, . . . , u, v, . . . , t〉 from s to t in G′ℓ with the property that v 6∈ N→ℓ (s)
and u 6∈ N←ℓ (t). The set Vℓ+1 is the maximal subset of V ′ℓ such that Gℓ+1

contains no isolated nodes.

Second step (core). For a given set Bℓ ⊆ Vℓ of bypassable nodes, we
define the set Sℓ of shortcut edges that bypass the nodes in Bℓ: for each path
P = 〈u, b1, b2, . . . , bk, v〉with u, v ∈ Vℓ\Bℓ and bi ∈ Bℓ, 1 ≤ i ≤ k, the set
Sℓ contains an edge (u, v) with w(u, v) = w(P ). The core G′ℓ = (V ′ℓ , E′ℓ)
of level ℓ is defined in the following way:

V ′ℓ := Vℓ \Bℓ and E′ℓ := (Eℓ ∩ (V ′ℓ × V ′ℓ )) ∪ Sℓ.

Removing all core nodes from Gℓ yields connected components of bypassed

nodes.

The level ℓ(e) of an edge e is max{ℓ | e ∈ Eℓ∪Sℓ}. For an edge (u, v),
we usually write just ℓ(u, v) instead of ℓ((u, v)). The highway hierarchy
can be interpreted as a single graph G := (V,E∪⋃L

i=1 Si) where each node
and each edge has additional information on its membership in the various
sets Vℓ, V

′
ℓ , Bℓ, Eℓ, E

′
ℓ, Sℓ.
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3.3 Construction

3.3.1 Computing the Highway Network

Neighbourhood Radii. We suggest the following strategy to set the
neighbourhood radii. For this paragraph, we interpret the graph G′ℓ as an
undirected graph, i.e., a directed edge (u, v) is interpreted as an undirected
edge {u, v} even if the edge (v, u) does not exist in the directed graph.
Let d↔ℓ (u, v) denote the distance between two nodes u and v in the undi-
rected graph. For a given parameter Hℓ, for any node u ∈ V ′ℓ , we set
r→ℓ (u) := r←ℓ (u) := d↔ℓ (u, v), where v is the node whose Dijkstra rank
rku(v) (w.r.t. the undirected graph) is Hℓ. For any node u 6∈ V ′ℓ , we set
r→ℓ (u) := r←ℓ (u) :=∞ (to fulfil R1).

Originally, we wanted to apply the above strategy to the forward and
backward graph one after the other in order to define the forward and back-
ward radius, respectively. However, it turned out that using the same value
for both forward and backward radius yields a similar good performance,
but needs only half the memory.

Fast Construction: Outline. Given a graph G′ℓ, we want to construct a
highway network Gℓ+1. We start with an empty set of highway edges Eℓ+1.
For each node s0 ∈ V ′ℓ , two phases are performed: the forward construction
of a partial shortest-path directed acyclic graph (DAG) B (containing all

shortest paths from s0 to any node u ∈ B) and the backward evaluation
of B. The construction is done by an SSSP search from s0; during the
evaluation phase, paths from the leaves of B to the root s0 are traversed and
for each edge on these paths, it is decided whether to add it to Eℓ+1 or not.
The crucial part is the specification of an abort criterion for the SSSP search
in order to restrict it to a ‘local search’.

Phase 1: Construction of a Partial Shortest-Path DAG. A Dijkstra
search from s0 is executed. In order to keep track of all shortest paths, for
each node in the partial shortest-path DAG B, we manage a list of (tentative)
parents: when an edge (u, v) is relaxed such that dℓ(s0, u)+w(u, v) = δ(v),
then u is added to the list of tentative parents of v. During the search, a
reached node is either in the state active or passive. The source node s0 is
active; each node that is reached for the first time (insert) and each reached
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node that is updated (decreaseKey) is set to active iff any of its tentative par-
ents is active. When a node p is settled, we consider all shortest paths P ′

from s0 to p as depicted in Figure 3.4. The state of p is set to passive if

∀ shortest paths P ′ = 〈s0, . . . , p〉 :

s1 ≺ p ∧ p 6∈ N→ℓ (s1) ∧ s0 6∈ N←ℓ (p) ∧ |P ′ ∩ N→ℓ (s1) ∩ N←ℓ (p)| ≤ 1
(3.1)

N→ℓ (s1)

N←ℓ (p)

s0 s1 pu v w

Figure 3.4: Abort criterion.

When no active unsettled node is left, the search is aborted and the growth
of B stops.

An example for Phase 1 of the construction is given in Figure 3.5. The
intuitive reason for s1 (which is the first successor of s0 on the path P ′) to
appear in the abort criterion is the following: When we deactivate a node p
during the search from s0, we decide to ignore everything that lies behind
p. We are free to do this because the abort criterion ensures that s1 can take
‘responsibility’ for the things that lie behind p, i.e., further important edges
will be added during the search from s1. (Of course, s1 will refer a part of
its ‘responsibility’ to its successor, and so on.)

Phase 2: Selection of the Highway Edges. During Phase 2, exactly all
edges (u, v) are added to Eℓ+1 that lie on paths 〈s0, . . . , u, v, . . . , p〉 in the
partial shortest-path DAG B with the property that v 6∈ N→ℓ (s0) and u 6∈
N←ℓ (p). The example from Figure 3.5 is continued in Figure 3.6.

Theorem 1 An edge (u, v) ∈ E′ℓ is added to Eℓ+1 by the construction al-

gorithm iff it belongs to some shortest path P = 〈s, . . . , u, v, . . . , t〉 and

v 6∈ N→ℓ (s) and u 6∈ N←ℓ (t).
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s1

s0s′′1

p′

s′1

p

p′′

N→ℓ (s1)
N→ℓ (s′′1)

N→ℓ (s′1)

N←ℓ (p′)

N←ℓ (p)

N←ℓ (p′′)

Figure 3.5: An example of Phase 1 of the construction. The weight of an
edge is the length of the line segment that represents the edge in this figure.
The neighbourhood size Hℓ is 3. An SSSP search is performed from s0.
The abort criterion applies three times, at nodes p, p′, and p′′. All edges that
belong to s0’s partial shortest-path tree are drawn as thick lines.

s0

t̂0

t0

ẗ0

t′′0

t′0

N→ℓ (s0)
N←ℓ (t′′0)

N←ℓ (t′0)

N←ℓ (t0)

N←ℓ (t̂0)

N←ℓ (ẗ0)

Figure 3.6: An example of Phase 2 of the construction. s0’s partial shortest
path tree (thick lines) has five leaves t0, t′0, t′′0, t̂0, and ẗ0. The edges that are
added to Eℓ+1 are represented as solid thick lines.
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Proof. In this proof, we will refer to the following Neighbourhood Prop-
erty N1 that follows directly from the neighbourhood definition: Consider a
shortest path 〈s, . . . , u, . . . , t〉 in G′ℓ. Then, t ∈ N→ℓ (s) implies u ∈ N→ℓ (s)
and s ∈ N←ℓ (t) implies u ∈ N←ℓ (t).

⇐) Consider the node s0 on P |s→u such that v 6∈ N→ℓ (s0) and dℓ(s0, v)
is minimal. Such a node s0 exists because the condition v 6∈ N→ℓ (s0) is
always fulfilled for s0 = s. The direct successor of s0 on P is denoted by
s1. Note that v ∈ N→ℓ (s1) [*]. We show that the edge (u, v) is added to
Eℓ+1 when Phase 1 and 2 are executed from s0. Due to the specification of
Phase 2, it is sufficient to prove that after Phase 1 has been completed, the
partial shortest-path DAG B contains a node p ∈ P |s0→t such that v � p
and u 6∈ N←ℓ (p).

If t ∈ B, this statement is obviously fulfilled for p := t since v � t and
u 6∈ N←ℓ (t). Otherwise (t 6∈ B), the search is not continued from some node
t0 ≺ t on P |s0→t. We can conclude that t0 is passive because, otherwise, its
successor on P |s0→t would adopt its active state and the search would not
be aborted at that time. Since s0 is active and t0 is passive, either t0 or one of
its ancestors must have been switched from active to passive. Let p denote
the first passive node on P |s0→t = 〈s0, s1, . . . , p, . . . , t0, . . . , t〉. Due to the
definition of the abort condition, we have s1 ≺ p ∧ p 6∈ N→ℓ (s1) ∧ s0 6∈
N←ℓ (p) ∧ |P ′ ∩ N→ℓ (s1) ∩ N←ℓ (p)| ≤ 1 [**], where P ′ = P |s0→p. The
facts that v ∈ N→ℓ (s1) [see *] and p 6∈ N→ℓ (s1) [see **] imply v ≺ p due
to N1. In order to obtain a contradiction, we assume u ∈ N←ℓ (p). Since
s0 6∈ N←ℓ (p) [see **], this implies s0 ≺ u by N1. Hence, s1 � u. Because
v ∈ N→ℓ (s1) [see *], we obtain u ∈ N→ℓ (s1) due to N1. Similarly, we get
v ∈ N←ℓ (p) since v ≺ p and u ∈ N←ℓ (p). Thus, {u, v} ⊆ P ′ ∩ N→ℓ (s1) ∩
N←ℓ (p). Therefore, |P ′ ∩N→ℓ (s1)∩N←ℓ (p)| ≥ 2, which is a contradiction
to [**]. We can conclude that u 6∈ N←ℓ (p).

⇒) Since each path 〈s0, . . . , u, v, . . . , p〉 in B is a shortest path, the
claim follows directly from the specification of Phase 2. �

Algorithmic Details: Phase 1. For an efficient implementation, we keep
track of a border distance b(x) and a reference distance a(x) for each node
x in B. Along a path P ′ as depicted in Figure 3.4, we assign b(x) the dis-
tance from the root to the border of the neighbourhood of s1 as soon as s1

is settled. This value is passed to all successors on the path, which allows to
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determine the first node w outside N→ℓ (s1), i.e., its direct predecessor v is
the last node inside N→ℓ (s1). In order to fulfil the abort condition, we have
to make sure that v is the only node on P ′ withinN→ℓ (s1)∩N←ℓ (p). There-
fore, we want to check whether v’s direct predecessor u belongs to N←ℓ (p).
To allow an easy check, we determine, store, and propagate the reference
distance from s0 to u as soon as w is settled. Knowing the reference dis-
tance dℓ(s0, u), the current distance dℓ(s0, p) and p’s neighbourhood radius
r←ℓ (p), checking u 6∈ N←ℓ (p) is then straightforward. If there are several
shortest paths from s0 to some node x, we determine appropriate maxima
of the involved border and reference distances.

More formally, for any node x in B, ℘(x) denotes the set of parent nodes
in B. To avoid some case distinctions, we set ℘(s0) := {s0}, i.e., the root
is its own parent. For the root s0, we set b(s0) := 0 and a(s0) := ∞. For
any other node x 6= s0, we define b′(x) := dℓ(s0, x) + r→ℓ (x) if s0 ∈ ℘(x),
and 0, otherwise; b(x) := max({b′(x)} ∪ {b(y) | y ∈ ℘(x)}); a′(x) :=
max{a(y) | y ∈ ℘(x)}; and a(x) := max{dℓ(s0, u) | y ∈ ℘(x) ∧ u ∈
℘(y)} if a′(x) =∞∧ dℓ(s0, x) > b(x), and a′(x), otherwise.

Then, we can easily check the following abort criterion at a settled
node p:

a(p) + r←ℓ (p) < dℓ(s0, p) (3.2)

Lemma 1 (3.2) implies (3.1).

Proof. We prove the contraposition “¬ (3.1) implies ¬ (3.2)”, i.e., we as-
sume that there is some shortest path P ′ from s0 to p such that p � s1∨ p ∈
N→ℓ (s1) ∨ s0 ∈ N←ℓ (p) ∨ |P ′ ∩ N→ℓ (s1) ∩ N←ℓ (p)| ≥ 2 and show that
a(p) + r←ℓ (p) ≥ dℓ(s0, p).

Case 1: p � s1. If p = s0, then a(p) =∞, which yields ¬ (3.2). Otherwise
(p = s1), b(p) ≥ dℓ(s0, p) + r→ℓ (p), a′(p) = ∞, and a(p) = a′(p) since
dℓ(s0, p) ≤ b(p), which implies ¬ (3.2).

Case 2: s1 ≺ p ∧ p ∈ N→ℓ (s1). Due to N1 (see proof of Theorem 1), we
have ∀x, s1 � x � p : x ∈ N→ℓ (s1). Hence, ∀x : dℓ(s0, x) ≤ dℓ(s0, s1) +
r→ℓ (s1) ≤ b(x). By an inductive proof, we can show that a(p) =∞, which
yields ¬ (3.2).

Case 3: s1 ≺ p∧p 6∈ N→ℓ (s1)∧s0 ∈ N←ℓ (p). We have dℓ(s0, p) ≤ r←ℓ (p),
which directly implies ¬ (3.2).
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Case 4: s1 ≺ p∧p 6∈ N→ℓ (s1)∧s0 6∈ N←ℓ (p)∧|P ′∩N→ℓ (s1)∩N←ℓ (p)| ≥
2. The assumption of Case 4 implies that there are two nodes u and v,
s1 � u ≺ v � p, that belong to P ′ ∩ N→ℓ (s1) ∩ N←ℓ (p). If a(p) =∞, we
directly have ¬ (3.2). Otherwise, there has to be some node w on P ′ such
that a′(w) = ∞∧ dℓ(s0, w) > b(w). Obviously, w 6= s0. Consider such a
node w that maximises dℓ(s0, w), i.e., for all nodes x ≻ w the above stated
condition does not hold, which implies a(x) = a′(x) ≥ a(w). In particular,
a(p) ≥ a(w). We have b(w) ≥ dℓ(s0, s1) + r→ℓ (s1). We can conclude that
dℓ(s0, w) > dℓ(s0, s1) + r→ℓ (s1) and, thus, w 6∈ N→ℓ (s1). We obtain, by
N1, u ≺ v ≺ w. Hence, a(w) ≥ dℓ(s0, u), which implies a(p) ≥ dℓ(s0, u).
Furthermore, since u ∈ N←ℓ (p), we have r←ℓ (p) ≥ dℓ(u, p). Adding up the
last two inequalities yields a(p)+ r←ℓ (p) ≥ dℓ(s0, p), which corresponds to
¬ (3.2). �

Algorithmic Details: Phase 2. For a node u ∈ B, we define B(u) :=
{u} ∪ {v | v is a descendant of u in B} and the slack ∆(u) :=
minw∈B(u) (r←ℓ (w)− dℓ(u,w)). For a leaf b, we have B(b) = {b} and
∆(b) = r←ℓ (b). The slack of an inner node u can be computed using only
the slacks of its children γ(u): ∆(u) = min

(
r←ℓ (u),minc∈γ(u) ∆c(u)

)
,

where ∆c(u) := ∆(c) − dℓ(u, c). This leads to an equivalent, recursive
definition.

The tentative slacks ∆̂(u) of all nodes u in B are set to r←ℓ (u). We
process all nodes in the reverse order as they were settled. This guaran-
tees that all descendants of some node u have been processed before u is
processed. We can stop as soon as a node u ∈ N→ℓ (s0) is encountered.

We maintain the invariant that the tentative slack ∆̂(u) of an element u
that is processed is equal to the actual slack ∆(u). When a node u is pro-
cessed, for each parent p of u in B, we perform the following steps: compute
∆u(p) = ∆(u)− dℓ(p, u); if ∆u(p) < 0, the edge (p, u) is added to Eℓ+1;
if ∆u(p) < ∆̂(p), the tentative slack ∆̂(p) is set to ∆u(p). Figure 3.7 gives
an example.

Theorem 2 An edge (u, v) is added to Eℓ+1 by the slack-based method
introduced above iff it lies on a path 〈s0, . . . , u, v, . . . , p〉 in the partial

shortest-path DAG B with the property that v 6∈ N→ℓ (s0) and u 6∈ N←ℓ (p).
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Figure 3.7: An example of the slack-based method that realises Phase 2 of
the construction. The process is shown only for a part of the tree. As before,
the weight of an edge is the length of the line that represents the edge in
this figure. For the sake of transparency, the (rounded) weights are given
explicitly for the relevant edges. Furthermore, the slacks of the involved
nodes are given. Edges that are added to Eℓ+1 are solid, edges that are not
added dotted.

Proof. ⇐) From the definition of the slack of a node, it follows that

∆v(u) = ∆(v)− dℓ(u, v) ≤ r←ℓ (p)− dℓ(v, p) − dℓ(u, v)

= r←ℓ (p)− dℓ(u, p) < 0

because u 6∈ N←ℓ (p). Since v 6∈ N→ℓ (s0), v is processed at some point.
Then, ∆v(u) is computed and, since it is negative, the edge (u, v) is added
to Eℓ+1.

⇒) Only edges that belong to a path in B from s0 to a node p are con-
sidered. The condition v 6∈ N→ℓ (s0) is never violated because the traver-
sal from the leaves to the root, and consequently, the addition of edges
to Eℓ+1, is not continued when a node v ∈ N→ℓ (s0) is encountered. If
an edge (u, v) is added, the condition ∆v(u) < 0 is fulfilled. Hence,
∆(u) = minw∈B(u) (r←ℓ (w)− dℓ(u,w)) ≤ ∆v(u) < 0. Therefore, there is
a node p such that dℓ(u, p) > r←ℓ (p), i.e., u 6∈ N←ℓ (p). �
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Theorem 3 Let VB denote the set of nodes of s0’s partial shortest-path

DAG B. Let GB = (VB , EB) denote the subgraph of G′ℓ that is ver-

tex induced by VB . The complexity of Phase 1 and 2 started from s0 is

TDijkstra(|GB |).

Proof. The number of nodes of GB is denoted by n′, the number of edges
by m′. The complexity of Phase 1 corresponds to the complexity of a SSSP
search in GB started from s0, i.e., O(n′ + m′) outside the priority queue
plus n′ insert and n′ deleteMin operations plus at most m′ decreaseKey

operations. During Phase 2, each node and each edge is processed at most
once, i.e., Phase 2 runs in O(n′ + m′). �

Speeding Up the Highway Network Construction. Even a single active
endpoint of a long edge (e.g., a long-distance ferry connection) can cause a
large search space during construction, although most nodes of the search
space might already be passive. To face this undesirable effect, we declare
an active node v to be a maverick if dℓ(s0, v) > f · r→ℓ (s0), where f is a
parameter. When all active nodes are mavericks, the search from passive
nodes is no longer continued. This way, the construction process is acceler-
ated and Eℓ+1 becomes a superset of the highway network. Hence, queries
will be slower, but still compute exact shortest paths. The maverick factor f
enables us to adjust the trade-off between construction and query time.

3.3.2 Computing the Core

In order to obtain the core of a highway network, we contract it, which yields
several advantages. The search space during the queries gets smaller since
bypassed nodes are not touched and the construction process gets faster
since the next iteration only deals with the nodes that have not been by-
passed. Furthermore, a more effective contraction allows us to use smaller
neighbourhood sizes without compromising the shrinking of the highway
networks. This improves both construction and query times. However, by-
passing nodes involves the creation of shortcuts, i.e., edges that represent
the bypasses. Due to these shortcuts, the average degree of the graph is
increased and the memory consumption grows. In particular, more edges
have to be relaxed during the queries. Therefore, we have to carefully select
nodes so that the benefits of bypassing them outweigh the drawbacks.



3.3. Construction 57

We give an iterative algorithm that combines the selection of the by-
passable nodes Bℓ with the creation of the corresponding shortcuts. We
manage a stack that contains all nodes that have to be considered, ini-
tially all nodes from Vℓ. As long as the stack is not empty, we deal with
the topmost node u. We check the bypassability criterion #shortcuts ≤
c · (degin(u) + degout(u)), which compares the number of shortcuts that
would be created when u was bypassed with the sum of the in- and outde-
gree of u. The magnitude of the contraction is determined by the parameter
c. If the criterion is fulfilled, the node is bypassed, i.e., it is added to Bℓ and
the appropriate shortcuts are created. Note that the creation of the shortcuts
alters the degree of the corresponding endpoints so that bypassing one node
can influence the bypassability criterion of another node. Therefore, all ad-
jacent nodes that have been removed from the stack earlier, have not been
bypassed yet, and are bypassable now are pushed on the stack once again.

Theorem 4 If c < 2, |E′ℓ| is in O(|Vℓ|+ |Eℓ|).

Proof. If a node u is bypassed, the number of edges in the (tentative) core
is increased by Du := #shortcuts − degin(u) − degout(u). (We have to
subtract degin(u) and degout(u) since the edges incident to u no longer be-
long to the core.) Note that #shortcuts = degin(u) · degout(u)−deg↔(u),
where deg↔(u) denotes the number of adjacent nodes v that are connected
to u by both an edge (u, v) and an edge (v, u). (We have to subtract
deg↔(u) to account for the fact that a ‘shortcut’ that would be a self-loop is
not created.) We can conclude thatDu ≤ degin(u) · degout(u)−degin(u)−
degout(u). If degin(u) ≤ 1 or degout(u) ≤ 1, we obtain Du ≤ 0.
Now, we deal with the case that degin(u) ≥ 2 and degout(u) ≥ 2. Since
deg↔(u) ≤ min(degin(u),degout(u)), a node that fulfils the bypassability
criterion also fulfils degin(u) · degout(u) ≤ c · (degin(u) + degout(u)) +

min(degin(u),degout(u)). The inequality x ·y ≤ c(̇x+y)+min(x, y) has
only finitely many solutions (x, y) for x, y ∈ N, x, y ≥ 2 if c ∈ R is a con-
stant less than 2. Consider the solution (x, y) that maximises k := x · y. If
there is no solution, take k := 0. Note that k is a constant that only depends
on the constant c. We can conclude that Du ≤ k.

Each node from Vℓ is bypassed at most once. For each bypassed node,
the number of edges in the (tentative) core is increased by at most k. There-
fore, |E′ℓ| ≤ k · |Vℓ|+ |Eℓ|. �
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If we used #shortcuts ≤ max (degin(u),degout(u)) as bypassability
criterion, we would get a contraction that would be very similar to our earlier
trees-and-lines method [69]. Note that the general version presented above
allows a more effective contraction by setting c appropriately.

Limiting Component Sizes. To reduce the observed maximum query
time, we implement a limit on the number of hops a shortcut may repre-
sent. By this means, the sizes of the components of bypassed nodes are
reduced—in particular, the first contraction step tended to create quite large
components of bypassed nodes so that it took a long time to leave such a
component when the search was started from within it.

3.4 Query

Our highway query algorithm is a modification of the bidirectional version
of Dijkstra’s algorithm. Note that in contrast to the construction, during the
query we need not keep track of ambiguous shortest paths. For now, we
assume that the search is not aborted when both search scopes meet. This
matter is dealt with in Section 3.4.2. We only describe the modifications
of the forward search since forward and backward search are symmetric.
In addition to the distance from the source, each node is associated with
the search level and the gap to the ‘next applicable neighbourhood border’.
The search starts at the source node s in level 0. First, a local search in the
neighbourhood of s is performed, i.e., the gap to the next border is set to
the neighbourhood radius of s in level 0. When a node v is settled, it adopts
the gap of its parent u minus the length of the edge (u, v). As long as we
stay inside the current neighbourhood, everything works as usual. However,
if an edge (u, v) crosses the neighbourhood border (i.e., the length of the
edge is greater than the gap), we switch to a higher search level ℓ. The node
u becomes an entrance point to the higher level. If the level of the edge
(u, v) is less than the new search level ℓ, the edge is not relaxed—this is one
of the two restrictions that cause the speedup in comparison to Dijkstra’s
algorithm (Restriction 1). Otherwise, the edge is relaxed: v adopts the new
search level ℓ and the gap to the border of the neighbourhood of u in level ℓ
since u is the corresponding entrance point to level ℓ. Figure 3.8 illustrates
this process.
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level 0

level 1

N→1 (u)

N→0 (s)

s
u

entrance point to level 1

entrance point to level 0

entrance point to level 2

Figure 3.8: A schematic diagram of a highway query. Only the forward
search is depicted.

We have to deal with the special case that an entrance point to level ℓ
does not belong to the core of level ℓ. In this case, the search is continued
inside a component of bypassed nodes till the level-ℓ core is entered, i.e.,
a node u ∈ V ′ℓ is settled. At this point, u is assigned the gap to the bor-
der of the level-ℓ neighbourhood of u. Note that before the core is entered
(i.e., inside a component of bypassed nodes), the gap has been infinity (ac-
cording to R1). To increase the speedup, we introduce another restriction
(Restriction 2): when a node u ∈ V ′ℓ is settled, all edges (u, v) that lead to
a bypassed node v ∈ Bℓ in search level ℓ are not relaxed, i.e., once entered
the core, we will never leave it again.

Figure 3.9 gives a detailed example of the forward search of a highway
query. The search starts at node s. The gap of s is initialised to the dis-
tance from s to the border of the neighbourhood of s in level 0. Within the
neighbourhood of s, the search process corresponds to a standard Dijkstra
search. The edge that leads to u leaves the neighbourhood. It is not relaxed
due to Restriction 1 since the edge belongs only to level 0. In contrast, the
edge that leaves s1 is relaxed since its level allows to switch to level 1 in
the search process. s1 and its direct successor are bypassed nodes in level 1.
Their neighbourhoods are unbounded, i.e., their neighbourhood radii are in-
finity so that the gap is set to infinity as well. At s′1, we leave the component
of bypassed nodes and enter the core of level 1. Now, the search is contin-
ued in the core of level 1 within the neighbourhood of s′1. The gap is set
appropriately. Note that the edge to v is not relaxed due to Restriction 2
since v is a bypassed node. Instead, the direct shortcut to s2 is used. Here,



60 Chapter 3. Highway Hierarchies

we switch to level 2. In this case, we do not enter the next level through a
component of bypassed nodes, but we get directly into the core. The search
is continued in the core of level 2 within the neighbourhood of s′2. And so
on.
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N→0 (s)

N→1 (s′1)

s s1 s′1

gap(s)

∞

Restriction 1 N→2 (s′2)

s2 =s′2

u

v

shortcut

Restriction 2

Figure 3.9: A detailed example of a highway query. Only the forward search
is depicted. Nodes in level 0, 1, and 2 are vertically striped, solid, and hor-
izontally striped, respectively. In level 1, dark shades represent core nodes,
light shades bypassed nodes. Edges in level 0, 1, and 2 are dashed, solid,
and dotted, respectively.

Despite of Restriction 1, we always find the optimal path since the con-
struction of the highway hierarchy guarantees that the levels of the edges
that belong to the optimal path are sufficiently high so that these edges are
not skipped. Restriction 2 does not invalidate the correctness of the algo-
rithm since we have introduced shortcuts that bypass the nodes that do not
belong to the core. Hence, we can use these shortcuts instead of the original
paths.

3.4.1 The Basic Algorithm

We use two priority queues
−→
Q and

←−
Q , one for the forward search and one

for the backward search. For each search direction, a node u is associated
with a triple (δ(u), ℓ(u), gap(u)), which we often call key. It consists of
the (tentative) distance δ(u) from s (or t) to u, the search level ℓ(u), and
the gap gap(u) to the next applicable neighbourhood border. Only the first
component δ(u) is used to decide the priority within the queue.1 We use

1If the search direction is not clear from the context, we will explicitly write
−→
δ (u) and

←−
δ (u) to distinguish between u’s priority in

−→
Q and

←−
Q .
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the remaining two components for a tie breaking rule in the case that the
same node is reached with two different keys k := (δ, ℓ, gap) and k′ :=
(δ′, ℓ′, gap′) such that δ = δ′. Then, we prefer k to k′ iff ℓ > ℓ′ or ℓ =
ℓ′ ∧ gap < gap′. Note that any other tie breaking rule (or even omitting
an explicit rule) will yield a correct algorithm. However, the chosen rule is
most aggressive and has a positive effect on the performance. Figure 3.10
contains the pseudo-code of the highway query algorithm.

input: source node s and target node t
output: distance d(s, t)

1 d′ :=∞;

2 insert(
−→
Q, s, (0, 0, r→0 (s))); insert(

←−
Q, t, (0, 0, r←0 (t)));

3 while (
−→
Q ∪←−Q 6= ∅) do {

4 select direction ⇌ ∈ {→,←} such that
⇌

Q 6= ∅;
5 u := deleteMin(

⇌

Q);
6 if u has been settled from both directions then

d′ := min(d′,
−→
δ (u) +

←−
δ (u));

7 if gap(u) 6=∞ then gap′ := gap(u) else gap′ := r⇌

ℓ(u)(u);

8 foreach e = (u, v) ∈
⇌

E do {

9 for (ℓ := ℓ(u), gap := gap′; w(e) > gap;
ℓ++, gap := r⇌

ℓ (u)); // go “upwards”

10 if ℓ(e) < ℓ then continue; // Restriction 1

11 if u ∈ V ′ℓ ∧ v ∈ Bℓ then continue; // Restriction 2

12 k := (δ(u) + w(e), ℓ, gap − w(e));

13 if v has been reached then decreaseKey(
⇌

Q, v, k);

else insert(
⇌

Q, v, k);
14 }
15 }
16 return d′;

Figure 3.10: The highway query algorithm. Differences to the bidirectional
version of Dijkstra’s algorithm are marked: additional / modified lines have
a framed line number; in modified lines, the modifications are underlined.
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Remarks:

• Line 4: The correctness of the algorithm does not depend on the strategy
that determines the order in which the forward and the backward searches
are processed. However, the choice of the strategy can affect the running
time in the case that an abort-on-success criterion is applied (see Sec-
tion 3.4.2).

• Line 7: This line deals with the special case that the entrance point did
not belong to the core when the current search level ℓ was entered, i.e.,
the gap was set to infinity. In this case, the gap is set to r⇌

ℓ(u)(u). This is
correct even if u does not belong to the core, either, because in this case
the gap stays at infinity.

• Line 9: It might be necessary to go upwards more than one level in a
single step.

• Line 13: In the decreaseKey operation, the old key of v is only replaced
by k if the above mentioned condition is fulfilled, i.e., if (a) the tentative
distance is improved or (b) stays unchanged while the tie breaking rule
succeeds. In the latter case (b), no priority queue operation is invoked
since the priority (the tentative distance) has not changed.2

The proof of correctness can be found in Section 3.5.

Algorithmic Details. If we group the outgoing edges (u, v) of each
node u by level, we can avoid looking at edges (u, v) in levels ℓ(u, v) <
ℓ(u) since Restriction 1 would always apply to them. We can do without
explicitly testing Restriction 2 if all edges (u, v) with k := ℓ(u, v), u ∈ V ′k,
and v ∈ Bk have been downgraded to level k− 1. Then, the test of Restric-
tion 1 also covers Restriction 2.

3.4.2 Optimisations

Rearranging Nodes. Similar to [31], after the construction has been com-
pleted, we rearrange the nodes by core level, which improves locality for the
search in higher levels and, thus, reduces the number of cache misses.

2That way, we also avoid problems that otherwise could arise when an already settled
node is reached once again via a zero weight edge.
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Speeding Up the Search in the Topmost Level. Let us assume that we
have a distance table that contains for any node pair s, t ∈ V ′L the optimal
distance dL(s, t). Such a table can be precomputed during the preprocessing
phase by |V ′L| SSSP searches in G′L. Using the distance table, we do not have
to search in level L. Instead, when we arrive at a node u ∈ V ′L that leads to

level L, we add u to the initially empty set
−→
I or

←−
I depending on the search

direction; we do not relax the edge that leads to level L. After all entrance
points have been encountered, we consider all pairs (u, v) ∈ −→I ×←−I and
compute the minimum path length D :=

−→
δ (u) + dL(u, v) +

←−
δ (v). Then,

the length of the shortest s-t-path is the minimum of D and the length d′ of
the tentative shortest path found so far (in case that the search scopes have
already met in a level < L).

Using the distance table can be seen as extreme case of goal-directed
search: from the nodes in the set

−→
I , we directly ‘jump’ to the nodes in the

set
←−
I , which are close to the target. Thus, we can say that the highway query

with the distance table optimisation works in two phases: a strictly non-
goal-directed phase till the sets

−→
I and

←−
I have been determined, followed

by a ‘goal-directed jump’ using the distance table.
For the sake of a simple incorporation of this optimisation into the high-

way query algorithm, we slightly revise the properties R1 and R2: we use
two distinguishable values ∞1 and ∞2 that are larger than any real num-
ber and set r⇌

ℓ (u) := ∞1 for any ℓ and any node u 6∈ V ′ℓ (R1) and
r⇌

L (u) := ∞2 for any node u ∈ V ′L (R2). Then, we just add two lines
to Figure 3.10 and modify Line 16:

between Lines 7 and 8:
7a if gap′ 6=∞1 ∧ ℓ(u) = L then {

⇌

I :=
⇌

I ∪{u}; continue;}

between Lines 11 and 12:
11a if gap 6=∞1 ∧ ℓ = L ∧ ℓ > ℓ(u) then {

⇌

I :=
⇌

I ∪{u}; continue;}

16 return min({d′} ∪ {−→δ (u) + dL(u, v) +
←−
δ (v) | u ∈ −→I , v ∈ ←−I });

In Section 3.5.6, we show that our proof of correctness still holds when the
distance table optimisation is applied.

Abort on Success. In the bidirectional version of Dijkstra’s algorithm, we
can abort the search as soon as both search scopes meet. Unfortunately, this
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would be incorrect for our highway query algorithm. The reason for this is
illustrated in Figure 3.11. In the upper part of the figure, the bidirectional

s

P

a

t

c

b

s

Q

Level 2

Level 1

Level 0

Level 2

Level 1

Level 0
t

Figure 3.11: Schematic profile of a bidirectional highway query.

query from a node s to a node t along a path P is represented by a profile
that shows the level transitions within the highway hierarchy. To get a se-
quential algorithm, at each iteration we have to decide whether a node from
the forward or the backward queue is settled. We assume that a strategy is
used that favours the smaller element. Thus, both search processes meet in
the middle, at node a. When this happens, a path from s to t has been found.
However, we have no guarantee that it is the shortest one. In fact, the lower
part of the figure contains the profile of a shorter path Q from s to t, which
is less symmetric than the profile of P . Note that the very flexible definition
of the neighbourhoods allows such asymmetric profiles. When a on P is
settled from both sides, b has been reached on Q by the backwards search,
but not by the forward search since a search process never goes downwards
in the hierarchy: therefore, at node c, the forward search is not continued
on the path Q. We find the shorter path Q not until the backward search
has reached c—which happens after P has been found. Hence, it would be
wrong to abort the search, when a has been settled.

Therefore, we use a more conservative abort criterion: after a tentative
shortest path P ′ has been encountered (i.e., after both search scopes have
met), the forward (backward) search is not continued if the minimum ele-
ment u of the forward (backward) queue has a key δ(u) ≥ w(P ′). Obvi-
ously, the correctness of the algorithm is not invalidated by this abort crite-
rion. In [69] we tried using more sophisticated criteria in order to reduce the
search space. However, it turned out that this simple criterion, since it can
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be evaluated so efficiently, yields better query times in spite of a somewhat
larger search space. Note that when the distance table optimisation is used
and random queries are performed, our simple abort criterion is very close
to an optimal criterion even with respect to the search space size: our exper-
iments indicate that less than 1% of the search space is visited after the first
meeting of forward and backward search.

3.4.3 Outputting Complete Path Descriptions

The highway query algorithm in Figure 3.10 only computes the distance
from s to t. In order to determine the actual shortest path, we need to store
pointers from each node to its parent in the search tree. Note that the al-
gorithm could be easily modified to compute all shortest paths between s
and t by just storing more than one parent pointer in case of ambiguities.
However, subsequently, we only deal with a single shortest path.

We face two problems in order to determine a complete description of
the shortest path: (a) we have to bridge the gap between the forward and
backward topmost core entrance points (in case that the distance table opti-
misation is used) and (b) we have to expand the used shortcuts to obtain the
corresponding subpaths in the original graph.

Problem (a) can be solved using a simple algorithm: We start with the
forward core entrance point u. As long as the backward entrance point v has
not been reached, we consider all outgoing edges (u,w) in the topmost core
and check whether dL(u,w)+dL(w, v) = dL(u, v); we pick an edge (u,w)
that fulfils the equation, and we set u := w. The check can be performed
using the distance table. It allows us to greedily determine the next hop that
leads to the backward entrance point.

Problem (b) can be solved without using any extra data (Variant 1). For
each shortcut (u, v) ∈ Sℓ on the shortest path, we perform a search from
u to v in order to determine the represented path in Gℓ. This search can
be accelerated by using the knowledge that the first edge of the path enters
a component C of bypassed nodes, the last edge leads to v, and all other
edges are situated within the component C . The represented path in Gℓ may
contain shortcuts from sets Sk, k < ℓ, which are expanded recursively. In
the end, we obtain the represented path from u to v in the original graph.

However, if a fast output routine is required, it is necessary to spend
some additional space to accelerate the unpacking process. We use a
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rather sophisticated data structure to represent unpacking information for
the shortcuts in a space-efficient way (Variant 2). In particular, we do not
store a sequence of node IDs that describe a path that corresponds to a short-
cut, but we store only hop indices: for each edge (u, v) on the path that
should be represented, we store its rank within the ordered group of edges
that leave u. Since in most cases the degree of a node is very small, these
hop indices can be stored using only a few bits. The unpacked shortcuts are
stored in a recursive way, e.g., the description of a level-2 shortcut may con-
tain several level-1 shortcuts. Accordingly, the unpacking procedure works
recursively.

To obtain a further speed-up, we have a variant of the unpacking
data structures (Variant 3) that caches the complete descriptions—without
recursions—of all shortcuts that belong to the topmost level, i.e., for these
important shortcuts that are frequently used, we do not have to use a recur-
sive unpacking procedure, but we can just append the corresponding subpath
to the resulting path.

