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Abstract

Technological development and various information services becoming common has had the effect

that data from everyday situations is available. Utilizing this technology and the data it produces in

an efficient manner is called context-aware or ubiquitous computing. The research includes the

specifications of each application, the requirements of the communication systems, issues of privacy,

and human - computer interaction, for example. The environment should learn from the user's

behaviour and communicate with the user. The communication should not be only reactive, but

proactive as well.

This thesis is divided into two parts, both representing methodology for enabling intelligence in

our everyday surroundings. In part one, three different applications are defined for studying context-

recognition and routine learning: a health monitoring system, a context-aware health club application,

and automatic device configuration in an office space.

The path for routine learning is straight forward and it is closely related to pattern recognition

research. Sensory data is collected from users in various different situations, the signals are pre-

processed, and the contexts recognized from this sensory data. Furthermore, routine learning is

realized through association rules. The routine learning paradigm developed here can utilize already

recognized contexts despite their meaning in the real world. The user makes the final decision on

whether the routine is important or not, and has authority over every action of the system.

The second part of the thesis is built on experiments on identifying a person walking on a pressure-

sensitive floor. Resolving the characteristics of the special sensor producing the measurements, which

lies under the normal flooring, is one of the tasks of this research. The identification is tested with

Hidden Markov models and Learning Vector Quantization.

The methodology developed in this thesis offers a step along the long road towards functional and

calm intelligent environments.

Keywords: context-recognition, data mining, human-computer interaction, pattern

recognition, pervasive computing, proactive computing, ubiquitous computing
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Symbols and abbreviations

Mathematical notations

C(X ⇒ Y ) confidence of an association rule

P (·|·) conditional probability

S(X) support value for an itemset X

x sample mean

X ⇒ Y an association rule

| · | cardinality

Latin letters

A transition probability matrix

aij transition probability from state i to state j

B observation probability distribution x

bj observation probability in state j

c the nearest prototype vector

D database of transactions

M number of observation symbols

mi codebook vector i

N number of states

O observation sequence vector

Sj state j

T transaction

vk observation from state k

x input variable

X, Y itemsets

w weight value

Greek letters

α(t) learning rate



λ Hidden Markov Model

π initial state probability matrix

σ standard deviation

σ2 variance

σa reject threshold

Ψ reliability estimator

Abbreviations

AD Analog to Digital Converter

ASL American Sign Languange

DBP Diastolic blood pressure

ECG Electrocardiograph

EM Expectation-Maximization

EMFi Electromechanical film

FIR Finite Impulse Response

FUP Fast Update

GPS Global positioning system

HMM Hidden Markov Model

ICA Independent component analysis

kNN k-Nearest Neighbour

LAN local area network

LVQ Learning vector quantization

MIT Massachusetts Insitute of Technology

MLP MultiLayer Perceptron

OLVQ Optimal Learning Vector Quantization

PC Personal computer

PCA Principal component analysis

PDA Personal Digital Assistant

QS Quality of sleep

RN Recurrent Networks

R-R Time interval between two succesive R-waves in electrocardiograph

SBP Systolic blood pressure

SRN Simple Recurrent Networks

SOM The Self-organizing Map

TDNN Time-Delay Neural Networks
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from Pressure Signals Using Hidden Markov Models. Proc. Finnish Signal
Processing Symposium (FINSIG’03), May, Tampere, Finland, pp. 124-128.

VII Pirttikangas S., Suutala J., Riekki J., Röning J.(2003): Learning Vector Quan-
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1 Introduction

In the beginning of 1990, in the research on artificial intelligence, a new branch
emerged as people started talking about ubiquitous computing (Weiser 1991),
(Weiser 1993), context-awareness (Schilit & Theimer 1994), (Salber et al. 1999),
(Pascoe 1999), and pervasive computing (Huang et al. 1999), (Mark 1999). The
purpose is to create applications that react to the situation at hand, learn the
user’s habits, utilize other intelligent applications and help in everyday tasks. In
robotics, this kind of methodology has been studied for over 20 years. Techno-
logical development has enabled machines to reach intelligent behaviour, but it
is still mainly about physical rather than algorithmic development. Think about
Deep Blue, the first chess machine beating the world chess champion in a six-game
match. The intelligence in Deep Blue was about its enormous calculating power,
database, and fast computer chips (Hsu 2002). Robots can walk human like, but
this is achieved with mechanics, and not because they learn to walk through effort
and failure. In context-aware computing, the aim is to utilize sensory data from the
environment, the user, and the equipment to enable various services. The keywords
here are mobility, communication networks, and learning. It is not impossible to
build databases for covering different kinds of situations, but it would be ideal if
the applications and environments would identify the situations automatically, in
order to communicate with the user.

Developing a context-aware application starts by specifying the application
(equipment, services to be offered etc.). Then, the data is collected and ana-
lyzed to find out what kind of contexts can be recognized, and which of them are
useful in the application. The data must be preprocessed and finally, methods are
implemented to recognize the selected contexts. After these stages, the contexts
have to be utilized in order to provide useful services for the users. The context
information is used to find interesting rules on the user’s behaviour. This is called
routine learning. The development is clearly an iterative process, since every step
consolidates the expertise of the research field, and one might want to return to
an earlier step as knowledge increases. Actually, this is the basic approach to
data mining problems (Pyle 1999). Hence, this approach for developing context-
aware applications might be called context-aware data mining, or, more generally,
ubiquitous data mining.
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In Figure 1, the process of ubiquitous data mining is described. It also presents
the main themes of this thesis. The development of a context-aware application
is done in several phases. The difficulties arise in the utilization of existing sig-
nal processing and modelling methods, and in the formation of a functional and
useful application from different kinds of building blocks. After determining the
requirements of the application, sensory data is collected (lowest box), and the
sensor data is preprocessed. It has been considered that at least 90 % of the time
spent in modelling problems goes on the preprocessing stage (Pyle 1999). After
these stages, context recognition can be done. These recognized contexts are then
employed in routine learning. In Figure 1, user identification is parallel to con-
text recognition, since it can only be done after a preprocessing stage, and the
methdology is quite similar to context recognition in many cases.

Context
Recognition

Routine Learning

Preprocessing

User
Identification

Sensor data

Ubiquitous
Data Mining

User Modelling

Figure 1. Building Intelligent Environments - Ubiquitous Data Mining.

The first part of the original publications introduces a path from signal prepro-
cessing and context recognition to novel ideas on routine learning. The lowest box
in Figure 1 is for sensor data. In this thesis, different kinds of sensory data have
been processed, including various measurements of a human being. Physiological
signals (heart rate, blood pressure, etc.) have been processed in determining the
physiological context and the well being of a human. Also other measurements
(location, speed, cadence) have been processed to determine the context of not
just a human being, but the devices around her.

As seen in Figure 1, context recognition is needed before routine learning. De-
pending on the application, the method for recognizing the context must be de-
termined. In this thesis different context recognition methods were utilized. The
methods are mainly pattern recognition or statistical modelling methods, and the
same problems that occur in those research fields apply here.

The behaviour of a human being has been studied widely in many research fields.
In ubiquitous data mining, the characterization of human behaviour can be called
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routine learning (the topmost box in Figure 1). In our research, the definition of a
routine has been restricted to that of a (temporal) context sequence or associating
different contexts together. Therefore, routine learning is a procedure where the
user is “under surveillance” - different sensory data are collected from the user and
the users environment, the contexts of the user and the environment are recognized,
and these contexts are exploited in determining the habits of the user.

Here, the algorithms for routine learning have initially been designed for the
purposes of data mining and pattern recognition, and in this thesis, the suitability
of those algorithms are tested for ubiquitous environments. Routine learning is
considered as associating different contexts to each other. These associations are
derived as IF-THEN rules, called association rules. The routine learning algorithm
is selected so that the control of the system is with the user. The system learns the
user’s habits, and then communicates with the user in order to utilize the learned
information.

The second part of the thesis consists of experiments on a pressure sensitive
floor. In this research, the occupants of a smart living room are recognized based
on their footsteps. The further development in this research can be extended to
also cover routine learning. Once the user is recognized, she can be monitored, and
routine learning based on her contexts can be performed. The goal is to perform
all functionality calmly, so that the user will not be annoyed by the environment,
but will benefit from the automatisations of the environment.

1.1 The author’s contributions

In this thesis, a data driven approach for enabling proactiveness in our everyday
surrounding has been performed. The work is development work aiming at useful
applications. There are four applications for evaluating the difficulties arising
from using distinct and very diffent kinds of sensors, most already available for
ordinary users. The design of two context-aware systems, a health monitoring
system and a context-aware health club were accomplished. Also, automatic device
configuration, and user identification in a smart room were tested. The design
procedure was to specify the application areas, collect the data, select suitable
methods for each application, and implement the systems into demonstrations.

Furthermore, the concept of routine learning was proposed, and association rule
algorithms were tested for routine learning. In these tests, the environment was an
office space, where the users’ devices were configured automatically based on the
users’ actions. The results show that association rules can be utilized to increase
the proactiveness of the systems.

In order to enable personal profiling for a ubiquitous system, user identification
was studied. Two different pattern recognition methods were utilized in determin-
ing walkers on a pressure sensitive floor, and their suitability for user identification
was analysed. The final goal is to develop adaptive pattern recognition methods.
In this thesis, a step towards adaptiveness was found in the form of rejection
parameters.
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The research shows that building proactive applications is possible in certain
applications, but when human physiological signals are considered, the task is far
more difficult. There are many possibilities to present the information learned from
the user’s behaviour for the user herself, but the main difficulties arise in verifying
the learned information and in the deficiency of data. These methdologies still
cannot be used without certain guidance on the user’s behalf.

This thesis consists of eight publications, and they can be grouped to two dif-
ferent parts, as follows:

Part I consists of five publications. Publication I describes the preprocessing
of several physiological sensor signals and subjective diary markings. The data
consisted of over eight weeks of measurements recorded in a home environment
for four test subjects. The sensory signals were syncronized, and dynamic control
limits were constructed for each continuously measured signal. The preprocessing
was performed by the author of this thesis. A health monitoring system was
built together with S. Tamminen who utilized self-organizing maps to combine the
information from the dynamic control limits. The system was developed into a
demonstration, and the author of the thesis made a user interface together with
S. Tamminen. This modelling device can be used for monitoring one’s health.
Professor J. Röning gave guidance on the utilization of neural networks and gave
comments on the outline of the article.

Context-recognition was studied in publications II and III. In these articles, the
idea of a context-aware health club was developed by J. Riekki, J. Kaartinen, J.
Röning, and S. Pirttikangas. In publication II, the main contributions are organiz-
ing the data collection, and the preprocessing of sensor data. The author’s work
also included consulting different experts on sports, and utilizing this information
for the application. The focus of the publication is on data mining for a context-
aware application. The author designed a user interface, together with J. Riekki,
in order to visualize the data collected during exercises. In publication III, the
focus is on context recognition methods. The author of this thesis is responsible
for context-recognition with neural networks, as well as with the method of least-
squares. J. Kaartinen was also involved in planning the neural network modelling.
The user interface designed in publication II was extended to cover more details
on each particular exercise. Professors J. Riekki and J. Röning gave guidance on
the outline of the articles.

