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Abstract

We are entering an era of ubiquitous genetic information for research, clinical care and personal

curiosity. Sharing these datasets is vital for progress in biomedical research. However, one

growing concern is the ability to protect the genetic privacy of the data originators. Here, we

present an overview of genetic privacy breaching strategies. We outline the principles of each

technique, point to the underlying assumptions, and assess its technological complexity and

maturation. We then review potential mitigation methods for privacy-preserving dissemination of

sensitive data and highlight different cases that are relevant to genetic applications.

Introduction

We produce genetic information for research, clinical care and out of personal curiosity at

exponential rates. Sequencing studies including thousands of individuals have become a

reality1,2, and new projects aim to sequence hundreds of thousands to millions of

individuals3. Some geneticists envision whole genome sequencing of every person as part of

routine health care4,5.

Sharing genetic findings is vital for accelerating the pace of biomedical discoveries and fully

realizing the promises of the genetic revolution6. Recent studies suggest that robust

predictions of genetic predispositions to complex traits from genetic data will require the

analysis of millions of samples7,8. Clearly, collecting cohorts at such scales is typically

beyond the reach of individual investigators and cannot be achieved without combining

different sources. In addition, broad dissemination of genetic data promotes serendipitous

discoveries through secondary analysis, which is necessary to maximize its utility for

patients and the general public9.

One of the key issues of broad dissemination is an adequate balance of data privacy10.

Prospective participants of scientific studies have ranked privacy of sensitive information as

one of their top concerns and a major determinant of participation in a study11–13. Recently,
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public concerns regarding medical data privacy halted a massive plan of the National Health

Service in the UK to create a centralized health-care database14. In addition, protecting

personal identifiable information is also a demand of an array of regulatory statutes in the

USA and in the European Union15. Data de-identification, the removing of personal

identifiers, has been suggested as a potential path to reconcile data sharing and privacy

demands16. But is this approach technically feasible for genetic data?

This review categorizes privacy breaching techniques that are relevant to genetic

information and maps potential counter-measures. We first categorize privacy-breaching

strategies (Figure 1), discuss their underlying technical concepts, and evaluate their

performance and limitations (Table 1). Then, we present privacy-preserving technologies,

group them according to their methodological approaches, and discuss their relevance to

genetic information. As a general theme, we focus only on breaching techniques that involve

data mining and fusing distinct resources to gain private information relevant to DNA data.

Data custodians should be aware that security threats can be much broader. They can include

cracking weak database passwords, classic techniques of hacking the server that holds the

data, stealing of storage devices due to poor physical security, and intentional misconduct of

data custodians17–19. We do not include these threats since they have been extensively

discussed in the computer security field20. In addition, this review does not cover the

potential implications of loss of privacy, which heavily depend on cultural, legal and socio-

economical context and have been covered in part by the broad privacy literature21,22.

Identity Tracing attacks

The goal of identity tracing attacks is to uniquely identify an anonymous DNA sample using

quasi-identifiers – residual pieces of information that are embedded in the dataset. The

success of the attack depends on the information content that the adversary can obtain from

these quasi-identifiers relative to the size of the base population (Box 1).

Searching with meta-data

Genetic datasets are typically published with additional metadata, such as basic

demographic details, inclusion and exclusion criteria, pedigree structure, as well as health

conditions that are critical to the study and for secondary analysis. These pieces of metadata

can be exploited to trace the identity of the unknown genome.

Unrestricted demographic information conveys substantial power for identity tracing. It has

been estimated that the combination of date of birth, sex, and 5-digit zip code uniquely

identifies more than 60% of US individuals23,24. In addition, there are extensive public

resources with broad population coverage and search interfaces that link demographic quasi-

identifiers to individuals, including voter registries, public record search engines (such as

PeopleFinders.com) and social media. An initial study reported the successful tracing of the

medical record of the Governor of Massachusetts using demographic identifiers in hospital

discharge information25. Another study reported the identification of 30% of Personal

Genome Project (PGP) participants by demographic profiling that included zip code and

exact birthdates found in PGP profiles26.
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Since the inception of the Health Insurance Portability and Accountability Act (HIPAA)

Privacy rule, dissemination of demographic identifiers have been the subject of tight

regulation in the US health care system27. The safe harbor provision requires that the

maximal resolution of any date field, such as hospital admissions, will be in years. In

addition, the maximal resolution of a geographical subdivision is the first three digits of a

zip code (for zip codes of populations of greater than 20,000). Statistical analyses of the

census data and empirical health records have found that the Safe Harbor provision provides

reasonable immunity against identity tracing assuming that the adversary has access only to

demographic identifiers. The combination of sex, age, ethnic group, and state is unique in

less than 0.25%of the populations of each of the states28,29.

Pedigree structures are another piece of metadata that are included in many genetic studies.

These structures contain rich information, especially when large kinships are available30. A

systematic study analysed the distribution of 2,500 two-generation family pedigrees that

were sampled from obituaries from a US town of 60,000 individuals31. Only the number

(but not the order) of male and female individuals in each generation was available. Despite

this limited information, about 30% of the pedigree structures were unique, demonstrating

the large information content that can be obtained from such data.

Another vulnerability of pedigrees is combining demographic quasi-identifiers across

records to boost identity tracing despite HIPAA protections. For example, consider a large

pedigree that states the age and state of all participants. The age and state of each participant

leaks very minimal information, but knowing the ages of all first and second-degree

relatives of an individual dramatically reduces the search space. Moreover, once a single

individual in a pedigree is identified, it is easy to link between the identities of other

relatives and their genetic datasets. The main limitation of identity tracing using pedigree

structures alone is their low searchability. Family trees of most individuals are not publicly

available, and their analysis requires indexing a large spectrum of genealogical websites.