3.4.4 Turning Restrictions

Real-world road networks can contain so-called turning re-

strictions. For example, a U-turn might be prohibited at cer-
tain traffic junctions. Formally, such a turning restriction (in
its simplest and most common form) can be expressed as an
edge pair ((u, v), (v,w)): the edge (v,w) must not be traversed if the node
v has been reached via the edge (u, v). Dealing with turning restrictions is a
well-studied problem [74, 62]. In principle, there are two basic approaches:
modifying the query algorithm or modelling the restrictions into the graph,
which introduces additional artificial nodes and edges at affected road junc-
tions. The latter technique can be applied irrespective of the used query
algorithm.

In case of highway hierarchies, we expect that modelling turning re-
strictions into the graph only slightly deteriorates the performance since the
artificial nodes usually have a very small degree so that most of them get
bypassed in the very first contraction step. Furthermore, turning restrictions
are often encountered at local streets that are not promoted to high levels
of the hierarchy so that the negative impact is bounded to the lower levels.
With respect to memory consumption, it is important to note that after the
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preprocessing has been completed, artificial nodes and edges at road junc-
tions that only belong to level 0 can be abandoned provided that the query
algorithm (which in level 0 just corresponds to Dijkstra’s algorithm) is mod-
ified appropriately to handle turning restrictions.

3.5 Proof of Correctness

Difficulties. Although the basic concepts (e.g. the definition of the high-
way network) and the algorithm are quite simple, the proof of correctness
gets surprisingly complicated. The main reason for that is the fact that we
cannot prove that the shortest path is found since there might be several
shortest paths of the same length. We could assume that the shortest paths
in the input are unique or that the uniqueness can be guaranteed by adding
small fractions to the edge weights as it is done by other authors who face
similar problems. However, the former would be too restrictive since usu-
ally, in real-world road networks, there are at least a few ambiguous in-
stances, and a reliable realisation of the latter would be rather difficult. Fur-
thermore, the introduction of shortcuts adds a lot of ambiguity even if it was
not present in the input.

Therefore, if we pick any shortest path P to show that it is found by
the query algorithm, it can happen that a node u on P is settled from an-
other node than its predecessor on P . Of course, in this case, u will still be
assigned the optimal distance from the source, but the search level and the
distance to the next neighbourhood border may be different than expected
so that we have to adapt to the new situation.

Outline. We face the above mentioned difficulties in the following way:
First, we show that the algorithm terminates and deal with the special case
that no path from the source to the target exists (Section 3.5.1). Then, we
introduce some definitions and concepts that will be useful in the main part
of the correctness proof: In Section 3.5.2, we define for a given path, a cor-
responding contracted path and an expanded path, where subpaths in the
original graph are replaced by shortcuts or vice versa, respectively. In Sec-
tion 3.5.3, we first define the concepts of last neighbour and first core node,
which, iteratively applied, lead to an unidirectional labelling of a given path.
Figure 3.12 gives an example. Applying a forward and a backward labelling
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to the same path then allows the definition of a meeting level and a meeting

point (Figure 3.13). The latter requires a case distinction since the forward
and backward labelling may either meet in some core or in some compo-
nent of bypassed nodes. Finally, we introduce the term highway path, a
path whose properties exactly comply with the two restrictions of the query
algorithm. Figure 3.14 gives an example.

In Section 3.5.4, we deal with the reachability along a highway path.
Basically, we show that if the query has settled some node u on a highway
path with the appropriate key, then u’s successor on that path can be reached

s1 s′1 s2

N→1 (s′1)

s0 = s′0

N→0 (s′0)

s

Figure 3.12: Example for a forward labelling of a path P . The labels s0 and
s′0 are set to s (base case). The node s1 is the last neighbour of s′0 (denoted
by−→ω P

0 (s′0)), the node s′1 is the first level-1 core node (denoted by−→α P
1 (s1)),

s2 is the last neighbour of s′1, and so on.

s0=s′0 s1 s′1

t′2t3

s′2

t′0=t0t′1=t1

p

s2

t2

s t

Figure 3.13: Example for a forward and backward labelling (depicted below
and above the nodes, respectively). The meeting level is 2, the meeting point
is p.

s1 s′1s0=s′0

0 1

s
s2

1

t2 t′0=t0t′1=t1

t00 011 1

00 1 1 2 1 1 0

Figure 3.14: Example for a highway path. Each edge belongs at least to the
given level, each node at least to the given core level.
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from u with the appropriate key as well (Lemmas 6 and 7, which are proved
using the auxiliary Lemma 5). In other words, if there is a highway path,
the query can follow the path (at least if there was no ambiguity).

In Section 3.5.5, we use all concepts and lemmas introduced in the pre-
ceding sections to conduct the actual correctness proof, where we also deal
with ambiguous paths. The general idea is to say that at any point the query
algorithm has some valid state consisting of a shortest s-t-path P and two
nodes u � u that split P into three parts such that the first and the third
part are paths in the forward and backward search tree, respectively, and the
second part is a contracted path. For such a valid state, we can prove that
any node on the first and third part has been settled with the appropriate key
(Lemma 8). Furthermore, we can show that P is a highway path (Lemma 9).

When the algorithm is started, the nodes s and t are settled and some
shortest s-t-path P in the original graph exists. (The special case that no s-
t-path exists has already been dealt with.) Consequently, our initial state is
composed of the contracted version of P and the nodes s and t, which makes
it a valid state. A final state is a valid state where forward and backward
search have met, i.e., they have settled a common node u = u. Originally,
we wanted to show that a shortest path is found. Now, we see (in Lemma 10)
that it is sufficient to prove that a final state is reached.

We have already defined the meeting point p on a path. We fall back on
this definition and intend to prove that forward and backward search meet
at p. When we look at any valid non-final state, it is obvious that at least
one search direction can proceed to get closer to p, i.e., we have u ≺ p or
p ≺ u (Lemma 11). We pick such a non-blocked search direction. Let us
assume w.l.o.g. that we picked the forward direction. We know that u has
been settled with the appropriate key and that P is an optimal highway path
(Lemmas 8 and 9). Due to the ‘reachability along a highway path’ (Lemmas
6 and 7), we can conclude that u’s successor v can be reached with the
appropriate key as well, in particular with the optimal distance from s. A
node that can be reached with the optimal distance will also be settled at
some point with the optimal distance. However, we cannot be sure that v
is settled with u as its parent since the shortest path from s to v might be
ambiguous. At this point the state concept gets handy: we just replace the
subpath of P from s to v with the path in the search tree that actually has
been taken, yielding a path P+; we obtain a new state that consists of P+
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and the nodes v and u. We prove that the new state is valid (Lemma 12).

Thus, we can show that from any valid non-final state another valid state
is reached at some point. We also show in Lemma 12 that we cannot get into
some cycle of states since in each step the length of the middle part of the
path is decreased. Hence, starting from the initial state, eventually a final
state is reached so that a shortest path is found (Theorem 5).

At this point, we will have proven the basic algorithm (Section 3.4.1)
correct without considering the optimisations from Section 3.4.2. Finally,
in Section 3.5.6, we show that the distance table optimisation does not in-
validate the correctness. For the other two optimisations, this is obvious.

Additional Notations. ‘◦’ denotes path concatenation. succ(u, P ) and
pred(u, P ) denote the direct successor and predecessor of u on P , respec-
tively. We just write succ(u) and pred(u) if the path is clear from the
context. For two nodes u and v on some path, min(u, v) denotes u if u � v
and v otherwise. max(u, v) is defined analogously. dP (u, v) := w(P |u→v)
denotes the distance from u to v along the path P . Note that for any edge
(u, v) on P , we have w(u, v) = dP (u, v).

3.5.1 Termination and Special Cases

Since we have set the neighbourhood radius in the topmost level to infinity
(R2), we are never tempted to go upwards beyond the topmost level. This
observation is formalised in the following lemma.

Lemma 2 The for-loop in Line 9 of the highway query algorithm always

terminates with ℓ ≤ L and (ℓ = L→ gap =∞).

Proof. We only consider iterations where the forward search direction is
selected; analogous arguments apply to the backward direction. By an in-
ductive proof, we show that at the beginning of any iteration of the main
while-loop, we have ℓ(u) ≤ L and (ℓ(u) = L → gap(u) = ∞) for any
node u in

−→
Q .

Base Case: True for the first iteration, where only s belongs to
−→
Q : we have

ℓ(s) = 0 ≤ L and gap(s) = r→0 (s) (Line 2), which is equal to infinity if
L = 0 (due to R2).
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Induction Step: We assume that our claim is true for iteration i and show
that it also holds for iteration i + 1. Due to the induction hypothesis, we
have ℓ(u) ≤ L and (ℓ(u) = L→ gap(u) =∞) in Line 5. If ℓ(u) = L, we
have gap = gap′ = r→ℓ(u)(u) = ∞ (Line 7 and 9, R2); thus the for-loop in

Line 9 terminates immediately with ℓ = ℓ(u) = L. Otherwise (ℓ(u) < L),
the for-loop either terminates with ℓ < L or reaches ℓ = L; in the latter
case, we have gap = r→ℓ (u) =∞ (Line 9, R2); hence, the loop terminates.

Thus, in any case, the loop terminates with ℓ ≤ L and (ℓ = L →
gap = ∞). Therefore, if the node v adopts the key k in Line 13 (either
by a decreaseKey or an insert operation), the new key fulfils the required
condition.

This concludes our inductive proof, which also shows that the claim of
this lemma holds during any iteration of the main while-loop. �

It is easy to the see that the following property of Dijkstra’s algorithm also
holds for the highway query algorithm.

Proposition 1 For each search direction, the sequence of distances δ(u) of

settled nodes u is monotonically increasing.

Now, we can prove that

Lemma 3 The highway query algorithm terminates.

Proof. The for-loop in Line 9 always terminates due to Lemma 2. The for-
loop in Line 8 terminates since the edge set is finite. The main while-loop
in Line 3 terminates since each node v is inserted into each priority queue
at most once, namely if it is unreached (Line 13); if it is reached, it either
already belongs to the priority queue or it has already been settled; in the
latter case, we know that δ(v) ≤ δ(u) ≤ δ(u) + w(e) (Proposition 1; edge
weights are nonnegative) so that no priority queue operation is performed
due to the specification of the decreaseKey operation. �

The special case that there is no path from s to t is trivial. The algorithm
terminates due to Lemma 3 and returns∞ since no node can be settled from
both search directions (otherwise, there would be some path from s to t).
For the remaining proof, we assume that a shortest path from s to t exists in
the original graph G.
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3.5.2 Contracted and Expanded Paths

Lemma 4 Shortcuts do not overlap, i.e., if there are four nodes u ≺ u′ ≺
v ≺ v′ on a path P in G, then there cannot exist both a shortcut (u, v) and

a shortcut (u′, v′) at the same time.

Proof. Let us assume that there is a shortcut (u, v) ∈ Sℓ for some level ℓ.
All inner nodes, in particular u′, belong to Bℓ. Since u′ does not belong to
V ′ℓ , a shortcut that starts from u′ can belong only to some level k < ℓ. If
there was a shortcut (u′, v′) ∈ Sk, the inner node v would have to belong to
Bk, which is a contradiction since v ∈ V ′ℓ . �

Definition 1 For a given path P in a given highway hierarchy G, the con-
tracted path ctr(P ) is defined in the following way: while there is a subpath

〈u, b1, b2, . . . , bk, v〉 with u, v ∈ V ′ℓ and bi ∈ Bℓ, 1 ≤ i ≤ k, k ≥ 1, for

some level ℓ, replace it by the shortcut edge (u, v) ∈ Sℓ.

Note that this definition terminates since the number of nodes in the path is
reduced by at least one in each step and the definition is unambiguous due
to Lemma 4.

Definition 2 For a given path P in a given highway hierarchy G, the level-

ℓ expanded path exp(P, ℓ) is defined in the following way: while the path

contains a shortcut edge (u, v) ∈ Sk for some k > ℓ, replace it by the

represented path in Gk.

Note that this definition terminates since an expanded subpath can only con-
tain shortcuts of a smaller level.

3.5.3 Highway Path

Consider a given highway hierarchy G and an arbitrary path P = 〈s, . . . , t〉.
In the following, we will bring out the structure of P w.r.t. G.
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Last Neighbour and First Core Node. For any level ℓ and any node u
on P , we define the last succeeding level-ℓ neighbour −→ω P

ℓ (u) and the first

succeeding level-ℓ core node −→α P
ℓ (u): −→ω P

ℓ (u) is the node v ∈ {x ∈ P |
u � x ∧ dP (u, x) ≤ r→ℓ (u)} that maximises dP (u, v), and −→α P

ℓ (u) is the
node v ∈ {t} ∪ {x ∈ P ∩ V ′ℓ | u � x} that minimises dP (u, v). The last

preceding neighbour ←−ω P
ℓ (u) and the first preceding core node ←−α P

ℓ (u) are
defined analogously.

Unidirectional Labelling. Now, we inductively define a forward labelling

of the path P . The labels s0 and s′0 are set to s and for ℓ, 0 ≤ ℓ < L, we set
sℓ+1 := −→ω P

ℓ (s′ℓ) and s′ℓ+1 := −→α P
ℓ+1(sℓ+1). Furthermore, in order to avoid

some case distinctions, sL+1 := t. For an example, we refer to Figure 3.12.

Proposition 2 The following properties apply to the (Unidirectional) for-

ward labelling of P :

• U1: s = s0 = s′0 � s1 � s′1 � . . . � sL � s′L � sL+1 = t

• U2a: ∀ℓ, 0 ≤ ℓ ≤ L : ∀u, s′ℓ � u � sℓ+1 : dP (s′ℓ, u) ≤ r→ℓ (s′ℓ)

• U2b: ∀ℓ, 0 ≤ ℓ ≤ L : ∀u ≻ sℓ+1 : dP (s′ℓ, u) > r→ℓ (s′ℓ)

• U3: ∀ℓ, 0 ≤ ℓ ≤ L : ∀u, sℓ � u ≺ s′ℓ : u 6∈ V ′ℓ

• U4: ∀ℓ, 0 ≤ ℓ ≤ L : s′ℓ = t ∨ s′ℓ ∈ V ′ℓ

A backward labelling (specifying nodes tℓ and t′ℓ) is defined analogously.

Meeting Level and Point. The meeting level λ of P is 0 if s = t and
max{ℓ | sℓ � tℓ} if s 6= t. Note that λ ≤ L (in any case) and tλ+1 ≺ sλ+1

(in case that s 6= t). The meeting point p of P is either tλ (if tλ � s′λ) or
min(sλ+1, t

′
λ) (otherwise). Figure 3.13 gives an example.

Proposition 3 The following properties apply to the Meeting point p of P :

• M1: sλ � p � tλ

• M2: tλ+1 � p � sλ+1

• M3: ∀ℓ, 0 ≤ ℓ ≤ L : (s′ℓ ≺ p→ p � t′ℓ) ∧ (p ≺ t′ℓ → s′ℓ � p)
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Proof. The case s = t is trivial. Subsequently, we assume s 6= t. In order to
prove M1, M2, and (M3 for ℓ = λ), we distinguish between two cases.
Case 1: tλ � s′λ. Then, p = tλ. M1 is fulfilled due to the definition of
the meeting level, which implies sλ � tλ. Furthermore, due to U1, we have
tλ+1 � t′λ � tλ = p � s′λ � sλ+1 so that M2 and (M3 for ℓ = λ) are
fulfilled.
Case 2: s′λ ≺ tλ. Then, p = min(sλ+1, t

′
λ).

Subcase 2.1: sλ+1 � t′λ. Then, p = sλ+1. We have sλ � s′λ � sλ+1 = p �
t′λ � tλ so that M1 and (M3 for ℓ = λ) are fulfilled. Furthermore, M2 holds
due to tλ+1 ≺ sλ+1.
Subcase 2.2: t′λ ≺ sλ+1. Then, p = t′λ. Since s′λ ≺ tλ � t, we know
that s′λ ∈ V ′λ (due to U4). Thus, we have s′λ � t′λ � tλ (otherwise (t′λ ≺
s′λ � tλ), we would have a contradiction with U3). Hence, sλ � s′λ � t′λ =
p � tλ so that M1 and (M3 for ℓ = λ) are fulfilled. M2 holds as well since
tλ+1 � t′λ = p ≺ sλ+1.

It remains to show M3 for ℓ < λ and for ℓ > λ. In the former case, M3
holds due to M1, which implies s′ℓ � sλ � p � tλ � t′ℓ (U1). In the latter
case, M3 holds due to M2, which implies t′ℓ � tλ+1 � p � sλ+1 � s′ℓ (U1).
�

Highway Path. P = 〈s, . . . , t〉 is a highway path (Figure 3.14) iff the
following two Highway properties are fulfilled:

• H1: ∀ℓ, 0 ≤ ℓ ≤ L : H1(ℓ)

• H2: ∀ℓ, 0 ≤ ℓ ≤ L : H2(ℓ)

where

• H1(ℓ): ∀(u, v), s′ℓ � u ≺ v � t′ℓ : u, v ∈ V ′ℓ

• H2(ℓ): ∀(u, v), sℓ � u ≺ v � tℓ : ℓ(u, v) ≥ ℓ

3.5.4 Reachability Along a Highway Path

We consider a path P = 〈s, . . . , t〉. For a node u on P , we define the
reference level ℓ (u) := max({0} ∪ {i | si ≺ u}).

Proposition 4 For any two nodes u and v with u � v, the following refer-

ence Level properties apply:
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• L1: 0 ≤ ℓ (u) ≤ L

• L2: sℓ (u) � u

• L3: u � sℓ (u)+1

• L4: ℓ (u) ≤ ℓ (v)

Definition 3 A node u is said to be Appropriately reached/settled with the

key k = (δ(u), ℓ(u), gap(u)) on the path P iff all of the following conditions

are fulfilled:

• A1(k, u): δ(u) = d0(s, u)

• A2(k, u): ℓ(u) = ℓ (u)

• A3(k, u): gap(u) =

{
∞ if u � s′ℓ(u)

r→ℓ(u)(s
′
ℓ(u))− dP (s′ℓ(u), u) otherwise

• A4(u): ∀i : t 6= s′i � u→ u ∈ V ′i

The following (somewhat technical) lemma will be used to prove Lemmas 6
and 7. Basically, it states that in the highway query algorithm the search
level and the gap to the next applicable neighbourhood border are set cor-
rectly.

Lemma 5 Consider a path P = 〈s, . . . , t〉 and an edge (u, v) on P . As-

sume that u is settled by the highway query algorithm appropriately with

some key k. We consider the attempt to relax the edge (u, v). After Line 9

has been executed, the following Invariants apply w.r.t. the variables ℓ and

gap:

• I1: (a) sℓ � u ∧ (b) v � sℓ+1

• I2: ℓ = ℓ (v)

• I3: gap =

{
∞ if v � s′ℓ,
r→ℓ (s′ℓ)− dP (s′ℓ, u) otherwise.

Proof. We distinguish between two cases in order to prove I1 and I3.
Case 1: zero iterations of the for-loop in Line 9 take place (ℓ = ℓ(u)).
In this case, we have ℓ = ℓ(u) and w(u, v) ≤ gap′. Hence, sℓ � u due
to A2(k, u) and L2 (⇒ I1a). In order to show I1b and I3, we distinguish
between three subcases:
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• Subcase 1.1: u ≺ s′ℓ ⇒ v � s′ℓ � sℓ+1 (U1) (⇒ I1b). Furthermore,
because of gap(u) =∞ (A3(u, k)), we have gap = gap′ = r→ℓ(u)(u) =∞
due to U3 and R1 (⇒ I3 since v � s′ℓ).

• Subcase 1.2: u = s′ℓ ⇒ gap(u) = ∞ (A3(u, k)) ⇒ w(u, v) ≤ gap′ =
r→ℓ (u) (Line 7)⇒ dP (s′ℓ, v) ≤ r→ℓ (s′ℓ) (since u = s′ℓ)⇒ v � sℓ+1 (U2b)
(⇒ I1b). Furthermore, gap = gap′ = r→ℓ (u) = r→ℓ (s′ℓ)−dP (s′ℓ, u) (since
u = s′ℓ) implies I3 since s′ℓ ≺ v.

• Subcase 1.3: u ≻ s′ℓ ⇒ gap(u) = r→ℓ (s′ℓ) − dP (s′ℓ, u) (A3(u, k)). By
Lemma 2, ℓ ≤ L and (ℓ = L → gap = ∞). If ℓ = L, we have v �
t = sL+1 = sℓ+1 (⇒ I1b) and gap =∞ = r→ℓ (s′ℓ)− dP (s′ℓ, u) (R2) (⇒
I3 since s′ℓ ≺ v). Subsequently, we deal with the remaining case ℓ < L.
The facts that u � t and s′ℓ ≺ u imply s′ℓ 6= t, which yields s′ℓ ∈ V ′ℓ
due to U4. Hence, due to R3, gap(u) 6=∞⇒ w(u, v) ≤ gap′ = gap(u)
(Line 7) ⇒ dP (u, v) ≤ r→ℓ (s′ℓ) − dP (s′ℓ, u) ⇒ dP (s′ℓ, v) ≤ r→ℓ (s′ℓ)
⇒ v � sℓ+1 (U2b) (⇒ I1b). Furthermore, gap = gap′ = gap(u) =
r→ℓ (s′ℓ)− dP (s′ℓ, u) implies I3 since s′ℓ ≺ v.

Case 2: at least one iteration of the for-loop takes place (ℓ > ℓ(u)).
We claim that after any iteration of the for-loop, we have u = sℓ. Proof by
induction:
Base Case: We consider the first iteration of the for-loop. Line 9 and
the fact that an iteration takes place imply w(u, v) > gap′, which means
that gap′ 6= ∞. We distinguish between two subcases to show that
dP (s′ℓ(u), v) > r→ℓ(u)(s

′
ℓ(u)).

• Subcase 2.1: u � s′ℓ(u)⇒ gap(u) =∞ (A3(u, k))⇒ w(u, v) > gap′ =

r→ℓ(u)(u) (Line 7)⇒ r→ℓ(u)(u) 6=∞. We have sℓ(u) � u � s′ℓ(u) due to L2,

A2(u, k), and the assumption of Subcase 2.1. However, we can exclude
that sℓ(u) � u ≺ s′ℓ(u): this would imply u 6∈ V ′ℓ(u) (U3) and, thus,

r→ℓ(u)(u) =∞ (R1). Therefore, u = s′ℓ(u)⇒ dP (s′ℓ(u), v) > r→ℓ(u)(s
′
ℓ(u))

• Subcase 2.2: u ≻ s′ℓ(u) ⇒ s′ℓ(u) 6= t⇒ s′ℓ(u) ∈ V ′ℓ(u) (U4). Furthermore,

gap(u) = r→ℓ(u)(s
′
ℓ(u)) − dP (s′ℓ(u), u) (A3(u, k)) ⇒ gap(u) 6= ∞ (due

to R3 since ℓ(u) < L (Lemma 2) and s′ℓ(u) ∈ V ′ℓ(u)) ⇒ dP (u, v) =

w(u, v) > gap′ = gap(u) = r→ℓ(u)(s
′
ℓ(u)) − dP (s′ℓ(u), u) (Line 7) ⇒

dP (s′ℓ(u), v) > r→ℓ(u)(s
′
ℓ(u))
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From dP (s′ℓ(u), v) > r→ℓ(u)(s
′
ℓ(u)), it follows that sℓ(u)+1 ≺ v (U2a), which

implies sℓ(u)+1 � u. Hence, u = sℓ(u)+1 (since u � sℓ(u)+1 due to L3 and
A2(k, u)).
Induction Step: Let us now deal with the iteration from level i to level i + 1
for i ≥ ℓ(u)+1. We have w(u, v) > gap = r→i (u), which implies r→i (u) 6=
∞. Starting with u = si � s′i � si+1 (induction hypothesis, U1), we can
conclude that u = s′i (U3, R1)⇒ dP (s′i, v) > r→i (s′i)⇒ si+1 ≺ v (U2a)
⇒ si+1 � u⇒ u = si+1 (since u � si+1). This completes our inductive
proof.

After the last iteration, we have u = sℓ � s′ℓ (⇒ I1a). Furthermore,
w(u, v) ≤ r→ℓ (u). If u ≺ s′ℓ, we obtain v � s′ℓ � sℓ+1 (⇒ I1b) and
gap = r→ℓ (u) = ∞ due to U3 and R1 (⇒ I3 since v � s′ℓ). Otherwise
(u = s′ℓ), we get dP (s′ℓ, v) ≤ r→ℓ (s′ℓ), which implies v � sℓ+1 as well
(U2b) (⇒ I1b); furthermore, gap = r→ℓ (u) = r→ℓ (s′ℓ) − dP (s′ℓ, u) (since
u = s′ℓ) implies I3 since s′ℓ ≺ v. This completes the proof of I1 and I3.

I2 (ℓ (v) = ℓ) directly follows from sℓ ≺ v � sℓ+1 (I1). �

Lemma 6 Consider a highway path P = 〈s, . . . , t〉 and an edge (u, v)
on P such that u precedes the meeting point p. Assume that u has been

appropriately settled. Then, the edge (u, v) is not skipped, but relaxed.

Proof. We consider the relaxation of the edge (u, v). Due to Lemma 5, the
Invariants I1–I3 apply after Line 9 has been executed. Now, we consider
Line 10 of the highway query algorithm.

I1 and M2 imply sℓ � u ≺ p � sλ+1. Hence, ℓ ≤ λ. Thus, u ≺ p �
tλ � tℓ (M1). By H2, we obtain ℓ(u, v) ≥ ℓ. Therefore, the edge (u, v) is
not skipped at this point.

Moreover, we prove that the condition in Line 11 is not fulfilled since
(u, v) belongs to a highway path. This means that the edge (u, v) is not
skipped at this point, either. We have to show that u 6∈ V ′ℓ ∨ v 6∈ Bℓ. We
have sℓ � u (I1). If u ≺ s′ℓ, we get u 6∈ V ′ℓ (U3). Otherwise, we have
s′ℓ � u ≺ v � p � t′ℓ (M3), which yields v 6∈ Bℓ (H1).

Therefore, (u, v) is not skipped, but relaxed. �

Lemma 7 Consider a shortest path P = 〈s, . . . , t〉 and an edge (u, v) on

P . Assume that u has been appropriately settled with some key k. Further-

more, assume that the edge (u, v) is not skipped, but relaxed. Then, v can

be appropriately reached from u with key k′.



78 Chapter 3. Highway Hierarchies

Proof. We consider the relaxation of the edge (u, v). Due to Lemma 5,
the Invariants I1–I3 apply after Line 9 has been executed. Therefore—since
(u, v) is not skipped, but relaxed—, the node v can be reached with the key

k′ = (δ′(v), ℓ′(v), gap′(v)) := (δ(u) + w(u, v), ℓ, gap − w(u, v)).

Thus, A1(k
′, v), A2(k

′, v), and A3(k
′, v) hold since P is a shortest path and

due to A1(k, u), I2, and I3.

Consider an arbitrary i such that t 6= s′i � v. To prove A4(v), we have
to show that v ∈ V ′i . Due to U4, this is true for s′i = v. Now, we deal
with the remaining case s′i � u ≺ v. Since v � sℓ+1 � s′ℓ+1 (I1, U1),
we have i ≤ ℓ. The case ℓ = 0 is trivial; hence, we assume ℓ > 0. Since
the edge (u, v) is not skipped, we know that Restriction 1 does not apply.
Therefore, we have ℓ(u, v) ≥ ℓ, which implies v ∈ Vℓ ⊆ V ′ℓ−1. For i < ℓ,
we have V ′ℓ−1 ⊆ V ′i and are done. For i = ℓ, we have u ∈ V ′ℓ due to A4(u).
This implies v 6∈ Bℓ since Restriction 2 does not apply as well. v ∈ Vℓ and
v 6∈ Bℓ yield v ∈ V ′ℓ . �

Analogous considerations hold for the backward search.

3.5.5 Finding an Optimal Path

Source and target nodes s and t are given such that a shortest path from s to
t exists.3

Definition 4 A state z is a triple (P, u, u), where P is a s-t-path, u, u ∈
V ∩ P , and u � u.

Definition 5 A state z = (P, u, u) is valid iff all of the following valid State

properties are fulfilled:

• S1: w(P ) = d0(s, t)

• S2: P |u→u is contracted, i.e., P |u→u = ctr(P |u→u)

• S3: P |s→u and P |u→t are paths in the forward and backward search
tree, respectively.

3The special case that there is no path from s to t is treated in Section 3.5.1.



3.5. Proof of Correctness 79

Lemma 8 Consider a valid state z = (P, u, u) and an arbitrary node

x, s � x � u, on P . Then, x has been appropriately settled. Analogously

for backward search.

Proof. Base Case: True for s. Induction Step: We assume that y, s � y ≺ u,
has been appropriately settled and show that x = succ(y) is appropriately
settled as well. Since (y, x) belongs to the forward search tree (S3), we
know that (y, x) is not skipped, but relaxed. The other prerequisites of
Lemma 7 are fulfilled as well (due to the induction hypothesis and S1).
Thus, we can conclude that x can be appropriately reached from y. Since
(y, x) belongs to the forward search tree, we know that x is also settled from
y. �

Lemma 9 If z = (P, u, u) is a valid state, then P is a highway path.

Proof. All labels (e.g., s′ℓ) in this proof refer to P . We show that the highway
properties H1 and H2 are fulfilled by induction over the level ℓ.
Base Case: H2(0) trivially holds since ℓ(u, v) ≥ 0 for any edge (u, v).
Induction Step (a): H2(ℓ)→ H1(ℓ). We assume s′ℓ ≺ t′ℓ. (Otherwise, H1(ℓ)
is trivially fulfilled.) This implies s′ℓ 6= t. Consider an arbitrary node x on
P |s′

ℓ
→t′

ℓ
. We distinguish between three cases.

Case 1: x � u. According to Lemma 8, A4(x) holds. Hence, x ∈ V ′ℓ since
s′ℓ � x.
Case 2: u � x � u. We have y := max(u, s′ℓ) ∈ V ′ℓ (either by Lemma 8:
A4(u) or by U4). Analogously, y := min(u, t′ℓ) ∈ V ′ℓ . Since u � y �
x � y � u and P |u→u = ctr(P |u→u) (S2), we can conclude that x 6∈ Bℓ.
Furthermore, we have x ∈ Vℓ (due to H2(ℓ)). Thus, x ∈ V ′ℓ .
Case 3: u � x. Analogous to Case 1.
Induction Step (b): H1(ℓ) ∧ H2(ℓ) → H2(ℓ + 1). Let P denote
exp(P |s′

ℓ
→t′

ℓ
, ℓ) and consider an arbitrary edge (x, y) on P . If (x, y) is part

of an expanded shortcut, we have ℓ(x, y) ≥ ℓ + 1 and x, y ∈ Vℓ+1 ⊆ V ′ℓ .
Otherwise, (x, y) belongs to P |s′

ℓ
→t′

ℓ
, which is a subpath of P |sℓ→tℓ , which

implies x, y ∈ V ′ℓ and ℓ(x, y) ≥ ℓ by H1(ℓ) and H2(ℓ). Thus, in any case,
ℓ(x, y) ≥ ℓ, x, y ∈ V ′ℓ , and (x, y) is not a shortcut of some level > ℓ.
Hence, P is a path in G′ℓ. Now, consider an arbitrary edge (u, v), sℓ+1 �
u ≺ v � tℓ+1, on P . If (u, v) is a shortcut of some level > ℓ, we directly
have ℓ(u, v) ≥ ℓ+ 1. Otherwise, (u, v) is on P as well. Since sℓ+1 ≺ v, we
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have dP (s′ℓ, v) > r→ℓ (s′ℓ) (U2b). Moreover, S1 implies that P is a shortest
path in G′ℓ and, in particular, dP (s′ℓ, v) = w(P |s′

ℓ
→v) = dℓ(s

′
ℓ, v). Using

the fact that dP (s′ℓ, v) = dP (s′ℓ, v), we obtain dℓ(s
′
ℓ, v) > r→ℓ (s′ℓ) and, thus,

v 6∈ N→ℓ (s′ℓ).

Analogously, we have u 6∈ N←ℓ (t′ℓ). Hence, the definition of the high-
way network Gℓ+1 implies (u, v) ∈ Eℓ+1. Thus, ℓ(u, v) ≥ ℓ + 1. �

Definition 6 A valid state is either a final state (if u = u) or a non-final
state (otherwise).

We pick any shortest s-t-path P . The state (ctr(P ), s, t) is the initial state.
Since forward and backward search run completely independently of each
other, any serialisation of both search processes will yield exactly the same
result. Therefore, in our proof, we are free to pick—w.l.o.g.—any order of
forward and backward steps. We assume that at first one forward and one
backward iteration is performed, which implies that s and t are settled. At
this point, the highway query algorithm is in the initial state. It is easy to
see that the initial state is a valid state. Due to the following lemma, it is
sufficient to prove that a final state is eventually reached.

Lemma 10 Getting to a final state is equivalent to finding a shortest s-t-
path.

Proof. u = u means that forward and backward search meet. Due to
Lemma 8, we can conclude that both u and u are settled with the optimal
distance (A1), i.e.,

−→
δ (u) = d0(s, u) and

←−
δ (u) = d0(u, t). Since u = u

lies on a shortest path (due to S1), we have d(s, t) = d0(s, u) + d0(u, t).
Line 6 implies d′ ≤ −→δ (u) +

←−
δ (u) = d(s, t). In fact, this means that the

algorithm returns d′ = d(s, t) since this is already optimal. �

Definition 7 For a valid state z = (P, u, u), the forward direction is said

to be blocked if p � u. Analogously, the backward direction is blocked if

u � p.

Lemma 11 For a non-final state z = (P, u, u), at most one direction is

blocked.
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Proof. Since z is a non-final state, we have u ≺ u, which implies u ≺ p or
p ≺ u. �

Definition 8 The rank ρ(z) of a state z = (P, u, u) is |{x ∈ P | u � x �
u}|.

Lemma 12 From any non-final state z = (P, u, u), another valid state z+

is reached at some point such that ρ(z+) < ρ(z).

Proof. We pick any non-blocked direction—due to Lemma 11, we know
that there is at least one such direction. Subsequently, we assume that the
forward direction was picked; the backward direction can be dealt with anal-
ogously.

We have u ≺ p and observe that all prerequisites of Lemma 6 are ful-
filled due to Lemmas 9 and 8. Hence, we can conclude that the edge (u, v :=
succ(u)) is not skipped, but relaxed. Thus, since P is a shortest path (S1), v
can be reached with the optimal distance due to Lemma 7 (A1). The fact that
the algorithm terminates (Lemma 3) implies that the queue

−→
Q gets empty at

some point, i.e., every element has been deleted from
−→
Q . In particular, we

can conclude that v is deleted at some point. Since v has been reached with
the optimal distance, it will also be settled with the optimal distance (due to
the specification of the decreaseKey operation, which guarantees that ten-
tative distances are never increased). Let P ′ denote the path from s to v in
the forward search tree. We set z+ := (P+ := P ′ ◦ P |v→t, v, u). We have
w(P+) = w(P ′) + w(P |v→t) = d0(s, v) + d0(v, t) = d0(s, t) (⇒ S1).
S2 is fulfilled since P+|v→u is a subpath of P |u→u. S3 holds due to the
construction of P+. Hence, z+ is valid. Furthermore, ρ(z+) = ρ(z)− 1.�

Theorem 5 The highway query algorithm finds a shortest s-t-path.

Proof. From Lemma 12 and the fact that the codomain of the rank function
is finite, it follows that eventually a final state is reached, which is equivalent
to finding a shortest s-t-path due to Lemma 10. �
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3.5.6 Distance Table Optimisation

To prove the correctness of the distance table optimisation, we introduce
the following new lemma and adapt a few definitions and proofs from Sec-
tion 3.5.5 to the new situation.

Lemma 13 Consider a valid state z = (P, u, u) with u ≺ s′L. When u’s

edges are relaxed, neither the condition in Line 7a nor the condition in

Line 11a is fulfilled.

Proof. Due to Lemma 8, u has been appropriately settled with some key k.
We distinguish between two cases.
Case 1: u ≺ sL. From sℓ(u) = sℓ (u) � u ≺ sL (A2(k, u), L2), it follows

that ℓ(u) < L (U1). Hence, the condition in Line 7a is not fulfilled. Further-
more, we have sℓ � u ≺ sL after Line 9 has been executed (Lemma 5: I1).
Thus, ℓ < L, which implies that the condition in Line 11a is not fulfilled as
well.
Case 2: sL � u ≺ s′L. First, we show that the condition in Line 7a is
not fulfilled. We assume ℓ(u) = L. (Otherwise, the condition cannot
be fulfilled.) Due to A3(k, u), we have gap(u) = ∞. Hence, gap′ =
r→ℓ(u)(u) = r→L (u) = ∞1 by R1 since u 6∈ V ′L (U3). Now, we prove that

the condition in Line 11a is not fulfilled. We assume ℓ = L ∧ ℓ > ℓ(u).
(Otherwise, the condition cannot be fulfilled.) Due to Line 9, we get
gap = r→ℓ (u) = r→L (u) =∞1 (as above). �

Definition 6’. A valid state is either a final state (if u = u or

s′L � u ∧ u � t′L) or a non-final state (otherwise).

Lemma 10. Getting to a final state is equivalent to finding a shortest s-t-
path.

Proof. In the proof of this lemma in Section 3.5.5, we have already dealt
with the case u = u. Now, consider the new case u ≺ u ∧ s′L � u ∧ u �
t′L. We show that s′L is added to the set

−→
I . Since s′L � u, s′L has been

appropriately settled with some key k (due to Lemma 8). We consider the
attempt to relax the edge (s′L, v := succ(s′L)) and distinguish between two
cases.
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Case 1: sL = s′L. ℓ = ℓ (v) (I2), sL = s′L ≺ v, and ℓ (v) ≤ L (L1)
imply ℓ = ℓ (v) = L. Furthermore, A2(k, s′L) and the assumption of Case 1
yield ℓ(s′L) = ℓ (s′L) < L = ℓ. In addition, gap = ∞2 6= ∞1 by I3
(since s′ℓ ≺ v), the fact that s′L ∈ V ′L (U4), and R2. Hence, the condition in

Line 11a is fulfilled so that s′L is added to
−→
I .