Routine learning is introduced in publications IV and V. The author created
and designed the framework, in which association rules can be utilized in a ubiqui-
tous environment. In publication IV, data was collected in an office environment,
important locations were derived from location data, and the profile information of
a PDA were associated with these locations. The design was intended to be simple,
since a prototype for context aware middleware architecture was to be built. The
implementation of the prototype was the work by S. Porspakka. In publication
V, a larger set of contexts was utilized. The author organized the data collection.
Here, the constraints and problems related to adding more context variables than
location and profile information were studied. The author tested the Apriori- al-
gorithm separately from the prototype in forming interesting rules for the data
sets collected.
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Part II of the thesis consists of three papers, VI, VII, VIII. The author of
the present thesis produced the idea of using footsteps for identifying a walker
on a pressure-sensitive floor. The ideas of utilizing Hidden Markov models, and
the learning vector quantization (LVQ) were also developed by the author. The
author organized, and accomplished the data collection. The author, together with
J. Suutala, selected the features for the study. The modelling with Hidden Markov
Models and LVQ was carried out by J. Suutala. In publication VIII, J. Suutala
developed a method for recognizing the user, based on three successive footsteps.
This paper is a natural continuation for the earlier publications. The author of
this thesis contributed to the publication by adding the idea of the adaptivity of
the system utilizing the rejection parameters. The outline of the publication was
guided by the author.



2 Review of the literature

2.1 Context-Recognition

“The definition for context depends on the context.”

The main theme in this thesis is related to utilizing pattern recognition and data
mining methods in building intelligent environments and devices. The most dif-
ficult task for ubiquitous computing is to combine all the various technologies
developed throughout the world. There have been different experiments trying
to create a global, easy to use framework in order to handle all the information
sources, networks and terminals into a seamless service entity. One of these efforts
is the Context Toolkit (Dey & Abowd 2000), (Salber et al. 1999) developed in the
Georgia Institute of Technology. The Context toolkit uses context widgets to com-
municate between the environment and the applications. Among other widgets,
they have implemented a Meeting widget to identify several persons within the
neighborhood of the user. The information for the toolkit is produced by, for ex-
ample, speech recognition software, machine vision machinery, microfones, Active
Badges (Want & Hopper 1992) etc. The sensor data is filtered and interpreted,
but for more sophisticated applications, machine learning and context history have
to be catered for.

Genie of the net (Riekki et al. 2003) uses agent technology for the communi-
cation. They introduce a term “information overload” to describe the difficulties
in context-aware computing and the utilization of various services. They suggest
an architecture that remembers the different services available, requests them on
behalf of the user, locates the ones needed in a particular location or context, and
guides the user in using them. Other architecture specifications and infrastruc-
tures for context-awareness can be found in (Román et al. 2002), (Tandler 2004),
and (Sun et al. 2003), for example.

Schilit et al. (Schilit et al. 1994), (Adams et al. 1993) have studied context-
aware applications and divide these applications into four different categories:
proximate selection, reconfiguration, contextual information and commands, and
context-triggered actions. The proximate selection concerns user interface issues
and reconfiguration is for the components and connections of the system. Context-
triggered actions are the most interesting part from the point of view of this thesis,
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since it consists of information about the user, that is, identification, event types
and the location of the user. When an event is detected, the application carries
out a predefined action. The problem is how to create useful actions, maintain the
important, and delete futile and old information.

Classification of the data to different contexts has been studied thoroughly by
Schmidt et al. (Schmidt 2000), (Laerhoven 1999). They had special equipment,
a sensor box (Mäntyjärvi 2003), used also in this thesis, for data gathering. The
measurement sensors include illumination, 3 dimensional acceleration, tempera-
ture, and skin conductivity. Several simple actions were performed and the data
was stored and analyzed off-line. They calculated different statistics from the data
and tried to find features that discriminate different situations, such as “device in
the hand”, “device on the table”, and “device in a suitcase”. In their analysis, they
used self-organizing maps for context-recognition, and, based on this analysis, a
rule database was formed for context-recognition.

The sensor box has been utilized for determining the location of the user, where
the device is in relation to the user, and what the user is doing (Tuulari 2000).
Independent component analysis (ICA) and principal component analysis (PCA)
have been used to both fuse the multidimensional sensor box data, and classify it
to different situations (Himberg et al. 2001b). Other research groups have utilized
neural networks and acceleration sensors for identifying different stages of walking
(Aminian et al. 1993), (Aminian et al. 1995). Wavelets have also been used (Sekine
et al. 1998) to process acceleration data.

In wearable computing, the user carries all sensor equipment on herself rather
than uses environmental sensor information, but this does not exclude the utiliza-
tion of both the affective state of the user and the context of the environment
(Rhodes et al. 1999). Picard and Healey argue about the importance of labeling
the situations accurately for analysis, and have tried to create physiological fin-
gerprints for the user’s affective states (Picard & Healey 1997), (Healey & Picard.
1998). They have noticed the differences in physiological signals between different
days and used Fisher linear discriminant projection (Duda & Hart 1973), and leave
one out test for discriminating different states.

The most studied context is the location of the users and devices. Location
sensing has been studied thoroughly in ubiquitous computing. Since there are
many different kinds of problems to be solved in the ubiquitous world, it is natural
that the approaches for location sensing vary in many different aspects, such as,
the sensing apparatus, power requirements, infrastructure, and resolution of time
and space. A survey on these aspects has been done by Intel Research (Hightower
& Boriello 2001). In this thesis, these issues are not considered more deeply, but
it is assumed that the location of the user is available.

2.2 Routine Learning

Routine learning has been studied in the framework of building intelligent or smart
homes. It would be convenient if our homes would know our routines, predict what
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we are about to do, and do our tasks automatically. But, one must be very care-
ful in offering services for the user, since everybody knows how annoying a false
reaction from a machine is. The Georgia Institute of Technology is building an
Aware Home (Abowd et al. 2000), (Sanders 2000), Brunel University is working
on a Millenium home (Millenium 2004), and MIT is developing an intelligent office
environment in Oxygen (Oxygen 2004), (Brown 2001). In these settings, the uti-
lization of speech recognition, image processing techniques, and signal processing
make the environments intelligent. Routine learning is by far not the most inter-
esting area of research in these projects, but rather the communication between
the tenant and the environment. All in all, a great deal of research is going on,
but fully functional systems are still unavailable.

The Aware Home uses computer vision and audio processing techniques to lo-
cate and identify the environment’s occupants, and to recognize their activities.
They also have a Smart Floor (Orr & Abowd 2000) containing ten strategically
sized and located force-sensitive load tiles throughout the Aware Home to gather
footstep data from the occupants. They identify users on the floor with two tech-
niques: Hidden Markov Models (HMMs) (Rabiner 1989), and simple feature-vector
averaging. Identification with Hidden Markov models succeeded with accuracy of
91 %, and with feature-vector averaging with 93 %.

The Millennium Home uses a variety of environmental sensors, connected to
a computer, to monitor the state and activity of elderly people. Typically, they
detect occupancy of the bed and other furniture, use of the lavatory, state of locks
and doors, gas and water taps, movement in the rooms, doors, and bed temper-
ature. If the software detects a potentially dangerous situation, the system will
first attempt to remove the danger by speaking to the tenant. If this negotiation
fails, it will call for volunteer support by telephone.

The University of Washington is trying to develop methods that support and
enhance the independence and quality of Alzheimer’s patients in Assisted Cogni-
tion project (Kautz et al. 2002). The assisted cognition systems are supposed to
sense characteristics from the patient’s location and environment, relying on GPS,
active badges, motion detectors, and other ubiquitous infrastructure. Moments of
distress, disorientation, or confusion are interpreted from the patterns of everyday
behavior, using techniques from state estimation, plan recognition (Kautz 1991),
and machine learning. The first step is their prototype for a wireless handheld
device, the Activity Compass (Patterson et al. 2002), which learns a model of the
traveler’s current mode and transportation as well as his likely route from a GPS
sensor stream (Patterson et al. 2003). The functionality for the activity compass
is based on a Bayesian model (Druzdzel & van der Gaag 2000). A further goal
is to memorize the Alzheimer patient’s daily routines and to offer him directions
when he gets lost or becomes confused. They state that programming the Activity
Compass may take up to five years.

Routine learning can be associated to wearable computing also, and to the work
on making computers that understand people (Pentland 1995), (Pentland & Liu
1995). Researchers at MIT are not only trying to recognize faces, sounds, and
gestures, but they try to integrate these basic perceptual functions with higher-
level models of human behavior, in order to understand what the person is doing.
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They have modeled the human as a Markov device with a number of mental states,
each with its own particular behavior, and inter-state transition probabilities. The
internal states can be actions or intentions, and the input for these models are
hand or leg movement, for example. They have built two systems for interpreting
human action. The first system reads American Sign Language (ASL) using hand
measurements provided by Pfinder (hand position, orientation, and width/height
ratio). This real-time system performed near perfect classification of a forty-word
subset of ASL. The second system interpreted people’s actions while driving a car
(e.g., passing, turning, stopping, car following, lane change, or speeding up), and
it identified 86 % of actions within 0.5 seconds of the beginning an action, and 97
% within 2 seconds.

Microsoft has studied user’s routines while using a PC (Horvitz et al. 1998).
They also utilize Bayesian networks to automate interfaces based on user mod-
elling in Lumiere, which includes a model of user activity and needs, and con-
tinuous online modelling of user actions to infer butlering tasks. The origin of
Microsoft research is in inferring the intention or leading goal of a pilot through
interpreting available information about flight status, airplane configuration, and
pilot activity (Cooper et al. 1998). The first application from Microsoft in routine
learning was the Office ’97 product suite, containing the Office Assistant. The Of-
fice Assistant has thousands of user goals connected in Bayesian models, and the
assistant captures information about the current view and document. However,
no profile information or events over time are considered in these models.

An interesting application in routine or rather location modelling is MIT’s com-
Motion (Marmasse 1999), (Marmasse & Schmandt 2000). This location model is
for a set of learned places and destinations, which coincide to a latitude and a
longitude (from GPS), that the user has categorized. In the system, a location
learning agent monitors the user’s travel patterns and learns her frequented loca-
tions. It is considered that if a user frequents a location often enough, it must be
of some importance in her life. Once a new location has been identified, the user
is prompted to name it (such as ”work”, ”home”).

The system takes time to learn locations which are not often frequented. There-
fore the user can always actively teach the system a location by pressing a button
and naming the place. Shadowing of the GPS signal by tall buildings is a problem,
and they consider modelling these dead zones in order to predict them. Marmasse
and Schmandt also tried to classify different routes in order to predict where the
user is going and estimate time to destination. They tested Bayes Classifiers,
Histogram modelling, and Hidden Markov Models for route tracking. Histogram
modelling was considered to be the best technique for the task, although they state
that if there was more data available, the HMM would probably be more suitable.