One notable exception is Israel, where the entire population registry was leaked to the web

in 2006, allowing the construction of multi-generation family trees of all Israeli citizens32.

Identity tracing by genealogical triangulation

Genetic genealogy attracts millions of individuals interested in their ancestry or in

discovering distant relatives33. To that end, the community has developed impressive online

platforms to search for genetic matches, which can be exploited by identity tracers. One

potential route of identity tracing is surname inference from Y-chromosome data34,35

(Figure 2). In most societies, surnames are passed from father to son, creating a transient

correlation with specific Y chromosome haplotypes36,37. The adversary can take advantage

of the Y chromosome–surname correlation and compare the Y haplotype of the unknown

genome to haplotype records in recreational genetic genealogy databases. A close match

with a relatively short time to the most common recent ancestor (MRCA) would signal that

the unknown genome likely has the same surname as the record in the database.

The power of surname inference stems from exploiting information from distant patrilineal

relatives of the unknown’s genome. Empirical analysis estimated that 10–14% of US white

male individuals from the middle and upper classes are subject to surname inference based
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on scanning the two largest Y-chromosome genealogical websites with a built-in search

engine35. Individual surnames are relatively rare in the population, and in most cases a

single surname is shared by less than 40,000 US male individuals35, which is equivalent to

13 bits of information (Box 1). In terms of identification, successful surname recovery is

nearly as powerful as finding one’s zip code. Another feature of surname inference is that

surnames are highly searchable. From public record search engines to social networks,

numerous online resources offer query interfaces that generate a list of individuals with a

specific surname. Surname inference has been utilized to breach genetic privacy in the

past38–41. Several sperm donor conceived individuals and adoptees successfully used this

technique on their own DNA to trace their biological families. In the context of research

samples, a recent study reported five successful surname inferences from Illumina datasets

of three large families that were part of the 1000 Genomes project, which eventually

exposed the identity of nearly fifty research participants35.

The main limitation of surname inference is that haplotype matching relies on comparing Y

chromosome Short Tandem Repeats (Y-STRs). Currently, most sequencing studies do not

routinely report these markers, and the adversary would have to process large-scale raw

sequencing files with a specialized tool42. Another complication is false identification of

surnames and inference of surnames with spelling variants compared to the original

surname. Eliminating incorrect surname hits necessitates access to additional quasi-

identifiers such as pedigree structure and typically requires a few hours of manual work.

Finally, in certain societies, a surname is not a strong identifier and its inference does not

provide the same power for re-identification as in the USA. For example, 400 million people

in China hold one of the ten common surnames36, and the top hundred surnames cover

almost 90% of the population43, dramatically reducing the utility of surname inference for

re-identification.

An open research question is the utility of non Y chromosome markers for genealogical

triangulation. Websites such as Mitosearch.org and GedMatch.com run open searchable

databases for matching mitochondrial and autosomal genotypes, respectively. Our

expectation is that mitochondrial data will not be very informative for tracing identities. The

resolution of mitochondrial searches is low due to the small size of the mitochondrial

genome, meaning that a large number of individuals share the same mitochondrial

haplotypes. In addition, matrilineal identifiers such as surname or clan are relatively rare in

most human societies, complicating the usage of mitochondria haplotype for identity tracing.

Autosomal searches on the other hand can be quite powerful. Genetic genealogy companies

have started to market services for dense genome-wide arrays that enable the identification

of distant relatives (on the order of 3rd to 4th cousins) with fairly sufficient accuracy44.

These hits would reduce the search space to no more than a few thousand individuals45. The

main challenge of this approach would be to derive a list of potential people from a

genealogical match. As we stated earlier, family trees of most individuals are not publicly

available, making such searches a very demanding task that would require indexing a large

spectrum of genealogical websites. With the growing interest in genealogy, this technique

might be easier in the future and should be taken into consideration.
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Identity tracing by phenotypic prediction

Several reports on genetic privacy have envisioned that predictions of visible phenotypes

from genetic data could serve as quasi-identifiers for identity tracing46,47. Twin studies have

estimated high heritabilities for various visible traits such as height48 and facial

morphology49. In addition, recent studies show that age prediction is possible from DNA

specimens derived from blood samples50,51. But the applicability of these DNA-derived

quasi-identifiers for identity tracing has yet to be demonstrated.

The major limitation of phenotypic prediction is the fast decay of the identification power

with small inference errors (Box 1). Current genetic knowledge explains only a small extent

of the phenotypic variability of most visible traits, such as height52, body mass index

(BMI)53, and face morphology54, substantially limiting their utility for identification. For

example, perfect knowledge about height at one-centimeter resolution conveys 5 bits of

information. However, with current genetic knowledge that explains 10% of height

variability52, the adversary learns only 0.15 bits of information. Predictions of face

morphology and BMI are much worse8,54. The exceptions in visible traits are eye colour55

and age prediction50. Recent studies show a prediction accuracy of 75–90% of the

phenotypic variability of these traits. But even these successes translate to no more than 3–4

bits of information. Another challenge for phenotypic prediction is the low searchability of

some of these traits. We are not aware of population-wide registries of height, eye colour or

face morphology that are publicly accessible and searchable. However, future developments

in social media might circumvent this barrier.

Identity tracing by side-channel leaks

Side-channel attacks exploit quasi-identifiers that are unintentionally encoded in the

database building blocks and structure rather than the actual data that is meant to be public.