Case 2: sL ≺ s′L. By A2(k, s′L), A3(k, s′L), the assumption of Case 2, and
ℓ (s′L) ≤ L (L1), we get ℓ(s′L) = ℓ (s′L) = L and gap(s′L) = ∞. Thus,
gap′ = r→L (s′L) = ∞2 6= ∞1 (R2). Hence, the condition in Line 7a is

fulfilled so that s′L is added to
−→
I .

Analogously, we can prove that t′L is added to the set
←−
I . Since P is a

highway path (due to Lemma 9), the subpath P |s′
L
→t′

L
is a path in G′L and,

thus, d0(s
′
L, t′L) = dL(s′L, t′L). Hence, w(P ) = d0(s, s

′
L) + dL(s′L, t′L) +

d0(t
′
L, t) is the length of a shortest s-t-path and, since the algorithm finds

a path with a length ≤ −→δ (s′L) + dL(s′L, t′L) +
←−
δ (t′L) and since

−→
δ (s′L) =

d0(s, s
′
L) and

←−
δ (t′L) = d0(t

′
L, t) (due to Lemma 8: A1), we can conclude

that a shortest s-t-path is found. �

Definition 7’. For a valid state z = (P, u, u), the forward direction is said

to be blocked if p � u or s′L � u. Analogously, the backward direction is

blocked if u � p or u � t′L.

Lemma 11. For a non-final state z = (P, u, u), at most one direction is

blocked.

Proof. Since z is a non-final state, we have u ≺ u and (u ≺ s′L ∨ t′L ≺ u).
To obtain a contradiction, let us assume that both directions are blocked,
i.e., (p � u or s′L � u) and (u � p or u � t′L). Consider the case p � u
and u � t′L. Hence, p � u ≺ u � t′L. Due to M3, we can conclude that
s′L � p � u. Since s′L � u and u � t′L, we have a contradiction. The
remaining three cases are analogous or straightforward. �

Lemma 12. From any non-final state z = (P, u, u), another valid state z+

is reached at some point such that ρ(z+) < ρ(z).

Proof. The proof of this lemma in Section 3.5.5 still works since the added
two lines (7a and 11a) have no effect due to Definition 7’ and Lemma 13. �
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3.6 Combination with Goal-Directed Search

The highway query algorithm is not goal-directed. In fact, the forward
search ‘knows’ nothing about the target and the backward search ‘knows’
nothing about the source, so that both search processes work completely
independently and spread into all directions.

In order to obtain further speedups, a combination with a goal-directed
approach seems promising. Subsequently, we study a combination with A∗

search using landmarks.

3.6.1 A∗ Search Using Landmarks

In this section we recapitulate the well-known technique of A∗ search [35]
and in particular the ALT algorithm [32], which is a specialisation of A∗

search using so-called landmarks. As a new result, we present how the
selection of landmarks can be accelerated using highway hierarchies.

A∗ Search. The search space of Dijkstra’s algorithm can be visualised as a
circle around the source. The idea of A∗ search is to push the search towards
the target. By adding a potential π : V → R to the priority of each node,
the order in which nodes are removed from the priority queue is altered. A
‘good’ potential lowers the priority of nodes that lie on a shortest path to
the target. It is easy to see that A∗ is equivalent to Dijkstra’s algorithm on
a graph with reduced costs, formally wπ(u, v) = w(u, v) − π(u) + π(v).
Since Dijkstra’s algorithm works only on nonnegative edge costs, not all
potentials are allowed. We call a potential π feasible if wπ(u, v) ≥ 0 for
all (u, v) ∈ E. The distance from each node v of G to the target t is the
distance from v to t in the graph with reduced edge costs minus the potential
of t plus the potential of v. So, if the potential π(t) of the target t is zero,
π(v) provides a lower bound for the distance from v to the target t.

Bidirectional A∗. At a glance, combining A∗ and bidirectional search
seems easy. Simply use a feasible potential πf for the forward and a feasible
potential πr for the backward (or ‘reverse’) search. However, this does not
work due to the fact that both searches might work on different reduced costs
so that the shortest path might not have been found when both searches meet.
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This can only be guaranteed if πf and πr are consistent meaning wπf
(u, v)

in G is equal to wπr(v, u) in the reverse graph. We use the variant of an
average potential function [40] defined as pf (v) = (πf (v) − πr(v))/2 for
the forward and pr(v) = (πr(v) − πf (v))/2 = −pf (v) for the backward
search. Note that these potentials are feasible and consistent, but provide
worse lower bounds than the original ones.

ALT. There exist several techniques [81, 98] how to obtain feasible po-
tentials using the layout of a graph. The ALT algorithm uses a small num-
ber of nodes—so-called landmarks—and the triangle inequality to com-
pute feasible potentials. Given a set S ⊆ V of landmarks and distances
d(L, v), d(v,L) for all nodes v ∈ V and landmarks L ∈ S, the following
triangle inequations hold:

d(u, v) + d(v,L) ≥ d(u,L) and d(L, u) + d(u, v) ≥ d(L, v).

Therefore, d(u, v) := maxL∈S max{d(u,L)− d(v,L), d(L, v) − d(L, u)}
provides a lower bound for the distance d(u, v). The quality of the lower
bounds highly depends on the quality of the selected landmarks.

Considering all landmarks for the computation of a lower bound is time-
consuming. Instead, for each s-t query only two landmarks—one ‘before’
the source and one ‘behind’ the target—are initially used. At certain check-
points it is decided whether to add an additional landmark to the set of active
landmarks.

Landmark-Selection. A crucial point in the success of ALT is the qual-
ity of landmarks. Since finding good landmarks is hard, several heuristics
[29, 32] exist. One technique that provides particular good landmarks is
maxCover. Unfortunately, its application is rather expensive: Calculating
maxCover landmarks on our Western European road network takes about
75 minutes, while constructing the whole highway hierarchy can be done in
about 15 minutes. A promising approach is to use the highway hierarchy
to reduce the number of possible landmarks: The level-1 core of the Euro-
pean network has six times fewer nodes than the original network and its
construction takes only about three minutes. Using the core as possible po-
sitions for landmarks, the computation time for calculating landmarks can
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be decreased.4 Using only the nodes of higher level cores reduces the time
for selecting landmarks even more. Figure 3.15 shows an example of 16
landmarks, generated on the level-1 core of the European network.

Figure 3.15: 16 core-1 landmarks on the Western European road network.

3.6.2 Combining Highway Hierarchies and A∗ Search

Previously (see Section 3.4.2), we strictly separated the search phase to the
topmost core from the access to the distance table: first, the sets of entrance
points

−→
I and

←−
I into the core of the topmost level were determined, and

afterwards the table look-ups were performed. Now we interweave both
phases: whenever a forward core entrance point u is discovered, it is added
to
−→
I and we immediately consider all pairs (u, v), v ∈ ←−I , in order to check

whether the tentative shortest path length d′ can be improved. (An analogous
procedure applies to the discovery of a backward core entrance point.) This
new approach is advantageous since we can use the tentative shortest path
length d′ as an upper bound on the actual shortest path length.

4This applies to all known heuristics, not only to maxCover.
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In [69, 70], the highway query algorithm used a strategy that compares
the minimum elements of both priority queues and prefers the smaller one
in order to sequentialise forward and backward search. If we want to obtain
good upper bounds very fast, this might not be the best choice. For example,
if the source node belongs to a densely populated area and the target to
a sparsely populated area, the distances from the source and target to the
entrance points into the core of the topmost level will be very different.
Therefore, we now choose a strategy that balances |−→I | and |←−I |, preferring
the direction that has encountered less entrance points. In case of equality
(in particular, in the beginning when |−→I | = |←−I | = 0), we use a simple
alternating strategy.

We enhance the highway query algorithm with goal-directed
capabilities—obtaining an algorithm that we call HH∗ search—by replac-
ing edge weights by reduced costs using potential functions πf and πr for
forward and backward search. By this means, the search is directed towards
the respective target, i.e., we are likely to find some s-t path very soon.
However, just using the reduced costs only changes the order in which the
nodes are settled, it does not reduce the search space. The ideal way to ben-
efit from the early encounter of the forward and backward search would be
to abort the search as soon as an s-t path has been found. And, as a mat-
ter of fact, in case of the ALT algorithm [29]—even in combination with
reach-based routing [26]—it can be shown that an immediate abort is possi-
ble without losing correctness if consistent potential functions are used. In
contrast, this does not apply to the highway query algorithm since even in
the non-goal-directed variant of the algorithm, we cannot abort when both
search scopes have met (see Section 3.4.2).

Fortunately, there is another aspect of goal-directed search that can be
exploited, namely pruning: finding any s-t path also means finding an upper
bound d′ on the length of the shortest s-t path. Comparing the lower bounds
with the upper bound can be used to prune nodes: if the key of a settled node
u is greater than the upper bound, we do not have to relax u’s edges. Note
that, using reduced costs, the key of u is the distance from the corresponding
source to u plus the lower bound on the distance from u to the corresponding
target.

Since we do not abort when both search scopes have met and because
we have the distance table, a very simple implementation of the ALT algo-
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rithm is possible. First, we do not have to use consistent potential functions.
Instead, we directly use the lower bound to the target as potential for the for-
ward search and, analogously, the lower bound from the source as potential
for the backward search. These potential functions make the search pro-
cesses approach their respective target faster than using consistent potential
functions so that we get good upper bounds very early. In addition, the node
pruning gets very effective: if one node is pruned, we can conclude that all
nodes left in the same priority queue will be pruned as well since we use the
same lower bound for pruning and for the potential that is part of the key in
the priority queue. Hence, in this case, we can immediately stop the search
in the corresponding direction.

Second, it is sufficient to select at the beginning of the query for each
search direction only one landmark that yields the best lower bound. Since
the search space is limited to a relatively small local area around source and
target (due to the distance table optimisation), we do not have to pick more
landmarks, in particular, we do not have to add additional landmarks in the
course of the query, which would require flushing and rebuilding the priority
queues. Thus, adding A∗ search to the highway query algorithm (including
the distance table optimisation) causes only little overhead per node.

However, there is a considerable drawback. While the goal-directed
search (which gives good upper bounds) works very well, the pruning is not
very successful when we want to compute fastest paths, i.e., when we use
a travel time metric, because then the lower bounds are usually too weak.
Figure 3.16 gives an example for this observation, which occurs quite fre-
quently in practice. The first part of the shortest path from s to t corresponds
to the first part of the shortest path from s to the landmark u. Thus, the re-
duced costs of these edges are zero so that the forward search starts with
traversing this common subpath. The backward search behaves in a similar
way. Hence, we obtain a perfect upper bound very early (a). Still, the lower
bound on d(s, t) is quite bad: we have d(s, u) − d(t, u) ≤ d(s, t). Since
staying on the motorway and going directly from s to u is much faster than
leaving the motorway, driving through the countryside to t and continuing
to u, the distance d(s, t) is clearly underestimated. The same applies to
lower bounds on d(v, t) for nodes v close to s. Hence, pruning the forward
search does not work properly so that the search space still spreads into all
directions before the process terminates (b). In contrast, the node s lies on
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the shortest path (in the reverse graph) from t to the landmark that is used
by the backward search. (Since this landmark is very far away to the south,
it has not been included in the figure.) Therefore, the lower bound is perfect
so that the backward search stops immediately. However, this is a fortunate
case that occurs rather rarely.

(a) (b)

Figure 3.16: Two snapshots of the search space of an HH∗ search using
a travel time metric. The landmark u of the forward search from s to t is
explicitly marked. The landmark used by the backward search is somewhere
below s and not included in the chosen clipping area. The search space is
black, parts of the shortest path are represented by thick lines. In addition,
motorways are highlighted.

Approximate Queries. We pointed out above that in most cases we find

a (near) shortest path very quickly, but it takes much longer until we know

that the shortest path has been found. We can adapt to this situation by
defining an abort condition that leads to an approximate query algorithm:
when a node u is removed from the forward priority queue and we have
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(1 + ε) · (d(s, u) + d(u, t)) > d′ (where ε ≥ 0 is a given parameter), then
the search is not continued in the forward direction. In this case, we may
miss some s-t-paths whose length is≥ d(s, u)+d(u, t) since the key of any
remaining element v in the priority queue is ≥ d(s, u) + d(u, t) and it is a
lower bound on the length of the shortest path from s via v to t. Thus, if the
shortest path is among these paths, we have d(s, t) ≥ d(s, u) + d(u, t) >
d′/(1+ε), i.e., we have the guarantee that the best path that we have already
found (whose length corresponds to the upper bound d′) is at most (1 + ε)
times as long as the shortest path. An analogous stopping rule applies to the
backward search.

Better Upper Bounds. We can use the distance table to get good upper
bounds even earlier. So far, the distance table has only been applied to en-
trance points into the core V ′L of the topmost level. However, in many cases
we encounter nodes that belong to V ′L earlier during the search process.
Even the source and the target node could belong to the core of the topmost
level. Still, we have to be careful since the distance table only contains the
shortest path lengths within the topmost core and a path between two nodes
in V ′L might be longer if it is restricted to the core of the topmost level instead
of using all edges of the original graph. This is the reason why we have not
used such a premature jump to the highest level before. But now, in order to
just determine upper bounds, we could use these additional table look-ups.
The effect is limited though because finding good upper bounds works very
well anyway—the lower bounds are the crucial part. Therefore, the exact
algorithm does without the additional look-ups. The approximate algorithm
applies this technique to the nodes that remain in the priority queues after
the search has been terminated since this might improve the result.5 For
example, we would get an improvement if the goal-directed search led us to
the wrong motorway entrance ramp, but the right entrance ramp has at least
been inserted into the priority queue.

Reducing Space Consumption. We can save preprocessing time and
memory space if we compute and store only the distances between the land-
marks and the nodes in the core of some fixed level k. Obviously, this has

5In a preliminary experiment, the total error observed in a random sample was reduced
from 0.096% to 0.053%.
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the drawback that we cannot begin with the goal-directed search immedi-
ately since we might start with nodes that do not belong to the level-k core
so that the distances to and from the landmarks are not known. Therefore,
we introduce an additional initial query phase, which works as a normal
highway query and is stopped when all entrance points into the core of level
k have been encountered. Then, we can determine the distances from s to
all landmarks since the distances from s via the level-k core entrance points
to the landmarks are known. Analogously, the distances from the landmarks
to t can be computed. The same process is repeated for interchanged source
and target nodes—i.e., we search forward from t and backward from s—in
order to determine the distances from t to the landmarks and from the land-
marks to s. Note that this second subphase can be skipped when the first
subphase has encountered only bidirected edges.

The priority queues of the main query phase are filled with the entrance
points that have been found during (the first subphase of) the initial query
phase. We use the distances from the source or target node plus the lower
bound to the target or source as keys for these initial elements. Since we
never leave the level-k core during the main query phase, all required dis-
tances to and from the landmarks are known and the goal-directed search
works as usual. The final result of the algorithm is the shortest path that has
been found during the initial or the main query phase.

3.7 Concluding Remarks

Review. Highway hierarchies are the first route planning technique that
was able handle the road network of a whole continent, achieving speedups
of more than a factor 1 000 compared to Dijkstra’s algorithm. They offer a
good compromise between preprocessing time, memory consumption, and
query time. In particular w.r.t. preprocessing time, they are superior to prac-
tically any other method that achieves significant speedups. The facts that
they can handle all types of queries efficiently, that we can give per-instance
worst-case guarantees, and that a few tuning parameters can be used to
obtain different trade-offs between memory consumption and query times
make highway hierarchies applicable in a wide range of applications. The
most significant drawback, however, is that—in contrast to highway-node
routing (Chapter 4)—(so far) highway hierarchies cannot handle dynamic
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scenarios accurately.6

In addition to being useful by themselves, highway hierarchies inspired
various other speedup techniques or even constitute a starting point for them.
In particular, this is true for the methods presented in Chapters 4–6. More-
over, Goldberg et al. adopted the shortcut concept in order to improve both
preprocessing and query times of reach-based routing (Section 1.2.3).

References. This chapter is based on [75, 69, 70, 17, 68]. In order to
be self-contained, we gave a complete account on highway hierarchies that
also covers parts that have already been included in the Master’s thesis [75]
and thus, are not an official part of this thesis due to formal reasons. The
main advancements of the current version compared to the version from
[75] are listed in Section 1.3.2. The combination of highway hierarchies
with landmark-based A∗ search [17] was a joint work with Daniel Delling
(among others), who particularly attended to the landmark-specific parts,
while the combination itself can be seen as a (non-exclusive) part of this
thesis.

6There is a heuristic approach based on highway hierarchies by Nannicini et al. [65].
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Highway-Node Routing

4.1 Central Ideas

Let us assume that we have identified ‘important’ nodes V ′—which we call
highway nodes—in a given road network and furthermore, let us assume
for a moment that we want to compute shortest paths only between these
highway nodes. One extreme (and trivial) solution would be to just do the
routing in the original graph, the other extreme would be to precompute a
|V ′|×|V ′| distance table. A third possibility is to construct an overlay graph,
i.e., a graph that consists of the node set V ′ and of an edge set such that the
distance in the overlay graph between any node pair (u, v) ∈ V ′×V ′ agrees
with the corresponding distance in the original network. Note that a distance
table can be represented as an overlay graph if we introduce an edge with
the appropriate weight between each node pair. Usually, however, we are
interested in an overlay graph with a minimal edge set. Figure 4.1 gives an
example.

Computing routes between highway nodes using an overlay graph is
usually much faster than doing the routing in the original graph. But such
an overlay graph is even more useful: we can specify a simple bidirectional
query algorithm that works for any node pair (s, t) ∈ V ×V . It is somewhat
similar to the query procedure of highway hierarchies and consists of two
phases: First, we search forwards from the source s and backwards from the
target t until the respective search tree is covered by nodes from V ′, i.e., each
branch of the tree contains at least one node from V ′. Second, we continue
the search in the (hopefully considerably smaller) overlay graph from the
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nodes in V ′ that have been settled during the first phase. An extension of
this general idea to multiple levels suggests itself.

We could think of various ways to determine the highway nodes, which
are obviously a crucial ingredient for an implementation of this new route
planning technique. One good possibility is to use the classification that
is provided by our highway hierarchies approach: nodes in high levels of a
highway hierarchy can be considered as more important than nodes in lower
levels. The construction of an overlay graph (for a given node set V ′) can
be done by performing a search from each node u ∈ V ′ until all branches of
the search tree are covered. We pick on each branch the node v ∈ V ′ closest
to the root u and add an edge (u, v) with the distance that corresponds to

2

2 2
1

2

x

vu

Figure 4.1: A minimal overlay graph (shaded nodes, dashed edges, ex-
plicitly given edge weights) of the depicted graph (solid edges, unit edge
weights). Note that a direct edge (u, v) is not required since a shortest path
from u to v is already represented by the edges (u, x) and (x, v).

2

2

u

v′

v

Figure 4.2: A local search as part of an overlay graph construction process.
The search is started from u, thick edges belong to the search tree, shaded
nodes belong to V ′. The search can be stopped when v and v′ have been
settled. Two edges (u, v) and (u, v′) (dashed) are added to the overlay graph.
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the length of the path from u to v in the search tree. For an example, refer
to Figure 4.2. It turns out that certain tricks are required to get an approach
that works efficiently in real-world road networks, which contain some nasty
elements like long-distance ferry connections.

4.2 Covering Paths

The concept of covering paths plays a central role for highway-node routing.
Before using it extensively in Section 4.3, we introduce it here in a general
way.

4.2.1 Canonical Shortest Paths

For a given graph G = (V,E), U(G) is a set of canonical shortest paths

if it contains for each connected pair (s, t) ∈ V × V exactly one unique
shortest path from s to t such that P = 〈s, . . . , s′, . . . , t′, . . . , t〉 ∈ U(G)
implies that P |s′→t′ ∈ U(G).

It is easy to see that Dijkstra’s algorithm always finds canonical shortest
paths if we have a total order on the nodes and, in case of ambiguities, prefer
the parent node with the smaller rank.

4.2.2 Basics

Covering-Paths Set. We consider a graph G = (V,E), a node subset
V ′ ⊆ V , a node s ∈ V , and a set C ⊆ {〈s, . . . , u〉 | u ∈ V ′} of paths in G.

Definition 9 The set C is a covering-paths set of s w.r.t. V ′ if for any node

t ∈ V ′ that can be reached from s, there is a node u ∈ V ′ on some shortest

s-t-path P such that P |s→u ∈ C , i.e.,

P = 〈s, . . . ,
∈V ′

︷︸︸︷
u︸ ︷︷ ︸

∈C

, . . . ,

∈V ′

︷︸︸︷
t 〉.

Definition 10 A covering-paths set C is a canonical covering-paths set if

for any node t ∈ V ′ that can be reached from s, there is a node u ∈ V ′ on

the canonical shortest s-t-path P such that P |s→u ∈ C .

Note that {P = 〈s, . . . , u〉 | P ∈ U(G) ∧ u ∈ V ′} is a trivial canonical
covering-paths set.



96 Chapter 4. Highway-Node Routing

The crucial subroutine of all algorithms in the subsequent sections takes
a graph G, a node set V ′, and a root s and determines a set of canonical cov-
ering paths. In the process, there are two conflicting objectives: the compu-
tation should be as fast as possible and the resulting set should be as small as
possible. In the following, we present a generic algorithm and four concrete
instantiations that allow different trade-offs between these objectives.

Local Search. We consider Dijkstra’s algorithm that has been modified
as described above so that it determines canonical shortest paths. During a
Dijkstra search from s, we say that a settled node u is covered by a node
set V ′ if there is at least one node v ∈ V ′ on the path from the root s to u.
A queued node is covered by V ′ if its tentative parent is covered by V ′.
The current search tree B is covered by V ′ if all currently queued nodes are
covered by V ′.

A local Dijkstra search is a Dijkstra search with an additional pruning
rule that allows for not continuing the search from certain nodes that are
covered or that have been settled on a suboptimal path. “Not continuing” the
search from a node u means that u’s edges are not relaxed when u is settled.
Subsequently, we will introduce four different concrete pruning rules, but at
first, in the following lemma, we deal with the general case.

Lemma 14 Consider a node set V ′ and a local Dijkstra search from a

node s that yields a search tree B. We define C to consist of all paths

〈s, . . . , v〉 in B with an endpoint v ∈ V ′ that has no parent in B that is

covered by V ′. Then, C is a canonical covering-paths set of s w.r.t. V ′.

Proof. Consider any node t ∈ V ′ that can be reached from s and the canon-
ical shortest s-t-path P . If P contains no covered node, the search cannot
have been pruned at any node on P since P is a shortest path. Hence, P
belongs to B and, thus, to C as well since t ∈ V ′ does not have a covered
parent in B. Otherwise (if there is a covered node on P ), consider the first
covered node v on P that does not have a covered parent. Such a node al-
ways exists since the root s has no parent at all. We can conclude that all
nodes u ≺ v on P are not covered and, consequently, that the search has
not been pruned at any node u ≺ v. Hence, P |s→v belongs to B. Moreover,
v ∈ V ′. Hence, P |s→v ∈ C . �
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4.2.3 Conservative Approach

The conservative variant (Figure 4.3 (a)) works in the obvious way: the
search from s is stopped (i.e., all remaining nodes in the queue are pruned)
as soon as the current search tree B is covered. This yields a canonical
covering-paths set close to the optimum.1 However, if B contains one path
that is not covered for a long time, B can get very big even though all other
branches might have been covered very early. Therefore, it takes a long time
until the local search terminates. In our application, this is a critical issue in
particular due to long-distance ferry connections.

4.2.4 Aggressive Approach

As an overreaction to the above observation, we might want to define an
aggressive variant that prunes the search at every covered node, i.e., some
branches can be terminated early, while only the non-covered paths are fol-
lowed further on. Unfortunately, this provokes two problems. First, the
covering-paths set gets unnecessarily big.2 Second, the tree B can get even
bigger since the search might continue around the nodes where we pruned
the search.3 In our example (Figure 4.3 (b)), the search is pruned at u so
that v is reached using a much longer path that leads around u. As a conse-
quence, the path to w is superfluously marked as a covering path.

4.2.5 Stall-in-Advance Technique

If we decide not to prune the search immediately, but to go on ‘for a while’
in order to stall other branches, we obtain a compromise between the con-
servative and the aggressive variant, which we call stall-in-advance. One
heuristic we use prunes the search at node z when the path explored from
s to z contains a nodes of V ′ for some tuning parameter a. Note that for

1In order to guarantee that the minimal set is found, we would have to slightly change
the tie-breaking rule that decides the case that a node can be reached on different shortest
paths: if there is a choice, we have to prefer the already covered parent. This variant has
been introduced and proven correct in [37, 38].

2In Section 4.3.3, we will explain how to reduce such a covering-paths set rather effi-
ciently in order to obtain a minimal set.

3Note that the separator-based approach virtually uses the aggressive variant. This is
reasonable since the search can never ‘escape’ the component where it started.
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a := 1, the stall-in-advance variant corresponds to the aggressive variant. In
our example (Figure 4.3 (c)), we use a := 2. Therefore, the search is pruned
not until w is settled. This stalls the edge (s, v) and, in contrast to (b), the
node v is covered. Still, the search is pruned too early so that the edge (s, x)
is used to settle x.

4.2.6 Stall-on-Demand Technique

In the stall-in-advance variant, relaxing an edge leaving a covered node
is based on the ‘hope’ that this might stall another branch. However, our
heuristic is not perfect, i.e., some edges are relaxed in vain, while other
edges which would have been able to stall other branches, are not relaxed.
Since we are not able to make the perfect decision in advance, we introduce
a fourth variant, namely stall-on-demand. It is an extension of the aggres-
sive variant, i.e., the search is pruned immediately at all covered nodes. We
introduce a new concept, called stalling process. It can be started from a
node u that has been pruned earlier. The goal is to identify nodes that have
been reached on a suboptimal path. We can prove that this is the fact for a
node v if there is a path from s via u to v that is shorter than the best path to v

s v w x yu s u v w x y

(a) conservative (b) aggressive

s u v w x y
stall

wake

s u v w x y

(c) stall-in-advance (d) stall-on-demand

Figure 4.3: Simple example for the computation of covering paths. We
assume that all edges have weight 1 except for the edges (s, v) and (s, x),
which have weight 10. In each case, the search process is started from s. The
set V ′ consists of all nodes that are represented by a square. Thick edges
belong to the search tree B. Endpoints of the computed covering paths are
highlighted in grey. Note that the minimal covering-paths set contains only
the path to u.
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found so far. In order to find such witness paths, we perform a search from u
considering reached nodes. This search is continued only from nodes whose
suboptimality can be proven. Such nodes are marked as stalled. The main
search is pruned not only at covered nodes (as mentioned above), but also
at stalled nodes. A stalling process from u can be invoked by an adjacent
node v—we say that v wakes u—if there is an edge (u, v) that is relaxed
from v.4 In our example (Figure 4.3 (d)), the search is pruned at u. When
v is settled, we assume that the edge (v,w) is relaxed first. Then, the edge
(v, u) wakes the node u. A stalling process is started from u. The nodes v
and w are marked as stalled. When w is settled, its outgoing edges are not
relaxed. Similarly, the edge (x,w) wakes the stalled node w and another
stalling process is performed.

Algorithmic Details. We implement the stalling process as a breadth-first
search (BFS) instead of a shortest-path search since a BFS causes less over-
head and yields almost the same stalling effect (as preliminary experiments
indicate). We store the length of the corresponding witness path at each
stalled node. If such a node is woken up later, we can start the stalling
process based on this witness path (instead of the path that was found orig-
inally, which is longer and, thus, less qualified to stall further nodes). Note
that if we mark a queued node as stalled, it can happen that it is reached later
on (before it is settled) by the main search on a shorter path. In this case,
we have to remove the stalled-marker. As an optimisation, we do not add
paths whose endpoint has been stalled to the covering-paths set. It is obvi-
ous that omitting such suboptimal paths does not invalidate the correctness
of Lemma 14.

4.3 Static Highway-Node Routing

4.3.1 Multi-Level Overlay Graph

Overlay Graph. An overlay graph of a given graph consists of a subset of
the nodes and an edge set that has the property that shortest path distances
are preserved. More formally, for a given graph Gℓ and a node set Vℓ+1, the

4We only wake up u if there is a backward edge from v to u because if there was only a
forward edge (v, u), it could not be part of a witness path from s via u to v.
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graph Gℓ+1 = (Vℓ+1, Eℓ+1) is an overlay graph of Gℓ if for all (u, v) ∈
Vℓ+1 × Vℓ+1, we have dℓ+1(u, v) = dℓ(u, v), where dℓ(u, v) := dGℓ

(u, v)
denotes the distance from u to v in Gℓ. One way to define the edge set
Eℓ+1 with the desired property is to use the covering-paths concept as it is
shown in the following lemma. Note that this is similar to the corresponding
definition in [37, 38].

Lemma 15 Consider a graph Gℓ and a node set Vℓ+1. For any node u ∈
Vℓ+1, let C(u) denote a canonical covering-paths set of u w.r.t. Vℓ+1 \ {u}.
Then, Gℓ+1 := (Vℓ+1, {(u, v) | u ∈ Vℓ+1 ∧ 〈u, . . . , v〉 ∈ C(u)}) with

w(u, v) := w(〈u, . . . , v〉) is an overlay graph of Gℓ.

Proof. We consider an arbitrary node pair (u, v) ∈ Vℓ+1 × Vℓ+1. Since all
edges in Eℓ+1 represent paths in Gℓ, we have dℓ+1(u, v) ≥ dℓ(u, v). Thus,
if dℓ(u, v) = ∞, we also have dℓ+1(u, v) = ∞. Subsequently, we assume
dℓ(u, v) 6= ∞. We do an inductive proof over the number i of nodes from
Vℓ+1 on the canonical shortest u-v-path.
Base Case: i = 1, i.e., u = v. Trivial.
Induction Step: 1, . . . , i → i + 1. Consider a node pair (u, v) ∈ Vℓ+1 ×
Vℓ+1 whose canonical shortest u-v-path P has i + 1 nodes from Vℓ+1. The
definition of the canonical covering-paths set C(u) implies that there is a
node x ∈ Vℓ+1 \ {u} on P such that P |u→x ∈ C(u). From P ∈ U(Gℓ),
it follows that P |x→v ∈ U(Gℓ). Moreover, P |x→v contains at most i nodes
from Vℓ+1. Due to the induction hypothesis, we have dℓ+1(x, v) = dℓ(x, v).

The definition of Gℓ+1 implies that there is an edge (u, x) ∈ Eℓ+1 with
w(u, x) = w(P |u→x) = dℓ(u, x). Summing up, we have dℓ+1(u, v) ≤
w(u, x) + dℓ+1(x, v) = dℓ(u, x) + dℓ(x, v) = dℓ(u, v), which implies
dℓ+1(u, v) = dℓ(u, v). �

Multi-Level Overlay Graph. The overlay graph definition can be applied
iteratively to define a multi-level hierarchy. For given highway-node sets

V =: V0 ⊇ V1 ⊇ . . . ⊇ VL, we define the multi-level overlay graph

G = (G0, G1, . . . , GL) in the following way: G0 := G and for each ℓ ≥ 0,
Gℓ+1 is the overlay graph of Gℓ. The level ℓ(u) of a node u ∈ V is max{ℓ |
u ∈ Vℓ}. Analogously, the level ℓ(u, v) of an edge (u, v) ∈ ⋃L

i=0 Ei is
max{ℓ | (u, v) ∈ Eℓ}. Again, these definitions are similar to those in
[37, 38].
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4.3.2 Node Selection

We can choose any highway-node sets to get a correct procedure. However,
this choice has a big impact on preprocessing and query performance.

Let us consider a Dijkstra search from some node in a road network.
We observe that some branches are very important—they extend through
the whole road network—, while other branches are stalled by the more im-
portant branches at some point. For instance, there might be all types of
roads (motorways, national roads, rural roads) that leave a certain region
around the source node, but usually the branches that leave the region via
rural roads end at some point since all further nodes are reached on a faster
path using motorways or national roads. We want to exploit this observa-
tion: not all nodes that separate different regions are selected as highway
nodes, but only the nodes on the important branches. Note that this is a cru-
cial distinction from the separator-based multi-level method.5 In order to
classify the nodes by importance, we employ our highway hierarchies ap-
proach: we use the set of level-ℓ core nodes of the highway hierarchy of G
as highway-node set Vℓ.

4.3.3 Construction

The multi-level overlay graph is constructed in a bottom-up fashion. In order
to construct level ℓ > 0, we determine for each node u ∈ Vℓ a canonical
covering-paths set C(u) in Gℓ−1 w.r.t. Vℓ \ {u} using one of the methods
from Section 4.2 and apply Lemma 15.

Edge Reduction. Optionally, we can apply the following reduction step

to eliminate edges from Eℓ that are superfluous: for each node u ∈ Vℓ,
we perform a search in Gℓ (instead of Gℓ−1) until all adjacent nodes have
been settled. If there is a tie during the search, we prefer the path that
contains more nodes. Then, we can remove any edge (u, v) whose target
v has been settled via a path that consists of more than one edge since a
(better) alternative that does not require the edge (u, v) has been found.

5More details on differences from the separator-based approach can be found in Sec-
tion 4.3.5.
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Lemma 16 Applying the edge reduction step to an overlay graph Gℓ of

Gℓ−1 yields a minimal overlay graph G′ℓ of Gℓ−1.

Proof.6 Obviously, removing only edges (u, v) from Gℓ that can be replaced
by using a different path P from u to v with w(P ) ≤ w(u, v) does not
invalidate the overlay graph property. We still have to show minimality.
Assume that there is an overlay graph G′′ℓ with |E′′ℓ | < |E′ℓ|. Hence, there
is some edge (u, v) in E′ℓ \ E′′ℓ . Since G′ℓ and G′′ℓ are overlay graphs of
the same graph Gℓ−1, distances in G′ℓ are equal to distances in G′′ℓ . Hence,
there is some shortest u-v-path P ′′ in G′′ℓ with w(P ′′) ≤ w(u, v). From
(u, v) 6∈ E′′ℓ , it follows that P ′′ has at least one interior node x. Furthermore,
the shortest path P ′ in G′ℓ from u via x to v has the same length as P ′′. Thus,
w(P ′) = w(P ′′) ≤ w(u, v). This implies that (u, v) is removed by the edge
reduction step, i.e., (u, v) 6∈ E′ℓ, which is a contradiction. �

4.3.4 Query

Level-Synchronised Variant. The query algorithm is a symmetric
Dijkstra-like bidirectional procedure, which works in a bottom-up fashion.
To get a first intuition, we can think of the following algorithm that is syn-
chronised by search level. We give a description only for the forward search.
First, we search in level 0, i.e., we determine a covering-paths set of the
source node s in G0 w.r.t. V1 using one of the methods from Section 4.2.
Then, we search level 1, i.e., for each endpoint u of a covering path, we
determine the covering-paths set C(u) of u in G1 w.r.t. V2. After that, we
search level 2, starting from all endpoints of paths in

⋃
C(u). And so on.

Forward and backward search are interleaved. We keep track of a ten-
tative shortest-path length (which is initially set to∞) resulting from nodes
that have been settled in both search directions. We abort the forward (back-
ward) search when all keys in the forward (backward) priority queue are
greater than the tentative shortest-path length.

Asynchronous, Aggressive Variant. The level-synchronised variant de-
scribed above would be rather inefficient since it does not pay attention to
the fact that the search reaches the level borders in an irregular way: while

6This proof has been inspired by the proof of Theorem 2.2 in [38].
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at one side of the search frontier the covering paths might be found very
early, this might not be the case at a different side. We should allow the
search process to proceed in higher levels even if the search in a lower level
has not been completed yet; in other words, we prefer an asynchronous vari-
ant. It is convenient to describe such an asynchronous algorithm based on
the aggressive approach (Section 4.2.4) in the following way: We define the
forward search graph

−→G := (V, {(u, v) | (u, v) ∈ Eℓ(u)})

and, analogously, the backward search graph

←−G := (V, {(u, v) | (v, u) ∈ Eℓ(u)}).

We perform two normal Dijkstra searches in
−→G and in

←−G . As in the level-
synchronised variant, forward and backward search are interleaved, we keep
track of a tentative shortest-path length and abort the forward/backward
search process not until all keys in the respective priority queue are greater
than the tentative shortest-path length. Note that we are not allowed to abort
the entire query as soon as both search scopes meet for the first time. This
is due to similar reasons as in the case of highway hierarchies (cp. Sec-
tion 3.4.2).

Although it might not be obvious at first glance, this algorithm is based
on the aggressive approach because whenever a node in a higher level ℓ
is settled, we immediately switch to that higher level (by considering only
edges in level ℓ); in other words, we immediately prune7 the search in the
lower level. Figure 4.4 illustrates the query algorithm and gives an intuition
for its correctness. Consider a shortest s-t path P in the original graph
(level 0) and the first and last nodes s1 and t1 on P that belong to V1. Due
to the definition of the overlay graph G1 (level 1), we have d1(s1, t1) =
d0(s1, t1). The same argument can be applied iteratively; in our example,
we also have d2(s2, t2) = d1(s2, t2). Now, consider the path P ′ from s to s1

in the original graph, continuing in G1 to s2, continuing in G2 to t2, in G1 to
t1, and finally in the original graph to t. It is easy to see that w(P ′) = w(P )
and that the first part of P ′ up to t2 belongs to the forward search graph

−→G ,

7Note that pruning is done implicitly due to the definition of the forward and backward
search graphs.
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while the last part starting with s2 belongs to the backward search graph
←−G .