During the development of comMotion, several observations have been made.
The system incrementally learns the user’s frequented places, so initial configura-
tion is not needed. As the routines change, the system will adapt and incorporate
new places. A location is inferred as a building if the GPS signal is lost, and later
reappears within the same radius. After the identification of a building, the user
gives a name to the location. The trajectory between labeled destinations is de-
fined as a route (made up of latitude, longitude, and time). Problems arise when
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separate locations are close to one another (different stores in a mall), or when the
area is very large (the mall parking lot, for example). The system also takes time
to learn locations which are not often frequented.

A fairly new term describing routine learning, is rhythm modelling (Begole et al.

2003). In their research, Begole et al. process data from computers, email and
telephone activity, presence sensors, online calendars, and other sources. They
developed a model for temporal patterns for the user activity. The model can be
augmented by the user’s own perceptions of their rhythms. They identify candidate
transitions in the activity data by simple thresholding, they compare these candi-
dates based on the start, end and duration times, and refine the estimates based
on the variances of these three properties. They also describe the visualization of
these activity levels for the user.

Context history has been studied in (Byun & Cheverst 2001), (Byun & Cheverst
2002), and (Byun & Cheverst 2003). In their research, Byun et al. suggest that
intelligent, proactive behaviour of systems can be achieved with noticing patterns
from the user’s context history, and utilizing machine learning algorithms for this
data. This kind of thinking is very close to that of this thesis. They utilize decision
tree algorithms for inducing the rules from the context history. An advantage of
using decision trees for routine learning is that numerical context values (such as
26 degrees) can be converted to symbolic ones (e.g. hot). They advocate the fuzzy
representation of contexts (Mäntyjärvi & Seppänen 2003) to avoid too sensitive
reactions from the system. Naturally, if the context history is small, then there is
less certainty and coverage in the rules, and the computational cost for learning is
also small.

Work on developing methods for routine learning is going on, but still there are
several issues to be solved. The path is straight forward, signal preprocessing and
context recognition methods are needed before routine learning can be performed.
Different sensory equipment set different requirements for context recognition, and
one cannot at the moment build a global context recognizing artificial intelligence.
After routine learning, the level of uncertainty of the rules and the adaptations of
the system must be determined. It is also important to notify the user of these
uncertainties, or only suggest actions and let the user choose her own configuration.
Everybody wants to turn off the Office Assistant when they start using Microsoft
programs, although there is a clear need for an assistant like that. To make an
unannoying assistant or environment, the system must not interfere, but help the
user in her tasks. This requires a lot of training time for the models, but this
affects another problem. Nobody wants to train a computer for five years and it
is not even possible, but we want to gain results from the machine fast.

In the above studies, the simplest models seem to be the most beneficial, since
the training time is short, and the methods work even when there is very little data
available. The most popular methods nowadays are naturally probabilistic ones,
such as Bayesian methods or Hidden Markov models. However, this is natural
since it is only possible to try to determine if the user is going to do something,
not to know for sure. In the future, people will get their Personal Assistants when
they are born, and it will not matter if the machine learns in the background and
reports this knowledge to the user after a long training period.
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2.3 Techniques for Context Recognition

In this thesis, several different kinds of data sets have been processed in order
to perform context recognition. Human physiological data (publication I) is very
different from the data collected with simulation studies (publication V). However,
if a researcher collects the data, this is different compared to data collected by an
ordinary person (testee). In the next section, a short review of the methods used
for signal preprocessing is presented. The purpose in not to copy signal processing
textbooks, but to offer a viewpoint to the subject from the context aware research.
Furthermore, as seen in section 2.1, neural networks have been applied to many
different applications in context recognition research. Neural networks have been
applied in this thesis also, and a glance at time dependent neural networks is given
in section 2.3.2.

2.3.1 Signal Preprocessing

As in other pattern recognition and machine learning problems, the data sets must
be preprocessed in order to effectively model the different contexts. In context
recognition research, this subject has been somewhat vaguely described and it is
assumed to be a natural part of the systems. However, preprocessing and selecting
the best features is the most important part of any modelling problem. In addition
to the selected context recognition (modelling) techniques, the various information
sources, such as acceleration signals, illumination sensors, location sensors, active
badges, cameras, mobile phones etc. set the requirements for preprocessing.

Modelling sensory data in ubiquitous environments requires the handling of a
continuous flow of incoming data. There have been attempts to segment signals
online for mobile applications in (Himberg et al. 2001a), and (Kargupta et al.

2002). Segmenting events from data streams has been studied in (Koho et al.

2004). As in this thesis also, offline segmentation and analysis have been used in
most applications, however.

A well-known term to describe a feature, specifically in context-aware research,
is a cue (Laerhoven & Cakmakci 2000), (Laerhoven 1999). A cue is derived from
sensor information to enable context recognition. This is called feature extraction
in pattern recognition research. For example, when processing a 3-dimensional ac-
celeration signal, the context cues can be standard deviations or frequency domain
features from the Fourier transform (Laerhoven & Cakmakci 2000) or wavelets
(Sekine et al. 1998), (Mäntyjärvi et al. 2001). Chosen a context modelled with an
illumination board, the context cue can be the level of signal or frequency. The cues
from a camera or a microphone can be moments for luminance and chrominance
channels, volume measurements, and densities (Clarkson et al. 2000) or histograms
(Aoki et al. 1999).

In feature selection, it must be determined what subset of the features derived
from the sensor data is best for successful modelling. The features selected need
to contain information about the common as well as the discriminative properties
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of the different patterns. Usually, some systematic procedure is used for searching
the feature candidates. A common way is to derive a large number of features and
test subsets by classifying them to find the optimal set of features using a selected
quality factor. It would, however, be time consuming and expensive to try all
the feature combinations. Therefore it is rational to reduce the search space. The
branch-and-bound (Jain et al. 2000) finds an optimal subset of features, but it may
also be expensive due to its tree-like search. Forward-backward- search (Fukunaga
1990) is a method that reduces the search space in an efficient manner. Single
features are tested one by one, and the one giving the best classification result is
selected to the subset (forward-phase). When two features have been selected, all
features are used for classification, and one feature selected in the forward-phase
giving a poorer result is removed from the feature subset (backward-phase). The
procedure continues by adding two features to the subset and removing one at
each phase.

Throughout the thesis, a commonly used method before modelling human phys-
iological contexts or environmental contexts is scaling (Bishop 1995). Scaling is a
linear transformation which helps in providing fairly similar (in magnitude) values
for the features. Some estimation and modelling techniques are not scale invari-
ant, so the features need to be set commensurable. The most common method for
scaling is to calculate the feature average xk and variance σ2

k in the training set,
and substract the average from each feature value and divide the difference with
the variance. After normalization, the feature values have a zero mean. Other
feature scaling techniques (to scales [0, 1], [−1,−1]) can be found in (Theodoridis
& Koutroumbas 1998).

2.3.2 Neural Networks

Neural networks are familiar tools in context-aware computing, as was mentioned
in section 2.1. In this area, what has been studied less is the development of time
dependent modelling. It has been considered that the contexts can be segmented
from the data stream, and classification of the context can be performed offline
with different models. Hidden Markov models provide a means to time dependent
modelling, but also neural networks can be used. In this section, a short review of
neural networks for modelling time dependent stationary data is presented.

Multilayer neural networks (Haykin 1994) can be used for modelling stationary
time dependent data. In this case, the input x(n) is the previous values for the
time series x(n) = [x(n−1), x(n−2), ..., x(n−p)]T , where p is the length of history
that is considered significant, n is the number of iterations, and T is the transpose.
If the time series data is non stationary, an ordinary multilayer neural network will
fail in the modelling due to catastrophic interference (Sharkey & Sharkey 1995).
Furthermore, trends in a time series will cause problems, because the network will
try to learn this trend information. This also leads to failure, since the network
will forget about other important variability in the series, although it is quite
probable that there is important information in the seasonal trends. In this thesis,
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multilayer perceptrons with time-delayed input were used.
Recurrent networks (RN) (Williams & Zipser 1989) have at least one feedback

loop and they learn the memory depth required for modelling automatically from
the training data. Real-time recurrent networks use a temporal supervised learning
algorithm which tries to match the outputs of certain neurons in the processing
layer to the desired values at specific instants of time. In predicting time series, a
real-time recurrent network is arranged in a pipelined manner in order to reduce
the computational complexity. Simple recurrent networks (SRN) deal with time-
varying input by using both a copy of the previous hidden representation (t−1) and
the current input (t) as input to the network. The training of recurrent networks
is time consuming.

The time-delay neural network (TDNN) (Waibel et al. 1989) bases its decision
at time-instant t on the inputs at times t − n, t − n + 1, . . . , t, where n is the
maximum time-delay. This way, every time instant up to the maximum time-
delay is equally valuable for the present determination of weights (in contrast to
recurrent networks where the distant past has less influence than the recent values)
and it is not possible to take information into account that occurred before (t−n).
Temporal back-propagation enables parallel distributed processing for TDNN:s,
and thus they may also be useful.

FIR multilayer perceptrons (Haykin 1996) (or FIR with adaptive weights) are
suitable for dynamic system identification and modelling of non stationary time
series. The network can be trained by a temporal back-propagation algorithm.
Hebbian networks can also be used for time processing if delays are added as
input.

The adjustment of a static neural network model to non stationary environments
can be done using structurally adaptive solutions, that is by reforming the model
every time a new kind of situation occurs in the system under research (Ramamurti
& Ghosh 1999). Pruning and growing (Reed 1993) in the neuron, as well as on
the structural level of the network are important aspects to consider in forming an
operative model.

2.4 Techniques for Routine Learning

Routine is a temporal (context) sequence that occurs often or frequent association
of different contexts. In this section, two possible methods for routine learning
are presented. Hidden Markov models have been utilized in many routine learning
experiments (section 2.2). In this thesis, they have been utilized for user identi-
fication (section 4), but they are presented here due to their vast applicability in
many areas of research. In section 2.4.2, the methodology of association rules is
described. In publications IV and V, the framework for association rules in routine
learning is developed. In sections 4.2.2 and 3.3, the utilisation of these methods
in the development work of this thesis are described.
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2.4.1 Hidden Markov Models

Hidden Markov Models (HMM) (Rabiner 1989) provide a natural way of modelling
time-dependent signals, and they have been used for speech recognition (Levinson
et al. 1983), context recognition (Mäntylä et al. 2000), and robotics (Shatkay &
Kaelbling 2002), in addition to routine learning.

In HMM-based classification, it is assumed that the observation sequence O =
O1O2 · · ·OT is generated by a Markov model. A Markov model is a finite-state
machine which changes its state once every time unit. Each time t a state Sj is
entered, an observation symbol Ot is generated from a certain observation prob-
ability distribution B. The transition probabilities between the states and the
observation symbol probabilities determine the joint probability that O is gener-
ated by the model. In practice, only the observation sequence is known, while the
underlying state sequence is hidden, which is why they are called Hidden Markov
Models.

There are different types of HMMs specified by the possible connections between
states. In an ergodic (fully connected) HMM, every state of the model can be
reached from every other state. In many speech recognition applications, the
left-right model (Bakis 1976), (Jelinek 1976), depicted in Figure 2, is used. In a
left-right HMM, the state index increases or remains unchanged as time increases.
This property leads to a natural choice of left-right models for modelling signals
that change over time. Left-right HMMs are also used in this thesis.

1 2 3 4

Figure 2. A 4-state left-right HMM.