A good example for such leaks is the exposure of the full names of PGP participants from

filenames in the database26. The PGP allowed participants to upload 23andMe genotyping

files to their public profile webpages. While it seemed that these do not contain explicit

identifiers, after downloading and decompressing the 23andMe file, the original filename,

whose default is the first and last name of the user, appeared. Since most of the users did not

change the default naming convention, it was possible to trace the identity of a large number

of PGP profiles. The PGP now offers instructions to participants how to rename files before

uploading and warns them that the file may contain hidden information that can expose their

identities. Generally, certain types of files, such as Microsoft Office products, can embed

deleted text or hidden identifiers56. Data custodians should be aware that mere scanning of

the file content might not always be sufficient to ensure that all identifiers have been

removed.

The mechanism to generate database accession numbers can also leak personal information.

For example, in a top medical data mining contest, the accession numbers revealed the

disease status of the patient, which was the aim of the contest57. In addition, pattern analysis

of a large amount of public data revealed temporal and spatial commonalities in the

assignment system that allowed predictions of US social security numbers (SSNs) from

quasi-identifiers58. Some suggested the assignment of accession numbers by applying
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cryptographic hashing to the participant identifiers, such as name or SSN59. However, this

technique is extremely vulnerable to dictionary attacks due to the relatively low search space

of the input. In general, it is advisable to add some sort of randomization to procedures that

generate accession numbers.

Attribute disclosure attacks via DNA (ADAD)

Consider the following scenario Alice interviews Bob for a certain position

After the interview, Alice recovers Bob’s DNA and uses this data to search a large genetic

study of drug abuse. The study stores the DNA in anonymous form, but a match between

Bob’s DNA and one of the records reveals that Bob was a drug abuser. While the short story

above has some practical limitations, it illustrates the main concepts of ADAD attack. The

adversary gains access to the DNA sample of the target. He or she uses the identified DNA

to search genetic databases with sensitive attributes (for example, drug abuse). A match

between the identified DNA and the database links the person and the attribute.

The n=1 scenario—The simplest scenario of ADAD is when the sensitive attribute is

associated with the genotype data of the individual. The adversary can simply match the

genotype data that is associated with the identity of the individual and the genotype data that

is associated with the attribute. Such an attack requires only a small number of autosomal

single nucleotide polymorphisms (SNPs). Empirical data showed that a carefully chosen set

of 45 SNPs is sufficient to provide matches with a type I error of 10−15 for most of the major

populations across the globe60. Moreover, random subsets of ~300 common SNPs yield

sufficient information to uniquely identify any person61. As such, an individual’s genome is

a strong identifier. In general, ADAD is a theoretical vulnerability of virtually any individual

level DNA-derived omics dataset such as RNA-seq and personal proteomics.

Genome-wide association studies (GWAS) are highly vulnerable to ADAD. In order to

address this issue, several organizations, including the NIH, have adopted a two-tier access

system for GWAS datasets: a restricted access area that stores individual level genotypes

and phenotypes and a public access area for high level data summary statistics of allele

frequencies for all cases and controls62. The premise of this distinction was that summary

statistics enable secondary data usage for meta-GWAS analysis while it was thought that

this type of data is immune to ADAD.

The summary statistic scenario—A landmark study in 2008 reported the possibility of

ADAD on GWAS datasets that only consist of the allele frequencies of the study

participants63. The underlying concept of this approach is that, with the target genotypes in

the case group, the allele frequencies will be positively biased towards the target genotypes

compared to the allele frequencies of the general population. A good illustration of this

concept is considering an extremely rare variation in the subject’s genome. Non-zero allele

frequency of this variation in a small-scale study increases the likelihood that the target was

part of the study, whereas zero allele frequency strongly reduces this likelihood. By

integrating the slight biases in the allele frequencies over a large number of SNPs, it is also

possible to conduct ADAD with the common variations that are analysed in GWAS.
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Subsequent studies extended the range of vulnerabilities for summary statistics. One line of

studies improved the test statistic in the original work and analysed its mathematical

properties64–66. Under the assumption of common SNPs in linkage-equilibrium (LD), the

improved test statistic is mathematically guaranteed to yield maximal power for any

specificity level (Box 2). Another group went beyond allele frequencies and demonstrated

that it is possible to exploit local LD structures for ADAD67. The power of this approach

stems from scavenging for the co-occurrence of two relatively uncommon alleles in different

haplotype blocks that together create a rare event. Another study developed a method to

exploit the effect sizes of GWAS involving quantitative traits to detect the presence of the

target68. A powerful development of this study is exploiting GWAS studies that utilize the

same cohort for multiple phenotypes. The adversary repeats the identification process of the

target with the effect sizes of each phenotype and integrates them to boost the identification

performance. After determining the presence of the target in a quantitative trait study, the

adversary can further exploit the GWAS data to predict the phenotypes with high

accuracy69.

The actual risk of ADAD has been the subject of intense debate. Following the original 2008

study63, the NIH and other data custodians moved their GWAS summary statistics data from

public databases to access-controlled databases such as dbGAP70. A retrospective analysis

found that significantly fewer GWAS studies publicly released their summary statistics data

after the discovery of this attack71. As of now, most of the studies publish summary statistic

data on 10–500 SNPs, which is compatible with one suggested guideline to manage risk69.

However, some researchers have warned that these policies are too harsh72. There are

several practical complications that the adversary needs to overcome to launch a successful

attack, such as access to the target’s DNA data73 and accurate matching between the target

ancestries and those listed in the reference database74. Failure to address any of these

prerequisites can severely impact the performance of the ADAD. In addition, for a range of

GWAS studies, the associated attributes are not sensitive or private (for example, height).

Thus, even if ADAD occurs, the impact on the participant should be minimal. A recent NIH

workshop has proposed the release of summary statistics as the default policy and the

development of an exemption mechanism for studies with increased risk due to the

sensitivity of the attribute or the vulnerability level of the summary data75.