Since s2 and t2 belong to both parts, they can be settled from both sides so
that the shortest path P ′ is found.

∈ −→G ∈ ←−G

s t

Level 1

Level 2

Level 0s1 s2 t2 t1

s1 t1

d0(s1, t1)

d1(s1, t1)

s2 t2

s2 t2

Figure 4.4: Illustration of the query algorithm.

Theorem 6 The asynchronous, aggressive query algorithm is correct.

Proof. The query algorithm terminates since Dijkstra’s algorithm always
terminates. If there is no shortest path from source to target in G, the al-
gorithm will correctly return ∞ since no node is settled from both search
directions: this is due to the fact that only paths in the multi-level over-
lay graph are considered and these paths correspond to paths in the original
graph. Now, consider a node pair (s0, t0) ∈ V × V with d0(s0, t0) 6= ∞
and some shortest s0-t0-path P0 in G0. Note that, trivially, ℓ(x, y) ≥ 0 for
any edge (x, y), s0 � x ≺ y � t0. For each level ℓ from 0 to L − 1
consider the following steps: If Pℓ ∩ Vℓ+1 = ∅, break. Otherwise, let
sℓ+1 and tℓ+1 denote the first and the last node from Vℓ+1 on Pℓ, respec-
tively. (sℓ+1 and tℓ+1 can be equal.) Since Gℓ+1 is an overlay graph
of Gℓ, we have dℓ+1(sℓ+1, tℓ+1) = dℓ(sℓ+1, tℓ+1). Pick a shortest sℓ+1-
tℓ+1-path in Gℓ+1 and replace Pℓ|sℓ+1→tℓ+1

with it; we obtain Pℓ+1. Note
that w(Pℓ+1) = w(Pℓ). Since Pℓ+1|sℓ+1→tℓ+1

is a path in Gℓ+1, we have
ℓ(x, y) ≥ ℓ + 1 for all edges (x, y) on Pℓ+1 between sℓ+1 and tℓ+1.

After the last iteration, where we defined Pi, we set P := Pi and the
meeting point p to ti. Now, it is easy to see that w(P ) = d0(s0, t0), P |s→p

belongs to
−→G , and the reverse path of P |p→t belongs to

←−G . The forward
search is not aborted before p is settled because up to this point, the tentative
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shortest path distance is at least w(P ) and the minimum key in the priority
queue is at most w(P |s→p) ≤ w(P ). The same argument applies to the
backward search. Hence, p is settled from both search directions, which
implies that the algorithm returns the correct result. �

Note that we may either discard all edges that do not belong to the
forward or backward search graph and perform the search on the remain-
ing graph (which is exactly what we described above) or we can keep all
edges and make sure that only edges that belong to the search graph are re-
laxed by introducing an explicit level check. The former variant is simpler,
more space-efficient, and faster since we can do without the additional level
checks. The latter variant, however, is more flexible since keeping all edges
and level data allows modifications to the multi-level overlay graph as they
are needed in dynamic scenarios (Section 4.4).

We can also obtain a unidirectional variant of the query algorithm using
techniques originally introduced to handle dynamic scenarios. For details,
see Section 4.4.2.

Stall-on-Demand. The integration of the stall-on-demand technique (Sec-
tion 4.2.6) is straightforward. Note that if we have kept only the forward
and backward search graphs, then a small problem arises: Let us consider
the forward search. When a node v wakes a node u so that u can stall v,
then the edge (u, v) does not belong to the forward search graph. Thus, if
we just started the stalling process from u, it would fail. Fortunately, there is
a simple workaround: since the reverse edge (v, u) belongs to the backward
search graph and is used to wake u, the required data is available and we
only have to make sure that it is used appropriately.

Obviously, pruning the search at nodes that have been demonstrably
settled via a suboptimal path cannot invalidate the correctness proven in
Theorem 6 since a continuation of the search from these nodes can never
contribute to a shortest path.

Outputting Complete Path Descriptions. In order to output a complete
description of the computed shortest path, we have to unpack the edges of
the overlay graphs in order to obtain the represented subpaths in the original
graph. This can be done using the same techniques as for highway hierar-
chies (see Section 3.4.3).
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4.3.5 Analogies and Differences To Related Techniques

In this section, we want to compare the highway-node routing approach
with two related techniques, pointing out some analogies and differences.
The goal is to convey some intuition of the relation between the discussed
techniques, without making accurate and provable propositions.

Separator-Based Multi-Level Method. In contrast to highway-node
routing, in the separator-based multi-level approach all nodes that separate
different regions are selected, which leads to a comparatively high aver-
age node degree. This has a negative impact on the performance. Let us
consider the ‘old’ multi-level method with the new selection strategy, i.e.,
only ‘important’ nodes are selected. Then, the graph is typically not de-
composed into many small components so that the following performance
problem arises in the query algorithm. From the highway/separator nodes,
only edges of the overlay graph are relaxed. As a consequence, the unim-
portant branches are not stalled by the important branches. Thus, since the
separator nodes on the unimportant branches have not been selected, the
search might extend through large parts of the road network.

To sum up, there are two major steps to get from the separator-based
method to our approach: first, select only ‘important’ nodes and second, at
highway/separator nodes, do not switch immediately to the next level, but
keep relaxing low-level edges ‘for a while’ until you can be sure that slow
branches have been stalled (stall-in-advance, Section 4.2.5) or employ the
stall-on-demand technique (Section 4.2.6).

Highway Hierarchies. We use the preprocessing of the highway hierar-
chies in order to select the highway nodes for our new approach. However,
this is not the sole connection between both methods. In fact, we can in-
terpret highway-node routing as some kind of special case of the highway
hierarchy approach. In this paragraph, we denote the highway-node sets by
S0, S1, . . . , SL instead of V0, V1, . . . , VL to avoid notational conflicts with
the highway hierarchies. For given highway-node sets, consider the follow-
ing highway hierarchy: To construct the highway network Gℓ+1 of a graph
G′ℓ (for 0 ≤ ℓ < L), we set the neighbourhood radii of any node u ∈ V ′ℓ
to zero. This virtually means that Gℓ+1 = G′ℓ. To specify the core G′ℓ of a
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highway network Gℓ (for 1 ≤ ℓ ≤ L), we set Bℓ to Vℓ \ Sℓ, which implies
V ′ℓ = Sℓ. Note that due to its definition, the core G′ℓ is an overlay graph of
Gℓ (though not a minimal one). A query in this highway hierarchy would
basically settle the same nodes as a highway-node query without using the
stall-on-demand technique, which is an important add-on of highway-node
routing.

In a sense, highway-node routing is a logical advancement of highway
hierarchies: We started with the highway hierarchies concept as presented
in Section 3.2, i.e., we iteratively first construct a highway network and then
contract it. In our experiments (see Section 7.4.1), however, we observed
that we get particularly good results when starting with a contraction step,
followed by alternating construction and contraction steps. In order to start
with a contraction step without changing the implementation, we set the
neighbourhood radii of all nodes to zero so that the first construction step
had no effect and we virtually started with the contraction of the original
graph. In case of the highway-node routing approach, this ‘trick’ is now
applied to all levels.

Note that our highway-node routing implementation reuses large parts
of the highway hierarchies program code. However, we do not just reduce
highway-node routing to a special case of highway hierarchies since, for
example, dealing with trivial neighbourhood radii would cause unnecessary
overhead.

4.4 Dynamic Highway-Node Routing

Subsequently, we deal with two different dynamic scenarios. First, we want
to switch to a different cost function, which means that potentially all edge
weights change. For example, a cost function can take into account differ-
ent weightings of travel time, distance, scenic value, and fuel consumption.
With respect to travel time, we can think of different profiles of average
speeds for each road category. In addition, for certain vehicle types there
might be restrictions on some roads (e.g., bridges and tunnels).

Second, we want to cope with unexpected incidents, like traffic jams,
which influence the expected travel time of a certain road or several roads in
some area. That means, a single or a few edge weights change. Here, we can
distinguish between a server scenario and a mobile scenario: In the former,
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a server has to react to incoming events by updating its data structures so that
any point-to-point query can be answered correctly; in the latter, a mobile
device has to react to incoming events by (re)computing a single point-to-
point query taking into account the new situation. In the server scenario,
it pays to invest some time to perform the update operation since a lot of
queries depend on it. In the mobile scenario, we do not want to waste time
for updating parts of the graph that are irrelevant to the current query.

4.4.1 Changing the Entire Cost Function

The more time-consuming part of the preprocessing is the determination
of the highway-node sets. We observe that, when we switch to a different
‘reasonable’ cost function, properties of the road network (like the inher-
ent hierarchy) are possibly weakened, but not completely destroyed or even
inverted. For instance, both a truck and a sports car—despite going differ-
ent speeds—drive faster on a motorway than on an urban street. Thus, we
can still expect a good query performance when keeping the highway-node
sets and completely recomputing only the overlay graphs. In order to do
so, we do not need any additional data structures. We can directly use the
static approach from Section 4.3 omitting the first preprocessing step (the
determination of the highway-node sets).

4.4.2 Changing a Few Edge Weights

Server Scenario. Similar to an exchange of the cost function, when a sin-
gle or a few edge weights change, we keep the highway-node sets and up-
date only the overlay graphs. In this case, however, we do not have to repeat
the complete construction from scratch, but it is sufficient to perform the
construction step only from nodes that might be affected by the change.
Certainly, a node v whose search tree of the initial construction does not
contain any node u of a modified edge (u, x) is not affected: if we repeated
the construction step from v, we would get exactly the same search tree and,
consequently, the same result.

During the first construction (and all subsequent update operations), we
manage sets Aℓ

u of nodes whose level-ℓ preprocessing might be affected
when an outgoing edge of u changes: when a level-ℓ construction step from
some node v is performed, we add v to Aℓ

u for each node u in the search tree
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whose edges are relaxed.8 Note that these sets can be stored explicitly (as
we do it in our current implementation) or we could store a superset, e.g., by
some kind of geometric container (a disk, for instance). Figure 4.5 contains
the pseudo-code of the update algorithm.

input: set of edges Em with modified weight

define set of modified nodes: V m
0 := {u | (u, v) ∈ Em};

foreach level ℓ, 1 ≤ ℓ ≤ L, do

V m
ℓ := ∅; Rℓ :=

⋃
u∈V m

ℓ−1
Aℓ

u;

foreach node v ∈ Rℓ do

repeat construction step from v;
if something changes, put v to V m

ℓ ;

Figure 4.5: The update algorithm that deals with a set of edge weight
changes.

Mobile Scenario: Single Pass. In the mobile scenario, we only determine
the sets Rℓ of potentially unreliable nodes by using a fast variant of the
update algorithm (Figure 4.5), where from the last two lines only the “put v
to V m

ℓ ” is kept. (Note that in particular the construction step is not repeated.)
Then, for each node u ∈ V , we define the reliable level r(u) := min{i−1 |
u ∈ Ri} with min ∅ := ∞. In order to get correct results without updating
the data structures, the query algorithm has to be modified. First, we do not
relax any edge (u, v) that has been created during the construction of some
level > r(u). Second, if the search at some node u has already reached a
level ℓ > r(u), then the search at this node is downgraded to level r(u).
In other words, if we arrive at some node from which we would have to
repeat the construction step, we do not use potentially unreliable edges, but
continue the search in a sufficiently low level to ensure that the correct path
can be found. We call this the prudent query algorithm.

8 When the stall-in-advance technique is used, some edges are only relaxed to potentially
stall other branches. Upon completion of the construction step, we can identify edges that
have been relaxed in vain, i.e., that were not able to stall other branches. Those edges (x, y)
had no actual influence on the construction and, thus, we need not add v to Aℓ

x.
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Note that the update procedure, which is also used to determine the sets
of potentially unreliable nodes, is performed in the forward direction. Its
results cannot be directly applied to the backward direction of the query. It is
simple to adjust the first modification to this situation (by considering r(v)
instead of r(u) when dealing with an edge (u, v)). Adjusting the second
modification would be more difficult, but fortunately we can completely
omit it for the backward direction. As a consequence, the search process
becomes asymmetric. While the forward search is continued in lower levels
whenever it is necessary, the backward search is never downgraded. If ‘in
doubt’, the backward search stops and waits for the forward search to finish
the job.

More formally, we redefine the forward and backward search graphs in
the following way:

−→G := (V, {(u, v) | (u, v) ∈ Emin(ℓ(u),r(u))}),
←−G := (V, {(u, v) | (v, u) ∈ Eℓ(u) ∧ r(v) ≥ ℓ(u)}).

An example is given in Figure 4.6. We assume that the weight of the
edge (x, t2) has been changed, i.e., Em = {(x, t2)} and V m

0 = {x}.
Furthermore, we have A1

x = {x} and A2
x = {s2, t2}—these sets have

been determined during the construction of the overlay graphs. Apply-
ing the pared-down version of the algorithm in Figure 4.5 then yields
R1 = {x}, V m

1 = {x}, and R2 = {s2, t2}. Consequently, we have
r(x) = 0, r(s2) = r(t2) = 1; the reliable level of all other nodes is ∞.

∈ −→G ∈ ←−G

s t

Level 1

Level 2

Level 0x

x

s1 s2 t2 t1

s1 t1

s2 t2

s2 t2

Figure 4.6: Illustration of the query algorithm in case of a single edge weight
change (mobile scenario, single pass).
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Up to s2, the forward search can proceed as before (cp. Figure 4.4). Then,
since r(s2) = 1, the edge (s2, t2) in level 2 cannot be relaxed, but the search
stays in level 1. At x the search is even downgraded to level 0 so that the
edge (x, t2) is relaxed in the original graph, where it has its correct up-to-
date weight. After that, the forward search can rise again and continue in
level 1. The backward search, however, stops already at t2. According to
the (re)definition of

←−G , neither (t2, s2) nor (t2, x) belongs to the backward
search graph

←−G . Still, the shortest path is found since both search scopes
overlap.

Mobile Scenario: Iterative Variant. Alternatively, we can use an itera-
tive variant of the above approach, provided that we allow only edge weight
increases, which is a very reasonable assumption in particular when we
consider traffic jams. Note that the previous methods do not rely on this
assumption.

Initially, we mark all modified edges so that we can easily decide
whether a given edge has been modified. Then, we set the set Em of mod-
ified edges to ∅. Now, we apply the same algorithm as in the single-pass
variant, i.e., determine the reliable levels and perform the prudent query that
takes the reliable levels into account. It is easy to see that all reliable levels
are∞ so that a normal query is executed, which returns a path length d′. Of
course, this procedure does not necessarily yield correct results. Therefore,
we have to examine the computed path: we determine the represented path
in the original graph and its length d̂ in the original graph, which contains
the up-to-date edge weights. If d′ = d̂, we know that the computed path
does not contain any modified edge. Therefore, since we allowed only edge
weight increases, it must be a shortest path. Otherwise, we have d′ < d̂,
i.e., the path has become longer due to an edge weight update. We add all
marked edges on the path to the set Em and repeat the computation.

In other words, during the first iteration, we ignore all traffic jams, dur-
ing the second iteration, we consider only the traffic jams on the path found
in the first iteration, in the third iteration, we consider the traffic jams on the
paths found in the first two iterations, and so on. In the worst case, we need
as many iterations as modified edges exist. Still, in real-world scenarios,
the iterative variant shows promise since usually only a small fraction of all
current traffic jams affects the own route.
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Unidirectional Query. Interestingly, we can exploit the concepts intro-
duced above to obtain a unidirectional query algorithm (which can be used
in both static and dynamic scenarios). We just have to add the target t to
V m

0 (irrespective of the fact whether some edge (t, x) has been modified or
not). Then, we compute the reliable levels (exactly as above) and apply the
prudent query algorithm. Here, it is sufficient to run the query only in the
forward direction. When the forward search approaches the target, it will
automatically go down to lower levels and finally reach the target since the
edges that would jump over the target have been declared as non-reliable.
An example is given in Figure 4.7. We assume that there is no modified
edge so that Em = ∅ and V m

0 = {t}. Note that we have A1
t = {t1} and

A2
t1 = {t2}. Hence, R1 = {t1}, R2 = {t2}, and thus, r(t1) = 0 and

r(t2) = 1. Consequently, at t2, the forward search is downgraded from
level 2 to level 1, and at t1 from level 1 to level 0 so that t is settled by the
forward search.

∈ −→G

s t

Level 1

Level 2

Level 0s1 s2 t2 t1

s1 t1

s2 t2

s2 t2

Figure 4.7: Illustration of the unidirectional query algorithm.

Note that in order to apply the unidirectional query algorithm, we still
have to know the target node in advance since it is required for the appro-
priate determination of the reliable levels.

4.5 Concluding Remarks

Review. Our experiments (Section 7.6) will confirm that the static variant
of highway-node routing has outstandingly low memory requirements, fast
preprocessing times, and good query performance. Moreover, it is concep-
tually very simple. The query algorithm just corresponds to bidirectional
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Dijkstra enhanced by one straightforward subroutine (the stall-on-demand
technique) that can be implemented in a few lines of code.

More important and innovative, however, is the fact that the approach
can be extended to work in dynamic scenarios: we can react to events like
traffic jams and we can efficiently switch between different cost functions.

Highway-node routing can also be used to instantiate our generic many-
to-many algorithm (Chapter 5) and our generic transit-node routing (Chap-
ter 6), yielding very efficient implementations in both cases.

Future Work. There is room to improve the performance both at the im-
plementation and at the algorithmic level. In particular, better ways to select
the highway-node sets might be found: preliminary experiments using a new
approach indicate that by this means query times and memory consumption
can be further reduced. The preprocessing can be effectively parallelised
since the required local searches can be performed independently of each
other. The memory consumption of the dynamic variant can be consider-
ably reduced by using a more space-efficient representation of the affected
node sets.

Although we have already considered a mobile scenario in case that a
few edge weights change, we do not have an implementation optimised for
a mobile device yet. However, since the search spaces of highway-node
routing are very small and since the hierarchical and geographical structure
allows a favourable arrangement of nodes into memory blocks, we expect
that an efficient realisation is possible.

At the end of Section 4.4.2, we presented a unidirectional variant of the
query algorithm. Unfortunately, this algorithm cannot be applied directly to
time-dependent scenarios where the arrival time (and thus, the exact target
node in a time-expanded representation of the network) is not known in
advance. It is an open question whether we can achieve good performance
when computing the reliable levels w.r.t. several target nodes (e.g., for each
possible arrival time at the given target location).

References. This chapter is based on [76], but also contains several im-
provements that have not been published yet.
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5

Many-to-Many Shortest Paths

5.1 Central Ideas

In contrast to Chapters 3, 4, and 6, here, we do not deal with the point-
to-point variant of the shortest-path problem, but with the many-to-many
variant, i.e., we are given two node sets S and T and we want to compute
the shortest-path distances between all node pairs (s, t) ∈ S × T . In order
to solve this problem, we could just employ, for example, highway-node
routing once for each node pair, meaning that we execute |S| × |T | queries.
Highway-node routing is a bidirectional technique with the additional prop-
erty that forward and backward search proceed completely independently
of each other. That means that in the above example, we would execute |S|
times the same backward search and |T | times the same forward search.1

This observation is the starting point for an efficient many-to-many algo-
rithm. We decide to perform each backward search only once, storing the
resulting search spaces in an appropriate way so that each forward search
(which is executed only once as well) can access the deposited information
on the backward search spaces.

More precisely, we manage a |S| × |T | distance table D, where we ini-
tially set all entries to infinity. For each node u that a backward search from t
encounters, we leave an entry (t,

←−
δ (u)) in some bucket that is associated

with u. (As introduced before,
←−
δ (u) denotes the computed distance from

1provided that we omit the abort-on-success criterion, i.e., that we do not stop the
searches early after forward and backward search have met
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u to t.) During a forward search from a node s ∈ S, we scan the bucket of
each visited node u: For each entry (t,

←−
δ (u)), we add up the just computed

distance
−→
δ (u) from s to u and the stored distance

←−
δ (u) from u to t. The

sum represents the length of a path from s via u to t. If it is less than the
value D[s, t] stored in the table, we improve the table entry. After having
considered all encountered intermediate nodes u, we can be sure that the
table contains the correct distances to all targets t ∈ T .

This algorithm can be further improved by introducing some asymme-
try: It is not necessary that backward and forward searches explore the en-
tire topmost level of the multi-level overlay graph. We can safely prune the
backward searches at nodes that belong to the topmost level, i.e., from these
nodes we do not continue the search within the topmost level. The correct-
ness is not invalidated since the forward searches will find the shortest paths
to the nodes where the backward searches were pruned. By this means, the
backward searches get cheaper and, more importantly, there are significantly
less bucket entries that the forward searches have to scan. In fact, for large
distance tables, the time spent for bucket scanning can become dominating
so that it is reasonable to strengthen the asymmetry, i.e., to choose a lower
level as topmost level: this increases the forward search spaces, but reduces
the number of bucket entries.

Highway-node routing is not the only candidate for constituting the ba-
sis of our many-to-many algorithm. Interestingly, a whole class of shortest-
path algorithms, which we label as bidirectional, Dijkstra-like, and target-
oblivious, comes into question. In the next section, we formally introduce
this class—which the generic version of our many-to-many algorithm (pre-
sented in Section 5.3) relies on. More details on the concrete instantiation
based on highway-node routing (or on the closely related highway hierar-
chies) then can be found in Section 5.4.

5.2 Bidirectional Target-Oblivious Search

Definition 11 A bidirectional Dijkstra-like shortest-path algorithm is an al-

gorithm that determines for given source and target nodes s and t a for-

ward search space −→σ (s, t) ⊆ V × R
+
0 and a backward search space

←−σ (s, t) ⊆ V × R
+
0 such that

d(s, t) = min{x + y | (u, x) ∈ −→σ (s, t) ∧ (u, y) ∈ ←−σ (s, t)}. (5.1)
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Note that min ∅ := ∞. In the general case, both the forward and the back-
ward search space depend on both s and t. For instance, consider the bidi-
rectional version of Dijkstra’s algorithm, which is, of course, the most ob-
vious example for a bidirectional Dijkstra-like shortest-path algorithm. If
s = t, we have −→σ (s, t) = {s}, which is usually not the case if we choose a
different target. Thus, −→σ (s, t) depends on t.

Definition 12 A bidirectional Dijkstra-like shortest-path algorithm is

target-oblivious iff

∀(s, t1, t2) ∈ V 3 : −→σ (s, t1) = −→σ (s, t2) and

∀(s1, s2, t) ∈ V 3 :←−σ (s1, t) =←−σ (s2, t).
(5.2)

In other words, the forward search of a target-oblivious algorithm ‘knows’
nothing about the target, i.e., it proceeds irrespective of the chosen tar-
get. An analogous statement applies to the backward search. Consequently,
when dealing with target-oblivious algorithms, we can just write −→σ (s) and
←−σ (t) instead of −→σ (s, t) and←−σ (s, t).

Bidirectional Dijkstra-like algorithms usually employ some kind of
abort-on-success criterion, taking into account the length d′ of the best short-
est path found so far.2 An algorithm that uses such an abort-on-success cri-
terion cannot be target-oblivious since the forward (backward) search space
size depends on the occurrence of success, which, in turn, depends on the
target (source). This fact has already been illustrated in a previous example,
where we considered bidirectional Dijkstra and the cases s = t and s 6= t.

Moreover, any goal-directed approach cannot be target-oblivious for ob-
vious reasons. Note that this is not a complete exclusion list. For instance,
the bidirectional bound variant of reach-based routing [26] is not target-
oblivious, either, since the pruning rule that is applied during the forward

search takes into account the minimum key in the backward priority queue.
Nevertheless, there are several examples for bidirectional Dijkstra-like

target-oblivious shortest-path algorithms: the bidirectional version of Di-

2The simplest example of such a criterion allows stopping the search as soon as forward
and backward search have settled a common node (i.e., d′ drops below ∞). This simple
criterion applies to the bidirectional version of Dijkstra’s algorithm. For highway hierar-
chies and highway-node routing, we have to use weaker criteria to ensure correctness (cp.
Sections 3.4.2 and 4.3.4).
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jkstra’s algorithm, highway hierarchies, highway-node routing, the self-

bounding variant of reach-based routing [26], and the separator-based multi-
level method [37]—provided that the abort-on-success criterion is omitted
in each case.

5.3 A Generic Algorithm

In a given graph G = (V,E) and for given node sets S, T ⊆ V , we want to
compute the shortest-path distances d(s, t) for all node pairs (s, t) ∈ S×T .
For this problem, we derive a generic algorithm step-by-step, starting with
any bidirectional Dijkstra-like shortest-path algorithm. The final outcome
can be found in Figure 5.3(f). All subsequently listed algorithmic variants
take source and target node sets S and T as input and compute a distance
table D as output such that D[s, t] = d(s, t). Figure 5.1(a) gives a naive
bidirectional many-to-many algorithm. Basically, for each s-t-pair, we per-
form one normal bidirectional query to determine the distance from s to t.

1 foreach s ∈ S do

2 foreach t ∈ T do

(a) 3 compute −→σ (s, t);
4 compute←−σ (s, t);
5 compute D[s, t] according to Equation 5.1;

Figure 5.1: Naive many-to-many algorithm based on any bidirectional
Dijkstra-like shortest-path algorithm.

Lemma 17 The naive bidirectional many-to-many algorithm is correct.

Proof. Follows immediately from Definition 11. �

The first step to get to an efficient many-to-many algorithm is to restrict
ourselves to target-oblivious algorithms. For this subclass of bidirectional
Dijkstra-like shortest-path algorithms, we can restate our naive algorithm
from Figure 5.1(a) in Figure 5.2(b). At first glance, this restriction might
seem counter-intuitive since target-oblivious approaches cannot employ an
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abort-on-success criterion and, thus, are usually less efficient than a cor-
responding ‘target-aware’ variant. However, now, we can exploit the fact
that the forward search space does not depend on t and the backward search
space does not depend on s, which yields an equivalent version (c) of our al-
gorithm (also given in Figure 5.2). Interestingly, this simple transformation
already constitutes the most important step: instead of performing |S| times

|T | bidirectional shortest-path queries (b), we now (c) have to perform only
|S| forward plus |T | backward queries (followed by ‘intersecting’ the search
spaces to compute the actual distances), which is a great improvement.

1 foreach s ∈ S do

2 foreach t ∈ T do

(b) 3 compute −→σ (s);
4 compute←−σ (t);
5 compute D[s, t] according to Equation 5.1;

m
1 foreach t ∈ T do compute←−σ (t);
2 foreach s ∈ S do

(c) 3 compute −→σ (s);
4 foreach t ∈ T do

5 compute D[s, t] according to Equation 5.1;

Figure 5.2: Getting to an efficient many-to-many algorithm based on any
bidirectional Dijkstra-like target-oblivious shortest-path algorithm.

The remaining question is how to evaluate Equation 5.1—i.e., how to
intersect the search spaces—efficiently (Line 5 of Variant (c)). In order to
do so, we associate with each node u a bucket that contains for each target t
whose backward search reaches u an entry consisting of the ID of the target
node and the computed distance y to the target. More formally, we define a
bucket β(u) of u ∈ V :

β(u) := {(t, y) | t ∈ T ∧ (u, y) ∈ ←−σ (t)}. (5.3)

Now, we can restate Equation 5.1 in the following way:

d(s, t) = min{x + y | (u, x) ∈ −→σ (s) ∧ (t, y) ∈ β(u)} (5.4)
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This equation means that we can compute the optimal distance from s to t
by considering for each node u in the forward search space of s, the entry in
the bucket of u that matches the target t, adding up the lengths of the paths
from s to u and from u to t, and taking the minimum. The correctness is
proved in the following lemma.

Lemma 18 For any bidirectional Dijkstra-like target-oblivious shortest-

path algorithm, Equation 5.4 is fulfilled for any node pair (s, t) ∈ V 2.

Proof. Due to Definition 11, we know that Equation 5.1 is fulfilled for any
bidirectional Dijkstra-like shortest-path algorithm. Thus, it is sufficient to
show that

A := {x + y | (u, x) ∈ −→σ (s) ∧ (u, y) ∈ ←−σ (t)} =

B := {x + y | (u, x) ∈ −→σ (s) ∧ (t, y) ∈ β(u)}.

This is the case since

z ∈ A
⇔ ∃x, y ∈ R

+
0 , u ∈ V : z = x + y ∧ (u, x) ∈ −→σ (s) ∧ (u, y) ∈ ←−σ (t)

(5.3)⇔ ∃x, y ∈ R
+
0 , u ∈ V : z = x + y ∧ (u, x) ∈ −→σ (s) ∧ (t, y) ∈ β(u)

⇔ z ∈ B.. �

We obtain a new algorithmic variant (Figure 5.3(d)) that is equivalent
to (c), but employs Equation 5.4 instead of 5.1, as explicitly specified in
Lines 7–9. Note that this requires a proper initialisation of the distance table
(Line 1) and the composition of the buckets (Line 3).

Now, we can swap Lines 6 and 7 (since −→σ (s) does not depend on t),
yielding the equivalent variant (e). Finally, we can merge3 Lines 7 and 8,
resulting in the final, very efficient variant (f).

Theorem 7 The many-to-many algorithm (Figure 5.3(f)) is correct.

Proof. Follows directly from Lemma 17 and the fact that the algorithmic
variants (a), (b), (c), (d), (e), and (f) are equivalent. �

3At first glance, it seems that Line (e)-7 just disappears. However, it is important to note
that in Line (f)-7, t is no longer bound (as in Line (e)-8), but free.
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1 foreach (s, t) ∈ S × T do D[s, t] :=∞;
2 foreach t ∈ T do compute←−σ (t);
3 foreach u ∈ V do compose β(u) according to Equation 5.3;
4 foreach s ∈ S do

5 compute −→σ (s);

6 foreach t ∈ T do

(d) 7 foreach (u, x) ∈ −→σ (s) do

8 foreach (t, y) ∈ β(u) do

9 D[s, t] := min(D[s, t], x + y);

m
6 foreach (u, x) ∈ −→σ (s) do

(e) 7 foreach t ∈ T do

8 foreach (t, y) ∈ β(u) do

9 D[s, t] := min(D[s, t], x + y);

m
6 foreach (u, x) ∈ −→σ (s) do

(f) 7 foreach (t, y) ∈ β(u) do

8 D[s, t] := min(D[s, t], x + y);

Figure 5.3: Getting to an efficient many-to-many algorithm based on any
bidirectional Dijkstra-like target-oblivious shortest-path algorithm (contin-
ued from Figure 5.2). Note that the three variants (d), (e), and (f) have the
first five lines in common. Variant (f) is the final variant.
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5.4 A Concrete Instantiation

The generic many-to-many algorithm (Figure 5.3(f)) can be instantiated
based on any bidirectional Dijkstra-like target-oblivious shortest-path algo-
rithm. However, not every instantiation is reasonable. For example, using
the bidirectional version of Dijkstra’s algorithm without abort-on-success
criterion implies that both backward and forward search scan the complete

graph. This is by far worse than just employing |S| unidirectional Dijkstra
searches.

In contrast, a direct application of highway-node routing (without abort-
on-success criterion)4 is very promising since the search spaces are very
small. The same applies to highway hierarchies. The subsequent descrip-
tions refer to the many-to-many algorithm based on highway-node routing,
knowing that an instantiation based on highway hierarchies can be achieved
in an analogous way. (At some point in Section 5.4.2, we will distinguish
between highway-node routing and highway hierarchies to introduce opti-
misations that are specific to each particular instantiation.)

When considering the search spaces of highway-node routing, we ob-
serve that both forward and backward search typically scan all nodes of the
topmost overlay graph. This causes unnecessary efforts that can be avoided
by introducing an asymmetric variant of highway-node routing.

5.4.1 Asymmetry

Without loss of generality, we assume |T | ≥ |S|. Otherwise, it is more
efficient to apply our algorithm to the reverse graph.

We specify an asymmetric highway-node routing algorithm that is a very
simple modification of the original highway-node routing query algorithm:
the backward search is pruned at nodes u ∈ VL, i.e., outgoing edges of such
nodes u are not relaxed.

Lemma 19 The asymmetric variant of highway-node routing is a bidirec-

tional Dijkstra-like target-oblivious shortest-path algorithm.

4In the context of the many-to-many algorithm based on a target-oblivious shortest-path
algorithm, we always refer to approaches that do not employ an abort-on-success criterion.
Thus, subsequently, we will no longer state this explicitly each time.
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Proof. Consider the proof of Theorem 6 (“correctness of highway-node
routing”). We have shown that there is a particular meeting point p on a
shortest path P such that (i) (p, d(s, p)) ∈ −→σ (s) and (ii) (p, d(p, t)) ∈ ←−σ (t).
This still holds since (i) the forward search has not been changed at all and
(ii) the meeting point p has been defined in such a way that all nodes u 6= p
on P |p→t do not belong to VL so that the backward search is not pruned
at these nodes u, which implies that p is settled. We can conclude that
Equation 5.1 is fulfilled. Moreover, it is obvious that Equation 5.2 is fulfilled
as well. �

From this lemma, we can conclude that the application of the asym-
metric variant of highway-node routing yields a correct (and more efficient)
many-to-many algorithm. Note that not only the backward search space
sizes have been reduced, but also the total number of bucket entries and,
thus, the number of bucket scans during the forward searches.

Analysis. Since highway-node routing does not give worst case perfor-
mance guarantees that hold for arbitrary graphs, our analysis will be based
on parameterisations and assumptions that still have to be checked experi-
mentally. We nevertheless believe that such an analysis is valuable because
it explains the behaviour of the algorithm and helps finding even better vari-
ants.

In the following, we regard L as being a tuning parameter, i.e., we allow
the choice of different numbers of levels of the multi-level overlay graph.
We write −→σ (s, L) and ←−σ (t, L) (instead of −→σ (s) and ←−σ (t)) to stress that
the forward and backward search spaces depend on the parameter L. It will
be more convenient to disregard the associated distances and consider only
the nodes in the search spaces. For this purpose, we introduce

−→σV(s, L) := {v | (v, x) ∈ −→σ (s, L)} and
←−σV(t, L) := {v | (v, x) ∈ ←−σ (t, L)}.

Let X(L) denote the average size of the backward search spaces, i.e.,

X(L) :=

(
∑

t∈T

|←−σV(t, L)|
)

/ |T |.
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Note that a forward search explores roughly X(L) + |VL| nodes on average
since it searches up to the topmost level (visiting roughly the same number
of nodes as a backward search) and continues in the topmost level (visiting
|VL| nodes). Moreover, let Y (L) denote the overlap ratio of forward and
backward searches, i.e.,

Y (L) :=

(∑
s∈S,t∈T |−→σV(s, L) ∩←−σV(t, L)|

|S| · |T |

)
/X(L),

and let TDijk(k) denote the cost of a Dijkstra-like search when exploring k
nodes in a road network.

The backward searches have cost |T | · TDijk(X(L)). Building buckets
costs time O(|T | · X(L)), which is dominated by the time required for the
backward searches so that we need not explicitly regard this term in our total
cost calculation. The forward searches have cost about |S| · TDijk(X(L) +
|VL|) for the search itself. Bucket scanning takes

O

( ∑

s∈S,t∈T

|−→σV(s, L) ∩←−σV(t, L)|
)

= O
(
|S| · |T | · Y (L) ·X(L)

)
.

We get a total cost of

|S| · TDijk(X(L)+|VL|)︸ ︷︷ ︸
1.

+ |T | · TDijk(X(L))
︸ ︷︷ ︸

2.

+ O(|S| · |T | · Y (L) ·X(L))︸ ︷︷ ︸
3.

.

Note that the first term clearly decreases for an increasing L (since the
decrease of |VL| outweighs the increase of X(L)), while the second term
grows for an increasing L. The third term is less obvious since the character-
istics of Y (L) are less clear. Our experiments (see Table 7.19 in Section 7.8)
indicate that Y (L) fluctuates within a small range in case of highway-node
routing and increases (for an increasing L) in case of highway hierarchies.
We can conclude that typically the third term grows with L since X(L)
clearly grows.

If both sets S and T are large, the third term dominates. From this we
can learn two things. First, since the constant behind this term is very small,
we can expect very good performance for large problems. Second, we can
actually save time by choosing L smaller than the maximum possible level.
We could use random sampling to estimate the amount of overlap present in
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the input. Based on this estimate and appropriately measured constants of
proportionality, we would then get a cost model that is accurate enough to
choose a (near) optimal value for L.

It is also interesting to look at extreme cases. When |S| = |T | = 1, it
is best to choose the highest possible level as L and we essentially get the
asymmetric variant of point-to-point highway-node routing. When T = V ,
it is best to choose L = 0 and we just get Dijkstra’s algorithm for re-
peatingly solving the single-source shortest-path problem from all nodes
s ∈ S. In other words, our many-to-many algorithm smoothly interpolates
between good algorithms for these extreme cases and promises considerable
speedups in the middle where none of the ‘extreme’ algorithms works very
well.

5.4.2 Optimisations

Fewer Bucket Entries. We can speed up bucket scanning by reducing the
number of bucket entries that are made during the backward searches. For
determining the correct shortest path length d(s, t), it is sufficient that there
is a single bucket entry (t, d(u, t)) at some node u on a shortest s-t-path such
that (u, d(s, u)) ∈ −→σ (s). Every additional bucket entry with this property
costs unnecessary extra scanning time.

In case of highway hierarchies, we observe that during a backward
search the current search level can differ from the actual level of a node.
Due to this fact, bucket entries at nodes in the core of level L are made
while the search is still in a level ℓ < L. Because every forward search
settles all nodes in G′L, a bucket entry (t, d) ∈ β(u) can be omitted if u has
been settled on a path 〈u, . . . , v, . . . , t〉 such that both u and v are in the core
of level L.