An HMM is thus a probabilistic model, and it can be fully described by two
model parameters (N and M), specification of observation symbols, and three
probability measures, A, B, and π. Generally, the notation λ = (A, B, π) is used
for an HMM. It should be noted that if the modelled parameters are continuous,
the observation distribution B within the HMM is continuous. In this thesis, a
discrete observation symbol density distribution B is used.

The model parameter N refers to the number of states in the model; S =
{S1, S2, . . . , SN}. The number of distinct observation symbols per state is M .
The individual observation symbols are V = {v1, v2, . . . , vM}.

The probability distribution A = {aij} is the state transition probability distri-
bution:

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N,

where qt is the state at time t. In a left-right HMM, the state transition coefficients
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have the property
aij = 0, j < i

which indicates that no transitions are permitted for states whose indices are lower
than the current state.

The observation symbol probability distribution in state j is B = {bj(k)}, where

bj(k) = P [vk at t|qt = Sj ], 1 ≤ j ≤ N, 1 ≤ k ≤ M.

The initial state distribution is π = {πi}, where

πi = P [q1 = Si], 1 ≤ i ≤ N.

When using a left-right HMM, the initial state probabilities have the property

πi =

{

0, i �= 1
1, i = 1

Therefore the state sequence is determined to start in state 1. To apply HMMs
in classification, the determination of the model parameters λ = (A, B, π) utiliz-
ing training sequences is required. This can be done via Baum-Welch estimation
(Baum 1966) (equal to the EM method (Dempster et al. 1977)) or by using gra-
dient methods (Levinson et al. 1983). The best possible state sequence to explain
the observation sequence must also be determined. This can be done via the
Viterbi-algorithm (Viterbi 1967). Furthermore, the maximum likelihood P (O|λ)
is calculated for each observation sequence to be classified and for each model
trained. The number of Hidden Markov Models needed equals the number of
known classes in the classification problem.

2.4.2 Association Rules

In this thesis, the possibilities of learning a user’s routines by discovering frequent
patterns is studied. It is suggested that the methodology of association rule mining
can be utilized in context aware computing. The idea is to identify all combinations
of items that are found in a sufficient number of examples. Association rules were
first developed in analyzing market-basket data, where rules like ”A customer who
buys beer and sausage will also buy diapers with a probability of 0.85” can be
calculated from a large amount of transaction data. The applications of association
rules in a data mining framework have been in mining telecommunication alarm
data (Dehaspe & Toivonen 1999), predicting chemical carcinogenicity (Dehaspe
et al. 1998), and finding similar web pages (Broder 1997), among other things.

An association rule is an expression X ⇒ Y , where X and Y are sets of items.
Given a database D of transactions, where T ∈ D is a set of items, X ⇒ Y
expresses that whenever a transaction T contains X , then T probably contains
Y also. The probability is called the rule confidence, and it is defined as the
percentage of transactions containing Y in addition to X with regard to the overall
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number of transactions containing X . In other words, the rule confidence is the
conditional probability P (Y ⊆ T |X ⊆ T ). A more formal definition is given below.

Let I = {x1, . . . , xn} be a set of distinct items (over binary domain {0, 1}).
A set X ⊆ I with k = |X | is called a k-itemset. Let database D be a multiset
of subsets of I. Each T ∈ D is called a transaction. A transaction T ∈ D sup-
ports an itemset X ⊆ I if X ⊆ T holds. An association rule is an expression
X ⇒ Y , where X and Y are itemsets, and X ∩ Y = ∅ holds. The fraction of
transactions T supporting an itemset X with respect to database D is called the
support of X , S(X) = |{T ∈ D|X ⊆ T }|/|D|. The support of a rule X ⇒ Y
is defined as S(X ⇒ Y ) = S(X ∪ Y ). The confidence of this rule is defined as
C(X ⇒ Y ) = S(X ∪ Y )/S(X).

The Apriori algorithm. The most common algorithm in discovering association
rules is the Apriori algorithm developed by Agrawal et al. (Agrawal & Srikant
1995), (Hipp et al. 2000). Other association rule algorithms can be found in
(Srikant & Agrawal 1995), (Srikant & Agrawal 1996). The basic goal is to find all
combinations of items that have certain user-specified minimum support (minsup)
and confidence (minconf). The combinations that have transaction support above
the minimum support are called large itemsets, and all other combinations small

itemsets. The large itemsets are used to generate desired rules. That is if, say
ABCD and AB are large itemset, then we can determine if the rule AB ⇒ CD
holds by computing the ratio r = S(ABCD)/S(AB). Only if r >minconf, then
the rule holds. The rule will have minimum support because ABCD is large.

The support threshold is for determining the percentage occurrence of an itemset
before it qualifies as a frequent pattern.

2.4.3 Discussion

The methods presented here are not the only ones that can be applied to routine
learning. The Hidden Markov models have been utilized in many such applications,
but other probabilistic models have also been used (section 2.2). Association rules
have not been utilized in routine learning before.

Routine learning with the Apriori algorithm requires that context recognition
has been done with the sensory data. Then, the context data can be associated
with each other. The Apriori- algorithm is only effective when the rules of interest
occur very frequently. However, it can expected that in a ubiquitous environment
frequency is not the key point, but confidence is. It is more important to find
the contexts that always or almost always occur together. In the case of a small
database, the Apriori algorithm can be run with very low support and high confi-
dence, and high confidence rules can be found. But if the database is very large,
other algorithms have to be considered since Apriori is too slow. In (Cohen et al.

2000), an algorithm is developed where low support and high confidence are key
issues.

Another weakness of the Apriori algorithm is that the user has to define the
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minimum support and confidence values. An algorithm that bypasses this property
has been developed in (Udechukwu et al. 2004), for example. Furthermore, the
whole data set has to be processed every time when new data arrives. Incremental
association rules can be utilized in these situations The first algorithm for the
incremental mining of association rules was FUP (Fast Update) in (Cheung et al.

1996). After that, many algorithms have been proposed ((Cheung et al. 1997),
(Ayan et al. 1999), for example).

Association rules can also be used for the prediction of user behaviour. The data
log must be viewed as a collection of events of sequential structure. The problem
is to find the collections of events occurring frequently close to each other. These
collections are called episodes. The algorithm for finding these frequent episodes
(Mannila et al. 1995) is given a class of episodes, an input sequence of events,
a window width, and a frequency threshold. All episodes that occur frequently
enough are determined. The incremental updating of sequential patterns is a
difficult problem, since the search space is extremely large. The SPADE algorithm
(Pudi & Haritsa 1994) uses a database format, where each sequence is associated
with a list of objects in which it occurs, along with the time stamps.



3 Experiments on Context recognition and
Routine Learning

A significant part of each application is the handling of different sensory informa-
tion from various sources. In Table 1, sensory equipment that has been utilized
to provide the data sets for this thesis is presented. The column for publication
refers to the original publications.

Table 1. Sensory equipment throughout the thesis.

Name unit publication
R-R interval recorder msec I
activity monitor pulse/min I
scales kg I
sphygmomanometer mmHg I
velocimeter 10*km/h II, III
cadence meter rounds/min II, III
heart rate monitor beats/min II, III
PDA coordinate IV, V
sensor box - V
EMFi- floor voltage VI, VII, VIII

In this chapter, the methodology and applications on context-recognition and
routine learning are described. The chapter covers the first part of the original
publications.

3.1 Signal Preprocessing: Health Indicators

In publication I, the focus (from the author’s part) is on signal preprocessing. A
method for preprocessing human physiological signals was presented. The aim
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was to develop a health monitoring system for ordinary people to help in making
assumptions about the effect of their lifestyles on their physiological signals and
well-being. In Figure 3, the health-monitoring system built is described. The
person’s physical signals are measured, dynamic features are extracted and entered
into a self-organizing map, which analyzes the measurement state (Tamminen et al.

2004).

Figure 3. The process of health-monitoring.

3.1.1 Data

The data for this research was obtained during the spring of 1996. Fourteen healthy
middle-aged male volunteers collected their physiological data daily for eight to ten
weeks. Four of them were selected for the research. In Table 2, the data utilized
in publication I is described.

The testees’ R-R interval and activity were measured continuously with an R-R
interval recorder and an activity monitor during the daytime. An R-R series
consists of the time spans measured between two R peaks in an ECG signal.
Diastolic and systolic blood pressure, along with body temperature were recorded
three times a day by the subjects. The first measurements were made in the
morning after waking up. The second measurements were made between 2:00 and
8:00 PM and the third in the evening before going to bed. The quality of sleep
was evaluated at night. During the measurement period, all the subjects were
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living normal lives. The variation in measurement times was due to unsupervised
self-measurements.

The subjects further filled in a diary, indicating their daily emotional states, such
as fatigue, happiness, pain etc. The amounts of coffee, tea, cigarettes and alcohol
consumed were also reported. The notes on the emotions during the daytime were
made between 2:00-8:00 PM and those on the rest of the day before going to bed.
The physical exercise and meal times were also recorded.

Table 2. The measurements for the health monitoring system.

name description source unit/sampling
time

R-R R-R interval data R-R interval and activity moni-
tor

-/msec

ACT activity exceeding
0.1*g

R-R interval and activity moni-
tor

mpm/min

DBP diastolic blood
pressure

blood pressure monitor mmHG/3
times a day

SBP systolic blood pres-
sure

blood pressure monitor mmHG/3
times a day

temp body temperature thermometer ◦C 3 times
a day

w body weight scale kg/once
a day
(morning)

QS sleep phase:quiet
sleep

biomatt -/once per
min

Wake
up

wake up assesment diary -

Sleep sleep assesment diary -
MS mental striving diary -
PS physical striving diary -
Manage management diary -
C/T coffee/tea cups diary portions
cig cigarettes diary portions
alc alcohol consump-

tion
diary portions

The measurement time of over eight weeks produced a very large data set. To
make the signals compatible, the continuously measured variables were discretized
by taking averages for one-hour spans simultaneous to the discretely measured vari-
ables. Thus, three values for each day resulted in data vectors of 170 observations
or longer.
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The data was analyzed using different statistical methods. This analysis and
discussions with experts led to the selection of eight variables with high quality,
stability and descriptivity. The others were discarded because of the long missing
periods (several days or even weeks) and noisy or clearly erroneous measurements.
The variables were diastolic and systolic blood pressure, the mean and the standard

deviation of R-R intervals, activity, body temperature, weight and quality of sleep.

3.1.2 Dynamic Control Limits

The first step in process modelling was to define the normal and abnormal states
of the system. In this thesis, a method for analyzing the measured signals of the
system was developed. The dynamic control limits monitor the variability of dif-
ferent signals in order to recognize alarming situations. When abnormalities are
detected, a new binary variable can be composed to identify hazardous observa-
tions. These binary variables are fed to the self-organizing maps. The work and
analysis on self-organizing maps will be reported by S. Tamminen.