The gene expression scenario—Databases such as the NIH’s Gene Expression

Omnibus (GEO) publicly hold hundreds of thousands of gene expression profiles from

human that are linked to a range of medical attributes. A recent study proposed a potential

route to exploit these profiles for ADAD76. The method starts with a training step that

employs a standard expression quantitative trait loci (eQTL) analysis with a reference

dataset. The goal of this step is to identify several hundred strong eQTLs and to learn the

expression level distributions for each genotype. Next, the algorithm scans the public

expression profiles. For each eQTL, it uses a Bayesian approach to calculate the probability

distributions of the genotypes given the expression data. Last, the algorithm matches the

target’s genotype with the inferred allelic distributions of each expression profile and tests

the hypothesis that the match is random. If the null hypothesis is rejected, the algorithm

links the identity of the target to the medical attribute in the gene expression experiment.
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This ADAD technique has the potential for relatively high accuracy in ideal conditions.

Based on large-scale simulations, the authors predicted that the method can reach a type I

error of 1×10−5 with a power of 85% when tested on an expression database of the entire US

population.

There are several practical limitations to ADAD via expression data. While the training and

inference steps are capable of working with expression profiles from different tissues, the

method reaches its maximal power when the training and inference utilize eQTL from the

same tissue. Additionally, there is a substantial loss of accuracy when the expression data in

the training phase is collected using a different technology than the expression data in the

inference phase. Another complication is that in order to fully execute the technique on a

large database such as GEO, the adversary will need to manage and process substantial

amounts of expression data. Due to the technical complexities, the NIH did not issue any

changes to their policies regarding sharing expression data from human subjects.

Completion attacks

Completion of genetic information from partial data is a well-studied task in genetic studies,

called genotype imputation77. This method takes advantage of the linkage disequilibrium

between markers and uses reference panels with complete genetic information to restore

missing genotype values in the data of interest. The very same strategies enable the

adversary to expose certain regions of interest where only partial access to the DNA data is

available. In a famous example of a completion attack, a recent study showed that it is

possible to infer Jim Watson’s predisposition for Alzheimer’s disease from the ApoE locus

despite masking of this gene78. As a result of the study, a 2Mb segment around the ApoE

gene was removed from Watson’s published genome.

In some cases, completion techniques also enable the prediction of genomic information

when there is no access to the DNA of the target. This technique is possible when

genealogical information is available in addition to genetic data. In the basic setting, the

adversary obtains access to a single genetic dataset of a known individual. He then exploits

this information to estimate genetic predispositions for relatives whose genetic information

is inaccessible. A recent study demonstrated the feasibility of this attack by taking advantage

of self-identified genetic datasets from OpenSNP.org, an internet platform for public sharing

of genetic information79. Using Facebook searches, the research team was able to find

relatives of the individuals that self-identified their genetic datasets. Next, the team

predicted the genotypes of these relatives and estimated their genetic predisposition to

Alzheimer’s using a Bayesian approach.

In the advanced setting, the adversary has access to the genealogical and genetic information

of multiple relatives of the target80. The algorithm finds relatives of the target that donated

their DNA to the reference panel and that reside on a unique genealogical path that includes

the target, for example, a pair of half-first cousins when the target is their grandfather. A

shared DNA segment between the relatives indicates that the target has the same segment.

By scanning more pairs of relatives that are connected through the target, it is possible to

infer the two copies of autosomal loci and collect more genomic information on the target
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without any access to his DNA. This approach is more accurate than the basic setting and

enables to infer genotypes of more distant relatives. In Iceland, decode genetics leveraged

their large reference panel and genealogical information to infer genetic variants of an

additional 200,000 living individuals who never donated their DNA81. In May 2013,

Iceland’s Data Protection Authority prohibited the use of this technique until consent is

obtained from the individuals who are not part of the original reference panel.

Mitigation techniques

Most of the genetic privacy breaches presented above require a background in genetics and

statistics and – importantly – a motivated adversary. One school of thought posits that these

practical complexities markedly diminish the probability of an adverse event82,83. In this

view, an appropriate mitigation strategy is to simply remove obvious identifiers from the

datasets before publicly sharing the information. In the field of computer security, this risk

management strategy is called security by obscurity. The opponents of security by obscurity

posit that risk management schemes based on the probability of an adverse event are fragile

and short lasting. Technologies only get better with time and what is technically challenging

but possible today will be much easier in the future. In other words, it is impossible to

estimate future risks of adverse events84. Known in cryptography as Shannon’s maxim85,

this school of thought assumes that the adversary exists and is equipped with the knowledge

and means to execute the breach. Robust data protection, therefore, is achieved by explicit

design of the data access protocol rather than by relying on the small chances of a breach86.

Access control

Privacy risks are both amplified and more uncertain when data is shared publicly with no

record of who accesses it. An alternative is to place sensitive data in a secure location and to

screen the legitimacy of the applicants and their research projects by specialized committees.

Once approval is made, the applicants are allowed to download the data under the conditions

that they will store it in a secure location and will not attempt to identify individuals. In

addition, the applicants are required to file periodic reports about the data usage and any

adverse events. This approach is the cornerstone of dbGAP62,87. Based on periodic reports

by users, a retrospective analysis of dbGAP access control has identified 8 data management

incidents out of close to 750 studies, mostly involving non-adherence to the technical

regulations, with no reports of breaching the privacy of participants88.