This observation does not apply to highway-node routing, where we
do not distinguish between search level and node level. However, in case
of highway-node routing, we can reduce the number of bucket entries by
ignoring nodes u that have been stalled: if we know that the computed
distance d from u to the current target t is suboptimal, we certainly need not
store a bucket entry (t, d) at u. We will see that by this means, the number of
bucket entries can be reduced by about 40% (cp. Table 7.19 in Section 7.8).
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Accurate Backward Search. The reduction of bucket scans described in
the previous paragraph can be strengthened by performing accurate back-
ward searches. The current version of backward search is not accurate be-
cause we break the search when entering (the core of) the topmost level.
In a sense, this corresponds to the ‘aggressive approach’ introduced in Sec-
tion 4.2.4.

In case of highway hierarchies, we can think of continuing the backward
search until all nodes in the priority queue are in the core of the topmost level
instead of pruning the search at level-L core entrance points. This method,
which corresponds to the ‘conservative approach’ (Section 4.2.3), leads to
fewer bucket entries because the restriction of the previous paragraph ap-
plies more often.

In case of highway-node routing, we could do similar things. Alterna-
tively, we can at least relax the edges of the pruned nodes in order to wake
adjacent nodes so that they can possibly start a stalling process (‘stall-on-
demand’, Section 4.2.6).

Note that for small distance tables these measures might be counterpro-
ductive since the backward searches get more expensive.

5.4.3 Algorithmic Details

To deal efficiently with a large amount of buckets with different sizes (which
are not known in advance), we suggest the following approach: During the
backward searches, we manage a single resizable array representing the set
{(u, t, d) | t ∈ T ∧ (u, d) ∈ ←−σ (t)}. After all backward searches have
been performed, we group these triples by the first component. We build an
appropriate index structure so that we can access in constant time for any
node u ∈ V the consecutive range of the array that represents β(u).

5.4.4 Extensions

Outputting Complete Path Descriptions. So far we have only described
how to compute shortest-path distances. We now explain how the algorithm
can be modified so that it computes a data structure that allows outputting
a complete description of a shortest s-t-path P (for (s, t) ∈ S × T ) in time
O(|P |).
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We explicitly store the search spaces of forward and backward searches
in the form of rooted trees. For each query pair (s, t), there is some interme-
diate node v such that a shortest path from s to t is composed of an s-v-path
in the forward search space from s and a v-t-path in the backward search
space to t. Hence, all we need to store are pointers to v in the two search
spaces. This information is updated during the main computation whenever
D[s, t] is improved. By this means, we can easily assemble a path in the
multi-level overlay graph. Then, we can use the techniques introduced in
Section 3.4.3 to expand edges in the overlay graphs in order to reconstruct
the represented subpaths in the original graph.

We can save some space by pruning those parts of the search spaces that
are not needed for any shortest connection. In the case of a forward search
space, this pruning can be done directly after the search has finished.

Computing Shortest Connections Incrementally. In some applications,
we are not really interested in a complete distance table. For example,
many heuristics for the travelling salesman problem start with the closest
connections for each node and only compute additional connections on de-
mand [33]. For such applications, the asymmetry in our search algorithm is
again helpful. As before, the cheap backward search is done for all nodes
t ∈ T . The comparatively expensive forward searches, however, which re-
quire heavy scanning of buckets, are only progressing incrementally after
their search frontier is completely in the topmost level.

To do this, we remember the number of level-L nodes encountered by
each backward search. Each forward search is equipped with a copy of this
counter array. When the forward search scans a bucket entry (t, d) of some
level-L node, it decrements the counter for t. When the counter reaches
zero, we know that D[s, t] = d(s, t) and we can output the newly found
distance.

Parallelisation. Suppose we have a shared memory parallel computer
with x processing elements (PEs). Then the problem is easy to paral-
lelise: each PE performs ⌈|T |/x⌉ backward searches and ⌈|S|/x⌉ forward
searches. If x > |S|, we can achieve further parallelism by partitioning
|T | and the corresponding buckets into k groups. Now x/k processors are
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assigned to each group and perform a forward search from all nodes in |S|
considering only the target nodes in their group.

5.5 Concluding Remarks

Review. Our algorithm provides a straightforward and highly efficient
solution to the many-to-many shortest-path problem. Furthermore, it is
generic, i.e., it can be instantiated based on various point-to-point algo-
rithms. This makes it comparatively easy to incorporate our approach into
different environments. Moreover, the memory overhead is quite small.
When we use our instantiation based on highway-node routing, we also can
take advantage of the fact that highway-node routing can handle certain dy-
namic scenarios. For example, we can recompute the multi-level overlay
graph in order to solve a many-to-many instance based on a different cost
function.

Our many-to-many algorithm can be employed directly in various real-
world applications. Furthermore, it can be used in the preprocessing stage
of some point-to-point shortest-path algorithms, namely for precomputed
cluster distances (Section 1.2.2) and transit-node routing (next chapter).

Future Work. Let us consider the case that we want to compute only a
single table in a given road network. If the table is big enough, our approach
beats Dijkstra’s algorithm even if the preprocessing of highway-node rout-
ing is considered to be part of our task (cp. Section 7.8.2). However, it might
be interesting to find ways to compute a multi-level overlay graph specially
tailored to S and T—after all we only need to preserve shortest paths be-
tween nodes in S and T . The hope would be that this can be done more
efficiently than building a complete multi-level overlay graph.

References. This chapter is partly based on [51], which is, in turn, based
on Sebastian Knopp’s diploma thesis [50]. While the presentation of the al-
gorithm and the experiments in [51] refer to an instantiation based on high-
way hierarchies, in this thesis, we prefer to introduce the many-to-many al-
gorithm in a generic way. Furthermore, we somewhat improve the analysis
of the algorithm. For performing experiments, we employ a new reimple-
mentation based on highway hierarchies and a new implementation based
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on highway-node routing. In this thesis, we restrict ourselves to a few ran-
domly generated symmetric (i.e., S = T ) instances. Further experiments
with randomly generated asymmetric instances and real-world instances can
be found in [51] and [50].
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6

Transit-Node Routing

6.1 Central Ideas

Transit-node routing is based on a simple observation intuitively used by
humans: When you start from a source node s and drive to somewhere ‘far
away’, you will leave your current location via one of only a few ‘important’
traffic junctions, called (forward) access nodes

−→
A (s). An analogous argu-

ment applies to the target t, i.e., the target is reached from one of only a few
backward access nodes

←−
A (t). Moreover, the union of all forward and back-

ward access nodes of all nodes, called transit-node set T , is rather small.
This implies that for each node the distances to/from its forward/backward
access nodes and for each transit-node pair (u, v) the distance between u
and v can be stored. For given source and target nodes s and t, the length of
the shortest path that passes at least one transit node is given by

dT (s, t) = min{d(s, u) + d(u, v) + d(v, t) | u ∈ −→A (s), v ∈ ←−A (t)}.

Note that all involved distances d(s, u), d(u, v), and d(v, t) can be directly
looked up in the precomputed data structures. As a final ingredient, a local-

ity filter L : V × V → {true, false} is needed that decides whether given
nodes s and t are too close to travel via a transit node. L has to fulfil the
property that ¬L(s, t) implies d(s, t) = dT (s, t). Note that in general the
converse need not hold since this might hinder an efficient realisation of the
locality filter. Thus, false positives, i.e., “L(s, t) ∧ d(s, t) = dT (s, t)”, may
occur.

The following algorithm can be used to compute d(s, t):
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1 if ¬L(s, t) then compute and return dT (s, t);
2 else use any other routing algorithm.

Figure 6.1 gives a schematic representation of transit-node routing, while
Figure 6.2 (first published in [5]) gives a real-world example.

s t

distances between access node

access node

transit nodes

Figure 6.1: Schematic representation of transit-node routing.

Figure 6.2: Finding the optimal travel time between two points (flags) some-
where between Saarbrücken and Karlsruhe amounts to retrieving the two
times four access nodes (diamonds), performing 16 table lookups between
all pairs of access nodes, and checking that the two disks defining the local-

ity filter do not overlap. Transit nodes that do not belong to the access-node
sets of the selected source and target nodes are drawn as small squares.
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Knowing the length of the shortest path, a complete description of it can
be efficiently derived using iterative table lookups and precomputed rep-
resentations of paths between transit nodes. Provided that the above ob-
servation holds and that the percentage of false positives is low, the above
algorithm is very efficient since a large fraction of all queries can be han-
dled in Line 1, dT (s, t) can be computed using only a few table lookups, and
source and target of the remaining queries in Line 2 are quite close. In fact,
the remaining queries can be further accelerated by introducing additional
levels of transit-node routing.

6.2 A Generic Algorithm

For a given graph G = (V,E), we consider L + 1 sets

V =: T0 ⊇ T1 ⊇ . . . ⊇ TL

of transit nodes.1 Moreover, for any level ℓ, 0 ≤ ℓ ≤ L, we consider

• a forward and a backward access mapping
−→
A ℓ : V → 2Tℓ and

←−
A ℓ :

V → 2Tℓ , which map a node to its forward and backward access nodes,
respectively,

• a locality filter Lℓ : V × V → {true, false}, which decides whether the
distance between two nodes can be determined using only levels ≥ ℓ of
transit-node routing,

• a distance table Dℓ : Tℓ × Tℓ → R
+
0 ∪ {∞}, which contains the correct

distances between all node pairs from Tℓ×Tℓ except for the distances that
can be computed using higher levels of transit-node routing,

• the distance dℓ : V × V → R
+
0 ∪ {∞} that is obtained using level ℓ of

transit-node routing, i.e., considering all access nodes to level ℓ and the
distances between all pairs of these access nodes, and

• the minimal distance d≥ℓ : V × V → R
+
0 ∪ {∞} that can be obtained

using all levels ≥ ℓ.

1Note that in earlier publications [71, 4, 5], the order of the levels (which we called
‘layers’ at that time) was reversed: the topmost transit-node set was denoted by T1, now
it is denoted by TL. We have changed the order to blend well with the other hierarchical
approaches presented in this thesis.
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To avoid some case distinctions, we introduce the following definitions:

• TL+1 := ∅,
• −→A 0(u) :=

←−
A 0(u) := {u},

• d≥L+1(s, t) :=∞,

• min ∅ :=∞.

Now, for any level ℓ, 0 ≤ ℓ ≤ L, we give a precise definition of the three
distance functions Dℓ, dℓ, and d≥ℓ:

Dℓ(s, t) :=

{
d(s, t) if d(s, t) < d≥ℓ+1(s, t)
∞ otherwise

(6.1)

dℓ(s, t) :=min{d(s, u)+Dℓ(u, v)+d(v, t) | u ∈ −→A ℓ(s), v ∈ ←−A ℓ(t)} (6.2)

d≥ℓ(s, t) := min
k≥ℓ

dk(s, t) (6.3)

Note that the following equation is equivalent to (6.3):

d≥ℓ(s, t) = min(dℓ(s, t), min
k≥ℓ+1

dk(s, t)) (6.4)

Obviously, all these distances are upper bounds on the actual shortest-path
length, as stated in the following proposition:

Proposition 5 Dℓ(s, t) ≥ d(s, t), dℓ(s, t) ≥ d(s, t), d≥ℓ(s, t) ≥ d(s, t).

We assume that all distances to/from forward/backward access nodes and
all distances Dℓ(s, t) have been precomputed. We can show that we always
obtain the correct shortest-path length when we use all levels of transit-node
routing:

Lemma 20 d≥0(s, t) = d(s, t).

Proof. Due to (6.2), we have d0(s, t) = d(s, s) + D0(s, t) + d(t, t)
since

−→
A 0(s) = {s} and

←−
A 0(t) = {t}. If d(s, t) < d≥1(s, t), we

have d0(s, t) = D0(s, t) = d(s, t) (due to (6.1)) and thus, d≥0(s, t) =
min(d0(s, t), d≥1(s, t)) = d(s, t) by (6.4) and Proposition 5. Otherwise
(d(s, t) = d≥1(s, t)), we have d0(s, t) = D0(s, t) = ∞ (due to (6.1)) and,
again, d≥0(s, t) = min(d0(s, t), d≥1(s, t)) = d(s, t). �
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Of course, using all levels is comparatively expensive. Therefore, we
want to avoid accessing levels that are not needed to get the correct result.
For the decision making we want to employ the already introduced locality
filters. We require that

¬Lℓ(s, t)→ (d(s, t) = d≥ℓ(s, t)). (6.5)

Then, we can use the transit-node routing algorithm as specified in Fig-
ure 6.3 to efficiently compute the length of a shortest path from a given
source node s to a given target node t.

input: source node s and target node t
output: distance d(s, t)

1 d′ :=∞;
2 for ℓ := L downto 0 do

3 d′ := min(d′, dℓ(s, t));
4 assert d′ = d≥ℓ(s, t);
5 if ¬Lℓ(s, t) then break;
6 return d′;

Figure 6.3: The transit-node routing algorithm.

Theorem 8 Transit-node routing is correct.

Proof. If the condition in Line 5 is fulfilled at some point, we return d′ =
d≥ℓ(s, t) = d(s, t) due to (6.5). Otherwise, we return d′ = d≥0(s, t) =
d(s, t) according to Lemma 20. �

Practical Remarks. In the distance tables Dℓ, it is sufficient to store only
the non-infinity entries explicitly. For this purpose, we can use a space-
efficient static hash table. Furthermore, as an alternative to precomputing
the entries in D0, we can use any other shortest-path algorithm to compute
the distances D0 on-the-fly when they are required.
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6.3 An Abstract Instantiation

In this section, we instantiate the algorithm from the previous section by
giving concrete access mappings, while a concrete choice of the transit-
node sets is still not specified. The locality filter will be defined in such
a way that Equation 6.5 is fulfilled. Note that other instantiations of the
generic algorithm that deviate from this section are possible (cp. Section 6.5:
“Alternative Instantiations”).

Access Mapping. For a node s and a level ℓ, consider a set C of covering
paths2 of s w.r.t. Tℓ in G. (To obtain a very efficient algorithm, we might
want to choose a minimal covering-paths set.) Let

−→
A ℓ(s) := {v | P = 〈s, . . . , v〉 ∈ C}.

The backward access mapping is defined analogously, considering the re-
verse graph

←−
G instead of G.

Locality Filter. An explicit representation of a level-ℓ locality filter (stor-
ing n2 bits) would need too much space for large graphs. Therefore, we look
for a more space-efficient alternative. We want to identify node pairs (s, t)
such that the distance d(s, t) cannot be computed using transit-node routing
in level ℓ or higher. For each of these pairs, we pick one witness, a particular
node p on a shortest s-t-path. We make sure that both s and t memorise this
witness p. Then, when we want to evaluate Lℓ(s, t), we just have to check
whether s and t share a common witness. Note that this approach can lead
to false positives, i.e., two nodes might share a common witness although
their distance actually can be computed using transit-node routing in level ℓ
or higher.

Beside paying attention to the memory requirements, we are also in-
terested in fast preprocessing times. Therefore, we introduce the concept
of handing computed data down from higher to lower levels: Let us con-
sider some path 〈s0, . . . , s1, . . . , p, . . . , t1, . . . , t0〉 with s0, t0 ∈ T0 and
s1, t1 ∈ T1. Moreover, let us assume that we already know that d(s1, t1)

2The concept of covering paths has been introduced in Section 4.2. Note that in contrast
to Chapter 4, here we do not require canonical covering paths.
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cannot be computed using level 2 or higher. Thus, we have some witness
p and both s1 and t1 memorise this witness. Now, this witness is handed
down from s1 to s0 and from t1 to t0. An equivalent formulation is to say
that s0 inherits the witness p from s1. Now, if we want to decide whether
d(s0, t0) can be determined using level 2 or higher, the answer is ‘no’ since
s0 and t0 share the common witness p. Note that by this means, the number
of false positives may increase.

In the following, we work out the formal details of these ideas. The
level ℓ(u) of a node u ∈ V is max{ℓ | u ∈ Tℓ}. Let us assume that we
have some fixed strategy that picks for any two connected nodes s and t
one particular node p(s, t) on one particular shortest s-t-path. We define
forward and backward node sets

−→
K ℓ : V → 2V and

←−
K ℓ : V → 2V in the

following way: for any node s and any level ℓ < ℓ(s) + 1,
−→
K ℓ(s) := ∅, for

level ℓ = ℓ(s) + 1,

−→
K ℓ(s) := {p(s, t) | t ∈ V ∧ ℓ(s) = ℓ(t) ∧ d(s, t) < d≥ℓ(s, t)} (6.6)

and for any level ℓ > ℓ(s) + 1,

−→
K ℓ(s) :=

⋃

u∈
−→
A ℓ−1(s)

−→
K ℓ(u), (6.7)

and analogously, for any node t and any level ℓ < ℓ(t) + 1,
←−
K ℓ(t) := ∅, for

level ℓ = ℓ(t) + 1,

←−
K ℓ(t) := {p(s, t) | s ∈ V ∧ ℓ(s) = ℓ(t) ∧ d(s, t) < d≥ℓ(s, t)} (6.8)

and for any level ℓ > ℓ(t) + 1,

←−
K ℓ(t) :=

⋃

u∈
←−
A ℓ−1(t)

←−
K ℓ(u). (6.9)

Note that Equations 6.6 and 6.8 reflect the ‘witness’ idea, while Equa-
tions 6.7 and 6.9 reflect the ‘handing down’ idea.

Finally, we define the locality filter

Lℓ(s, t) :=
∨

k≤ℓ

(−→
Kk(s) ∩←−Kk(t) 6= ∅

)
. (6.10)
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Lemma 21 Consider two nodes s and t with d(s, t) 6= ∞. If and only if

there is some node u ∈ Tℓ on some shortest s-t-path P , then d≥ℓ(s, t) =
d(s, t).

Proof. ⇐) We have d≥ℓ(s, t) = d(s, t). This implies, by (6.3) and (6.2),

that there is a level k ≥ ℓ, a node u ∈ −→A k(s), and a node v ∈ ←−Ak(t) such
that d(s, u) + Dk(u, v) + d(v, t) = d(s, t). Due to Proposition 5, we have
Dk(u, v) ≥ d(u, v). We can conclude that u and v are nodes on a shortest
s-t-path. Furthermore, we know that u ∈ −→A k(s) ⊆ Tk ⊆ Tℓ.
⇒) We pick the maximum level k ≥ ℓ with the property that there is

some node from Tk on some shortest s-t-path P . Let u and v denote the first
and the last node from Tk on P , respectively. The case u = v is possible.
According to the definitions of the covering paths and the access mappings,
there is a node u′ ∈ −→A k(s) ⊆ Tk on a shortest s-u-path

−→
P and a node

v′ ∈ ←−A k(t) ⊆ Tk on a shortest v-t-path
←−
P . Consider the path

P ′ := 〈

−→
P︷ ︸︸ ︷

s, . . . , u′, . . . , u, . . . ,

←−
P︷ ︸︸ ︷

v, . . . , v′, . . . , t〉︸ ︷︷ ︸
P |u→v

,

which is a shortest s-t-path as well. According to (6.2), we have dk(s, t) ≤
d(s, u′) + Dk(u

′, v′) + d(v′, t). Due to our choice of k, we know that there
is no node x ∈ Tk+1 on any shortest u′-v′-path Q—otherwise, the same
node x would be on the shortest s-t-path P ′|s→u′ ◦ Q ◦ P ′|v′→t. From the
part of this lemma that has already been proven, it follows that d(u′, v′) <
d≥k+1(u

′, v′). Thus, by (6.1), Dk(u
′, v′) = d(u′, v′) and, consequently,

dk(s, t) ≤ d(s, u′) + Dk(u
′, v′) + d(v′, t) = d(s, t). From d≥ℓ(s, t) ≤

dk(s, t) ≤ d(s, t), it follows that d≥ℓ(s, t) = d(s, t) due to Proposition 5. �

Lemma 22 The locality filter specified in Equation 6.10 fulfils Equa-

tion 6.5.

Proof. Trivial for d(s, t) = ∞ (due to Proposition 5). For d(s, t) 6= ∞, we
want to show the contraposition of Equation 6.5 and therefore assume that
d(s, t) 6= d≥ℓ(s, t). Let k be the maximum level such that d≥k−1(s, t) =
d(s, t). Such a k must exist due to Lemma 20. The choice of k implies
k − 1 < ℓ, d≥k(s, t) 6= d(s, t), and dk−1(s, t) = d(s, t). Hence, there is
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some shortest s-t-path with nodes u′ ∈ −→A k−1(s) and v′ ∈ ←−A k−1(t) on it.
If s ∈ Tk−1, we set u := s; otherwise, u := u′. Analogously, if t ∈ Tk−1,
we set v := t; otherwise, v := v′. In any case, we have u, v ∈ Tk−1.

Lemma 21 and d≥k(s, t) 6= d(s, t) imply that there is no shortest
s-t-path that contains a node from Tk. In particular, u, v 6∈ Tk and
d(u, v) < d≥k(u, v)—otherwise, there would be a shortest u-v-path con-
taining a node x ∈ Tk and thus, also a shortest s-t-path containing x. Since
u, v ∈ Tk−1 \ Tk, we have ℓ(u) = ℓ(v) = k − 1. We can conclude that
p(u, v) ∈ −→Kk(u) ∩ ←−Kk(v) due to Equations 6.6 and 6.8. If s 6∈ Tk−1,
we have ℓ(s) < k − 1, which implies p(u, v) ∈ −→Kk(s) due to Equa-
tion 6.7: s inherits p(u, v) from u = u′. Otherwise, we have s = u so
that p(u, v) ∈ −→Kk(s) holds as well. An analogous argument applies to←−
Kk(t). Thus, p(u, v) ∈ −→Kk(s) ∩ ←−Kk(t). Since k ≤ ℓ, Lℓ(s, t) = true

according to (6.10). �

6.3.1 Computing Access Nodes

Here, we describe how to determine the forward access nodes to the topmost
level L. Analogous methods can be applied to compute forward and back-
ward access nodes to different levels. From each node u ∈ V , we perform a
local Dijkstra search in G in order to determine the covering-paths set w.r.t.
TL (cp. Section 4.2.2). We take each endpoint of a covering path as access
node of u. Applied naively, this approach is rather inefficient. However, we
can use two tricks to make it efficient.

First, we do not have to use the conservative approach (Section 4.2.3),
but we can use one of the more advanced techniques (Sections 4.2.4–4.2.6).
However, in general, these techniques do not yield a minimal access-node
set, which would be preferable. Fortunately, the resulting set can be easily
reduced if the distances between all transit nodes are already known: if an
access node y can be reached from u via another access node w on a shortest
path, we can discard y. Figure 6.4 gives an example. Note that this reduction
procedure is very similar to the edge reduction in Section 4.3.3.

Lemma 23 Applying the reduction procedure yields a minimal access-node

set.

We omit a detailed proof here since it would be very similar to the proof of
Lemma 16.
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u
w

y

x

v

Figure 6.4: Example for the computation of access nodes including the first,
but not the second ‘trick’. Edge weights correspond to the lengths of the
drawn line segments. The nodes v, w, x, and y belong to TL. The search is
started from u. All thick edges belong to the search tree. All depicted nodes
from TL are endpoints of covering paths. However, y can be removed from
this set since the path from u via w to y turns out to be shorter than the path
that has been found. Thus, u has only three access nodes.

Second, we may only determine the access node sets
−→
AL(v) for all

nodes v ∈ TL−1 and the sets
−→
AL−1(u) for all nodes u ∈ V . Then, for

each node u ∈ V , we can compute

−→
AL(u) :=

⋃

v∈
−→
A L−1(u)

−→
AL(v).

Again, we can use the reduction technique to remove unnecessary elements
from the set union. The idea to hand access nodes down can be extended to
work across more than one level:

−→
AL(u0) :=

⋃

u1∈
−→
A 1(u0)

⋃

u2∈
−→
A 2(u1)

· · ·
⋃

uL−1∈
−→
A L−1(uL−2)

−→
AL(uL−1).

(6.11)

Lemma 24 Handing down access nodes is correct, i.e., the resulting

access-node set complies with the specification at the beginning of Sec-

tion 6.3.
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Proof. We say that an access-node set
−→
A ℓ(u) is proper (i.e., it complies with

the specification at the beginning of Section 6.3) iff there is a covering-paths
set Cℓ(u) of u w.r.t. Tℓ such that

−→
A ℓ(u) = {v | P = 〈u, . . . , v〉 ∈ Cℓ(u)}.

Assume that for some node u and some level ℓ > 0, we have a proper
access-node set

−→
A ℓ−1(u) (and thus, a corresponding covering-paths set

Cℓ−1(u)) and that for each node v ∈ −→A ℓ−1(u), we have a proper access-
node set

−→
A ℓ(v) (and thus, a corresponding covering-paths set Cℓ(v)). Let

−→
A ℓ(u) :=

⋃

v∈
−→
A ℓ−1(u)

−→
A ℓ(v)

and
Cℓ(u) := {P = 〈u, . . . , v〉 | P ∈ U(G) ∧ v ∈ −→A ℓ(u)}.

We have to prove that
−→
A ℓ(u) is a proper access-node set. For that, it is

sufficient to show that Cℓ(u) is a covering-paths set of u w.r.t. Tℓ.
Consider any node t ∈ Tℓ that can be reached from u. We have to

show that there is a node x ∈ Tℓ on some shortest u-t-path P such that
P |u→x ∈ Cℓ(u).

Since t ∈ Tℓ ⊆ Tℓ−1, there is a node y on some shortest u-t-path P ′ such
that P ′|u→y ∈ Cℓ−1(u) and thus, y ∈ −→A ℓ−1(u). Similarly, since t ∈ Tℓ,
there is a node x on some shortest y-t-path P ′′ such that P ′′|y→x ∈ Cℓ(y)

and thus, x ∈ −→A ℓ(y) ⊆ Tℓ. Let P c ∈ U(G) denote the canonical shortest
u-x-path. Set P := P c ◦ P ′′|x→t. Note that P is a shortest u-t-path. The
definition of

−→
A ℓ(u) implies that x ∈ −→A ℓ(u). Hence, P |u→x ∈ Cℓ(u).

By induction, this proof can be extended to multiple levels. �

6.3.2 Computing Distance Tables

To compute an all-pairs distance table, we can use the many-to-many algo-
rithm from Chapter 5. Roughly, this algorithm first performs independent
backward searches from all transit nodes and stores the gathered distance
information in buckets associated with each node in the search space. Then,
a forward search from each transit node scans all buckets it encounters and
uses the resulting path length information to update a table of tentative dis-
tances.

For the topmost table DL (where we always have DL(s, t) = d(s, t)),
this procedure can be applied directly. For all other tables Dℓ, ℓ < L, we
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have to respect that an explicit entry Dℓ(s, t) is only required if d(s, t) <
d≥ℓ+1(s, t)—all other entries are∞ and do not have to be explicitly stored.
In order to be able to check this condition, the preprocessing of transit-node
routing is done in a top-down fashion, i.e., we first compute the access nodes
and the distance table for the topmost level before constructing level L− 1,
and so on. Thus, when we compute the table Dℓ, we can already access
d≥ℓ+1(s, t).

A naive application of the many-to-many algorithm is prohibitive for
lower levels (probably even for level L−1). Fortunately, there is one simple
trick based on Lemma 21: when performing backward and forward searches
in order to compute table Dℓ, ℓ < L, we do not have to relax edges out of
nodes u ∈ Tℓ+1. By this measure, we only might miss shortest s-t-paths
with a node from Tℓ+1 on them. However, due to Lemma 21, we already
know that in these cases d≥ℓ+1(s, t) = d(s, t) so that Dℓ(s, t) =∞.

Note that the computation of the distance table Dℓ consists of the same
local forward and backward searches as the computation of the access-node
sets
−→
A ℓ+1 and

←−
A ℓ+1. Thus, it is sufficient to perform the respective search

processes only once and extracting both the access nodes and the data re-
quired for the distance table computation.

6.3.3 Computing Locality Filters

As already mentioned, the preprocessing of transit-node routing is done in
a top-down fashion. We compute the forward and backward node sets

−→
K ℓ

and
←−
K ℓ first for all nodes in TL, then for the nodes in TL−1, and so on. For

any u ∈ TL and any level ℓ, we just have
−→
K ℓ(u) =

←−
K ℓ(u) = ∅. For a level

k < L and any node u ∈ Tk \ Tk+1, we ‘inherit’ the level-ℓ sets from the
level-(ℓ−1) access nodes for ℓ > k +1 according to Equations 6.7 and 6.9;
for ℓ = k+1, we apply Equations 6.6 and 6.8. In order to deal with the latter
case, we have to determine all node pairs (s, t) such that ℓ(s) = ℓ(t) = k
and d(s, t) < d≥k+1(s, t). This is exactly what we do when we compute

the level-k distance table Dk. Hence, the computation of the sets
−→
Kk+1 and←−

Kk+1 can be viewed as a byproduct of the computation of Dk.

After all sets
−→
K ℓ and

←−
K ℓ have been determined, the locality filters are

defined according to Equation 6.10.
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Faster Computation of Supersets. In spite of the trick mentioned in Sec-
tion 6.3.2, the computation of a distance table can get expensive so that we
might want to do without distance tables in the lower levels and use some
shortest-path algorithm instead that computes the required distances on de-
mand. In this case, the locality filters can no longer be obtained as a byprod-
uct of the distance table computation so that we have to find a different way
to compute them efficiently. Let us consider some level k < L and two
nodes s and t such that ℓ(s) = ℓ(t) = k. Consider a local forward search
from s that determines covering paths of s w.r.t. Tk+1 yielding a search tree−→
B and, analogously, a local backward search from t yielding a search tree←−
B . We set

−→
K
′
k+1(s) :=

−→
B \ Tk+1 and

←−
K
′
k+1(t) :=

←−
B \ Tk+1.

Lemma 25
−→
K
′
k+1(s) ⊇

−→
Kk+1(s) and

←−
K
′
k+1(t) ⊇

←−
Kk+1(t).

Proof. Consider a node u from
−→
Kk+1(s). According to Equation 6.6,

there is a node t such that u is a node on some shortest s-t-path P and
d(s, t) < d≥k+1(s, t). Due to Lemma 21, we can conclude that there is no
shortest s-t-path with a node from Tk+1 on it; in particular, u 6∈ Tk+1.
Hence, the forward search is not pruned at any node on P |s→u so that

u ∈ −→B \ Tk+1, which implies
−→
K
′

k+1(s) ⊇
−→
Kk+1(s). An analogous proof

exists for
←−
K
′
k+1(t) ⊇

←−
Kk+1(t). �

Obviously, locality filters that are based on these supersets are still cor-
rect in the sense that they fulfil Equation 6.5. However, the number of false

positives increases. Note that the computation of the supersets
−→
K
′

k+1(s) and
←−
K
′
k+1(t) requires the same local searches as the computation of the access-

node sets
−→
Ak+1(s) and

←−
A k+1(t). Therefore, when dealing with supersets,

the computation of the locality filters can be viewed as a byproduct of the
computation of the access-node sets.

6.3.4 Trade-Offs

Instead of precomputing all access-node sets, distance tables, and locality
filters, we can decide to compute only a part of the data required for transit-
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node routing and determine the remaining data on demand during the query.
In case of the access nodes, we can postpone the local searches for the
covering-paths set to query time. Moreover, it is sufficient to store for a
node u ∈ Tℓ only the access nodes to level ℓ + 1; then, during a query,
access nodes to higher levels can be retrieved using Equation 6.11.

In case of the distance tables, we can—as already mentioned—omit the
distance tables in the lowest levels and perform an explicit shortest-path
search instead.

In case of the locality filters, we can postpone the application of Equa-
tions 6.7 and 6.9 until query time as well so that a node u ∈ Tℓ stores only−→
K ℓ+1(u) and

←−
K ℓ+1(u).

Of course, postponing parts of the preprocessing reduces preprocessing
time and memory consumption, but increases query time.

6.3.5 Outputting Complete Path Descriptions

Generally, in a graph with bounded degree (e.g., a road network) using a
(near) constant time distance oracle, we can output a shortest path from
s to t in (near) constant time per edge: Look for an edge (s, s′) such that
d(s, s′)+d(s′, t) = d(s, t), output (s, s′). Continue by looking for a shortest
path from s′ to t. Repeat until t is reached.

In the special case of transit-node routing, we can speed up this pro-
cess by two measures. Suppose the shortest path uses the access nodes
u ∈ −→AL(s) and v ∈ ←−AL(t). First, while reconstructing the path from s to
u, we can determine the next hop by considering all adjacent nodes s′ of s
and checking whether d(s, s′) + d(s′, u) = d(s, u). Usually3, the distance
d(s′, u) is directly available since u is also an access node of s′. Analo-
gously, the path from v to t can be determined.

Second, reconstructing the path from u to v can work on the overlay
graph GL of G with node set TL rather than on the original graph G. Em-
ploying the same methods that are used to expand shortcuts in case of high-
way hierarchies (Section 3.4.3), we can precompute information that allows
us to output the paths associated with each edge in GL in time linear in the

3In a few cases—when u is not an access node of s′ (which can only happen if the
shortest paths in the graph are not unique)—, we have to consider all access nodes u′ of
s′ and check whether d(s, s′) + d(s′, u′) + d(u′, u) = d(s, u). Note that d(u′, u) can be
looked up in the topmost distance table.
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number of edges of G that it contains. Note that long distance paths will
mostly consist of these precomputed paths so that the time per edge can be
made very small. These techniques can be generalised to multiple levels.

6.4 A Concrete Instantiation

In this section, we give a concrete specialisation of the abstract instantiation
of the previous section, determining transit-node sets using highway hierar-
chies (Chapter 3), performing the preprocessing using highway-node rout-
ing (Chapter 4) and the many-to-many algorithm based on highway-node
routing (Chapter 5), and applying geometric circles to define the locality
filters. Note that many other reasonable concrete instantiations are conceiv-
able, which is the reason why we decided to specialise the generic algorithm
from Section 6.2 in two steps instead of merging Sections 6.3 and 6.4.

6.4.1 Specifying Transit Nodes

Nodes on high levels of a highway hierarchy have the property that they
are used on shortest paths far away from source and target. ‘Far away’ is
defined with respect to the Dijkstra rank. Hence, it is natural to use (the core
of) some level K of the highway hierarchy for the transit-node set TL. Note
that we have quite good (though indirect) control over the resulting size of
TL by choosing the appropriate neighbourhood sizes and the appropriate
value for K. For further transit-node levels, we use (the cores of) lower
levels of the highway hierarchy.

6.4.2 Computing Access Nodes

Access-node sets are computed exactly as described in Section 6.3.1 except
for the fact that we use highway-node routing (based on the description in
Section 4.3.4) to perform local searches in order to determine the covering-
paths sets more efficiently.

This implies that before the actual preprocessing of transit-node routing
is started, we have to construct a multi-level overlay graph (Sections 4.3.1
and 4.3.3) using the transit-node sets as highway-node sets.
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6.4.3 Computing Distance Tables

The topmost table is determined by a standard all-pairs shortest-path com-
putation (using |TL|-times Dijkstra’s algorithm) in the topmost overlay
graph GL. Note that for the topmost level, an application of the many-to-
many algorithm using the same multi-level overlay graph would be virtually
equivalent to executing just |TL|-times Dijkstra’s algorithm.

All other distance tables, however, are computed as described in Sec-
tion 6.3.2, i.e., using the many-to-many algorithm from Chapter 5. At this,
it is reasonable to employ an instantiation of the many-to-many algorithm
that is based on the already constructed multi-level overlay graph (cp. Sec-
tion 5.4).

6.4.4 Computing Locality Filters

An explicit and exact storage of the forward and backward node sets
−→
K ℓ and←−

K ℓ would be very expensive w.r.t. memory consumption. Furthermore, we
have to keep in mind that we need a very efficient operation that determines
whether the intersection of two node sets is empty. For these reasons, we
use geometric circles to represent supersets of the sets

−→
K ℓ and

←−
K ℓ. We have

already noted in Section 6.3.3 that using supersets of
−→
K ℓ and

←−
K ℓ still yields

correct locality filters, only the number of false positives may increase.

We assume that a layout of the graph G is available, i.e., for each node in
V we know its coordinates in the plane.4 For each node u, we store forward
and backward radii −→̺ℓ(u) and←−̺ℓ(u) such that

−→
K
′
ℓ := {v ∈ V : ||v − u||2 ≤ −→̺ℓ(u)} ⊇ −→K ℓ

and, analogously,

←−
K
′
ℓ := {v ∈ V : ||v − u||2 ≤ ←−̺ℓ(u)} ⊇ ←−K ℓ,

where ||v − u||2 denotes the Euclidean distance between u and v. An inter-
section test can be implemented very efficiently by comparing the distance

4Even if this information is not available in the input, equally useful coordinates can be
synthesised (see Section 1.2.6).
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between the two involved nodes with the sum of the radii of the relevant
circles:5

−→
K
′

ℓ(s) ∩
←−
K
′

ℓ(t) 6= ∅ ↔ ||s− t||2 ≤ −→̺ℓ(s) +←−̺ℓ(t). (6.12)

Note that the application of Equations 6.7 and 6.9 to ‘inherit’ node sets is
quite simple using geometric circles: we use

−→̺
ℓ(s) := max{||s− u||2 +−→̺ℓ(u) | u ∈ −→A ℓ−1(s)}

and an analogous assignment for←−̺ℓ(t). Figure 6.5 gives an example.

−→̺
ℓ(s)

−→̺
ℓ(u)

s u

Figure 6.5: Example for the ‘inheritance’ of a geometric locality filter. The
grey nodes constitute the set

−→
A ℓ−1(s).

Faster Evaluation. Combining Equations 6.10 and 6.12, we have

Lℓ(s, t) :=
∨

k≤ℓ

(
||s− t||2 ≤ −→̺k(s) +←−̺k(t)

)
.