The idea is borrowed from process control, and it is a variation of the well-
known 3-σ-rule (Kume 1989). When the process is measured continuously, a sliding
technique can be used. If there are l variables, let xij , where i = 1, 2, . . . and
j = 1, 2, . . . , l, stand for the measured value at time i for the j:th variable. The
limits for the value entering the system at time k (k > 4) are calculated from
x1j , x2j , . . . , x(k−1)j . The second limits for the value at time k + 1 are calculated
from x2j , x3j , . . . , xkj and so on. In this way, the limits are computed every time a
new value enters the system and they evolve along with the signal, in other words
they are dynamic. In Figure 4, the dynamic control limits for diastolic blood
pressure, the minimum value of the R-R interval and activity are shown. The
Figure presents the measurements for one testee, and the limits are calculated for
the measurement period of one month.

In cases that are not predictable and smooth, e.g. certain industrial processes,
the present value of the signal might be strongly dependent on previous values.
Furthermore, if certain values of the process show better correlation than others,
a weighting procedure for the signal history is a way of approaching the problem.

If wij stand for the weights, the expected mean (x̄w)j for the weighted signal is

(x̄w)j =

k
∑

i=1

wijxij/

k
∑

i=1

wij (3.1)

and the standard deviation σ(xw)j

σ(xw)j
=

√

√

√

√

k
∑

i=1

wij(xij − (x̄w)j)2/

k
∑

i=1

wij . (3.2)

The confidence limits can be formed as follows

UL(xw)j
= (x̄w)j + Tσ(xw)j

/

√

∑k

i=1wij
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Figure 4. Class identification of diastolic blood pressure, the minimum value

of R-R interval and activity.

LL(xw)j
= (x̄w)j − Tσ(xw)j

/

√

∑k

i=1wij , (3.3)

where T is a constant defining the width of the limits, UL(xw)j
is the upper limit,

and LL(xw)j
is the lower limit.

If the signals contain a lot of irregularities, a suitable filtering structure is
needed. The dynamic control limits are not defined based on the original sig-
nal, but on a particular flattened signal. The present value of the flattened signal
is obtained from the history of the dynamic control limits by defining the per-
centage between the original signal and the previous upper or lower limit. If the
original signal exceeds these limits by this percentage, the signal is flattened. In
this way, the erroneous and irregular values of signals do not affect the adaptation
of the dynamic limits too much. On the other hand, if there are known limits the
signal has to conform to, this a priori information can be noted in defining the
dynamic limits.

When the dynamic control limits are ready, there is an upper and a lower
boundary value for each signal. Every time a signal is beyond these values, there
might be something wrong with the system. This overdrafting will be referred to
as an alarm.

An appropriate T -value and sliding history were chosen to be three and 12
respectively. This means that four days of measurements were taken into account
in building the present value of the dynamic control limit and all the previous
values were ignored.
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The weighting procedure for DBP was defined to follow the person’s diur-
nal blood pressure rhythm (Staessen et al. 1992). The weights were chosen to
strengthen the previous value (x(k−1)j) and the measurement made at the same
time on the previous day (x(k−3)j). The value between these two was also weighted
(x(k−2)j), but with a smaller amount. A similar weighting procedure was used for
all the variables.

With this approach, two (0,1) indicators are established; one for a lower alarm
and one for an upper alarm of the signal. There are thus two more variables for
each signal, and they can be used as input for the self-organizing maps.

3.1.3 User interface

A user interface was built to illustrate the data sets. In Figure 5, the variable
listing, and the different menus are shown. In the Figure, the variable listing
corresponds to the variables selected in (Tamminen et al. 2004). The monitoring
device was designed during the research, and it was implemented to a Unix en-
vironment with Matlab 5.3.1. The system calculates all the necessary features,
but for monitoring, the user can select variables based on personal interests (e.g.
blood pressure and weight). It is also possible for the user to select the observed
time period on the screen.

Figure 5. A user interface for the health-monitoring system.
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3.1.4 Discussion

Determining one’s health status with a machine is a very difficult task. The users
of this kind of monitoring system can observe their measurements visually in a
user interface, and get an idea how their own lifestyles affect their signal levels.

The dynamic control limits were created with several medical experts. The
signal noises in question are not normally distributed, as should be assumed when
using control limits. Therefore a heuristic approach was taken to formulate the
limits. The signals needed to be flattened in order to avoid too much oscillation.
The weighting procedure for the signals was selected to follow the dirunal blood
pressure rhythm.

One can find similarities in this procedure to not only process control, but also
to routine learning. The human physiological signals (heart rate, blood pressure,
etc.) are processed to obtain the context of a human being. If the signal is under
control, the context is considered “normal”, and both the upper and lower exceeds
of limits are considered “unusual”. Routine learning is defined as associating dif-
ferent contexts, and the self-organizing maps combine (associate) all the context
information to a higher level context, shown visually on a map.

3.2 Context recognition: Health Club Application

The Health Club developed as a part of this thesis, is a context-aware service
concept. It was build on service architecture, Genie of the Net (Riekki et al.

2003), and in publications II and III, context recognition methods for the Health
Club were developed. Publication II mainly considers the preprocessing of the
sensory data, and in publication III, contexts are recognized.

In Health Club, the system guides the user in a cycling exercise. A typical
scenario is as follows: Before exercising, the user plans at her terminal an exercise
schedule and possibly also outlines more detailed instructions for each exercise.
The system presents the calendar containing the exercise schedule to the user
automatically in the specified context and reminds about the forthcoming exercise.
Before the exercise, the user checks from her terminal what kind of exercise she has
planned to perform. During the exercise, a heart rate monitor records her heart
rate, cadence, and the bike’s speed. After the exercise, she goes to her terminal
and loads the data to the system. The system recognizes the context history of
the exercise based on the collected data and other available information (e.g. the
height profile of the route). The system analyzes the exercise and presents the
collected data, the context history and the results of the analysis to the user.
Additional information about, for example, the route cycled, enables different
methods for analyzing the exercise. Sharing exercise information with other users
enables comparisons. Furthermore, sharing calendars makes it possible to plan
group exercises.
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3.2.1 Data

The data for developing the context aware Health Club was collected in the years
2000 and 2001. A strict route was defined where three cyclists exercised. The
route was 11.5 km long and consisted of about four kilometers of uphill and about
four kilometers of downhill, while the rest was classified as level ground. All in
all, 14 exercises were done in one direction along the route and 7 exercises in the
opposite direction with two different bikes. One bike had 10 gears and the other
24 gears. Two exercises were made on level ground, where the cyclist rode for one
minute per gear, going through all 24 gears of the bike.

The measurements were made with a heart rate monitor, Polar XTrainer Plus1.
The measurements are in Table 3. The cyclist’s heart rate, cadence and speed were

Table 3. The measurements for the health club application.

Name Description unit
HR heart rate beats/min
Cadence cycling frequency rounds/min
Speed speed of the bike 10*km/h

measured during the training period with a sample frequency of 5 seconds. The
cyclist pushed an interval time button at certain points of the route. An example
of an exercise is presented as a time series in Figure 6.

The most important contexts of the Health Club application were divided into
three parent classes. Every parent class contains child classes. The parent classes
are bike, cyclist and environment. The environment class consists of weather, route,
time, and quality of air child classes. The cyclist has contexts labeled movement,
physiology, and anatomy. The bike contains contexts labeled movement, function-

ality, and structure.
In Table 4, the division of the different contexts studied are shown.

Table 4. Different contexts in the Health Club application.

Parent Class Bike Cyclist Environment
Child class movement movement weather

functionality physiology route
structure anatomy time

1This product is a trademark of Polar Electro Oy.
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Figure 6. Data collected during a cycling exercise. The curves show, from

top down: velocity, heart rate and cadence, and the corresponding units are

10*km/h, beats per minute and rounds per minute.

3.2.2 Data Preprocessing

Clearly erroneous values were removed, and the data was prepared for further
analysis. All the exercises were done with a light moderate intensity zone, meaning
that the heart rate of the cyclist was between 60-70 % percent of the person’s
maximum heart rate most of the time.

A profile and coordinates of the route were used in the classification of the
measurements to different geographical attributes. It was noticed that when the
distance was calculated from the speed, which had been measured only once every
5 seconds, there was a cumulative error in the location of the cyclist. Therefore
the measurements had to be synchronized with the map coordinates according to
the cyclist’s own interval markings and the known positions on the map.

The route was classified as downhill, uphill and level ground according to the
angles of the z-axes on the map in monotonous acclivity and declination.

In publication II, self-organizing maps were used as a data mining tool, and
to get familiar with the data. In these experiments, the absolute values and the
fuzzified values of the sensory data were used as input for the networks. Later
on, the fuzzification of context sensory data has been utilized in (Mäntyjärvi &
Seppänen 2003), for example.
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3.2.3 Recognizing Environmental Contexts

The classification aimed to distinguish different ground declinations for each ob-
servation. The target classes were obtained in the preprocessing stage: downhill,
uphill, and level ground.

Multilayer perceptrons (Haykin 1994) were used for classification. The inputs
for the perceptron were the current values of the variables (speed, cadence, and
heart rate), the differences of these variables, and the observations (or differences)
within a certain history window. Several different lengths of history windows were
tested.

The variables were normalized to a scale of [-1,1]. The data was divided into a
training set and a test set. The training sets consisted six- to 12-dimensional vari-
able vectors (depending on the length of the history window) of length 1000, and
the length of the training set was 800. Several multilayer perceptrons were trained
with different sizes and with different variable combinations using Levenberg-Marq-
uardt optimization (Bishop 1995).

The results for the best experiment are shown in Table 5. With a three-layer
perceptron and a history window of three observations, the results for the test
set are below 50% of correct target classes. The variables did not contain enough
information for adequate classification.

Table 5. Confusion matrices of classification results for training and test sets.

Training set Test set
downhill level uphill downhill level uphill

downhill 64% 16% 19% downhill 46% 37% 18%
level 17% 54% 29% level 21% 46% 32%
uphill 11% 16% 73% uphill 23% 38% 39%

3.2.4 Recognizing Gear Shift

Cyclists use several different tactics, depending on their individual strength, but
the use of gears differentiates between a beginner and a professional. If it is possible
to detect the moment at which a gear has been shifted, the effect of different shifting
tactics on the overall performance can then be analyzed.

The estimation of the points in time (and location) where the gear has been
shifted was done by a recursive least-squares algorithm. One could apply a batch-
mode classification algorithm, but here the goal was to recognize the gear shifts
in real time. One could also mark down the cogs of the gear wheel into the
application, but this is a contradiciton to the ubiquitous world. Every configuration
task needed on the user’s behalf requires attention and time. Recursive least
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squares was tested to enable automatic learning of the equipment structure based
on the measurements. The method is a simple case of structurally adaptive models
(Ramamurti & Ghosh 1999). The case in hand is simple and easy to understand
for testing such a model in real the world.

The bike had 24 different gears, three gearwheels at the front (24, 34, and 42
cogs, respectively) and eight gearwheels at the back (11, 13, 15, 17, 20, 23, 26,
and 30 cogs, respectively). A switching ratio was calculated for each gear based
on the number of the cogs; the ratios are presented in Table 6. In Table 6, the
gears are organized based on the magnitude of this ratio from the smallest to the
largest gear. Also, the difference between consecutive gears is shown. In this case,
the diameter of the front tyre is 28 inches.

Table 6. Gears in an ascending order, based on the switching ratio. G refers to

the gear, and R to the ratio, respectively.