Despite the absence of privacy breaches thus far, some have criticized the lack of real

oversight once the data is in the hand of the applicant89. An alternative model uses a trust-

but-verify approach, where users cannot download the data without restriction but, based on

their privileges, may execute certain types of queries, which are recorded and audited by the

system90,91. Supporters of this model state that monitoring has the potential to deter

malicious users and to facilitate early detection of adverse events. One technological

challenge is that audit systems usually rely on anomalous behavior to detect adversaries92. It

is yet to be proven that such methods can reliably distinguish between legitimate and

malicious use of genetic data. Auditing also requires that any interaction with the genetic

datasets is done using a standard set of API calls that can be analyzed. By contrast, most of
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the genomic formats currently operate using more liberal text parsing approaches, but

several efforts in the community have been made to standardize genomic analysis93,94.

Another model of access control is allowing the original participants to grant access to their

data instead of delegating this responsibility to a data access committee95,96. This model

centers on dynamic consent based on on-going communication between researchers and

participants regarding data access. Supporters of this model state that this approach

streamlines the consent process, enables participants to modify their preferences throughout

their lifetimes, and can promote greater transparency, higher levels of participant

engagement, and oversight. An example for such an effort is PEER (Platform for Engaging

Everyone Responsibly). In this setting, Private Access Inc. operates a service that manages

the access rights and mediates the communication between researchers and participants,

without revealing the identity of the participants. A trusted agent, Genetic Alliance, holds

the participants health data, offers stewardship regarding privacy preferences, and grant

access to data based on participants’ decisions. Participant-based access control is still a

relatively new method. As data custodians gain more experience with such a framework, a

better picture will emerge regarding its utility as an alternative for risk-benefit management

compared to traditional access control methodologies.

Data anonymization

The premise of anonymity is the ability to be ‘lost in the crowd’. One line of studies

suggested restoring anonymity by restricting the granularity of quasi-identifiers to the point

that no record in the database has a unique combination of quasi-identifiers. One heuristic is

k-anonymity97, in which attribute values are generalized or suppressed such that for each

record there are at least ‘k-1’ records with the same combination of quasi-identifiers. To

maximize the utility of the data for subsequent analysis, the generalization process is

adaptive. Certain records will have a lower resolution depending on the distribution of the

other records and certain data categories that are too unique are suppressed entirely. There is

a strong trade-off in the selection of the value of k; high values better protect privacy but at

the same time reduce the utility of the data. As a rule of thumb, k=5 is commonly used in

practice98. Most of the k-anonymity work centers on protecting demographic identifiers. For

genetic data, one study suggested a 2-anonymity protocol by generalizing the 4 nucleotides

in DNA sequences into broader types of biochemical groups such as pyrimidine and

purines99. However, the utility of such data for broad genetic applications is unclear.

Furthermore, k-anonymity is vulnerable to attribute disclosure attacks when the adversary

has prior knowledge about the presence of the target in the database100,101. Thus, while this

heuristic is easy to comprehend, its privacy properties as well as its relevance to genomic

studies are in question.

Differential privacy is an emerging methodology for privacy-preserving reporting of results,

primarily of summary statistics102 (Box 3). In contrast to k-anonymity, this method

guarantees privacy against an adversary with arbitrary prior knowledge. Differential privacy

operates by adding noise to the results before their release. The algorithm tunes the amount

of noise such that the reported results will be statistically indistinguishable from similar

reported results that would have been obtained if a single record had been removed from the
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original dataset. This way, an adversary with any type of prior knowledge can never be sure

whether a specific individual was part of the original dataset because the data release

process produces results that are almost exactly the same if the individual was not included.

Due to its theoretical guarantees and tractable computational demands, differential privacy

has become a vibrant research area in computer science and statistics. In perhaps the best-

known large-scale implementation, the US Census Bureau utilizes this technique for

privacy-preserving release of data in the online OnTheMap tool103.

In the context of genetic privacy, several studies have explored differential private release of

common summary statistics of GWAS data, such as the allele frequencies of cases and

controls, χ2-statistic, and p-values104,105 or shifting the original locations of variants106.

Currently, these techniques require a large amount of noise even for the release of a GWAS

statistics from a small number of SNPs, which renders these measures impractical. It is

unclear whether there is a perturbation mechanism that can add much smaller amounts of

noise to GWAS results while satisfying the differential privacy requirement, or whether

perturbation can be shown to be effective for privacy preservation under a different

theoretical model.

Cryptographic solutions

Modern cryptography brought new advancements to data dissemination beyond the

traditional usage of encrypting sensitive information and distributing the key to authorized

users. These solutions enable well-defined usability of data while blocking unauthorized

operations. Different from solutions in the previous section, the underlying data is not

perturbed within the authorized usability.

One line of cryptographic work considers the problem of privacy-preserving approaches to

outsource computation on genetic information to third parties. For example, with the advent

of ubiquitous genetic data, patients (or their physicians) will interact throughout their lives

with a variety of online genetic interpretation applications, such as promethease.com,

increasing the chance of a privacy breach. Recent cryptographic work has suggested

homomorphic encryption (Box 4) for secure genetic interpretation107. In this method, users

send encrypted versions of their genomes to the cloud. The interpretation service can access

the cloud data but does not have the key and therefore cannot read the plain genotype values.