Thus, in order to evaluate Lℓ(s, t), we have to perform up to ℓ comparisons.
We can easily do with only one comparison by precomputing

−→̺′
ℓ(s) := max

k≤ℓ

−→̺
k(s) and ←−̺′ℓ(t) := max

k≤ℓ

←−̺
k(t)

5To avoid the expensive square root computation that is required to determine the Eu-
clidean distance, we can alternatively square both sides of the inequality.
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and using

Lℓ(s, t) :=
(
||s− t||2 ≤ −→̺′ℓ(s) +←−̺′ℓ(t)

)
.

Note that the number of false positives may increase.

6.4.5 Hasty Inheritance

In order to accelerate the preprocessing, we have already made extensive
use of the idea of handing down obtained data (access nodes, locality filters)
to lower levels. Basically, for a node u in a level ℓ, we look for covering
paths w.r.t. Tℓ+1 and inherit the data stored at the endpoints of the covering
paths.

We can think of a hastier approach: When we search for the covering
paths of u and encounter a node v that has already been processed, i.e., that
has already adopted the data from level ℓ + 1, we do not have to continue
the search from v. Instead, we can directly inherit the data from v.

In our implementation, we use this technique when we hand data down
from level 1 to level 0.

6.4.6 An Economical and a Generous Variant

In our experiments, we consider two different variants as illustrated in Fig-
ure 6.6.

Variant ‘Economical’ aims at a good compromise between space con-
sumption, preprocessing time and query time. It uses three levels on top of
the original graph (i.e., L = 3). We make extensively use of the options
presented in Section 6.3.4. At each node u ∈ T2, we store the access nodes
to level 3, and at each node u ∈ V , we store the access nodes to level 2.
This means that the level-3 access nodes for nodes u 6∈ T2 have to be recon-
structed during query using Equation 6.11. Level 1 is only used to accelerate
the preprocessing (since it is faster to compute access nodes and locality fil-
ters only for a subset T1 ⊆ V , handing the data down to all nodes). We do
not use level-1 access nodes or a level-1 distance table. Instead, we just set
L1(s, t) := true for all node pairs (s, t) so that if the query reaches level 1,
it is automatically forwarded to level 0.
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We explicitly store the level-2 and level-3 distance tables. In level 0,
instead of keeping a distance table, we perform a shortest-path query using
highway-node routing.

The locality filters are dealt with analogously to the access nodes: at
each node u ∈ T2, we store −→̺3(u) and←−̺3(u), and at each node u ∈ V , we
store −→̺′2(u) and ←−̺′2(u). The level-2 locality filter is determined with the
fast but less precise method described at the end of Section 6.3.3.

Variant ‘Generous’ is tuned for very fast query times. As the economical
variant, it uses three levels on top of the original graph (but in this case,
level 1 is not only used to accelerate the preprocessing). At each node u,
we store the access nodes and the locality filters6 required for the query in
level 2 and 3. This allows direct access to these levels. For level 1, we store
neither access nodes nor a locality filter. Instead, if required, we perform
local searches to determine the access nodes and we use the trivial locality
filter L1(s, t) := true for all node pairs (s, t). We explicitly store the level-
1–3 distance tables, while we perform a shortest-path query in level 0 (if
required). Note that having a level-1 distance table is a significant difference
from the economical variant. Interestingly, the search for the level-1 access
nodes already involves the search in level 0 so that no extra work is imposed
by the level-0 search. This also explains why it is reasonable to just set
L1(s, t) := true.

36

23

1

0

1

0

34

22

1

0

1

0

TNR HNR TNReconomical generousHNR
level level level level

L3

L3

L2
L2

Figure 6.6: Two variants of transit-node routing (TNR) based on highway-
node routing (HNR).

6i.e., the radii −→̺′

2(u),←−̺′

2(u), −→̺′

3(u), and←−̺′

3(u)
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6.4.7 Queries

Queries are performed in a top-down fashion. For a given query pair (s, t),
first
−→
A 3(s) and

←−
A 3(t) are either looked up or computed depending on the

used variant. Then table lookups in the top-level distance table yield a first
guess for d(s, t). Now, if ¬L3(s, t), we are done. Otherwise, the same
procedure is repeated for level 2. If even L2(s, t) is true, we perform a
bidirectional shortest-path search using highway-node routing that can stop
if both the forward and backward search radius (i.e., the key of the minimum
element in the respective priority queue) exceed the upper bound computed
in levels 2 and 3. Furthermore, the search need not expand from any node
u ∈ T2 since paths going over these nodes are covered by the search in
levels 2 and 3. In the generous variant, the search is already stopped at the
level-1 access nodes, and additional lookups in the level-1 distance table are
performed.

6.4.8 Outputting Complete Path Descriptions

The general methods from Section 6.3.5 can be applied rather directly to
our concrete instantiation in order to determine a complete description of
the shortest path. To unpack shortcuts, we can fall back on the routines used
in the highway hierarchies approach (Section 3.4.3).

6.5 Concluding Remarks

Review. Transit-node routing provides the fastest available query times for
large static real-world road networks. Speedups compared to Dijkstra’s al-
gorithm exceed factor one million. The extremely good query performance
does not imply prohibitive preprocessing times or memory consumption. In
fact, the preprocessing is still clearly faster than many other route planning
techniques that achieve considerably smaller speedups. Moreover, transit-
node routing is not only optimised for long-range queries, but also answers
local queries very efficiently.

Alternative Instantiations. There seem to be two basic approaches to
transit-node routing. One that starts with a locality filter L and then has
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to find a good set of transit nodes T for which L works (e.g., the grid-
based implementation [3]). The other approach starts with T and then has
to find a locality filter that can be efficiently evaluated and detects as ac-
curately as possible whether local search is needed (e.g., our abstract and
concrete instantiations, Sections 6.3–6.4). Both basic approaches fit in the
generic framework introduced in Section 6.2. In [4, 71], we describe a few
additional general preprocessing techniques that might be useful for instan-
tiations that differ from the one specified in Section 6.3.

Future Work. Like in the case of highway-node routing, we expect that
it might be possible to determine even better transit-node sets. Ideally, this
could imply an improvement w.r.t. preprocessing time, memory consump-
tion, and query times.

Locality Filters. The observation that in the past, successful geomet-
ric speedup techniques have always been beaten by related non-geometric
techniques (e.g. geometric A∗ search by landmark-based A∗ search or geo-
metric containers by edge flags) suggests the hypothesis that geometry is not
required for efficient route planning algorithms. Against this background,
the fact that we have to use a geometric locality filter to obtain our best re-
sults is dissatisfying7 since it contradicts our hypothesis. Contrariwise, if
we could do without a geometric filter, our transit-node routing instantiation
would confirm our hypothesis since its query times are superior to those of
the implementation that is based on a grid division and thus, on geometry.

An alternative, non-geometric locality filter could exploit the fact that
nodes that are so close that a local query is required usually share common
access nodes. Such a filter could be evaluated very efficiently since it is
equivalent to checking whether some lookup in the distance table returns a
zero.8 Preliminary experiments indicate that this locality filter would yield
less false positives. However, the remaining difficulty is hidden in the word
‘usually’: there are a few exceptions where a local node pair does not share
a common access node. In order to get a correct locality filter, we have to
deal with these exceptions appropriately, perhaps by storing and checking

7This is not a practical problem, but it is undesirable as a matter of principle.
8At least if we disallow zero weight edges, getting a zero implies that forward and back-

ward access nodes match.



152 Chapter 6. Transit-Node Routing

them explicitly9 or by deliberately adding ‘superfluous’ access nodes in the
few exceptional cases to ensure the ‘common-access-node rule’. Correctly
handing down access nodes and locality filters to lower levels makes an
implementation of this idea nontrivial.

Reducing the Number of Table Lookups. For a given source-target
pair (s, t), let

a := max(|−→AL(s)|, |←−AL(t)|).

For a global query (i.e., LL(s, t) = false), we need O(a) time to lookup
all access nodes, O(a2) to perform the table lookups, and O(1) to check
the locality filter. Thus, if we want to further improve the query times, the
first attempt should be to reduce the number of table lookups. This could
be done by excluding certain access nodes at the outset, using an idea very
similar to the edge flag approach (Section 1.2.2). We partition the topmost
overlay graph GL into k regions and store for each node u ∈ TL its region
r(u) ∈ {1, . . . , k}. For each node s and each access node u ∈ −→AL(s), we
manage a flag vector fs,u : {1, . . . , k} → {true, false} such that fs,u(x)
is true iff there is a shortest path from s via u to some node v ∈ TL with
r(v) = x. These flag vectors can be precomputed in the following way,
again using ideas similar to those used in the preprocessing of the edge flag
approach: Let B ⊆ TL denote the set of border nodes, i.e., nodes that are
adjacent to some node in GL that belongs to a different region. For each
node s ∈ V and each border node b ∈ B, we determine the access node
u ∈ −→AL(s) that minimises d(s, u) + d(u, b); we set fs,u(r(b)) to true. In
addition, fs,u(r(u)) is set to true for each s ∈ V and each access node

u ∈ −→AL(s) since each access node obviously minimises the distance to
itself. We assume that the preprocessing can be done sufficiently fast since
|TL| is already small, |B| is even smaller, and the distances d(u, b) can be
looked up in the topmost distance table. An analogous preprocessing step
has to be done for the backward direction. Presumably, it is a good idea to
just store the bitwise OR of the forward and backward flag vectors in order
to keep the memory consumption within reasonable bounds.

Then, in a query from s to t, we can take advantage of the precomputed
flag vectors. First, we consider all backward access nodes of t and build

9Note that identifying all exceptions during preprocessing is rather simple.
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the flag vector ft such that ft(r(u)) = true for each u ∈ ←−AL(t). Second,
we consider only forward access nodes u of s with the property that the bit-

wise AND of fs,u and ft is not zero; we denote this set by
−→
A
′

L(s); during
this step, we also build the vector fs such that fs(r(u)) = true for each

u ∈ −→A ′L(s). Third, we use fs to determine the subset
←−
A
′
L(t) ⊆ ←−AL(t)

analogously to the second step. Now, it is sufficient to perform only

|−→A ′L(s)| × |←−A ′L(t)| table lookups. We conjecture—based on the excellent
sense of goal direction that the edge flag approach exhibits—that by this
means, the number of table lookups can be reduced from around 75 to 1–4.

Note that determining
−→
A
′

L(s) and
←−
A
′

L(t) is in O(a), in particular operations
on the flag vectors can be considered as quite cheap.

The preprocessing of the flag vectors can be further accelerated: First,
we can perform the computations only from nodes s ∈ T1 (instead of con-
sidering all nodes) and hand the obtained flag vectors down in an appropriate
way. However, that way, the effectiveness of the flag vectors could be im-
paired. Second, we could rearrange the columns of the distance table so that
all border nodes are stored consecutively, which should reduce the number
of cache misses during preprocessing.

References. This chapter is partly based on [71, 4, 5]. The relation be-
tween our contributions and the work by Bast, Funke, and Matijevic, who
introduced transit-node routing in the context of a grid-based implementa-
tion in [3] (which was followed by two joint publications [4, 5]), has been
explained in Sections 1.2.3 and 1.3.5.

In this thesis, the formal representation of the generic framework has
been largely extended compared to earlier publications. Furthermore, we
now have both an implementation based on highway hierarchies and a more
recent one based on highway-node routing. Since the new implementation
is superior to the old one (in particular w.r.t. preprocessing times) and more
flexible (in particular w.r.t. choosing the transit-node sets), we concentrated
on the new one in this thesis. Details on the highway-hierarchy-based in-
stantiation including experimental results can be found in [71, 4, 5].
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7

Experiments

7.1 Implementation

We have implemented all of our route planning techniques closely following
the specifications from Chapters 3–6. The implementation has been done in
C++ using basic data structures from the C++ Standard Template Library.
Since our various approaches are closely related, there is a high potential of
sharing common code. Therefore, we decided to write a single program that
unites the functionality of all route planning techniques. In order to avoid
runtime overheads, we make extensive use of generic programming tech-
niques using C++’s template class mechanism. This allows, for example, to
represent several variants of Dijkstra’s algorithm (which most of our prepro-
cessing and query algorithms are based on) in a single template class with-
out losing performance in comparison to having each variant in a separate
class.1 The obvious advantage of shared code is that improving/tuning one
variant often also yields an immediate improvement of the other variants.
Overall, our program consists of more than 20 000 lines of code (including
comments).

We put particular efforts into carefully implementing efficient data struc-
tures, e.g., for representing graphs. We decided against using existing li-
braries like LEDA [58] or the Boost Graph Library [82] since the generality

1Actually, in the current version there are no less than 36 different variants.
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of such libraries entail certain undesired overheads.2

To obtain a robust implementation, we include extensive consistency
checks in assertions and perform experiments that are checked against refer-
ence implementations, i.e., queries are checked against Dijkstra’s algorithm
and fast preprocessing algorithms are checked against naive implementa-
tions. Moreover, we created our own visualisation tools [9] that can handle
large graphs and are able to illustrate our route planning approaches. By this
means, several possibilities for further improvements have been discovered
and utilised.

We use 32-bit integers to store edge weights and path lengths. For more
details on the implementation, in particular on the employed data structures,
we refer to Appendix A.

7.2 Experimental Setting

7.2.1 Environment

The experiments were done on one core of a single AMD Opteron Proces-
sor 270 clocked at 2.0 GHz with 8 GB main memory and 2 × 1 MB L2
cache, running SuSE Linux 10.0 (kernel 2.6.13). The program was com-
piled by the GNU C++ compiler 4.0.2 using optimisation level 3. Results
for the DIMACS Challenge benchmarks [1] can be found in Table 7.1.

7.2.2 Instances

Main Instances. We deal with the road networks of Western Europe3

(which we often just call ‘Europe’) and of the USA (without Hawaii) and
Canada (USA/CAN). Both networks have been made available for scien-
tific use by the company PTV AG. For each edge, its length and one out

2Furthermore, in the past, various problems have been reported when using graph li-
braries and dealing with very large instances. In the meantime, it seems that the situation
has improved. For example, the current implementation of the edge flag approach [36] uses
the Boost Graph Library and is able to handle very large road networks. However, some
runtime overheads still remain.

3Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the UK
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Table 7.1: DIMACS Challenge benchmarks [1] for US (sub)graphs (query
time [ms]).

metric
graph time dist

NY 29.6 28.5
BAY 34.7 33.3
COL 51.5 49.0
FLA 134.8 120.5
NW 161.1 146.1
NE 225.4 197.2

CAL 291.1 235.4
LKS 461.3 366.1

E 681.8 536.4
W 1 211.2 988.2

CTR 4 485.7 3 708.1
USA 5 355.6 4 509.1

of 13 road categories (e.g., motorway, national road, regional road, urban
street) is provided.

In addition, we perform experiments on a publicly available version of
the US road network (without Alaska and Hawaii) that was obtained from
the TIGER/Line Files [92] (USA (Tiger)). However, in contrast to the PTV
data, the TIGER graph is undirected, planarised and distinguishes only be-
tween four road categories, in fact 91% of all roads belong to the slowest
category so that you cannot discriminate them.

Strongly Connected Components. For the 9th DIMACS Implementation
Challenge [1], our road networks of Europe and the USA (Tiger) were es-
tablished as benchmark instances. However, since not all participants could
handle unconnected graphs, in each case, only the largest strongly con-
nected component was considered. Although our implementation is able
to handle unconnected graphs, we restricted ourselves to the strongly con-
nected components in case of the combination of highway hierarchies with
goal-directed search (Section 7.5) and in case of transit-node routing (Sec-
tion 7.9) to comply with the guidelines of the challenge. In both cases, it



158 Chapter 7. Experiments

makes hardly any difference4 which version of the graph is used since the
largest strongly connected component consists of about 99% of all nodes.

Different Metrics. For most practical applications, a travel time metric is
most useful, i.e., the edge weights correspond to an estimate of the travel
time that is needed to traverse the edge. In order to compute the edge
weights, we assign an average speed to each road category (see Table 7.2).

Table 7.2: Average Speeds [km/h]. The last column contains the average
speed for “forest roads, pedestrian zones, private roads, gravel roads or other
roads not suitable for general traffic”.

motorway national regional urban
fast slow fast slow fast slow fast slow

Europe 130 120 110 100 90 80 70 60 50 40 30 20 10
USA/CAN 112 104 96 96 88 80 72 64 56 40 32 24 16
USA (Tiger) 100 80 60 40

In some cases, we also deal with a distance metric (where we directly
use the provided lengths) and a unit metric (where each edge gets weight 1).

An Even Larger Road Network. Very recently, we obtained a new ver-
sion of the European road network (New Europe) that is larger than the old
one and covers more countries5 . It has been provided for scientific use by
the company ORTEC. So far, we have done only a few experiments on it.
Unless otherwise stated, the term ‘(Western) Europe’ always refers to the
smaller network provided by PTV.

Table 7.3 gives the sizes of the used road networks.

4Note that in case of transit-node routing, we could get a small improvement w.r.t.
query times if we changed our implementation such that only connected inputs are han-
dled correctly—because in this case, we could omit a few checks for the special case that
two nodes are not connected.

5In addition to the old version, the Czech Republic, Finland, Hungary, Ireland, Poland,
and Slovakia.
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Table 7.3: Test Instances. In case of Europe and the USA (Tiger), we give
the size of both variants: the original one and the largest strongly connected
component (scc).

road network #nodes #directed edges
Europe 18 029 721 42 199 587
Europe (scc) 18 010 173 42 188 664
USA/CAN 18 741 705 47 244 849
USA (Tiger) 24 278 285 58 213 192
USA (Tiger) (scc) 23 947 347 57 708 624
New Europe 33 726 989 75 108 089

7.2.3 Preliminary Remarks

Unless otherwise stated, the experimental results refer to the scenario where
the travel time metric is used, only the shortest-path length is computed
without outputting the actual route, and turning restrictions are ignored.

When we specify the memory consumption of one of our approaches,
we usually give the overhead, which accounts for the additional memory
that is needed by our approach compared to a space-efficient bidirectional
implementation of Dijkstra’s algorithm. This overhead is always expressed
in ‘bytes per node’. Alternatively, we sometimes give the total disk space

(in MB), which is the space that is needed to store the original graph to-
gether with the preprocessed auxiliary data on hard disk. It does not include
volatile data structures like the priority queues.

7.3 Methodology

7.3.1 Random Queries

As a simple, widely used and accepted performance measure, we run queries
using source-target pairs that are picked uniformly at random. The advan-
tage of this measure is that it can be expressed by a single figure (the average
query time) and that it is independent of a particular application. In addition
to the average query time, we also often given the average search space size
and the average number of relaxed edges. As basis for comparisons, we
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use Dijkstra’s algorithm: the term ‘speedup’ refers to the ratio between the
average query time or the average search space size of Dijkstra’s algorithm
and the corresponding measurement of the algorithm whose performance is
studied. Unless otherwise stated, in our experiments, we pick 10 000 ran-
dom source-target pairs.

7.3.2 Local Queries

For use in applications it is unrealistic to assume a uniform distribution of
queries in large graphs such as Europe or the USA. On the other hand,
it would be hardly more realistic to arbitrarily cut the graph into smaller
pieces. Therefore, we decided to also measure local queries within the
big graphs: We choose random sample points s and for each power of two
r = 2k, we use Dijkstra’s algorithm to find the node t with Dijkstra rank
rks(t) = r. We then use our algorithm to make an s-t-query. By plotting
the resulting statistics for each value r = 2k, we can see how the perfor-
mance scales with a natural measure of difficulty of the query. We represent
the distributions as box-and-whisker plots [67]: each box spreads from the
lower to the upper quartile and contains the median, the whiskers extend to
the minimum and maximum value omitting outliers, which are plotted indi-
vidually. Such plots are based on 1 000 random sample points s. For some
examples, see Figures 7.3, 7.6, 7.8, and 7.12.

7.3.3 Worst Case Upper Bounds

For any bidirectional approach where forward and backward search can be
executed independently of each other—this applies both to highway hier-
archies and highway-node routing—, we can use the following technique
to obtain a per-instance worst-case guarantee, i.e., an upper bound on the
search space size for any possible point-to-point query for a given fixed
graph G: By executing a query from each node of G to an added isolated
dummy node and a query from the dummy node to each actual node in the
backward graph, we obtain a distribution of the search space sizes of the
forward and backward search, respectively. We can combine both distribu-
tions to get an upper bound for the distribution of the search space sizes of
bidirectional queries: when F→(x) (F←(x)) denotes the number of source
(target) nodes whose search space consists of x nodes in a forward (back-
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ward) search, we define

F↔(z) :=
∑

x+y=z

F→(x) · F←(y), (7.1)

i.e.,F↔(z) is the number of s-t-pairs such that the upper bound of the search
space size of a query from s to t is z. In particular, we obtain the upper
bound max{z | F↔(z) > 0} for the worst case without performing all n2

possible queries. Examples can be found in Figures 7.4 and 7.9.
For bidirectional approaches that employ a distance table—this ap-

plies both to highway hierarchies and transit-node routing—, a very similar
method can be used to derive histograms for the number of accessed table
entries: Let F ′→(x) denote the number of source nodes with x forward en-
trance points to the topmost core (in case of highway hierarchies) or with
x forward level-L access nodes (in case of transit-node routing). F ′←(x) is
defined analogously. Then, a distribution for the number of table accesses
can be derived by replacing x + y = z with x · y = z in Equation 7.1 and
thus, using

F ′↔(z) :=
∑

x·y=z

F ′→(x) · F ′←(y). (7.2)

Figures 7.5 and 7.13 have been obtained by this means.

7.4 Highway Hierarchies

7.4.1 Parameters

Default Settings. Unless otherwise stated, the following default settings
apply. We use the maverick factor f = 2(i − 1) for the i-th iteration of
the construction procedure, the contraction rate c = 2, the shortcut hops
limit 10, and the neighbourhood size H = 30 for Europe and H = 40 for
both North American networks—the same neighbourhood size is used for
all levels of a hierarchy. First, we contract the original graph.6 Then, we
perform five iterations of our construction procedure, which determines a
highway network and its core. Finally, we compute the distance table for all
level-5 core nodes.

6In Section 3.2, we gave the definition of the highway hierarchies where we first construct
a highway network and then contract it. We decided to change this order in the experiments,
i.e., to start with an initial contraction phase, since we observed a better performance in this
case.
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Self-Similarity. For two levels ℓ and ℓ + 1 of a highway hierarchy, the
shrinking factor is the ratio between |E′ℓ| and |E′ℓ+1|. In our experiments, we
observed that the highway hierarchies of Europe and the USA were almost
self-similar in the sense that the shrinking factor remained nearly unchanged
from level to level when we used the same neighbourhood size H for all
levels—provided that H was not too small.

Figure 7.1 demonstrates the shrinking process for Europe. Note that the
first contraction step is not shown. In contrast to our default settings, we
do not stop after five iterations. For most levels and H ≥ 70, we observe
an almost constant shrinking factor7 (which appears as a straight line due to
the logarithmic scale of the y-axis). The greater the neighbourhood size, the
greater the shrinking factor. The last iteration is an exception: the highway
network collapses, i.e., it shrinks very fast because nodes that are close to the
border of the network usually do not belong to the next level of the highway
hierarchy, and when the network gets small, almost all nodes are close to the
border. In case of the smallest neighbourhood size (H = 30), the shrinking
factor gets so small that the network does not collapse even after 14 levels
have been constructed.

107

106

105

104

1000

100

10

1
 0  2  4  6  8  10  12  14

#e
dg

es

level

H = 30
H = 50
H = 70
H = 90

Figure 7.1: Shrinking of the highway networks of Europe. For different
neighbourhood sizes H and for each level ℓ, we plot |E′ℓ |, i.e., the number
of edges that belong to the core of level ℓ.

7Detailed numbers for H = 70 can be found in Table 3.1 in Section 3.1.
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Varying the Neighbourhood Size. Note that in order to simplify the ex-
perimental setup, all results in the remainder of Section 7.4.1 have been ob-
tained without rearranging nodes by level. This simplification is unproblem-
atic since we want to demonstrate the effects of choosing different parameter
settings and at this, the relative performance is already very meaningful.

In one test series (Figure 7.2), we used all the default settings except for
the neighbourhood size H , which we varied in steps of 5. On the one hand,
if H is too small, the shrinking of the highway networks is less effective so
that the level-5 core is still quite big. Hence, we need much time and space
to precompute and store the distance table. On the other hand, if H gets
bigger, the time needed to preprocess the lower levels increases because the
area covered by the local searches depends on the neighbourhood size. Fur-
thermore, during a query, it takes longer to leave the lower levels in order
to get to the topmost level where the distance table can be used. Thus, the
query time increases as well. We observe that the preprocessing time is min-
imised for neighbourhood sizes around 40. In particular, the optimal neigh-
bourhood size does not vary very much from graph to graph. In other words,
if we used the same parameter H , say 40, for all road networks, the result-
ing performance would be very close to the optimum. Obviously, choosing
different neighbourhood sizes leads to different space-time trade-offs.
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Figure 7.2: Preprocessing and query performance depending on the neigh-
bourhood size H .
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Varying the Contraction Rate. In another test series (Table 7.4), we did
not use a distance table, but repeated the construction process until the top-
most level was empty or the hierarchy consisted of 15 levels. We varied
the contraction rate c from 0.5 to 2.5. In case of c = 0.5 (and H = 30),
the shrinking of the highway networks does not work properly so that the
topmost level is still very big. This yields huge query times. Choosing
larger contraction rates reduces the preprocessing and query times since the
cores and search spaces get smaller. However, the memory usage and the
average degree are slightly increased since more shortcuts are introduced.
Adding too many shortcuts (c = 2.5) further reduces the search space, but
the number of relaxed edges increases so that the query times get worse.

Table 7.4: Preprocessing and query performance for the European road net-
work depending on the contraction rate c. ‘overhead’ denotes the average
memory overhead per node in bytes.

contr.
PREPROCESSING QUERY

rate c
time over-

∅deg.
time #settled #relaxed

[min] head [ms] nodes edges
0.5 83 30 3.2 391.73 472 326 1 023 944
1.0 15 28 3.7 5.48 6 396 23 612
1.5 11 28 3.8 1.93 1 830 9 281
2.0 11 29 4.0 1.85 1 542 8 913
2.5 11 30 4.1 1.96 1 489 9 175

Varying the Number of Levels. In a third test series (Table 7.5), we used
the default settings except for the number of levels, which we varied from
6 to 11. Note that the original graph and its core (i.e., the result of the first
contraction step) counts as one level so that for example ‘6 levels’ means
that only five levels are constructed. In each test case, a distance table was
used in the topmost level. The construction of the higher levels of the hier-
archy is very fast and has no significant effect on the preprocessing times.
In contrast, using only six levels yields a rather large distance table, which
somewhat slows down the preprocessing and increases the memory usage.
However, in terms of query times, ‘6 levels’ is the optimal choice since us-
ing the distance table is faster than continuing the search in higher levels.
We omitted experiments with less levels since this would yield very large
distance tables consuming very much memory.
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Table 7.5: Preprocessing and query performance for the European road net-
work depending on the number of levels. ‘overhead’ denotes the average
memory overhead per node in bytes.

PREPROC. QUERY

# time over- time #settled
levels [min] head [ms] nodes

6 12 48 0.75 709
7 10 34 0.93 852
8 10 30 1.14 991
9 10 30 1.35 1 123
10 10 29 1.54 1 241
11 10 29 1.67 1 326

Results for further combinations of neighbourhood size, contraction
rate, and number of levels can be found in Tables 7.7 and 7.8.

7.4.2 Main Results

Table 7.6 summarises the key results of the experiments where we apply
the default parameters and perform random queries (as specified in Sec-
tion 7.3.1).

Table 7.6: Overview of the key results. Note that ‘worst case’ is an upper
bound for any possible query in the respective graph and not only within the
chosen sample (cp. Section 7.4.5).

Europe USA/CAN USA (Tiger)
PARAM. H 30 40 40

PREPROC.
CPU time [min] 13 17 15
∅overhead/node [byte] 48 46 34

QUERY

CPU time [ms] 0.61 0.83 0.67
#settled nodes 709 871 925
#relaxed edges 2 531 3 376 3 823
speedup (CPU time) 9 935 7 259 9 303
speedup (#settled nodes) 12 715 10 750 12 889
worst case (#settled nodes) 2 388 2 428 2 505
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Table 7.7: Preprocessing and query performance for the European road net-
work depending on the contraction rate c and the neighbourhood size H .
We do not use a distance table, but repeat the construction process until the
topmost level is empty or the hierarchy consists of 15 levels.

contr. nbh.
PREPROCESSING QUERY

rate c size H
time over-

∅deg.
time #settled #relaxed

[min] head [ms] nodes edges

0.5

30 83 30 3.2 391.73 472 326 1 023 944
40 83 28 3.2 267.57 334 287 711 082
50 87 27 3.2 188.55 242 787 506 543
60 86 27 3.2 135.27 177 558 362 748
70 87 26 3.2 101.36 135 560 271 324
80 89 26 3.1 73.40 99 857 196 150
90 87 25 3.1 55.02 75 969 146 247

1.0

30 15 28 3.7 5.48 6 396 23 612
40 15 28 3.7 2.62 3 033 11 315
50 17 27 3.6 2.13 2 406 8 902
60 18 27 3.6 1.93 2 201 8 001
70 19 26 3.6 1.80 2 151 7 474
80 20 26 3.6 1.79 2 193 7 392
90 22 26 3.6 1.78 2 221 7 268

1.5

30 11 28 3.8 1.93 1 830 9 281
40 12 28 3.8 1.72 1 628 7 672
50 13 27 3.7 1.56 1 593 6 975
60 14 27 3.7 1.53 1 645 6 697
70 15 27 3.7 1.51 1 673 6 590
80 17 27 3.7 1.51 1 726 6 719
90 18 27 3.7 1.54 1 782 6 655

2.0

30 11 29 4.0 1.85 1 542 8 913
40 11 29 3.9 1.64 1 475 7 646
50 12 28 3.9 1.48 1 470 6 785
60 14 28 3.8 1.46 1 506 6 650
70 15 28 3.8 1.45 1 547 6 649
80 16 27 3.8 1.49 1 611 6 935
90 17 27 3.8 1.53 1 675 6 988

2.5

30 11 30 4.1 1.96 1 489 9 175
40 11 29 4.0 1.70 1 453 7 822
50 12 29 4.0 1.58 1 467 7 119
60 14 29 3.9 1.57 1 493 7 035
70 15 28 3.9 1.54 1 536 6 905
80 16 28 3.9 1.55 1 583 7 094
90 18 28 3.9 1.58 1 645 7 204
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Table 7.8: Preprocessing and query performance for the European road net-
work depending on the number of levels and the neighbourhood size H . In
the topmost level, a distance table is used.

#levels
nbh.

PREPROCESSING QUERY

size H
time over-

∅deg.
time #settled #relaxed

[min] head [ms] nodes edges

5

40 14 60 3.9 0.67 691 2 398
50 13 40 3.9 0.77 818 2 892
60 14 32 3.8 0.87 938 3 361
70 15 30 3.8 0.96 1 058 3 837
80 16 28 3.8 1.05 1 165 4 278
90 17 28 3.8 1.13 1 269 4 697

6

30 12 48 4.0 0.75 709 2 531
40 11 33 3.9 0.87 867 3 171
50 12 29 3.9 0.99 1 015 3 759
60 13 28 3.8 1.10 1 157 4 299
70 15 28 3.8 1.21 1 292 4 837
80 16 28 3.8 1.30 1 414 5 311
90 17 27 3.8 1.40 1 521 5 817

7

30 10 34 4.0 0.93 852 3 195
40 11 29 3.9 1.07 1 025 3 894
50 12 28 3.9 1.20 1 187 4 538
60 13 28 3.8 1.32 1 344 5 166
70 15 28 3.8 1.39 1 462 5 689
80 16 27 3.8 1.47 1 578 6 179
90 18 27 3.8 1.53 1 668 6 661

8

30 10 30 4.0 1.14 991 3 853
40 11 29 3.9 1.27 1 171 4 624
50 12 28 3.9 1.36 1 321 5 283
60 14 28 3.8 1.43 1 455 5 887
70 15 28 3.8 1.46 1 546 6 338
80 16 27 3.8 1.48 1 611 6 935
90 18 27 3.8 1.53 1 675 6 988

9

30 10 30 4.0 1.35 1 123 4 532
40 11 29 3.9 1.45 1 289 5 338
50 12 28 3.9 1.48 1 417 5 931
60 14 28 3.8 1.47 1 506 6 429
70 15 28 3.8 1.46 1 547 6 649

10

30 10 29 4.0 1.54 1 241 5 214
40 11 29 3.9 1.57 1 380 6 012
50 12 28 3.9 1.51 1 468 6 470
60 14 28 3.8 1.46 1 506 6 650
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7.4.3 Local Queries

Figure 7.3 shows the query times according to the methodology introduced
in Section 7.3.2. Note that for ranks up to 218 the median query times are
scaling quite smoothly and the growth is much slower than the exponential
increase we would expect in a plot with logarithmic x axis, linear y axis,
and any growth rate of the form rρ for Dijkstra rank r and some constant
power ρ; the curve is also not the straight line one would expect from a
query time logarithmic in r. For ranks r ≥ 219, the query times hardly rise
due to the fact that the all-pairs distance table can bridge the gap between
the forward and backward search of these queries irrespective of dealing
with a small or a large gap. In case of Europe and USA/CAN, the query
times drop for r = 224 since r is only slightly smaller than the number of
nodes so that the target lies close to the border of the respective road network
which implies some kind of trivial sense of goal direction for the backward
search (because, in the beginning, we practically cannot go into the wrong
direction).
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Figure 7.3: Local queries.

7.4.4 Space Saving

If we omit the first contraction step and use a smaller contraction rate
(⇒ less shortcuts), use a bigger neighbourhood size (⇒ higher levels
get smaller), and construct more levels before the distance table is used
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(⇒ smaller distance table), the memory usage can be reduced considerably.
In case of Europe, using seven levels, H = 100, and c = 1 yields an average
overhead per node of 17 bytes. The construction and query times increase
to 55 min and 1.10 ms, respectively.

7.4.5 Worst Case Upper Bounds

We apply the techniques introduced in Section 7.3.3. Figure 7.4 visualises
the distribution of the search space sizes as a histogram.

Similarly, Figure 7.5 represents the distribution of the number of entries
in the distance table that have to be accessed during an s-t-query. While the
average values are reasonably small (4 066 in case of Europe), the worst case
can get quite large (62 379). For example, accessing 62 379 entries in a table
of size 9 351× 9 351 takes about 1.1 ms, where 9 351 is the number of nodes
of the level-5 core of the European highway hierarchy. Hence, in some
cases the time needed to determine the optimal entry in the distance table
might dominate the query time. We could try to improve the worst case by
introducing a case distinction that checks whether the number of entries that
have to be considered exceeds a certain threshold. If so, we would not use
the distance table, but continue with the normal search process. However,
this measures would have only little effect on the average performance.
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Figure 7.4: Histogram of upper bounds for the search space sizes of s-t-
queries. To increase readability, only the outline of the histogram is plotted
instead of the complete boxes.
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Figure 7.5: Histogram of upper bounds for the number of entries in the
distance table that have to be accessed during an s-t-query.

7.4.6 Outputting Complete Path Descriptions

So far, we have reported only the times needed to compute the shortest-path
length between two nodes. Now, we determine a complete description of
the shortest path. In Table 7.9 we give the additional preprocessing time and
the additional disk space for the unpacking data structures. Furthermore, we
report the additional time that is needed to determine a complete description
of the shortest path and to traverse8 it summing up the weights of all edges
as a sanity check—assuming that the query to determine the shortest-path
length has already been performed. That means that the total average time
to determine a shortest path is the time given in Table 7.9 plus the query
time given in previous tables9. Note that Variant 1 is no longer supported
by the current version of our implementation so that the numbers in the first
data row of Table 7.9 have been obtained with an older version and different
settings.

We can conclude that even Variant 3 requires little additional prepro-
cessing time and only a moderate amount of space. With Variant 3, the time
for outputting the path remains considerably smaller than the time to deter-

8Note that we do not traverse the path in the original graph, but we directly scan the
assembled description of the path.

9Note that in the current implementation outputting path descriptions and the feature to
rearrange nodes by level are mutually exclusive. However, this is not a limitation in principle.
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mine the path length and a factor 3–5 smaller than using Variant 2. The US
graph profits more than the European graph since it has paths with consider-
ably larger hop counts, perhaps due to a larger number of degree two nodes
in the input. Note that due to cache effects, the time for outputting the path
using preprocessed shortcuts is likely to be considerably smaller than the
time for traversing the shortest path in the original graph.

Table 7.9: Additional preprocessing (pp) time, additional disk space and
query time that is needed to determine a complete description of the short-
est path and to traverse it summing up the weights of all edges—assuming
that the query to determine its lengths has already been performed. More-
over, the average number of hops—i.e., the average path length in terms of
number of nodes—is given. The three algorithmic variants are described in
Section 3.4.3.

Europe USA (Tiger)
pp space query # hops pp space query # hops
[s] [MB] [ms] (avg.) [s] [MB] [ms] (avg.)

Variant 1 0 0 17.22 1 366 0 0 39.69 4 410
Variant 2 69 126 0.49 1 366 68 127 1.16 4 410
Variant 3 74 225 0.19 1 366 70 190 0.25 4 410

7.4.7 Turning Restrictions

We did an experiment with the German road network (a subgraph of our Eu-
ropean network) and real-world turning restrictions (also provided by PTV)
to verify our expectation that incorporating the restrictions into the graph
has only a little effect on the performance. The results are positive: the pre-
processing time does not change, the total number of nodes and edges in the
highway hierarchy only increases by 4%, and the query times rise by 3%.