G R Diff G R Diff G R Diff G R Diff
1. 0,80 17. 1,40 0,09 19. 1,83 0,13 21. 2,47 0,20
2. 0,92 0,12 5. 1,41 0,01 7. 1,85 0,02 15. 2,62 0,15
3. 1,04 0,12 11. 1,48 0,07 13. 2,00 0,15 22. 2,80 0,19
9. 1,13 0,09 6. 1,60 0,12 20. 2,10 0,10 16. 3,09 0,29
4. 1,20 0,07 18. 1,62 0,02 8. 2,18 0,08 23. 3,23 0,14
10. 1,31 0,11 12. 1,70 0,09 14. 2,27 0,09 24. 3,82 0,59

The method developed for the identification of gear shifts has the following
properties: it can update its parameters on-line, it can adapt to local changes in
the input-output space by modifying only a few of its parameters, and it adapts
to the complexity of the situation by growing its own structure.

Every gear is represented by a line. At time t = 2, the first gear line l1 is
estimated based on the first two measurements. The gear line represents the ratio
between speed and cadence when using a specific gear. The parameters estimated
are the slope and the intercept of the line. When new measurements (cadence,
speed) arrive, the distance between this observation and the existing gear lines is
calculated. If a predefined threshold is exceeded, a new gear line is estimated. In
this case, it is assumed that an unknown gear is being used. If the observation is
within the threshold, that is, close to an earlier estimated gear line, the parameters
of this gear line are updated with a recursive least-squares algorithm. In this case,
the observation adjusts the gear line into a more accurate estimate of the gear.
The threshold is not always the same, but it grows as cadence and speed grow.

The method was implemented with Matlab. The estimated gear lines for one
exercise are shown in Figure 7. The number of gear lines is 17, which means that
not all gears could be identified. In one test exercise, the gear was shifted once a
minute to a higher gear, going through all the gears. The reliability of the results
could be evaluated because the actual gear used was known. The method was also
tested with a 10-gear bike.
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The moment a gear has been switched can be determined. This information
can be used to evaluate the effect of switching tactics to overall performance. The
information of the precise gear is irrelevant, since the gears can be divided into
small, medium, and high gear, for example.
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Figure 7. The estimated gear lines in an exercise.

3.2.5 Discussion

Context recognition was studied using cycling data in order to plan a more efficient
exercise schedule. An analysis of the context history results in comments on the
exercise, pointing out, for example, that the user started at too high a speed, or
that the gear shift was improperly timed. Furthermore, the success in keeping
the heart rate, cadence and speed within the intended intervals can be judged.
Numerous simple tools can be offered to the user for studying the minimum and
maximum values of the collected data, comparing two exercises, matching the
collected data against the height profile, calculating the time that elapsed between
two locations, etc.

The season for a cyclist consists of four different phases; improving and main-
taining basic condition, building up for competition, the competition period and
a transitional recovery phase. Within all these periods, there are certain types of
exercises to do: those that improve explosive quickness, that is, interval and uphill
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exercises; those that improve aerobic fitness; those that help the body to recover,
etc. Clearly, the Health Club offers different analyzing services for different types
of exercise.

The classification of the observations into different route declinations was not
successful, and the contexts cyclist going uphill, cyclist going downhill and cyclist

on level ground could not be recognized. Other resistant forces, including wind,
ground material, rain, brakes, etc., confuse the classification. The low sample fre-
quency was also a problem in the classification, since the location of the cyclist
had to be approximated. The ground declination contexts could be recognized
straightforwardly using additional measurements, for example, a tri-axial acceler-
ation sensor or an altimeter, but the cost of the system was to be low.

In a competition, the gear shifting tactics affect the overall performance consid-
erably. When riding uphill, the gear must not be shifted, and one has to follow the
route’s declinations by changing the gears in order to minimize extra burden. The
point in time where the gear was shifted can be recognized quite reliably. There
are points where the method assumes that a shift has occurred, even if this is not
so (the cyclist is not pedaling at full efficiency). This situation can be handled by
saving the classification results into a buffer and filtering away single shifts (the
gear differs from the last and the next gear in the buffer). In other words, the shift
can be identified very reliably after a delay of 15 seconds.

3.3 Routine Learning: Know Your Whereabouts

In publications IV and V, experiments on routine learning are described. The use
case Know Your Whereabouts, introduced in publication IV, describes the different
aspects on routine learning. In the use case, an ordinary user buys a mobile device,
and uses it as an ordinary phone. After a certain learning period, the device asks
the user whether she wants to get familiar with all the possibilities the device has
to offer. The device has learned her frequently visited locations from the location
data, and shows them on a map. Furthermore, if there are certain actions she has
performed at those locations, the actions can be automated.

Clearly, there are several research topics in the use case, the first being the
learning aspect. The contexts (important locations, contexts) have to be recog-
nized from raw sensor data. Routine learning is the second phase. Also, the band-
width requirements, data storage issues and user interface design are important,
although, they are not covered here. In this thesis, association rule algorithms
are proposed for associating different contexts and actions (or contexts) together.
Therefore the device will need a certain training period for learning those rules.
The second point is that the device must not interfere, and the user has to have
an option to decline the services. Automatic configuration of the system is also
prohibited. The user must accept all the actions the device is able to do.
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3.3.1 Data

The first phase of the routine learning experiments was to build a prototype for
middleware architecture (Davidyuk et al. 2004), and test simple routine learning
tasks with it. This work is described in publication IV. In both publications IV
and V, location data and profile changes of a PDA were collected in the research
group’s office space. A Compaq iPAQ with a Wireless LAN card was used for the
data collection. A Wireless LAN covers the whole office space and the location of
the user is established using Ekahau (Ekahau 2002), which tracks the location of
the Wireless LAN card (therefore, the location of the iPAQ). The data consisted
of the location and profile status information (the PDA can be set to General,

Silent, Meeting, and Outdoors modes) of three users. The sampling frequency in
Ekahau is 0.5Hz. All in all, data was collected for over 60 hours. Additionally,
profile statuses and locations were simulated for testing purposes.

In publication IV, a sensor box containing measurement devices for acceleration
(x,y,z), humidity, temperature, skin conductivity, and illumination was attached
to the PDA. In Figure 8, a picture of the measurement device is shown. A more

Figure 8. The sensor box attached to a PDA.
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detailed description of the sensor box can be found from (Mäntyjärvi 2003).
The sensorbox data collected consisted of three different scenarios. One scenario

was about 20 minutes long. The first scenario was repeated 10 times, the second
and the third 5 times. The sampling frequency for the sensor box is 10Hz and
for the Ekahau 0.5Hz. Data was collected by going to different locations in the
research group’s office space. One of the three scenarios is described in Table 7.

Table 7. A scenario for collecting data in a routine learning experiment.

Step Action
1. The testee sits by a desk in location 1 for about six minutes. The device

is on the table (illumination sensor upwards).
2. The testee gets up and walks to the elevators (location 4), and orders

the elevator.
3. When the elevator arrives, the testee steps into the elevator, and goes

down to the first floor in the building.
4. When arriving downstairs, the testee gets out of the elevator and walks

to the main doors.
5. At the doors, the testee steps outside, and walks to the door beside

a corridor.
6. The testee walks back to location 1.

The variables for testing the Apriori algorithm are in Table 8. The data was
tagged every time a context changed. This way, the recognition of different con-
texts can be verified. The contexts were labeled by hand for further processing
with the APriori algorithm, however. This means, that a priori information from
the tags were used in determining the contexts, and no actual context recognition
occurred.

Table 8. The contexts related to different sensory measurements.

Measurement Contexts
acceleration signals walking, walking downstairs, walking upstairs, sitting

in an elevator
illumination inside, outside
Ekahau in the office, in a library, in a lobby, in a stairway

in a restaurant
Profiles general, silent, outdoors, meeting

A context variable describing the profile status of a PDA (mobile phone) was
integrated to the data matrix. It was assumed that at each location, a suitable
profile was used. The profiles are general, silent, outdoors, and meeting.
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A binary data matrix was generated for the user behavior and contexts. The
context variables were arranged according to the sensorbox data, so the transac-
tion database consisted of over 6000 lines. In other words, this transaction file has
16 columns for the contexts, and for each context there is either 0 or 1 indicating
whether the user is in this particular context. The Apriori algorithm was imple-
mented with java. The algorithm goes through the binary matrix and results in a
set of IF-THEN rules for important actions.

3.3.2 Results

The testing of the algorithms was done in two phases. In the first phase (publi-
cation IV), the recognition of important locations and associating different PDA
profiles with those locations was implemented into a prototype application. The
important location is considered as a circle, the radius covering an area of one
room in our research laboratory. If the user stays in one location for more than
five minutes, and on two different occasions during the measurement period, then
it is considered to be important. The second phase (publication V) included sensor
box data, and in this case also, the important locations were derived. The Apriori
algorithm was tested in the second phase.

Figure 9 shows the results of one test. The duration of the test was about 26
hours. The system correctly recognized eight important locations from the location
data: Meeting Room TS335, Post Lobby, Lab X, TS380, Coffee Room, Stairway,
Medialab and Robolab. The names were prompted from the user after the test.

During the tests, the user changed the profile as would happen in real life. The
profile was changed into a silent mode when entering a meeting room and into a
general mode when entering the office, for example. Seven routines were identified
easily, and they are presented in Figure 9. The routines were:

Location:TS380 ⇒ Mode:General
Location:TS335 ⇒ Mode:Meeting
Location:LabX ⇒ Mode:Silent
Location:Robolab ⇒ Mode:Silent
Location:CoffeeRoom ⇒ Mode:General
Location:Stairway ⇒ Mode:General
Location:Medialab ⇒ Mode:Meeting

It is not relevant whether the profile is changed before or after entering the
room, as the routine can be identified either way.

In publication V, the Apriori- algorithm described in section 2.4.2 was utilized
in determining the user’s routines. The known contexts labeled (and the sensor
measuring the situation) are presented in Table 8.

The binary matrix containing the context variables was processed with the
Apriori algorithm, and different support and confidence values were tested. The
processing time of our data set was less than one second. All the combinations
for support values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and confidence values of 0.6, 0.7,
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Figure 9. The ground plan of the office space and the locations and routines

identified.

0.8, 0.9 and 1 were tested. First, the algorithm produces the frequent k-itemsets,
and then the rules. The most interesting rules were generated with low support
value and high confidence. This is natural, since it is important to know if some
contexts occur together in most of the cases; if the user visits a meeting room only
twice during the measurement period and always switches the profile into a silent
mode, for example. Below, the rules for the support value of 0.1 and confidence
value of 0.8 are shown.

Walking ⇒ general, inside
In the Office ⇒ general
In the Office ⇒ sitting, inside, general
In the library ⇒ sitting, inside, silent
In the lobby ⇒ sitting, inside, meeting
Silent ⇒ sitting, inside, in library

The number of rules was 97, but the rules shown above are selected so that the
location or the profile context is the main factor for the rule. The other rules are
basically combinations of these rules. The complete listing of rules is presented in
Appendix A.