Instead, the interpretation service executes the risk prediction algorithm on the encrypted

genotypes. Due to the special mathematical properties of the underlying cryptosystem, the

user simply decrypts the results given by the interpretation service to obtain the risk

prediction. This way, the user does not expose genotypes or disease susceptibility to the

service provider and interpretation companies can offer their service to users concerned with

privacy. Preliminary results have highlighted the potential feasibility of this scheme108. A

proof-of-concept study encrypted the variants of a 1000 Genomes individual and simulated a

secure inference of heart disease risk based on 23 SNPs and 17 environmental factors. The

total size of the encrypted genome was 51 Gbyte and the risk calculation took 6 minutes on a

standard computer. The current scope of risk prediction models is still narrow but this

approach might be quite amenable to future improvements.
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Cryptographic studies have also considered the task of outsourcing read mapping without

revealing any genetic information to the service provider109–111. The basis of some of these

protocols is Secure Multiparty Computation (SMC). SMC allows two or more entities who

each have some private data to execute a computation on these private inputs without

revealing the input to each other or disclosing it to a third party. In one classic example of

SMC, two individuals can determine who is richer without either one revealing their actual

wealth to the other112. Earlier studies suggested SMC versions for edit distance-based

mapping of DNA sequences that does not reveal their content109,110. However, regular

(unsecure) edit distance-based mapping is too slow to handle the volumes of high-

throughput sequencing reads, narrowing the applications for the much-slower secure

version. A more recent study proposed a privacy-preserving version of the popular seed-and-

extend algorithm111, which serves as the basis of several high-throughput alignment

tools111,113. The privacy-preserving version is a hybrid: the seeding part is securely

outsourced to a cloud where a cryptographic hashing hides the actual DNA sequences while

permitting string matching. The cloud results are streamed to a local trusted computer that

performs the extension part. By tuning the underlying parameters of the seed-and-extend

algorithm, this method puts most of the computation burden on the cloud. Experiments with

real sequencing data showed that the cloud performs >95% of the computation efforts. In

addition, the secure algorithm takes only 3.5× longer than a similar unsecure

implementation, suggesting a tractable price tag to maintain privacy.

Beyond outsourcing of computation, several studies designed cryptographically secure

algorithms for searching genetic databases. One study suggested searchable genetic

databases for forensic purposes that allow only going from genetic data to identity but not

from identity to genetic data114. The forensic database stores the individuals’ names and

contact information in an encrypted form. The key for each entry is the corresponding

individual’s genotypes. This way, knowing genotype information (for example, from a

crime scene) can reveal the identity but not the opposite. In addition, to tolerate genotyping

errors or missing data, the study suggested a fuzzy encryption scheme in which a decryption

key can approximately match the original key. Another cryptographic protocol proposed

matching genetic profiles between two parties for paternity tests or carrier screening without

exposing the actual genetic data115,116. A smartphone-based implementation was presented

for one version of this algorithm117. A recent study suggested a scalable approach for

finding relatives using genome-wide data without disclosing the raw genotypes to a third

party or other participants118. First, users collectively decide the minimal degree of

relatedness they wish to accept. Next, each user posts a secure version of her genome to a

public repository using a fuzzy encryption scheme. Then, users compare their own secure

genome to the secure genomes of other users. Comparison of two encrypted genomes

reveals no information if the genomes are farther than the threshold degree of relatedness;

otherwise, it reveals the exact genetic distance. An evaluation of the efficacy of this

approach via experiments with hundreds of individuals from the 1000 Genomes Project

showed that even second-degree relatives can reliably find each other118.

A major open question is whether cryptographic protocols can facilitate data sharing for

research purposes. So far, cryptographic schemes have focused on developing protocols for

GWAS analysis without the need to reveal individual-level genetic data. One study

Erlich and Narayanan Page 12

Nat Rev Genet. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



presented a scheme where genetic data and computation of GWAS contingency tables are

securely outsourced via homomorphic encryption to external data centers119. A trusted party

(for example, the NIH) acts as a gateway that accepts requests from researchers in the

community, instructs the data centres to perform computation on the encrypted data, and

decrypts and disseminates the GWAS results back to the researchers. A more recent study

tested a scheme to generate GWAS summary statistics without a trusted party using only

SMC between the data centeres120. Another study evaluated the outsourcing of GWAS

analysis to a commercially available tamper-resistant hardware121. Different from the

schemes above119,120, the individual-level genotypes are decrypted as part of the GWAS

summary statistics computation but the exposure occurs for a short amount of time in a

secure hardware environment, which prevents any leakage. All of the cryptographic GWAS

schemes above suffer from one common drawback: the protocols produce summary

statistics, which are theoretically amenable to ADAD methods. As of today, cryptography

has yet to devise a comprehensive data sharing solution for GWAS studies.

Conclusions

In the last few years, a torrent of studies has suggested that a motivated, technically

sophisticated adversary is capable of exploiting a wide range of genetic data. With the

constant innovation in genetics and the explosion of online information, we can expect that

new privacy breaching techniques will be discovered in the next few years and that technical

barriers to conducting existing attacks will diminish. On the other hand, privacy-preserving

strategies for data dissemination are a vibrant area of research. Rapid progress has been

made, and powerful frameworks such as differential privacy and homomorphic encryption

are now part of the mitigation arsenal. At least for certain tasks in genetics, there are

protocols that preserve the privacy of individuals. However, protecting privacy is only one

facet of the solution. Lessons from computer security have highlighted that usability is a key

component for the wide adoption of secure protocols. Successful implementations should

hide unnecessary technical details from the users, minimize the computational overhead, and

enable legitimate research122,123. We have yet to fully achieve this aim.