7.4.8 Distance Metric

When we apply a distance metric instead of the usual (and for most practi-
cal applications more relevant) travel time metric, the hierarchy that is in-
herent in the road network is less distinct since the difference between fast
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and slow roads fades. We no longer observe the self-similarity in the sense
that a fixed neighbourhood size yields an almost constant shrinking factor.
Instead, we have to use an increasing sequence of neighbourhood sizes to
ensure a proper shrinking. For Europe, we use H = 100, 200, 300, 400,
500 to construct five levels before an all-pairs distance table is built. Con-
structing the hierarchy takes 34 minutes and entails a memory overhead of
36 bytes per node. On average, a random query then takes 4.88 ms, settling
4 810 nodes and relaxing 33 481 edges. Further experiments on different
metrics can be found in Section 7.5.

7.4.9 An Even Larger Road Network

In order to deal with our new and larger European road network (New Eu-
rope), we use the same parameters as for the old version (in particular, H =
30). We observe a very good shrinking behaviour: we have 1.87 times as
many nodes in the beginning (compared to the old version), but after the
construction of the same number of levels only 1.04 times as many nodes
remain. Thus, the same number of levels is sufficient, only the distance ta-
ble gets slightly bigger. We arrive at a preprocessing time of 18 minutes, a
memory overhead of 37 bytes per node, and query times of 0.60 ms for ran-
dom queries; on average, 685 nodes are settled and 2 457 edges are relaxed.
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7.5 Highway Hierarchies Combined With Goal-

Directed Search

7.5.1 Parameters

Unless otherwise stated, we use the same default settings as specified in
Section 7.4.1. The chosen neighbourhood sizes for all considered metrics
are given in Table 7.10. We use 16 maxCover landmarks that have been
computed in the level-3 core. The approximate query algorithm uses a max-
imum relative error of 10%, i.e., ε = 0.1.

Table 7.10: Used neighbourhood sizes. For the travel time metric, we use
a fixed neighbourhood size for the construction of all levels. For the other
two metrics, we use linearly increasing sequences as neighbourhood sizes
of the different levels. For Europe with the travel time metric, we have a
different neighbourhood size in case that we do not use a distance table (∅)
and in case that we use one (DT).

Europe USA (Tiger)
metric ∅ DT ∅ DT
time 40 30 40 40
dist 60, 120, 180, . . . 60, 120, 180, . . .
unit 40, 50, 60, . . . 60, 120, 180, . . .

7.5.2 Using a Distance Table and/or Landmarks

As already mentioned in Section 3.4.2, using a distance table can be seen
as adding a very strong sense of goal direction after the core of the topmost
level has been reached. If the highway query algorithm (without distance
table) is enhanced by the ALT algorithm, the goal direction comes into ef-
fect much earlier. Still, the most considerable pruning effect occurs in the
middle of rather long paths: close to the source and the target, the lower
bounds are too weak to prune the search. Thus, both optimisations, distance
tables and ALT, have a quite similar effect on the search space: using either
of both techniques, in case of the European network with the travel time
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metric, the search space size is roughly halved (see Table 7.11). When we
consider other aspects like preprocessing time, memory usage, and query
time, we can conclude that the distance table is somewhat superior to the
landmarks optimisation. Since both techniques have a similar point of ap-
plication, a combination of the highway query algorithm with both optimi-
sations gives only a comparatively small improvement compared to using
only one optimisation. In contrast to the exact algorithm, the approximate
variant reduces the search space size and the query time considerably—e.g.,
to 19% and 25%, respectively, in case of Europe (relative to using only the
distance table optimisation)—, while guaranteeing a maximum relative er-
ror of 10% and achieving a total error10 of 0.051% in our random sample
(refer to Table 7.12).

Using a distance metric, ALT gets more effective and beats the distance
table optimisation since much better lower bounds are produced: the nega-
tive effect described in Figure 3.16 is weakened. Furthermore, in this case,
a combination with both optimisations is worthwhile: the query time is re-
duced to 43% in case of Europe (relative to using only the distance table
optimisation). While the highway query algorithm enhanced with a distance
table has 5.9 times slower query times when applied to the European graph
with the distance metric instead of using the travel time metric, the combi-
nation with both optimisations reduces this performance gap to a factor of
3.1—or even 1.2 when the approximate variant is used.

The performance for the unit metric ranks somewhere in between. Al-
though computing shortest paths in road networks based on the unit metric
seems kind of artificial, we observe a hierarchy in this scenario as well,
which explains the surprisingly good preprocessing and query times: when
we drive on urban streets, we encounter much more junctions than driv-
ing on a national road or even a motorway; thus, the number of road seg-
ments on a path is somewhat correlated to the road type. It is difficult to
tell why the US road network with the unit metric is considerably more dif-
ficult to handle than the European network. Originally, we tried using the
same neighbourhood sizes for both networks. But it turned out that Europe
shrinks much better and that the US network requires larger neighbourhood
sizes (cp. Table 7.10), which has a negative impact on the performance.

10i.e., the sum of the path lengths obtained by the approximate algorithm divided by the
sum of the shortest-path lengths minus one
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Table 7.11: Comparison of all variants of the highway query algorithm using
no optimisation (∅), a distance table (DT), ALT, or both techniques. Values
in parentheses refer to approximate queries.

metric ∅ DT ALT both

Europe

time

preproc. time [min] 13 13 14 14
total disk space [MB] 898 1 241 1 301 1 644
#settled nodes 1 510 708 786 511 (134)
query time [ms] 1.19 0.60 0.80 0.49 (0.15)

dist

preproc. time [min] 31 32 33 33
total disk space [MB] 907 1 654 1 309 2 056
#settled nodes 7 685 3 261 2 445 1 449 (125)
query time [ms] 6.99 3.53 2.72 1.51 (0.18)

unit

preproc. time [min] 21 22 23 24
total disk space [MB] 903 1 358 1 302 1 757
#settled nodes 3 015 1 524 1 550 1 116 (645)
query time [ms] 2.42 1.37 1.55 1.11 (0.68)

USA (Tiger)

time

preproc. time [min] 16 16 17 18
total disk space [MB] 1 124 1 283 1 649 1 807
#settled nodes 1 553 932 803 627 (132)
query time [ms] 1.04 0.70 0.72 0.55 (0.15)

dist

preproc. time [min] 35 38 37 40
total disk space [MB] 1 126 2 139 1 651 2 663
#settled nodes 7 461 3 512 2 059 1 372 (117)
query time [ms] 6.03 3.73 2.16 1.37 (0.20)

unit

preproc. time [min] 36 36 38 38
total disk space [MB] 1 108 1 562 1 630 2 083
#settled nodes 7 126 3 676 2 781 1 778 (306)
query time [ms] 5.18 3.15 2.55 1.60 (0.36)

7.5.3 Local Queries

In Figure 7.6, we compare the exact and the approximate HH∗ search in
case of the European network with the travel time metric. In the exact case,
we observe a continuous increase of the query times: since the distance
between source and target grows, it takes longer till both search scopes meet.
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For large Dijkstra ranks, the slope decreases. This can be explained by the
distance table that bridges the gap between the forward and backward search
for long-distance queries very efficiently (cp. Section 7.4.3).

Up to a Dijkstra rank of 218, the approximate variant shows a very sim-
ilar behaviour—even though at a somewhat lower level. Then, the query
times decrease, reaching very small values for very long paths (Dijkstra
ranks 222–224). This is due to the fact that the relative inaccuracy of the
lower bounds, which is crucial for the stop condition of the approximate
algorithm, is less distinct for very long paths: hence, most of the time, the
lower bounds are sufficiently strong to stop very early. However, the large
number and high amplitude of outliers indicates that sometimes goal direc-
tion does not work well even for approximate queries.
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Figure 7.6: Local queries on the European network with the travel time
metric using the exact and the approximate HH∗ search.

7.5.4 Approximation Error

Figure 7.7 shows the actual distribution of the approximation error for a
random sample in the European network with the travel time metric. For
paths up to a moderate length (Dijkstra rank 216), at least 99% of all queries
in the random sample returned an accurate result. Only very few queries
approach the guaranteed maximum relative error of 10%. For longer paths,
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still more than 93% of the queries give the correct result, and almost 99%
of the queries find paths that are at most 2% longer than the shortest path.
The fact that we get more errors for longer paths corresponds to the running
times depicted in Figure 7.6: in the case of large Dijkstra ranks, we usually
stop the search quite early, which increases the likelihood of an inaccuracy.

While the approximate variant of the ALT algorithm [17] gives only a
small speedup and produces a considerable amount of inaccurate results (in
particular for short paths), the approximate HH∗ algorithm is much faster
than the exact version (in particular for long paths) and produces a compar-
atively small amount of inaccurate results. This difference is mainly due to
the distance table, which allows a fast determination of upper bounds—and
thus, in many cases early aborts—and provides accurate long-distance sub-
paths, i.e., the only thing that can go wrong is that the search processes in
the local areas around source and target do not find the right core entrance
points.

In Table 7.12, we compared the effect of different values for the maxi-
mum relative error ε. We obtained the expected result that a larger maximum
relative error reduces the search space size considerably. Furthermore, we

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

93
94

95
96

97
98

99
10

0

93
94

95
96

97
98

99
10

0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Figure 7.7: Actual distribution of the approximation error for a random sam-
ple in the European network with the travel time metric, grouped by Dijkstra
rank. Note that, in order to increase readability, the y-axis starts at 93%, i.e.,
at least 93% of all queries returned an accurate result.
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had a look at the actual error that occurs in our random sample: we divided
the sum of all path lengths that were obtained by the approximate algorithm
by the sum of the shortest path lengths (and subtracted one). We find that
the resulting total error is very small, e.g., only 0.051% in case of the Euro-
pean network with the travel time metric when we allow a maximum relative
error of 10%.

Table 7.12: Comparison of different maximum relative errors ε. Note that
the observed total errors are given in percent.

metric ε [%] 0 1 2 5 10 20

Europe

time
#settled nodes 511 459 393 241 134 83
total error [%] 0 0.0002 0.0016 0.015 0.051 0.107

dist
#settled nodes 1 449 851 542 217 125 101
total error [%] 0 0.0091 0.0351 0.116 0.211 0.278

unit
#settled nodes 1 116 1 074 1 030 879 645 344
total error [%] 0 0.0001 0.0002 0.004 0.024 0.127

USA (Tiger)

time
#settled nodes 627 506 417 249 132 75
total error [%] 0 0.0025 0.0141 0.062 0.125 0.188

dist
#settled nodes 1 372 754 465 193 117 94
total error [%] 0 0.0112 0.0302 0.083 0.132 0.166

unit
#settled nodes 1 778 1 450 1 170 636 306 157
total error [%] 0 0.0010 0.0065 0.044 0.146 0.282

7.6 Static Highway-Node Routing

All results in this section refer to the European road network. We also
did some experiments on USA/CAN and USA (Tiger), which indicate that
highway-node routing works similarly well on North American networks.

7.6.1 Parameters

We construct a highway hierarchy without a distance table using the param-
eters specified in Section 7.5.1. We get a classification of the nodes into 12
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levels. In order to obtain a variant with an outstanding low memory con-
sumption, we also derive a classification into 11 levels, where level 1 is just
omitted.

After performing a lot of preliminary experiments, we decided to apply
the stall-on-demand technique to the query and the stall-in-advance tech-
nique to the construction process (with a := 5 except for the construction
of level 1 in the 12-level case, where we use a := 1). Moreover, we use the
edge reduction step in order to compute minimal overlay graphs.

7.6.2 Results

Table 7.13 gives an overview on the performance of different variants of
static highway-node routing. We consider the 12-level variant (‘normal’)
and the one with 11 levels (‘save memory’). In each case, we distinguish
between a version where we keep the complete overlay-graph hierarchy and
a version where we keep only the search graphs. Note that the search space
sizes differ between the two versions because the stall-on-demand technique
is slightly less effective when applied only within the search graph since a
few useful edges are missing.

In case of the 11-level variant, level 1 consists of comparatively few
nodes so that, on the one hand, a local search in level 0 takes comparatively
long till the search tree is covered by level-1 nodes. This is reflected in

Table 7.13: Performance of different variants of static highway-node rout-
ing. We give both the time to construct the highway hierarchy (HH) that
determines the highway-node sets and the time to construct the multi-level
overlay graph used for highway-node routing (HNR).

normal save memory
complete search graph complete search graph

constr. HH [min] 11:27
constr. HNR [min] 3:31 7:44
overhead [B/node] 9.5 2.4 4.0 0.7
query [ms] 0.89 0.85 1.50 1.44
#settled nodes 957 981 2 328 2 369
#relaxed edges 7 561 7 737 10 693 10 927
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slower construction and query times. On the other hand, the first overlay
graph is comparatively small so that only little memory is needed for the
additional edges. When we keep only the forward and backward search
graph, the memory overhead is as little as about 6 bits per node (on average).

Even if we consider the normal variant and keep the complete overlay-
graph hierarchy, the space overhead is still quite small: less than 10 bytes
per node to store the additional edges of the multi-level overlay graph and
the level data associated with the nodes. The total disk space11 of 33.2 bytes
per node also includes the original edges and a mapping from original to
internal node IDs (that is needed since the nodes are reordered by level).

Details on the 12-level overlay graph can be found in Table 7.14. We
observe that the shrinking factor decreases from level to level. This is due to
the fact that this particular multi-level overlay graph is based on a highway
hierarchy with a rather small neighbourhood size of 40. The average node
degree increases from level to level, but stays within reasonable bounds.

Table 7.14: Details on the 12-level overlay graph used for static highway-
node routing. Note that the edge counters do not include edges that can be
only used in a backward search.

level #nodes
shrink

#edges
shrink average

factor factor degree
0 18 029 721 42 199 587 2.3
1 2 739 732 6.6 11 884 352 3.6 4.3
2 423 635 6.5 2 226 290 5.3 5.3
3 118 844 3.6 780 147 2.9 6.6
4 35 617 3.3 292 630 2.7 8.2
5 11 944 3.0 117 123 2.5 9.8
6 4 364 2.7 49 290 2.4 11.3
7 1 817 2.4 23 108 2.1 12.7
8 864 2.1 12 434 1.9 14.4
9 454 1.9 6 579 1.9 14.5

10 249 1.8 4 029 1.6 16.2
11 146 1.7 2 459 1.6 16.8

11The main memory usage is somewhat higher. However, we cannot give exact numbers
for the static variant since our implementation does not allow to switch off the dynamic data
structures.
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Figure 7.8 shows the query performance against the Dijkstra rank. The
characteristics are similar to those of highway hierarchies (cp. Figure 7.3).
For small Dijkstra ranks, highway-node routing is somewhat superior, while
for large Dijkstra ranks, highway hierarchies take the lead. The latter ob-
servation can be explained by the fact that the current implementation of
highway-node routing does not make use of the distance table optimisation
(Section 3.4.2).12
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Figure 7.8: Local queries.

Figure 7.9 gives upper bounds for the search space sizes of all possible
s-t-queries (analogously to Figure 7.4). We can guarantee that at most 2 148
nodes are settled during any query within the European road network. This
is slightly better than the corresponding guarantee that highway hierarchies
give (2 388 nodes).

We did a preliminary experiment on the performance of the unidirec-
tional query algorithm (Section 4.4.2). The search space size increased only
from 957 to 1 131 nodes. The effects on the query times are not clear yet.
On the one hand, a tuned version might take advantage of the fact that we
have to manage only a single priority queue. On the other hand, we have to
keep in mind that the computation of the reliable levels takes some time as
well.

12An integration of the distance table optimisation would be straightforward. However, it
would hinder efficient dynamic updates, which represent the main motivation for the devel-
opment of highway-node routing. Therefore, we omitted this optimisation.
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7.7 Dynamic Highway-Node Routing

As in the previous section, all results in this section refer to the European
road network.

7.7.1 Parameters

We deviate from the parameters used in the previous section in order to
achieve a different trade-off that favours good update times. In order to de-
termine the highway-node sets, we construct a highway hierarchy consisting
of seven levels using the neighbourhood size H = 70. This can be done in
16 minutes. For all further experiments, these highway-node sets are used.

As before, we use the stall-in-advance technique for the construction
and update process (with a := 1 for the construction of level 1 and a := 5
for all other levels).

7.7.2 Changing the Cost Function

In addition to our default speed profile (introduced in Table 7.2), we con-
sider a few other selected speed profiles (which have been provided by the
company PTV AG), namely profiles for a fast car, a slow car, and a slow
truck. Table 7.15 gives the construction time of the multi-level overlay
graph and the resulting average query performance for all these different
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Table 7.15: Construction time of the overlay graphs and query performance
for different speed profiles using the same highway-node sets. For the de-
fault speed profile, we also give results for the case that the edge reduction
step is applied.

speed profile default (reduced) fast car slow car slow truck distance
constr. [min] 1:40 (3:04) 1:41 1:39 1:36 3:56
query [ms] 1.17 (1.12) 1.20 1.28 1.50 35.62
#settled nodes 1 414 (1 382) 1 444 1 507 1 667 7 057
#relaxed edges 9 459 (9 162) 9 746 10 138 11 647 217 857

speed profiles (using the same highway-node sets). Note that for most road
categories, our default profile is slightly faster than PTV’s fast car profile.
The last speed profile (‘distance’) in Table 7.15 virtually corresponds to a
distance metric since for each road type the same constant speed is assumed.
The performance in case of the three PTV travel time profiles is quite close
to the performance for the default profile. Hence, we can efficiently switch
between these profiles without recomputing the highway-node sets.

For the constant speed profile, we get results that are considerably worse
(but probably still acceptable in most practical applications). There are two
reasons for this observation. First, the constant profile differs significantly
from the travel time profiles so that the chosen highway-node sets are no
longer as compatible as in the other cases. Second, as already observed
in case of highway hierarchies, the constant profile is a more difficult case
since the hierarchy inherent in the road network is less distinct. This is
confirmed by the fact that when we replace our standard highway-node set
with a set that has been determined using the distance metric, both construc-
tion and query time are considerably improved to 2:04 minutes and 9.23 ms,
respectively, but still the query time cannot compete with the travel time
profiles.

We assume that any other ‘reasonable’ cost function would rank some-
where between our default and the constant profile.
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7.7.3 Changing a Few Edge Weights (Server Scenario)

In the dynamic scenario, we need additional space to manage the affected
node sets Aℓ

u. Furthermore, the edge reduction step is not yet supported in
the dynamic case so that the total disk space usage increases to 56 bytes
per node. In contrast to the static variant, the main memory usage is con-
siderably higher than the disk space usage (around a factor of two) mainly
because the dynamic data structures maintain vacancies that might be filled
during future update operations.

We can expect different performances when updating very important
roads (like motorways) or very unimportant ones (like urban streets, which
are usually only relevant to very few connections). Therefore, for each of
the four major road categories, we pick 1 000 edges at random. In addition,
we randomly pick 1 000 edges irrespective of the road type. For each of
these edge sets, we consider four types of updates: first, we add a traffic
jam to each edge (by increasing the weight by 30 minutes); second, we
cancel all traffic jams (by setting the original weights); third, we block all
edges (by increasing the weights by 100 hours, which virtually corresponds
to ‘infinity’ in our scenario); fourth, we multiply the weights by 10 in order
to allow comparisons to [18]. For most of these cases, Table 7.16 gives
the average update time per changed edge. We distinguish between two
change set sizes: dealing with only one change at a time and processing
1 000 changes simultaneously.

As expected, the performance depends mainly on the selected edge and
hardly on the type of update. The average execution times for a single update
operation range between 40 ms (for motorways) and 2 ms (for urban streets).
Usually, an update of a motorway edge requires updates of most levels of
the overlay graph, while the effects of an urban-street update are limited to
the lowest levels. We get a better performance when several changes are
processed at once: for example, 1 000 random motorway segments can be
updated in about 8 seconds. Note that such an update operation will be
even more efficient when the involved edges belong to the same local area
(instead of being randomly spread), which might be a common case in real-
world applications.
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Table 7.16: Update times per changed edge [ms] for different road types and
different update types: add a traffic jam (+), cancel a traffic jam (−), block
a road (∞), and multiply the weight by 10 (×).

any road type motorway
|change set| + − ∞ × + − ∞ ×

1 2.7 2.5 2.8 2.6 40.0 40.0 40.1 37.3
1000 2.4 2.3 2.4 2.4 8.4 8.1 8.3 8.1

national regional urban
|change set| + − ∞ + − ∞ + − ∞

1 19.9 19.6 20.3 8.4 7.9 8.6 2.1 2.0 2.1
1000 7.1 6.7 7.1 5.3 5.0 5.3 2.0 1.9 2.0

7.7.4 Changing a Few Edge Weights (Mobile Scenario)

In the mobile scenario, we need the same data structures as in the server
scenario, in particular the affected node sets Aℓ

u. In addition, in case of the
iterative variant, we need data structures to unpack shortcuts (even if we
wanted to determine only the shortest path length). These data structures
require additional 43 seconds of preprocessing time and 108 MB of disk
space. They have the ability to unpack a shortest path that results from a
random query and contains shortcuts in 0.31 ms on average.13 Moreover,
for some technical reasons14 , we need 12 MB to store additional copies of
some edges.

Table 7.17 shows for the most difficult case (updating motorways) that
using our prudent query algorithm, we can omit the comparatively expen-
sive update operation and still get good execution times, at least if only a
moderate amount of edge weight changes occur. The iterative variant per-
forms clearly better: we see a factor of about 14 in the case of 100 changes.

13These data structures correspond to ‘Variant 2’ introduced in Section 3.4.3.
14Usually, if an edge belongs to several levels of the overlay graph hierarchy, we store

it only once and attach the appropriate level information. The iterative variant, however,
requires that the overlay graphs stay completely unchanged when the original graph is mod-
ified. Thus, if there is an edge that belongs to the original graph and to some overlay graph,
we need two copies so that only the copy in the original graph can be modified.
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This is due to the fact that usually very few iterations are sufficient to deter-
mine a shortest path. The single pass variant is robust to different types of
edge weights changes: adding 30 minutes or multiplying the edge weights
by 10 yields virtually the same results. In case of the iterative variant, how-
ever, the number of required iterations depends on the extent of the delays:
for ‘× 10’, we see somewhat better query times (unless there are only very
little changes), which is due to the fact that multiplying the edge weights
by 10 corresponds to an edge weight increase by only about 4 minutes on
average.

Table 7.17: Query performance of the single-pass and the iterative variant
depending on the number of edge weight changes on motorways. For ≤
100 changes, 10 different edge sets are considered; for ≥ 1 000 changes, we
deal only with one set. In the column ‘affected queries’, we give the average
percentage of queries whose shortest-path length is affected by the changes.

SINGLE PASS ITERATIVE

affected query time query time #iterations
|change set| queries [ms] [ms] average max

+ 30 minutes (× 10)
1 0.4 % 2.3 (2.3) 1.5 (1.5) 1.0 (1.0) 2 (2)

10 5.7 % 8.5 (8.8) 1.7 (1.7) 1.1 (1.1) 3 (3)
100 40.0 % 47.1 (48.0) 3.4 (3.3) 1.4 (1.4) 5 (5)

1 000 83.7 % 246.2 (244.8) 22.9 (17.6) 2.7 (2.4) 9 (8)
10 000 97.9 % 939.0 (950.9) 492.0 (323.3) 7.9 (6.3) 27 (22)
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7.8 Many-to-Many Shortest Paths

All results in this section refer to the European road network.

7.8.1 Implementations and Parameters

We have an implementation based on highway hierarchies and one based
on highway-node routing. Both implementations follow the specifications
from Section 5.4 quite closely except for the facts that the “accurate back-
ward search” optimisation has not been included yet and the “fewer bucket
entries” optimisation is realised only in case of highway-node routing. In or-
der to sort the bucket triples (Section 5.4.3), we just employ the sort routine
from the Standard Template Library. We expect that using an implementa-
tion that is adapted to the specific situation (e.g., some variant of counting
sort) could improve the running times for small distance tables (for large
distance tables, the sorting time is insignificant, cp. Figures 7.10 and 7.11).
In Table 7.18, we also consider the ‘original’ implementation by Knopp
[51], which is based on highway hierarchies and includes the “fewer bucket
entries” optimisation.

For the variant based on highway-node routing, we use a multi-level
overlay graph that has been constructed according to the parameters spec-
ified in Section 7.6.1. For the experiments using Knopp’s implementation,
a highway hierarchy has been constructed with a neighbourhood size of 70
and a contraction rate of 1.5. We adopted these settings for our reimplemen-
tation that is based on highway hierarchies.

7.8.2 Results

Table 7.18 gives the times needed to compute distance tables of various
sizes. Our reimplementation based on highway hierarchies is somewhat
slower than Knopp’s implementation since we do not employ the “fewer
bucket entries” optimisation. We did not made the effort to reimplement this
optimisation because it was foreseeable that the variant based on highway-
node routing would be superior anyway. As a matter of fact, for large tables,
highway-node routing yields almost three times smaller execution times so
that we need not much more than a minute to compute a 20 000 × 20 000
table—in other words, less than 0.2 µs per table entry.
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Table 7.18: Computing |S| × |S| distance tables using the implementation
based on highway hierarchies (HH) from [51] and our new implementations
based on highway hierarchies (HH) and on highway-node routing (HNR).
Experiments from [51] have been performed on a similar, but not identical
machine. All times are given in seconds.

|S| 100 500 1 000 5 000 10 000 20 000
HH [51] 0.2 1.0 2.5 23.8 66.7 211.0
HH 0.6 1.7 3.3 26.3 76.6 247.7
HNR 0.4 0.8 1.4 8.5 23.2 75.1

When comparing ourselves to Dijkstra’s algorithm, we have to take into
account that, in contrast to Dijkstra’s algorithm, we need some preprocess-
ing time—15 minutes in case of highway-node routing. However, the break-
even point is already reached for a 77 × 77 distance table. That means, if
we want to compute some table larger than 77 × 77, it is worth it to invest
the preprocessing time even if we want to compute only a single table for
the given road network. Note that in many applications, we want to compute
more than one table for a given road network so that the advantage of our
many-to-many algorithm is even more distinct.

For our implementation based on highway hierarchies and the one based
on highway-node routing, Figures 7.10 and 7.11 show how the running
times distribute over the four parts of the many-to-many algorithm: back-
ward searches, sorting the bucket triples, forward searches, and bucket scan-
ning. For larger distance tables, the time spent for bucket scanning gets
dominating so that it is reasonable to choose a smaller topmost level. This
effect is more distinct in case of highway hierarchies since highway-node
routing causes considerably less bucket entries—as we can see in Table 7.19.
In addition to various statistics that confirm our analysis from Section 5.4.1,
Table 7.19 provides some experimental results for the many-to-many al-
gorithm based on the original/symmetric variant of highway-node routing.
From these data, we can conclude that a direct application of the symmetric
variant already yields a reasonable performance, but, obviously, switching
to the asymmetric variant brings a significant boost (and has absolutely no
disadvantages).
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Figure 7.10: Computing |S| × |S| distance tables using the implementation
based on highway hierarchies.
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Figure 7.11: Computing |S| × |S| distance tables using the implementation
based on highway-node routing.
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Table 7.19: Computing a 10 000 × 10 000 distance table. For the first three
data columns, we give total numbers divided by 10 000. We distinguish
between the total number of bucket scans (‘all’) and the number of scans in
G′L or GL (‘top’) in case of highway hierarchies or highway-node routing,
respectively; in each case divided by 100 000 000. ‘Overlap’ denotes the
quotient of bucket scans and bucket entries: this roughly corresponds to
the average overlap of a forward search space and (the non-stalled part of)
a backward search space. In case of highway-node routing, we also give
results based on the original/symmetric variant.

L
bwd search #bucket fwd search #bucket scans

overlap
time

space size entries space size all (top) [s]

highway hierarchies
5 574 574 6 474 64 (61) 11.2% 134.6
6 721 721 2 093 85 (75) 11.8% 76.6
7 884 884 1 154 128 (97) 14.5% 81.6
8 983 983 1 012 172 (81) 17.4% 97.7
9 1 013 1 013 1 008 201 (0) 19.9% 109.2

highway-node routing
7 283 168 2 090 17 (15) 10.4% 41.3
8 326 191 1 179 22 (15) 11.6% 30.6
9 356 207 806 23 (19) 11.0% 25.3

10 383 223 637 23 (18) 10.4% 23.2
11 412 238 564 29 (17) 12.3% 25.0

sym 519 359 564 154 (N/A) 42.8% 77.8
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7.9 Transit-Node Routing

7.9.1 Parameters

We apply the economical variant to the travel time, the distance, and the
unit metric. In each case, in order to determine the highway-node sets (and
consequently the transit-node sets) we construct a highway hierarchy us-
ing the neighbourhood sizes from Table 7.10 (DT). In addition, we apply
the generous variant to the travel time metric using the neighbourhood size
H = 90.

7.9.2 Main Results

Preprocessing. Table 7.20 gives the preprocessing times for all consid-
ered road networks, metrics, and variants. In addition, some key facts on
the results of the preprocessing, e.g., the sizes of the transit node sets, are
presented. It is interesting to observe that for the travel time metric in level 2
the actual distance table size is at most 0.2% of the size a naive |T2| × |T2|
table would have.

Table 7.20: Preprocessing statistics. The size |D2| of the level-2 distance
table is given relative to the size of a complete |T2|×|T2| table. |Aℓ| denotes
|−→A ℓ∪←−A ℓ|, i.e., the size of the union of forward and backward access nodes.

level 3 level 2 overhead time
metric variant |T3| |A3| |T2| |D2| |A2| [B/node] [h]

Europe

time
eco 9 355 11.4 151 450 0.15% 5.3 99 0:25
gen 9 458 11.3 293 209 0.14% 4.4 226 1:15

dist eco 14 001 22.3 179 972 1.03% 8.8 301 2:42
unit eco 10 923 12.7 212 014 0.28% 6.4 138 0:53

USA (Tiger)

time
eco 6 449 6.8 218 153 0.20% 5.2 121 0:38
gen 10 261 6.1 449 945 0.08% 4.5 257 1:25

dist eco 16 296 19.1 261 759 0.53% 7.5 280 3:37
unit eco 10 901 12.5 239 029 1.00% 6.2 219 3:59
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As expected, the distance metric yields more access nodes than the travel
time metric (a factor 2–3) since not only junctions on very fast roads (which
are rare) qualify as access nodes. The fact that we have to increase the neigh-
bourhood size from level to level in order to achieve an effective shrinking
of the highway networks leads to comparatively high preprocessing times
for the distance metric.

Random Queries Using the Travel Time Metric. Table 7.21 summarises
the average case performance of transit-node routing. For the travel time
metric, the generous variant achieves average query times more than two
orders of magnitude lower than those of highway-node routing (Table 7.13)
or highway hierarchies (even when combined with goal-directed search, Ta-
ble 7.11). Compared to Dijkstra’s algorithm, we obtain a speedup of a factor
1.4 and 1.9 million in case of Europe and the USA, respectively. At the cost
of about a factor three in query time, the economical variant saves around a
factor of two in space and a factor of 2–3 in preprocessing time.

Finding a good locality filter is one of the biggest challenges of our
instantiation of transit-node routing. The values in Table 7.21 indicate that
our filter is suboptimal: for instance, only 0.0051% of the queries performed
by the economical variant in the European network would require a local
search to answer them correctly. However, the locality filter L2 forces us
to perform local searches in 0.1364% of all cases. The high-quality level-2
filter employed by the generous variant is considerably more effective, still
the percentage of false positives exceeds 90%.

Random Queries Using the Distance or Unit Metric. For the distance
and unit metric, the situation is worse. A considerably larger fraction of
the queries continues to level 2 and below. It is important to note that we
have concentrated on the travel time metric—since we consider the travel
time metric more important for practical applications—, and we spent com-
paratively little time to tune our approach for the distance and unit metric.
Nevertheless, the current version shows feasibility and still achieves an im-
provement of a factor of at least 15 or 80 for the distance or unit metric,
respectively, compared to highway hierarchies combined with goal-directed
search (Table 7.11).
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Table 7.21: Query statistics w.r.t. 10 000 000 randomly chosen (s, t)-pairs.
Each query is performed in a top-down fashion. For each level ℓ, we report
the percentage of the queries that are not answered correctly in some level
≥ ℓ and the percentage of the queries that are not stopped after level ℓ (i.e.,
Lℓ(s, t) is true). Note that only the generous variant can perform a query in
level 1 (but, as the economical variant, it always continues to level 0).

level 2 [%]
level 3 [%]

(level 1 [%])
metric variant wrong cont’d wrong cont’d query time

Europe

time
eco 0.57 3.36 0.0051 0.1364 11.0 µs

gen 0.25 1.55
0.0016 0.0180

4.3 µs
(0.00019) (0.0180)

dist eco 3.89 13.21 0.0121 0.4897 37.6 µs
unit eco 1.06 5.23 0.0070 0.1731 13.1 µs

USA (Tiger)

time
eco 0.37 2.44 0.0045 0.1130 9.5 µs

gen 0.10 0.87
0.0010 0.0124

3.3 µs
(0.00009) (0.0124)

dist eco 1.04 5.35 0.0067 0.1587 86.1 µs
unit eco 1.67 8.66 0.0099 0.2729 19.8 µs

Local Queries Using the Travel Time Metric. Since the overwhelming
majority of all cases is handled in the top level (more than 99% in case of
the US network using the generous variant), the average case performance
says little about the performance for more local queries which might be very
important in some applications. Therefore, we use the methodology intro-
duced in Section 7.3.2 to get more detailed information about the query time
distributions for queries ranging from very local to global, see Figure 7.12.
Note that even the median query times for the largest Dijkstra rank (which
is the best case) are higher than the average query times given in Table 7.21.
This is due to the fact that logging the statistics required to create the de-
picted plot causes a certain overhead.

For the generous approach, we can easily recognise the three levels of
transit-node routing with small transition zones in between: For ranks 218–
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224 we usually have ¬L3(s, t) and thus only require cheap distance table
accesses in level 3. For ranks 212–216, we need additional lookups in the
table of level 2 so that the queries get somewhat more expensive. In this
range, outliers can be considerably more costly, indicating that occasional
local searches are needed. For small ranks we usually need local searches
and additional lookups in the level-1 table. Still, the combination of a lo-
cal search in a very small area and table lookups in all three levels usually
results in query times of less than 30 µs.

In case of the economical approach, we observe a high variance in query
times for ranks 213–214. In this range, all types of queries occur and the
difference between the level-3 queries and the local queries is rather big
since the economical variant does not make use of level 1. For small Dijkstra
ranks, we see a growth of the query times that is typical for highway-node
routing (or highway hierarchies).
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Figure 7.12: Local queries on the European network with the travel time
metric using the economical and the generous variant.
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Distance Table Accesses. Figure 7.13 represents a histogram of the num-
ber of topmost distance table accesses during an s-t-query. For Europe,
we observe an average number of table accesses of 75 and a maximum of
37 · 40 = 1 480. Note that these values are by far smaller than the corre-
sponding figures in case of highway hierarchies (Section 7.4.5). This is due
to the redefinition of the access nodes mentioned in Section 1.3.5.
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Figure 7.13: Histogram of the number of entries in the topmost distance
table that have to be accessed during an s-t-query.

7.9.3 Outputting Complete Path Descriptions

Analogously to Section 7.4.6, in Table 7.22, we report the time that is
needed to determine a complete description of the shortest path and to tra-
verse it. We restrict ourselves to the travel time metric and the generous
variant. Currently, we provide an efficient implementation only for the case
that the path goes through the top level. In all other cases, we just per-
form a normal highway-node query and use the path unpacking routines of
highway-node routing. The effect on the average query times is very small
since most queries are correctly answered using only the top search. In or-
der to unpack edges of the overlay graphs, we use two different variants that
have been introduced as ‘Variant 2’ and ‘Variant 3’ in Section 3.4.3. Note
that the figures for Variant 3 have been obtained using an older implemen-
tation of transit-node routing based on highway hierarchies and a different
set of parameters since the current implementation of highway-node routing
does not support this variant.
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Table 7.22: Additional preprocessing (pp) time, additional disk space and
query time that is needed to determine a complete description of the short-
est path and to traverse it summing up the weights of all edges—assuming
that the query to determine its lengths has already been performed. More-
over, the average number of hops—i.e., the average path length in terms of
number of nodes—is given.

Europe USA (Tiger)
pp space query # hops pp space query # hops
[s] [MB] [µs] (avg.) [s] [MB] [µs] (avg.)

Variant 2 18 91 314 1 370 29 124 869 4 551
Variant 3 505 227 153 1 370 277 221 264 4 551

7.10 Comparisons

7.10.1 Static Point-to-Point Techniques

In Table 7.23, we compare various variants of our static point-to-point
route planning techniques—namely highway hierarchies, static highway-
node routing, and transit-node routing—with some of the most competitive
methods where experimental results are available for the Western European
and the US road network, namely with the REAL algorithm (Section 1.2.4),
the edge flag approach (Section 1.2.2), and grid-based transit-node routing
(Section 1.2.3). We have to be careful due to several reasons:

• The experiments have been performed on different machines—on differ-
ent AMD Opteron models, to be more precise. Ours runs at 2.0 GHz,
the one used for REAL and the one used for grid-based transit-node rout-
ing at 2.4 GHz, and the one used for the edge flag approach at 2.6 GHz.
Note that not only the CPU frequency, but also the memory architecture
affects the actual machine speed. In fact, our 2.0 GHz machine executes
Dijkstra’s algorithm slightly faster15 than the 2.4 GHz machine used for
REAL (using the same benchmark implementation).

• Slightly different versions of the road networks are used since some ap-
proaches are applied only to the largest strongly connected component

15about 1.5% on the US road network with travel time or distance metric (cp. Table 7.1
with [31])
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(cp. Section 7.2.2). However, this should not lead to any observable dif-
ferences.

• All approaches allow different choices of parameter settings yielding dif-
ferent space-time trade-offs. We have to pick a few (particularly reason-
able) variants.