3.3.3 Discussion

The implementation of routine learning starts with identifying the contexts of the
user. Here, the important locations were derived, and several other contexts were
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labeled by hand, based on the actual whereabouts of the users. After this, the user
gives a meaning for the important contexts, and the user might define for example
areas that have gone unnoticed by the machine. Then, association rules can be
calculated.

It is a fact that there will be many rules which are not interesting for the
user. But if the user is allowed to communicate with the system, then the user
already has defined the contexts of interest. Therefore the system can represent
only those rules which are attached to these interesting contexts. In this research,
representing the rules for the user has not been covered very deeply. One possibility
is to predefine certain sentences, and ask the user whether she considers them
important. Also visualizing the association rules would give the user a chance to
evaluate proper values for the parameters of the algorithm. Furthermore, in a
suitable user interface, the user could modify the time span of measurements given
the algorithm.

There are many free association rule mining programs available, and it is easy to
try how this methodology is suitable for pervasive computing. There are challenges
in developing these algorithms further since in the ubiquitous, dynamic world it is
likely that not only more data will arise but new variables also for processing, and
this too has to be handled adaptively and automatically.

The most difficult problem in routine learning is to decide the amount of context
history needed for reliable routine learning. Future work in routine learning is
to test this property by selecting different time windows for the rule generation.
These time windows can be overlapping. The earlier rules can be saved, since
there might be some cyclic behaviour in the actions of the users, and they can be
utilized in another setting based on the context of the user. One possibility is to
utilize incremental association rules (section 2.4.2). Different settings of contexts
can also be studied in different experiments.



4 User Identification

4.1 Introduction

A good extension for designing intelligent environments is the automatic recogni-
tion of the occupants. In this thesis, a pressure sensitive floor has been utilized
to achieve this task. Automatic recognition leads to personal profiling and en-
ables smooth interaction between the environment and the occupant. Utilizing
a person’s behaviour or characteristics for identification is called biometric iden-
tification (Jain et al. 1999). Biometric identification methods are based on the
person’s speech, signature, gait or face, for example.

Biometric identification systems are pattern recognition systems where an indi-
vidual is identified from her distinguishing physiological or behavioural character-
istics. The problems related to this kind of identification are due to the fact that
a person’s behaviour or characteristics are affected by her physical or emotional
state, environmental noise, and the effect of time. For example, in face recogni-
tion the alternative facial expressions, different lighting conditions, and the effect
of aging have to be considered in the identification (Ahonen et al. 2004). In our
research, different footware, utilization of the left or right foot, and the pace of
steps affect the signal characteristic.

In face and speech recognition, the research has sharpened into the comparison
of different techniques. Considering footstep identification, only a few experiments
have been made, and the best results have been achieved with combining different
biometric identifiers (Suutala 2004). Hidden Markov Models and Nearest-Neighbor
classification have been used in recognizing walkers, and applied in (Addlesee et al.

1997) and (Orr & Abowd 2000), respectively. The difference compared to our
research is the utilization of dissimilar sensors that measure the vertical component
of the ground reaction force caused by the weight and inertial forces of the body.
The other studies have had only small areas covered with sensors throughout the
floor which is capable of measuring the steps, while we have the whole floor area
capable of measurement.

Our research environment includes a home theater, two degree-of-freedom ac-
tive cameras, four mobile robots and one manipulator, a wireless LAN network,
and various mobile devices (PDAs, a tablet PC, Symbian mobile phones). Wire-



49

less LAN positioning covers a large part of the campus (including the laboratory),
and a home automation network is being installed. The aim is to gradually build
a versatile infrastructure that offers various generic services for pervasive applica-
tions. Naturally, this kind of environment enables realistic experiments that lead
to a better understanding of such applications.

In this thesis, pattern recognition methods were applied to footstep identifi-
cation. In publication VI, initial experiments with Hidden Markov models (in-
troduced in section 2.4.1) are described. The results are not generalizable, since
only three testees were discriminated from each other. This work did, however,
give important information and experience on the sensory equipment used, and
the signal processing needed to enable identification. In publication VII, Learning
Vector Quantization was selected for identification, and also a more comprehensive
data set was collected. A natural continuation for the earlier experiments on this
subject is to utilize the floor more effectively, since it is possible to extract several
footsteps from one person for the classification. In publication VIII, J. Suutala
developed a method for utilizing three successive footsteps in the identification.

In section 4.1.1, the EMFi-material is described, and the footstep data is pre-
sented in section 4.1.2. The two different techniques used for footstep identification
are described in section 4.2. To make comparisons between the two techniques,
results on experiments with Hidden Markov Models using the same data set as in
LVQ experiments are described in section 4.2.2.

4.1.1 EMFi-Material

Electro Mechanical Film (Paajanen et al. 2000) (EMFi) is a thin, flexible, low-price
electret material, which consists of cellular, biaxially oriented polypropylene film
coated with metal electrodes. In the EMFi manufacturing process, a special voided
internal structure is created in the polypropylene layer, which makes it possible to
store a large permanent charge in the film using the corona method, with electric
fields that exceed the dielectric strength of EMFi. An external force affecting the
EMFi surface causes a change in the film’s thickness, resulting in a change in the
charge between the conductive metal layers. This charge can then be detected as
a voltage.

EMFi material has been used for many commercial applications, such as key-
boards, microphones in stringed musical instruments and small and large area sen-
sors. A Finnish company, Screentec Ltd, has developed vandal-proof keyboards
and keypads using EMFi foil protected by a steel or plastic plate. EMF Acous-
tics Ltd has produced EMFi-based microphones for different stringed instruments,
such as bass guitars, acoustic guitars and violins.

EMFi material has been installed in the Intelligent Systems Group’s (ISG) re-
search laboratory at the University of Oulu. The covered area is 100 square meters.
The EMFi floor in the ISG laboratory is constructed of 30 vertical and 34 hor-
izontal EMFi sensor strips, 30 cm wide each, that are placed under the normal
flooring (see Figure 10). The strips make up a 30x34 matrix with a cell size of



50

Figure 10. The setting for EMFi sensor strips under the laboratory’s normal

flooring.

30x30 cm. Instead of simply installing squares of EMFi material under the floor-
ing, strips were used, because this layout requires clearly less wiring. If squares
were installed, the number of wires would be over a thousand. If a smaller room
were to be covered with EMFi material, squares could be used. This would make
it easier to determine the locations of the occupants in the room.

Each of the 64 strips produces a continuous signal that is sampled at a rate
of 100Hz and streamed into a PC, from where the data can be analyzed in order
to detect and recognize the pressure events, such as footsteps affecting the floor.
The analogous signal is processed with a National Instruments AD card, PCI-
6033E, which contains an amplifier. It would be possible to increase the sampling
frequency up to 1.56kHz.

4.1.2 Data

In the autumn 2002, the characteristics of the pressure sensitive floor were exam-
ined. The first data set was collected and it consisted of the measurements of 3
persons walking casually on the pressure-sensitive floor. Each person walked alone
around the room for 30 seconds. The setting was made as natural as possible. All
the testees weighed 66 kg ±2 and wore shoes. This data was used in publication
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Figure 11. a) A footstep that hits mainly on one strip, but a small fraction

of the step affects the measurements of an adjacent channel. b) A footstep

in the crossing of two strips.

VI.
More data were collected in the spring 2003 and it consisted of the measurements

of 11 persons walking on the pressure-sensitive floor. The testees stepped on one
particular strip, and wore shoes. Footsteps targeted into the crossing of two strips
were collected as well. Furthermore, stepping with the right foot and the left foot
were separated. Also, in one test, footsteps without shoes were collected. All
in all, over 60 footsteps were collected from each testee. This data was used in
publications VII and VIII.

The footsteps were identified and segmentated from noisy channel data. The
segmentation problem has been studied in (Koho et al. 2004). Here, raw segmen-
tation was made with hybrid-median filters (Heinonen & Neuvo 1987), and the
best footsteps were selected manually.

In Figure 13, one footstep including the important phases of the signal in
time and amplitude are presented. The beginning of the footstep is in coordi-
nate [xstart, 0]. The local maximum [xmax1, ymax1] is the moment when the heel
has hit the floor, and the local minimum [xmin, ymin] describes the point between
the heel push and the push affected from the ball of the foot. The local maximum
[xmax2, ymax2] is for the hit from the ball of the foot. The actual foostep ends at
point [xmid, 0]. The negative ending is a property of the EMFi material.

Different problems arise in finding“good-quality”steps for modelling. If a person
steps on the crossing of two strips, the amplitude of the step is lower than if he
stepped on the center of one strip. This is natural, because only a small part of the
step hits on the particular strip. The footstep in Figure 11 a) has not completely
hit only one strip, but to a small extent it reaches the adjacent strip as well. The
footstep in Figure 11 b) has hit on the crossing of two strips. The measurements
from adjacent channels were summed to achieve the whole footstep.
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4.2 Techniques for Footstep Identification

In this section, two techniques selected for the footstep classification are intro-
duced. The first idea with footstep identification was based on the fact that a
person can recognize other persons based on the sound of their movement. In
speech recognition, the Hidden Markov models has been utilized successfully in
word recognition, and it was tested here as well. In section 4.2.1, Learning Vector
Quantization is described. Another statistical classification method could have
been selected, also.

4.2.1 Learning Vector Quantization

Learning Vector Quantization (LVQ) (Kohonen 1997) is a well known tool in var-
ious applications where statistical classification is needed, such as texture analysis
(Livens et al. 1995), speech recognition (Duchon & Katagiri 1993), and image anal-
ysis (Cheng et al. 2000), to name a few. LVQ algorithms classify the data based
on piecewise linear class boundaries, which are determined by supervised learning.

Consider the samples c derived from a finite set of classes {Ck}. In LVQ, a
subset of codebook vectors are assigned to each class Ck. Then, each c is set to
belong to the same class as the closest (in Euclidean sense) codebook vector mi.
Let j = arg mini{||c−mi||} define the index of the nearest mi to c. The equations
below define the basic LVQ1 algorithm.

mj(t + 1) = mj(t) + α(t)[c(t) − mj(t)] (4.1)

mj(t + 1) = mj(t) − α(t)[c(t) − mj(t)] (4.2)

mi(t + 1) = mi(t), for i �= j, (4.3)

where 0 < α(t) < 1, and α(t) is the learning rate, which decreases with time. The
algorithm minimizes the rate of misclassification error by iteratively updating the
codebook vectors at times t = 0, 1, 2, . . .. Eq. (4.1) is used if c and mj belong to
the same class, and Eq. (4.2) if c and mj belong to different classes.

In optimized LVQ1, attention is paid to the learning rate α(t), and it is deter-
mined optimally for the fastest convergence. To achieve this, the equations above
are expressed as

mj(t + 1) = [1 − s(t)αj(t)]mj(t) + s(t)αj(t)c(t), (4.4)

where s(t) = +1 if the classification is correct, and s(t) = −1 if the classification
is wrong. Then it can be shown that the optimal learning rates are determined by
the recursion

αj(t) =
αj(t − 1)

1 + s(t)αj(t − 1)
. (4.5)

In this work, the LVQ PAK (Kohonen et al. 1996) developed at the Faculty
of Information Technology at the Helsinki University of Technology, was used for
creating the codebook for classification.