In addition, successful balancing of privacy demands and data sharing is not restricted to

technical means124. Balanced informed consent outlining both benefits and risks are key

ingredients for maintaining long-lasting credibility in genetic research. With the active

engagements of a wide range of stakeholders from the broad genetics community and the

general public, we as a society can facilitate the development of social and ethical norms,

legal frameworks, and educational programs to reduce the chance of misuse of genetic data

regardless of the ability to identify datasets.
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Glossary

SAFE HARBOR A standard in the HIPAA Rule for de-identification of

protected health information by removing 18 types of

quasi-identifiers

HAPLOTYPES A set of alleles along the same chromosome

CRYPTOGRAPHIC
HASHING

A procedure that yields a fixed length output from any

size of input in a way that is hard to determine the input

from the output

DICTIONARY ATTACKS A brute force approach to reverse cryptographic hashing

by scanning the relatively small input space

ALICE AND BOB Common generic names in computer security to denote

party A and party B

TYPE I ERROR The probability to obtain a positive answer from a

negative item

LINKAGE
EQUILIBRIUM

Absence of correlation between the alleles in two loci

POWER The probability to obtain a positive answer for a positive

item

SPECIFICITY The probability to obtain a negative answer for a negative

item

EFFECT SIZES The contribution of an allele to the value of the trait

POSITIVE PREDICTIVE
VALUE

The probability that a positive answer belongs to a true

positive
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EXPRESSION
QUANTITATIVE TRAIT
LOCI

Genetic variants associated with variability in gene

expression

GENOTYPE
IMPUTATION

A class of statistical techniques to predict a genotype from

information on surrounding genotypes

LINKAGE
DISEQUILIBRIUM

The correlation between alleles in two loci

API A set of commands that specify the interface with a

dataset

χ2 STATISTIC A measure of association in case-control GWAS studies

READ MAPPING A computational intensive step in high throughput

sequencing to find the location of a DNA strings in the

genome

EDIT DISTANCE The total number of insertions, deletions, and substitution

between two strings
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Box 1

Entropy and the contribution of quasi-identifiers

Entropy measures the degree of uncertainty in the outcome of a random variable. One bit

of entropy is equivalent to the uncertainty of tossing a fair coin. Two bits are equivalent

to two independent tosses of a fair coin and so on. Zero bits is the lowest entropy level

and implies that there is no uncertainty. The reciprocal measure of entropy is information

content, which quantifies the expected contribution of a new piece of data in reducing the

entropy level.

Information content captures the average usefulness of quasi-identifiers for identity

tracing. Consider an anonymous individual’s record in a study that randomly samples

subjects from the US population. A priori, the adversary has 310 million equiprobable

possibilities of a match, which translates to 28.2bits of entropy. He can then gain ~1 bit

of information by inferring the individual’s sex, reducing the entropy to 27.2. Complete

identification of any person is guaranteed when the entropy reaches zero. The table below

lists possible quasi-identifiers and their maximal information content expectation for the

US population.

Several factors reduce the expected information content of quasi-identifiers from the

maximal level. One possibility is that two quasi-identifiers are correlated. For example,

after inference of a US zip code, obtaining the state of residency rarely adds new

information. A second possibility is inaccurate inference of the quasi-identifier.

Information theory dictates a rapid decline of information content with deviations of the

inferred quasi-identifier from the truth. Another possibility is low-searchability of the

quasi-identifier. For example, in the case that the adversary can only access a height

registry of 100 random US individuals, even with perfect knowledge of height, he will

recover close to zero bits of information.
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Table

Information content of quasi-identifiers for the

general US population
Quasi-identifier Expected information content (bits)

Sex1 1.0

Ethnic group1,2 1.4

Eye color3 1.4

Blood group (ABO/Rh)4 2.2

State1 5.0

Height5 5.0

Year of birth1 6.3

Day and month of birth6 8.5

Surname1 12.9

Zip code7 13.8

1
Based on US Census data.

2
Based on self-classification field in the US census: African American, Asian American, European American,

Native American, Other race, and two or more races.
3
Perfect inferences of three eye color groups (blue, brown, intermediate). Data from www.statisticbrain.com/

eye-color-distribution-percentages/
4
Data is based on Stanford School of Medicine Blood Center (bloodcenter.stanford.edu/about_blood/

blood_types.html)
5
Assuming accurate measurement within 1cm resolution and normal distribution with standard deviation of

8cm in the population
6
Data is based on 400,000 births (www.panix.com/~murphy/bday.html)

7
Data is from zipatals.com
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Box 2

The performance of ADAD attacks using allele frequencies

The theoretical performance of ADAD with summary statistics is a complex function of

the size of the study and the prior knowledge of the adversary125,126. To illustrate this

point, consider an adversary that has access to the allele frequencies of a GWAS study of

schizophrenia in the US, a disease with 1% prevalence127. Without any other prior

knowledge, the adversary randomly meets with people from the US population and

attempts to infer their schizophrenia status. When the study size is small, the adversary

enjoys higher power and specificity to discriminate between participants and non-

participants than with larger study samples (Left panel; cyan – GWAS with 1,000

participants, green – 3,000, yellow – 10,000, purple – 100,000). On the other hand, with

smaller studies, the adversary almost never encounters individuals that were part of the

study. He keeps consuming resources to conduct the attack, just to implicate relatively

few people. Moreover, attacks on non-participants can result in false positives and lower

the positive predictive value of the attack. The adversary can compensate by increasing

the specificity, but this will further reduce the number of people that can be implicated in

the attack. The middle panel depicts the positive predictive value as a function of

individuals at risk when the prior knowledge of the adversary is that participants are in

the USA. Intermediate sized studies place risk on the largest number of individuals for

most of the positive predictive values.

The overall performance trade-off depends on prior knowledge of the adversary and the

size of the study. The right panel shows the ADAD performance (Matthews correlation

coefficient between truth and disease prediction) as a function of individuals at risk when

the prior knowledge of the adversary is that participants are in the USA versus when the

prior knowledge of the adversary is that participants are sampled from a US

subpopulation of 10 million people (say that the adversary knows that a schizophrenia

study enrolled only adults with Hispanic ancestry that live in California). Restricting the

ADAD efforts to this specific demographic group boosts the accuracy for all study sizes

but with different proportions. As a rule of thumb, ADAD performs best when the

adversary can narrow down the base population from which participants where sampled,

such as with studies of ethnic minorities, a specific geographical region, or when detailed

inclusion criteria are given.
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BOX 3

Mathematical introduction to differential privacy

Differential privacy seeks to ensure that no single individual’s attributes can affect the

output of the data release mechanism too much. If an individual’s attributes have only a

minimal impact on the output, the adversary cannot use the output to accurately infer

those inputs. It is necessary and sufficient to consider the impact of adding or dropping

an individual from the dataset altogether, rather than the effect of their attributes.