• In case of the REAL algorithm, the given memory requirements refer to
storing landmark distances in a compressed form [32].

• The implementation of the edge flag approach makes use of the Boost
Graph Library, which seems to cause certain slowdowns. For instance,
their implementation of bidirectional Dijkstra on the European road net-
work takes about 7.2 seconds (on their machine), while ours takes about
4.4 seconds (on our machine).

• The preprocessing procedure of the edge flag approach explicitly exploits
the fact that the US network is undirected. If the approach was applied to
a similar, but directed network, the preprocessing time would double.

• If we are interested not only in the shortest-path length, but also in a
complete description of the shortest path, all methods but the edge flags
have to spend some additional computation time to generate the output.
For highway hierarchies, highway-node routing, and transit-node routing,
this additional time is given in Table 7.9, Section 7.7.4, and Table 7.22,
respectively. [31] and [3] state times of about 1 ms and 5 ms for REAL
and grid-based transit-node routing, respectively, to retrieve the shortest
path (for the US network with the travel time metric).

• The figures for grid-based transit-node routing that we quote in Table 7.23
are based on the most recent, but still preliminary version of [3], which
has been submitted for publication in the final proceedings of the DI-
MACS Challenge. We omit the results for the Western European road
network since they are very tentative.

• The grid-based implementation of transit-node routing concentrates on
global queries. Short-range queries are comparatively expensive: query
times of more than 5 ms are reported (while long-distance queries take
only 12 µs). Note that accelerating the local queries would require con-
siderably more memory.



198 Chapter 7. Experiments

In spite of these items, we can make some general statements: The strength
of our transit-node routing implementation is clearly the extremely good
query performance. Highway-node routing has an outstandingly low mem-
ory consumption, while the query times are competitive to highway hierar-
chies and REAL or even slightly superior in case of the US road network.
Highway hierarchies can achieve very low preprocessing times or a quite
low memory consumption, while query times are reasonably good in all
cases. REAL’s performance is similar to highway hierarchies except for the
preprocessing times, which tend to be considerably higher.

While in Europe the query times of the edge flag approach can keep up
with those of other techniques with similar memory requirements, the run-
ning times are worse on the US road network. This is due to the facts that
the edge flag approach has to visit at least all edges of the shortest path and
that an average shortest path in the US network consists of more than three
times as many edges as in Europe (cp. Table 7.22). With respect to prepro-
cessing times, edge flags are inferior to most other approaches considered
here.

On the one hand, the grid-based transit-node routing has considerably
slower preprocessing and query times than our transit-node routing imple-
mentation that is based on highway-node routing. On the other hand, the
space consumption of the former is much better. However, this is mainly
due to the already mentioned fact that the grid-based transit-node routing
concentrates only on answering global queries very efficiently.
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Table 7.23: Comparison between various static route planning techniques:
highway hierarchies (HH), highway-node routing (HNR), transit-node rout-
ing (TNR), the REAL algorithm, and the edge flag approach (EF). In case of
the REAL algorithm, there are two different variants: one with 16 landmarks
and one with 64, where landmark distances are kept for n/16 highest-reach
nodes only. In the first three data columns, the respective best value is high-
lighted. Rows marked by a ⋆ contain results of additional experiments that
have not been published elsewhere.

method variant
data
from

PREPROCESSING QUERY

time overhead time #settled
[min] [B/node] [ms] nodes

Europe
HH normal 7.4.2 13 48.0 0.61 709
HH save mem 7.4.4 55 17.0 1.10 1 863
HH + ALT 7.5.2 14 72.0 0.49 511
HNR normal 7.6.2 15 2.4 0.85 981
HNR save mem 7.6.2 19 0.7 1.44 2 369
TNR economical 7.9.2 25 120.0 0.0110 N/A
TNR generous 7.9.2 75 247.0 0.0043 N/A
REAL 16,1 [31] 97 85.0 1.22 814
REAL 64,16 [31] 141 36.0 1.11 679
EF 200 regions [36] 1 028 19.0 1.6 2 369
EF 1000 regions [36] 2 156 25.0 1.1 1 593

USA (Tiger)
HH normal 7.4.2 15 34.0 0.67 925
HH save mem ⋆ 70 17.0 1.21 2 143
HH + ALT 7.5.2 18 56.0 0.55 627
HNR normal ⋆ 16 1.6 0.45 784
HNR save mem ⋆ 18 0.7 0.61 1 217
TNR economical 7.9.2 38 143.0 0.0095 N/A
TNR generous 7.9.2 85 278.0 0.0033 N/A
REAL 16,1 [31] 64 109.0 1.14 675
REAL 64,16 [31] 121 45.0 1.05 540
EF 200 regions [36] 610 10.0 4.3 8 180
EF 1000 regions [36] 1 419 21.0 3.3 5 522
TNR grid-based [3] 900 21.0 0.063 N/A
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7.10.2 Dynamic Point-to-Point Techniques

Table 7.24 contains a comparison between dynamic highway-node routing
and the dynamic ALT approach [18] (Section 1.2.2) with 16 landmarks. We
can conclude that as a stand-alone method, highway-node routing is clearly
superior to dynamic ALT w.r.t. all studied aspects.16

Table 7.24: Comparison between two dynamic route planning techniques:
highway-node routing (HNR) and dynamic ALT-16 [18]. Here, ‘overhead’
denotes the average disk space overhead (in bytes per node). Note that
highway-node routing—depending on the considered scenario—needs more
main memory (see Section 7.7.3). We give execution times for both a com-
plete recomputation using a similar cost function and an update of a single
motorway edge multiplying its weight by 10. Furthermore, we give search
space sizes after 10 and 1 000 edge weight changes (motorway, ×10) for
the mobile scenario. In case of highway-node routing, the iterative variant
is used. Time measurements in parentheses have been obtained on a similar,
but not identical machine.

preprocessing static queries updates dynamic queries
time over- time #settled compl. single #settled nodes

method [min] head [ms] nodes [min] [ms] 10 chgs. 1000 chgs.
HNR 19 39 1.17 1 414 2 37 1 504 17 868
ALT-16 (85) 128 (53.6) 74 441 (6) (2 036) 75 501 255 754

16Note that our comparison concentrates on only one variant of dynamic ALT: different
landmark sets can yield different trade-offs. Also, better results can be expected when a lot
of very small changes are involved. Moreover, dynamic ALT can turn out to be very useful
in combination with other dynamic speedup techniques yet to come.
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Discussion

8.1 Conclusion

While the traditional view on algorithmics is focused almost exclusively on
the design and the theoretical analysis of algorithms, the paradigm of algo-

rithm engineering also includes the implementation and experimental eval-

uation as an essential part of the development process. Using real-world
inputs for the conducted experiments is an important ingredient to getting
meaningful results. This general statement applies notably to the devel-
opment of route planning algorithms. Before 2005 only very small road
networks were publicly and readily available, which made an evaluation
of new techniques under realistic conditions difficult for most researchers.1

Since then, we have made considerable contributions to obtaining, assem-
bling, and providing (to the scientific community) very large real-world
road networks. In particular, our versions of the Western European and
the US road network have become the basis of the benchmark instances
used at the 9th DIMACS Implementation Challenge [1]. Since it is diffi-
cult to obtain a representative list of source-target pairs that originate from
real-world applications and since picking source-target pairs just uniformly
at random is strongly biased towards very long-distance queries, we intro-
duced a methodology that evaluates a given route planning technique on a

1The largest real-world road network we had at hand at that time consisted of about
200 000 nodes. However, since each bend was modelled as a distinct node (of degree two),
only around 1 000 nodes had a degree greater than two. Thus, the complexity of this network
was fairly low.
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whole spectrum of queries of different localities. In the meantime, several
research groups have adopted both our road networks and our methodology2

so that now it is comparatively easy3 to compare results.

In fact, we had the impression that since common standards were avail-
able, the race for the best route planning technique has gained momen-
tum, reaching a distinct peak at the DIMACS Implementation Challenge
in 2006.4 In this race, we have taken a leading role. Among all static
route planning methods that achieve considerable speedups, we currently
provide

• the one with the fastest average query time (transit-node routing, winner
of the DIMACS Challenge, 4.3 µs, speedup factor 1.4 million)5,

• the one with the fastest preprocessing (highway hierarchies, 13 minutes),
and

• the one with the lowest memory requirements (highway-node routing, an
overhead of 0.7 bytes per node).

In addition, our point-to-point approaches can deal with all types of queries
very well, our many-to-many algorithm is unrivalled, and we are not aware
of any competitive technique that is able to switch to a different cost function
or to handle a moderate amount of traffic jams as efficiently as highway-
node routing can do this.

Areas of Application. When dealing with point-to-point queries in a
server environment (e.g., route planning systems that provide their services
in the internet), transit-node routing can provide excellent response times
as long as we consider a static scenario. However, in the case of online
route planning systems, transit-node routing might even be an overkill since
a significant amount of time is spent on preparing and transmitting graph-
ical representations of the result. Hence, the query times of highway-node

2sometimes with small modifications
3Still, some difficulties remain, in particular the fact that usually different machines are

used to run the experiments.
4A chronological summary of the ‘race’ can be found in [72].
5Numbers refer to our Western European road network with about 18 million nodes and

to our 2.0 GHz machine.
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routing would probably be perfectly sufficient. Furthermore, when applying
highway-node routing, some dynamic scenarios can be handled as well.

Highway-node routing is also our method of choice when considering a
mobile scenario (e.g., a car navigation system). In this case, a concrete real-
isation can take advantage of the conceptual simplicity and the low memory
requirements.

For some optimisation problems in the field of logistics, a lot of shortest-
path queries are required so that transit-node routing can play to its strength.
In the special case of a many-to-many problem, our corresponding many-
to-many algorithm can be used. A particular example is the (presumably
approximate) solution of the travelling salesman problem in a road network,
which requires a computation of the shortest paths between the involved
nodes.

A direct application of our approaches to traffic simulations is less clear
since often time-dependent edge weights have to be considered. The exten-
sion to such scenarios is one of the topics that we state in the next section as
open questions.

8.2 Future Work

In the concluding remarks of several chapters, we have listed possible fur-
ther developments of existing work—some of the mentioned projects have
already commenced. In particular, we have started to determine better
highway-node sets, to parallelise the preprocessing of highway-node rout-
ing, and to write an implementation of highway-node routing for a mobile
device. For the first two projects, first promising, though tentative, results
are available.

In addition to these concrete advancements, there are various new chal-
lenges for next generation route planners that arise from the considerably
increasing availability of dynamic road data on the current and the upcom-
ing traffic situation and the client’s demand for route planning tailored to his
individual needs:

Considering Current Traffic Situations. One challenge is to deal with a
massive amount of updates to the cost function. These updates reflect the
current traffic situation, in particular unexpected events like traffic jams and
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their effects on the surrounding area. The frequency and extent of these
updates will increase significantly over the next few years since not only
the coverage of existing monitoring systems like fixed road sensors will
be expanded, but also new techniques like floating car data will be widely
spread. So far, existing methods like highway-node routing can cope only
with a moderate amount of changes.

Considering Upcoming Traffic Situations. Another challenge is to in-
corporate predictions for upcoming traffic conditions. Such predictions are
based on statistical/historical data and are expressed by time-dependent cost
functions, which can project, for example, a slower average speed during
the morning rush hour. A direct application of existing approaches would
fail since a time-expanded representation of a large road network would ex-
ceed the available memory. Furthermore, in a time-dependent scenario, all
bidirectional search techniques face the problem that simultaneously per-
forming a forward and a backward search normally requires the knowledge
of both the exact departure and the exact arrival time.

Multi-Criteria Optimisations. A third challenge is to allow more flexible
cost models, dealing with individual compromises between various objec-
tive functions like time, financial costs, convenience, environmental pollu-
tion, and perhaps scenic value. Interestingly, this topic is related to the prob-
lem of dealing with dynamically changing cost functions in the sense that a
solution for one problem can turn out to be useful for the other problem as
well.
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A

Implementation

An exhaustive description of every single aspect of the implementation of
our route planning techniques would go beyond the scope of this thesis.
Thus, after some rather general statements in Section 7.1, here, we want to
focus on some particularly interesting data structures and give some details
on the respective realisation.

A.1 Graph Data Structures

Although highway hierarchies and highway-node routing are closely related
so that it would be possible to design a common graph data structure, we
distinguish between two separate implementations, mainly due to the fact
that we had to introduce a more flexible graph representation for highway-
node routing in order to allow updates of the multi-level overlay graph. Both
implementations share a common interface so that many of our algorithms
can work on both graph types.

A.1.1 Highway Hierarchies

The graph is represented as adjacency array, which is a very space-efficient
data structure that allows fast traversal of the graph. There are two arrays,
one for the nodes and one for the edges. The edges (u, v) are grouped by
the source node u and store only the ID of the target node v and the weight
w(u, v). Each node u stores the index of its first outgoing edge in the edge
array. In order to allow a search in the backward graph, we have to store
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an edge (u, v) also as backward edge (v, u) in the edge group of node v.
In order to distinguish between forward and backward edges, each edge has
a forward and a backward flag. By this means, we can also store two-way
edges {u, v} (which make up the large majority of all edges in a real-world
road network) in a space-efficient way: we keep only one copy of (u, v) and
one copy of (v, u), in each case setting both direction flags.

The basic adjacency array has to be extended in order to incorporate the
level data that is specific to highway hierarchies. In addition to the index of
the first outgoing edge, each node u stores its level-0 neighbourhood radius
r0(u). Moreover, for each node u, all outgoing edges (u, v) are grouped by
their level ℓ(u, v). Between the node and the edge array, we insert another
layer: for each node u and each level ℓ > 0 that u belongs to, there is a
level node uℓ that stores the radius rℓ(u) and the index of the first outgoing
edge (u, v) in level ℓ. All level nodes are stored in a single array. Each
node u keeps the index of the level node u1. Figure A.1 illustrates the graph
representation.

r0nodes

level nodes

edges

· · ·

· · ·

r0

r1 r2 r3 r4 r3r2r1 · · ·

Figure A.1: An adjacency array, extended by a level-node layer.

During construction of the highway hierarchies, we use a variant of this
graph data structure where the level nodes are managed in linked lists (since
the number of level nodes per node is not known in advance). After the
construction has been completed, we can put all level nodes in the right
order in the array that then represents the level-node layer.
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A.1.2 Highway-Node Routing

The graph data structure used for highway-node routing is very similar to
the one used for highway hierarchies. Here, we list the most important
differences:

• For each node, there is a level node for level 0—in contrast to highway
hierarchies, where the level-0 data is incorporated in the main node.

• The nodes are grouped by level. In contrast to highway hierarchies, this
is easily possible because the node levels are known in advance (since
the highway-node sets are considered to be part of the input). This al-
lows dealing with nodes that belong to a certain level without the need of
scanning all nodes. Furthermore, we do not need to store for each node
the index of the first level node. Instead, it is sufficient to store only the
respective index i for the very first node u of each level ℓ. Then, for any
other node v in level ℓ, the index j of the first level node can be easily
computed: j = i + (v− u) · (ℓ + 1), exploiting the fact that each node in
level ℓ has the same number of level nodes (namely ℓ + 1). Note that in
this equation, we use u and v to denote node IDs in the range 0..n − 1.

• Obviously, in case of highway-node routing, we do not need to store
neighbourhood radii. Thus, the level node of u for level ℓ contains only
the last index of the level-ℓ edge group of u in the edge array. We can
save some memory by storing only an offset that is added to the first edge
index of u.

• In a multi-level overlay graph, an edge e belongs to some consecutive
range k..ℓ of levels, i.e., e ∈ Ek ∩ Ek+1 ∩ . . . ∩ Eℓ. This property
has been formally proven in [12]. It is reasonable to store an edge that
belongs to several levels k..ℓ only once. We put it into the level-ℓ edge
group. For performing queries, only this maximum level ℓ (which we just
call level ℓ(e) of e) is relevant. For performing updates, however, we are
also interested in the minimum level k (which we also call creation level

since this is the level where the edge has been created; after that, it has
only been upgraded to higher levels). Therefore, we explicitly store k at
each edge.

• Most importantly, we allow the addition and deletion of edges at any time.
Deletion is comparatively simple: we fill the emerging hole by the last
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edge in the same level, which leaves a new hole, which is, in turn, filled
by the last edge of the next level, and so on; of course, the level-node
data has to be updated accordingly. In order to allow efficient additions
as well, we ensure that if a node u has x edges, its edge group has a
capacity of at least1 min{2y | 2y ≥ x}, i.e., we reserve some space for
additional edges. Note that for level-0 nodes, we do not need to reserve
additional space since their edge groups never change. Now, adding an
edge is straightforward provided that the capacity is not exceeded—we
just have to move edges of higher levels to make room at the right spot for
the new edge. If, however, the capacity is exceeded, we copy the whole
edge group to the end of the edge array (which is, in fact, a resizable STL
vector) and double its capacity. Of course, the first edge index of u has to
be updated accordingly. Note that these memory management strategies
employed by our flexible graph data structure are similar to those used by
an STL vector.

A.2 Miscellaneous Data Structures

A.2.1 Priority Queue

Specification. Manages a set of elements with associated totally ordered
priorities and supports the following operations:

• insert – insert an element,

• deleteMin – retrieve the element with the smallest priority and remove it,

• decreaseKey – set the priority of an element that already belongs to the
set to a new value that is less than the old value.

See also Sections 1.2.1 and 2.2.

Used by all variants of Dijkstra’s algorithm.

Implementation. We cannot use the priority queue implementation that
the Standard Template Library provides since the decreaseKey operation
is not supported. Therefore, we use our own straightforward binary heap

1The capacity can be even higher if edge deletions have taken place. This is due to the
fact that the capacity is never reduced.
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implementation. We have already mentioned in Section 1.2.1 that using a
more sophisticated priority queue implementation is unlikely to bring any
significant speedup. We did a few preliminary experiments with a 4-ary
heap and found an improvement of only 3% for Dijkstra’s algorithm. It can
be expected that the improvement would be even much lower when applied
to one of our route planning techniques where the priority queue operations
are less dominant.

A.2.2 Multiple Vector

Specification. A (large) fixed-sized array of resizable arrays.

Used by the contraction algorithm of highway hierarchies to temporarily
store shortcuts and by highway-node routing to store the affected node sets.

Implementation. Of course, we could just use an STL vector of vectors.
However, if we massively add and remove elements from these vectors, we
incur serious memory fragmentation and waste. It is important to note that in
our applications, such a ‘multiple vector’ consists of several million vectors.
Alternatively, we could use an array of linked lists, which, however, would
not be very efficient, either.

We prefer an implementation that is somehow a combination of the two
just mentioned possibilities. We manage a vector of data blocks; each block
can contain a small fixed number of elements. The blocks can be linked. In
the beginning, all allocated blocks are ‘free’. We keep a free list of all free
blocks. Now, instead of using an array of vectors or an array of linked lists,
we employ an array of linked blocks. When an element is added and the cur-
rent block is full, a new block is requested from the free list and appended.
Similarly, empty blocks can be returned. The advantage over a plain linked
list implementation is that we do not have to follow a pointer for each single
element, which can cause a lot of cache misses. The advantage over a vector
of vectors implementation is that the memory overhead is restricted to the
number of vectors times the (small) block size.
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A.2.3 Multiple Hash Map

Specification. A (large) fixed-sized array of static hash maps.

Used by transit-node routing to store all distance tables but the topmost one.

Implementation. For transit-node routing, we keep large partial distance
tables, i.e., for a transit-node set Tℓ, ℓ < L, we have to store a subset of
the distances {d(s, t) | (s, t) ∈ T 2

ℓ } (cp. Section 6.2). The data structure
should allow fast access times and should be space-efficient. We decided to
use for each node s ∈ Tℓ a hash map that maps a potential target t ∈ Tℓ to
the distance d(s, t). Of course, we could use the hash maps that are part of
the STL TR1 extension. However, we are aiming at a more space-efficient
solution, which is possible since we can exploit several application-specific
properties: the hash maps are static, i.e., we can build them once and for
all; many distances are very small since we want to store only the distances
that cannot be obtained using higher levels of transit-node routing; the dis-
tribution of the node IDs allows the usage of a very simple hash function
(namely the least significant bits); two close nodes typically have similar
IDs, i.e., the difference of the node IDs is small.

Conceptually, we manage for each node s ∈ Tℓ its own hash map with
chaining that maps t to the distance d from s to t. However, the actual
representation is a bit unusual: all hash maps are kept in three common
arrays without using any linked lists, as illustrated in Figure A.2.

Let us consider an arbitrary but fixed node s ∈ Tℓ and assume that
the map for s should contain y entries—since we are dealing with static
hash maps, this number y is known before we construct the hash map. We
compute x := ⌊log2(y)⌋ and store it in the main array at index s. We keep
2x buckets for s and use the x least significant bits of t as hash function:
we denote the hash of t by h. The elements of a bucket are not stored in
a linked list, but they are placed one after the other in the so-called data

array. Since there is only a single data array that contains all elements of all
buckets, we need an index structure that allows accessing the first entry of a
particular bucket. For this purpose, we have an index array. A consecutive
range of this array, consisting of 2x entries, represents the buckets for s. The
beginning a of this range is stored in the main array (in addition to x). The
sum of a and h is used to address the index array, which contains the index
c of the first entry of the corresponding bucket in the data array relative to
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Figure A.2: Using a multiple hash map to look up the distance d from s to t.

the index b of the first entry of the very first bucket of s. The index b is
stored in the main array as well so that we can easily compute the required
index b + c.

Since a bucket can contain several elements with the same hash h but
different keys t, we have to store not only the value d, but also the key t so
that we can scan the bucket, compare the keys and return the right value.
At this point, we want to exploit some of the facts mentioned above to get
a very space-efficient implementation. Originally, s, t, and d are 32-bit
values. Note that we need not store the x least significant bits of t since
all keys in the bucket agree on these bits anyway. Furthermore, in many
cases the (32−x) most significant bits of s and t are very similar so that
the difference t′ gets very small. It is sufficient to store only this difference,
which in most cases requires no more than 16 bits. Often, the value d is so
small that it fits in 16 bits as well. Therefore, our data array consists of 16-
bit entries, and we store the compressed key t′ and the corresponding value
d in two consecutive entries. In the exceptional case that t′ requires more
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than 16 bits, we fall back on an additional out-of-the-box hash map (which
is not explicitly depicted in Figure A.2) that maps the pair (s, t) to d. In the
case of the European road network and the generous variant of transit-node
routing, this exceptional case applies to only 0.00011% of all level-2 table
entries.

In the other exceptional case that t′ is sufficiently small, but d is too
large, we store an escape value instead of d and use the next two data entries
to represent d.

For the same example as above (Europe, generous, level-2 table), using
standard hash maps with chaining would require at least2 1 352 MB, while
using our multiple hash map occupies only 645 MB, which is less than 50%.

A.2.4 Fast Set

Specification. Manages a set of integers from a not too large range.
Should be optimised for speed, not for space efficiency.

Used by the update procedure of highway-node routing to temporarily rep-
resent the set of nodes where the preprocessing step should be repeated
from.

Implementation. Let us assume that the set contains only integers from
0..(k − 1). We represent the set by a bit vector of size k, which has the
property that the i-th bit is set iff i belongs to the set, and an additional
element vector that explicitly stores the elements. Checking whether an
element belongs to the set can be done in constant time using the bit vector.
If an element i should be inserted, we check whether it already belongs to
the set. If not, we set the i-th bit and add i to the element vector, which can
be done in amortised constant time. Scanning through all elements can be
done using the element vector in time linear in the size of the set.

2We disregard empty buckets.
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A.2.5 Fast Edge Expander

Specification. Provides data structures to unpack shortcut edges, i.e., to
determine the paths in the original graph that correspond to the shortcuts.

Used by highway hierarchies, highway-node routing, and transit-node
routing.

Implementation. As already mentioned in Section 3.4.3, we do not store
a sequence of node (or edge) IDs to describe a path, but we store hop indices,
i.e., for each edge e = (u, v) on the path, we store (e− f), where f denotes
the ID of u’s first edge. We put all hops of all represented paths into one
large hops vector, which consists of 4-bit entries. Since the degree of most
nodes is quite small, one such entry is usually sufficient to hold a hop index.
In exceptional cases, we write an escape value and use more than one entry
to store the hop index.

We need an index structure to access the first entry of the hop sequence
that we want to read. Note that we do not need an additional pointer to
the end of the sequence since we know that we have gotten to the end as
soon as the target of the shortcut edge has been reached. Since not all edges
are shortcut edges, it would be wasteful to build an index with m entries.
Instead, we use a multi-level index, as depicted in Figure A.3.

–

+

+

edges of u

all hops that represent e

8 bit

offsets

node hash map

hops

u e f

Figure A.3: Using the fast edge expander to access the hops that represent
the shortcut edge e = (u, v). The ID of u’s first edge is denoted by f .
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We keep a node hash map that contains entries only for nodes that have
outgoing shortcuts. Only for edges of such nodes, we store an index for the
hops vector. However, since these indices are very similar for all edges of
the same node u, we store only small offsets and add the index of the first
hop of u’s first shortcut edge to obtain the actual index. The offsets vector
consists of 8-bit entries. If an offset does not fit, we store an escape value
and use an additional hash map to store the direct mapping from the ID of
the shortcut to the right index in the hops vector. Note that this exception
hash map is not included in Figure A.3.

Optionally, we use additional, quite similar data structures to store the
complete, non-recursive descriptions of the shortcuts that belong to the top-
most level (cp. Section 3.4.3, Variant 3).

A.2.6 Search Spaces

Specification. A space-efficient representation of search spaces.

Used by transit-node routing during preprocessing. Could also be used by
the many-to-many algorithm.3

Implementation. As mentioned in Section 5.4.3, during the backward
searches, we manage a single resizable array representing the set {(u, t, d) |
t ∈ T ∧ (u, d) ∈ ←−σ (t)}. In addition to a vector that stores its elements
(u, t, d) in three 32-bit integers, we have one vector whose elements consist
of one 32-bit and two 16-bit integers. Similarly to Section A.2.3, we want
to exploit the fact that the difference of the IDs of u and t is often quite
small. Thus, if possible, we store (u, t − u, d) in the more compact vector;
if not, we use the normal vector. The order of the search space elements is
irrelevant. Therefore, when processing the search spaces later, we just scan
the two vectors one after the other.

3In the current version of the many-to-many implementation, the compression features
are switched off since the size of the search spaces is negligible when compared to the size
of the distance table.
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A.2.7 Access Nodes

Specification. A space-efficient representation of access nodes.

Used by transit-node routing.

Implementation. Basically, we use a data structure that is very similar to
an adjacency array, i.e., we have one large data vector containing all the
access node information and one index vector that contains for each node u
the index of the first access node in the data vector. For two nodes u < v, it
is not always true that the access nodes of u precede the access nodes of v
in the data vector.4 Therefore, in such cases, we cannot use the index stored
for the successor node to determine the end of the access node sequence.
Instead, we use an explicit end marker, i.e., a value that is not used by any
regular access node.

The data vector consists of 16-bit entries. We have to keep the ID of the
access node and the distances to and from the access node. We do not store
the ID w.r.t. the original graph, but we have a list of all transit nodes and we
store only an index within this list. A level-3 access node is stored using 14
bits, a level-2 access node using 16 + 14 bits, which limits the maximum
number of transit nodes in the current implementation.5 In both cases, we
have two remaining bits to indicate whether this particular access node can
be used only in forward or backward direction or in both directions, and in
the latter case, whether both directions share the same distance. Depending
on these direction flags, we store one or two distances; if possible, using
one 16-bit entry each; if not, writing an escape value and using two 16-bit
entries each.

When we apply the generous variant of transit-node routing to the Eu-
ropean road network, storing the level-3 access nodes naively6 would take
2 512 MB. With our space-efficient representation, however, we need only
1 101 MB.

4This is due to the fact that usually, we do not determine the access nodes of node 0, then
the access nodes of node 1, and so on, but we determine the access nodes of the nodes that
belong to a certain transit-node set (which may have arbitrary node IDs) and then hand the
access nodes down to all other nodes.

5Of course, this restriction could be easily changed.
6i.e., forward and backward access nodes separately, 32 bit per access node ID and 32 bit

per distance
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Zusammenfassung

Die Bestimmung einer optimalen Route in einem Straßennetz von einem
gegebenen Start- zu einem gegebenen Zielpunkt ist ein Problem, das viele
Menschen täglich beschäftigt. Als Hilfsmittel werden mittlerweile verbrei-
tet Navigationsgeräte eingesetzt oder die Routenberechnung findet im Vor-
aus am Computer statt, beispielsweise unter Verwendung eines der zahlrei-
chen im Internet verfügbaren Dienste. Neben der Routenplanung für den
einzelnen PKW gibt es weitere wichtige Anwendungen beispielsweise im
Bereich der Logistik.

Es ist naheliegend, ein Straßennetz als Graphen zu repräsentieren. Dabei
entspricht eine Straßenkreuzung einem Knoten und eine Straßenabschnitt
einer Kante. Aus Sicht der Graphentheorie handelt es sich dann bei der
Routenplanung um das sogenannte kürzeste Wege Problem. Wir betrachten
zwei Varianten: die Berechnung des kürzesten Weges von einem Start- zu
einem Zielpunkt und – für gegebene Knotenmengen S und T – die Berech-
nung einer Distanztabelle, die für jedes Knotenpaar (s, t) ∈ S×T die Länge
des kürzesten Weges enthält. Prinzipiell könnten wir für beide Problemvari-
anten auf die ‘klassische’ Lösung aus der Graphentheorie zurückgreifen,
den Algorithmus von Dijkstra. Für große Straßennetze wie beispielsweise
das von Westeuropa mit ca. 18 Millionen Straßenkreuzungen wäre dieses
Verfahren allerdings für viele praktische Anwendungen zu langsam. Kom-
merzielle Anbieter setzen daher vielfach schnelle, heuristische Verfahren
ein, die darauf verzichten, optimale Routen zu berechnen. Dies hat nicht
nur offensichtliche Nachteile für den Benutzer, sondern auch für die Ent-
wickler, da bei jeder Änderung des Programms aufwendig geprüft werden
muss, ob sich die Qualität der berechneten Routen noch in einem gewissen
Rahmen bewegt.

Aus diesen Gründen besteht ein großes Interesse an exakten und
schnellen Routenplanungstechniken. Ein Grundansatz ist hierbei, zunächst
etwas Zeit in einen einmaligen Vorberechnungsschritt zu investieren, um
Hilfsdaten zu erzeugen, die dann bei allen Routenplanungsanfragen ver-
wendet werden können, um schnelle Suchzeiten zu erreichen. Um auch mit
großen Straßennetzen unter Einsatz von begrenzten Resourcen umgehen zu
können, sollten sowohl der Vorberechnungsaufwand als auch der benötigte
Speicherplatz für die Hilfsdaten möglichst klein sein. Darüber hinaus wird
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angestrebt, Verfahren zu entwicklen, die mit dem gesamten Spektrum an
möglichen Anfragen gut zurecht kommen, also sowohl mit lokalen Anfra-
gen innerhalb der gleichen Stadt als auch mit Routenberechnungen quer
durch einen Kontinent. Des Weiteren ist eine gewisse Flexibilität wün-
schenswert: Dazu gehören das Einbeziehen von unerwarteten Ereignissen
wie beispielsweise Staus oder der Wechsel des Geschwindigkeitsprofils, um
optimale Routen für verschiedene Fahrzeugtypen berechnen zu können.

In dieser Arbeit stellen wir drei verschiedene beweisbar korrekte und
effiziente Verfahren für die Punkt-zu-Punkt Berechnug vor – alle mit un-
terschiedlichen Vorzügen – und ein generisches Verfahren zur Distanzta-
bellenberechnung. Dabei folgen wir dem Ansatz des Algorithm Engi-

neering: Neben den traditionellen Aspekten der Algorithmenentwicklung,
dem Entwurf und der theoretischen Analyse, umfasst dieser Ansatz auch
die Implementierung und die experimentelle Auswertung als wesentliche
Bestandteile des Entwicklungsprozesses, den man als Kreislauf auffassen
kann, bei dem experimentelle Ergebnisse neue Impulse für die Verbesserung
des entworfenen Algorithmus liefern können. Die Auswertung erfolgt in
Form einer umfangreichen experimentellen Studie, bei der reale Straßen-
netze mit vielen Millionen Straßenkreuzungen zum Einsatz kommen. Dabei
betrachten wir nicht nur durchschnittliche Suchzeiten, sondern beschäfti-
gen uns auch mit Anfragen mit unterschiedlichem Schwierigkeitsgrad, be-
stimmen obere Suchraumschranken für gegebene Straßennetze, und führen
Vergleiche zwischen verschiedenen Routenplanungstechniken durch. Im
Einzelnen haben wir die folgenden Verfahren entwickelt.

Highway Hierarchien. Während der Algorithmus von Dijkstra keinerlei
spezielle Annahmen über den Graphen macht, nutzen wir gezielt Eigen-
schaften realer Straßennetze aus. Eine solche Eigenschaft ist eine vorhan-
dene Hierarchie der Straßen: Manche Straßen werden nur von lokalen An-
wohnern benötigt, um ihr Wohngebiet zu verlassen, manche Straßen sind
wichtige Verbindungen zwischen verschiedenen Stadtteilen und manche
Straßen werden sogar für Fernverbindungen benötigt. In einem Vorverar-
beitungsschritt berechnen wir eine feinkörnige Klassifizierung aller Straßen,
die der Routenplanungsalgorithmus dann ausnutzen kann. Es handelt sich
dabei um eine Anpassung der bidirektionalen Variante des Algorithmus von
Dijkstra, die den Suchraum deutlich einschränkt: Mit zunehmender Entfer-
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nung von Start und Ziel müssen nur noch wichtigere Straßen betrachtet wer-
den, um immer noch beweisbar optimale Ergebnisse zu erhalten. Eine Kom-
bination der Highway Hierarchien mit zielgerichteter Suche führt zu einer
Reduktion der Suchzeiten, die insbesondere dann nennenswert ist, wenn
man sich ausnahmsweise mit Näherungslösungen begnügt oder wenn man
der Suche eine Distanzmetrik zugrunde legt anstatt der üblichen Reisezeit-
metrik.

Highway-Node Routing ist ein mit den Highway Hierarchien ver-
wandtes, bidirektionales und hierarchisches Verfahren. Es ist konzeptionell
sehr einfach und unterstützt die schnelle Aktualisierung der vorberechneten
Daten, um auf Kantengewichtsänderungen zu reagieren.

Transit-Node Routing basiert auf folgender Beobachtung: Wenn man
einen weit entfernten Zielpunkt ansteuert, wird man seinen Startpunkt im-
mer über einen von wenigen wichtigen Verkehrsknotenpunkten verlassen.
Am Beispiel von Karlsruhe könnten dies die Auffahrten auf die A 5 und die
Rheinbrücke sein. Wenn man zum einen die Reisezeiten von allen Punk-
ten zu den zugehörigen wichtigen Verkehrsknotenpunkten und zum anderen
die Reisezeiten zwischen allen wichtigen Verkehrsknotenpunkten berechnet
und speichert, kann man eine Reisezeitanfrage zwischen zwei hinreichend
entfernten Knoten auf wenige Tabellenzugriffe reduzieren. Um auch Anfra-
gen zwischen lokalen Knotenpaaren effizient beantworten zu können, wer-
den weitere Schichten des gleichen Ansatzes benötigt. Die Bestimmung der
wichtigen Verkehrsknotenpunkte der verschiedenen Schichten übernimmt
hierbei der Konstruktionsalgorithmus der Highway Hierarchien.

Distanztabellen. Bei unserem Verfahren zur Distanztabellenberechnung
handelt es sich um einen generischen Algorithmus, der auf verschiedene
Weisen instantiiert werden kann, beispielsweise basierend auf den Highway
Hierarchien oder auf Highway-Node Routing. Unsere Methode ermöglicht
die Berechnung einer vollständigen |S| × |T | Distanztabelle und führt dazu
im Wesentlichen lediglich |S| Vorwärts- plus |T | Rückwärtssuchen aus
anstelle von |S| mal |T | bidirektionalen Suchen.
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Bewertung. Das Thema “Routenplanung in Straßennetzen” ist in den letz-
ten Jahren in der Forschung heiß umkämpft: Zahlreiche Verfahren kon-
kurrieren miteinander. Nach unserem Kenntnisstand waren wir die ersten,
die die Straßennetze Westeuropas und der USA, bestehend aus ca. 18 bzw.
24 Millionen Knotenpunkten, vollständig und effizient verarbeiten konnten.
Bei einer Beurteilung der Leistungsfähigkeit betrachtet man in der Regel die
Suchzeiten, die Vorberechnungszeiten und den zusätzlichen Speicherbedarf.
Transit-Node Routing hält den Rekord für die schnellsten Suchzeiten: Diese
sind mehr als eine Million mal schneller als die von Dijkstras Algorith-
mus. Die Highway Hierarchien verfügen über vergleichsweise niedrige Vor-
berechnungszeiten von ca. 15 Minuten auf unserem 2,0 GHz AMD Opteron.
Eine Variante von Highway-Node Routing kommt mit lediglich 0,7 Byte
zusätzlichem Speicher pro Knoten aus und ist dabei immer noch mehr als
4 000 mal schneller als Dijkstras Algorithmus. Darüber hinaus handelt es
sich beim Highway-Node Routing um eines der ersten Verfahren, die ef-
fizient mit Kantengewichtsänderungen in sehr großen Straßennetzen umge-
hen können.

Auch sehr große Distanztabellen können schnell berechnet werden,
beispielsweise benötigen wir nicht viel mehr als eine Minute, um eine
20 000 × 20 000 Tabelle zu berechnen; das sind weniger als 0,2 µs pro
Tabelleneintrag. Dijkstras Algorithmus würde mehr als zwei Tage für die
gleiche Berechnung in Anspruch nehmen.
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