Differential privacy randomizes the released data. Let D be the original dataset and D’ be

the dataset with any single user record removed. Differential privacy requires that the

output distributions corresponding to D and D’ are close throughout the output space102.

A privacy parameter ∊ quantifies the difference of the distributions, and hence the level

of information leakage. Low values of ∊ such that e∊ ≅ 1+∊ are considered more secure

but they typically come at the expense of data utility. Practical values of ∊ is still an open

question but several models have been proposed128,129.

A simple addition of “noise” or randomness to the true output satisfies the requirement

above. Let t(D) be the summary statistic function that operates on the input dataset, such

as mean, median, or counting the number of individuals with a specific property. f(D) =

t(D) + z is called ∊-differentially private if z is randomly drawn from Laplace distribution

with mean 0 and a scale of S/∊; where S, called sensitivity, is a bound on how much a

single record can affect the output of t130. For example, the mean of a binary attribute has

sensitivity of 1/n where n is the number of records in D. Thus, by analysing the summary

statistic function and a desired privacy level (∊), the data custodian can add the

appropriate level of noise.
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BOX 4

Homomorphic encryption

Homomorphic encryption is an area of cryptography with great potential for certain types

of privacy-preserving computation. It is best explained by the following analogy: Alice

possesses raw gold and wants to create a necklace, but she is not equipped with the

knowledge or tools. Bob is a skillful goldsmith but with an unclear reputation. Using

homomorphic encryption, Alice sets up a securely locked glove box with the raw gold.

Bob uses the gloves to construct the jewelry without unlocking the box. After that, Alice

receives the glove box and opens the lock with her key. Genotypes can be thought of as

the raw gold, Bob can be an interpretation service, and the necklace is disease risk status.

Homomorphic encryption creates the glove box by adding additional mathematical

properties besides the basic encryption and decryption operations in traditional

cryptographic protocols. This property takes a regular function that operates on plaintext

(genotypes), say y(M1,M2)=M1+M2, and maps it to a secure function, y’(X1,X2) that

performs the same computation on the ciphertext. Decrypting y’(X1,X2) yields exactly

the same answer as calculating the original function with the corresponding plaintext,

which in our example is D(y’(X1,X2)) = M1+M2. This way, Bob can compute secure

functions on the ciphertext and Alice can decrypt his answer to obtain the result.

Until recently, cryptographic studies achieved encrypted versions of very basic algebraic

operations. One example is the Paillier Cryptosystem131, which supports the addition of

plaintexts and multiplication by a constant to be carried out on ciphertexts. Such narrow

designs are called Partially Homomorphic Encryption. They operate relatively fast, and

despite their limitations, might prove sufficient for a wide range of computations on

genotypes due to the additive properties of genetic predispositions132. A breakthrough in

2009 established a Fully Homomorphic Encryption scheme that supports calculating

arbitrary functions on the plaintext133. This innovation is not yet efficient in terms of

computational time but further developments can complete the arsenal of secure

functions in genetic epidemiology.
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Figure 1. An integrative map of genetic privacy breaching techniques
The map contrasts different scenarios such as identifying de-identified genetic datasets,

revealing an attribute from genetic data, and unmasking of data. It also shows the

interdependencies between the techniques and suggests potential routes to exploit further

information after the completion of one attack. We made several simplifying assumptions

[corresponding to numbering in the figure]: (1) in certain scenarios, such as insurance

decisions, uncertainty about the identity within a small group of people could still be

considered a success (2) for certain privacy harms such as surveillance, identity tracing can
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be considered a success and the end point of the process (3) complete DNA sequence is not

always necessary.
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Figure 2. A possible route for identity tracing
The route combines both metadata and surname inference to triangulate the identity of an

unknown male genome of a US person. Without any information, there are ~300 million

individuals that could match the genome, which is equivalent to 28 bits of entropy (black

silhouette). Inferring the sex by inspecting the sex chromosomes reduces the entropy by a

bit. The adversary than uses the metadata to find the state and the age, which reduces the

entropy to 16bits. Successful surname recovery leaves only ~3bits. At this point, the

adversary uses public record search engines such as PeopleFinders.com to generate a list of

potential individuals, he can use social engineering or pedigree structure to triangulate the

person (red silhouette).
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Table

Information content of quasi-identifiers for the general US population
Quasi-identifier Expected information content (bits)

Sex1 1.0

Ethnic group1,2 1.4

Eye color3 1.4

Blood group (ABO/Rh)4 2.2

State1 5.0

Height5 5.0

Year of birth1 6.3

Day and month of birth6 8.5

Surname1 12.9

Zip code7 13.8

1
Based on US Census data.

2
Based on self-classification field in the US census: African American, Asian American, European American, Native American, Other

race, and two or more races.

3
Perfect inferences of three eye color groups (blue, brown, intermediate). Data from www.statisticbrain.com/eye-color-distribution-

percentages/

4
Data is based on Stanford School of Medicine Blood Center (bloodcenter.stanford.edu/about_blood/blood_types.html)

5
Assuming accurate measurement within 1cm resolution and normal distribution with standard deviation of 8cm in the population

6
Data is based on 400,000 births (www.panix.com/~murphy/bday.html)

7
Data is from zipatals.com
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