53

4.2.2 LVQ-Hidden Markov Model combination

In section 2.4.1, Hidden Markov models were introduced. In this thesis, the com-
bination of learning vector quantization and HMMs is used. The method has been
succesfully utilized in speech recognition (Iwamida et al. 1990). In the classifica-
tion, an LVQ codebook is first trained with feature vectors from the training set,
and each prototype vector in the codebook is given an index. After the indices have
been determined, the feature vectors are replaced with the index of the nearest
prototype vector. One HMM is trained with the index sequences of each class.

In Figure 12, footstep identification for a special case of three persons with
HMMs is shown. First, the observation sequences acquired from each person’s
steps are used for training the three models M1, M2, and M3. Then, the unknown
observation sequence is identified by defining the maximum likelihood for each
model.

Person1

2) Identification

Choose Maximum

1) Training

Models

Estimate

Training Examples

3.

2.

1

Person3Person2

M1 M2 M3

Unknown O =

P (O|M1) P (O|M2) P (O|M3)

Figure 12. Using HMMs for walker identification.
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4.3 Experimental Results

4.3.1 Studies with Hidden Markov Models

In this work, the HTK Toolkit version 3.2 (Young 1993), developed at the Speech
Vision and Robotics Group of the Cambridge University Engineering Department,
was used for creating the LVQ codebook and the Hidden Markov Models.

In the first phase, the identification was studied with three persons’ footstep
data. The segmented footsteps were divided into ovelapping time windows (win-
dow width n and overlapping m). Different window widths and overlapping seg-
ments were tested. The best results were gained with a window width n = 15 and
overlapping 5. The features obtained from each window were the mean, standard

deviation, minimum and maximum of the amplitude of the pressure signal. A
codebook was formed with these feature vectors with vector quantization. Each
feature vector was then assigned an integer index from the codebook. The obser-
vation sequences were then modelled with Hidden Markov Models containing six
states. Different numbers of states and codebook sizes were tested as well. The
results are presented in publication VI.

It was noticed that the footsteps of one person were most distinguishable. There
was notable confusion in the footsteps of the other two persons, and identification
was not very reliable. The features chosen for this experiment (mean, standard
deviation, minimum and maximum) did not capture the characteristics of the
signals adequately well.

Another experiment included the data of 11 persons’ footsteps. The data is
similar to that in publication VII, and it consists of about 40 footsteps from each
person. A similar procedure as in phase one was used for feature extraction,
codebook generation and HMM modelling. The results gave a overall recognition
rate of under 40 %.

A different approach for describing the footstep signals into observation se-
quences was therefore adopted and the footsteps were divided into three parts (see
Figure 13). The first part is from the beginning of the footstep xstart to a local
minimum xmin. The second part from the local minimum to the end of the foot-
step xmid. The third part from the end of the footstep to the point where the
negative part has been restored to zero level. The features calculated from these
divisions are described in Appendix B.

The footstep data was divided into a training set (about 25 steps from each class)
and to a test set (about 15 steps from each class), and the tests were performed
by ten randomly selected divisions of the data. Each segmented footstep was
featurized according to the description above, and with the features in Appendix
B. All feature vectors were normalized to scale [0, 1]. The normalized feature
vectors were indexed into integers with an LVQ codebook. For each person to be
identified, an HMM was trained. The structures were left-right models with three
states. A typical confusion matrix from the experiments is presented in Table B.2,
in Appendix B. The overall identification rate was 52.09 % (+- 3.67) for the ten
experiments. The best results were obtained with a codebook size of 128.
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Figure 13. The features derived from each footstep.

4.3.2 Studies with Learning Vector Quantization

In utilizing the Learning Vector Quantization, the data was divided into a training
set and a test set as in the previous section. In this classification experiment, the
footsteps from both the left and right foot were used. The training set consisted
of 272 footsteps (around 20-26 examples for each class), and the test set consisted
of 131 footsteps.

For feature selection, the footsteps were divided into two sections: the ball of
the footstep and the heel of the footstep. The partition was made according to the
local minimum (xmin, ymin), as shown in Figure 13. A software package LNKnet
(Kukolich & Lippmann 1999) developed at MIT Lincoln Laboratory was used
in feature selection. Several features were derived from footstep data (including
spatial and frequency domain features), and the most descriptive ones were selected
with forward-backward search described in section 2.3.1 using a kNN- classifier in
LNKnet (Kukolich & Lippmann 1999). The selected features are described in
Table B.3 in Appendix B.

The codebook sizes from 55 prototype vectors (5 vectors/class) to 200 prototype
vectors (18 vectors/class) were tested. The classification results did not change
much between the tests. The OLVQ1 was run for 100 iterations, and the LVQ1 for
1000 iterations. The overall recognition accuracy was 66%. A confusion matrix of
the results obtained with a codebook size of 60 are presented in publication VII.

There was notable confusion in the footsteps of three testees. In Figure 11 a),
the footstep of one such testee is shown. In studying the results, it was noticed
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Figure 14. Two-level identification system, which consists of two different

reliability evaluators, Ψa and Ψb. Level 1 rejects footsteps if Ψa is below σa,

or if Ψb is below σb. Level 2 rejects or accepts three steps pre-classified at

the first level. At the second level, samples can be accepted if a majority of

them belong to the same class or if two of them are rejected by σb (from the

overlapping region) at the level 1.

that almost all footsteps from the poorly identified walkers were of the same kind.
Classification was successful for the footsteps as for that shown in Figure 11 b).

The reason for the badly identified walkers may be in the summing process made
before classification. The measurements from adjacent channels were summed to
achieve the whole footstep. The summing works if the step is hit in the center of
the two strips. If only a small part of the step hits on the other strip, the summing
affects the coordinate points of the maximum to change into another location, and
in this case, the classification is not reliable. If these situations are ignored, the
overall recognition accuracy is 78%.

4.3.3 The Rejection Parameters

If the user identification were to fail, it would be unbearable if the room would
react to a person based on another person’s profile. Therefore the results of the
classification must be verified.

In publication VIII, the two-level classifier depicted in Figure 14 was developed
by J. Suutala. The first step in identification is to classify a single footstep with a
predefined LVQ- codebook. At this point, the step is either accepted or rejected,
based on a reject option (Stefano et al. 2000). On the second level, a decision is
made based on three footsteps. A footstep is accepted if a majority of the samples
are classified to the same class or if two rejected samples are in an overlapping
(within trained class boundaries) region and one sample is classified to a class.
Three footsteps can be collected immediately when a person steps into the room
(within three seconds at best).
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In this method, the failure in a single footstep identification does not necessarily
effect the overall recognition result. The rejection is defined to cover the highest
possible percentage of samples that would otherwise be missclassified. There are
two reasons for the rejection of an input sample: the sample is far from the trained
class boundaries or the sample lies in an overlapping region. Clearly, the first
rejection criteria corresponds to the situation where an unknown person is walking
on the floor (or to noisy measurements). The second rejection criterion is more
complicated. The reason for the rejection can correspond to an unknown person,
to two persons having similar features in their footsteps or to noisy measurements.

The rejection criteria are calculated from the training data. To create adaptive-
ness to the system, the criteria can be utilized. If an input sample is rejected based
on the first criteria (the input sample is far from the trained class boundaries),
the system can assume that an unknown person has entered the room. Then,
it is possible to start retraining the classifier automatically, based on these new
footsteps. A deeper analysis of the system will be reported by J. Suutala.

4.4 Discussion

The identification was tested using two different methods, a hybrid LVQ-HMM
and with Learning Vector Quantization. A data set consisting of the footsteps of
11 persons was used in comparing the two methods. Two different feature sets
were tested with the LVQ-HMM, a windowing of the footstep into segments and a
division into three segments based on the local minimums and maximums of the
signal. In both experiments, the overall recognition rates were below 50 %. With
LVQ, the overall recognition rate was 78 %, if poor measurements were ignored.
LVQ performed better in considering individual recognition of persons. In some
cases, individual classes were falsely classified with 60 % of the test samples when
using HMMs. When using the two-level system, 90 % of the footstep data was
correctly classified and 20 % was rejected.

In these tests, the number of samples per class is quite low. Especially Hidden
Markov Models would require more data to be able to estimate the state and tran-
sition distributions of the known classes. If there were more training examples, the
recognition could possibly be increased. However, in developing a calm environ-
ment, the user cannot be asked to walk on the floor for ten minutes to achieve a
broader data set. Learning vector quantization is a simple method, and it does not
need so much data to formate the decision boundaries. LVQ is the more suitable
method for this kind of environment.



5 Summary and Conclusions

In this thesis, a set of service concepts, the methodology and the signal processing
to enable the creation of intelligent environments was presented. The goal was
to study what kind of methodologies are suitable for enabling proactiveness in
ubiquitous systems. Several service concepts were designed, and proactiveness
was made possible through the application of association rules in routine learning.
Furthermore, user identification for a smart room was studied.

Context recognition was studied within a Health Club application. The concept
of a Health Club in the World Wide Web was also developed. A good example of
such a club can be found from (PolarElectro 2004), for example. Neural networks
and the method of least squares were used in deriving different contexts. At
this point, the research on specifying the cyclists location based on the speed is
somewhat out-of-date. Several companies have implemented a GPS into a watch
which is easy to carry with the user. However, the research was justified since the
cost of the system was to be low. Locationing techniques have progressed greatly
during the past two years. These locationing techniques have been used in the
routine learning experiments. Routine learning was defined in publications IV and
V, and the Apriori algorithm, which is originally a data mining algorithm, was
tested in routine learning. The results show that the methodology is applicable in
ubiquitous environments.

The second part of the thesis is built on experiments for identifying a person
walking on a pressure-sensitive floor. Resolving the characteristics of the special
sensor producing the measurements, and which lies under the normal flooring,
was one of the tasks of this research. The identification was tested with hybrid
LVQ-Hidden Markov models and Learning Vector Quantization. Learning vector
quantization outperformed the Hidden Markov Models when using a data set of
11 persons. The future goal of the research is to make an automatic and adaptive
identification system which can recognize an unknown (to the system) person and
start training itself. This work has begun in publication VIII, and continued in
(Suutala & Röning 2004b). The overall recognition accuracy reached a level of
90 % in publication VIII, and even 95 % without rejection (Suutala & Röning
2004a), which can be considered reliable for some ubiquitous applications, but not
for authentification.
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Representing all the various information from different analyses is a challenging
task. The questions of privacy, scalability, bandwidth requirements, etc. need
to be considered before introduction. In this thesis, user interfaces were built to
visualize the contexts and routines of the user. In (Pirttikangas & Riekki 2004),
the visualization of time variant data sets has been developed. The work is a
continuation on the experiments in this thesis, and it builds a theoretical framework
on certain visualization studies.

The ubiquitous world is a great challenge for pattern recognition. The signals
need to be segmented from a continuous data flow and processed in real time.
The system must not annoy the person but assist, so minimal initial configuration
should be required. The users want to gain fast benefit from the devices they use
and this may cause the data sets to be not extensive enough to make, for example,
statistically valid desicions. The confidence of the analysis of different situations
can therefore be quite low. The user will need to be informed how accurately each
situation has been determined, or be allowed to make the decision on her own.
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Appendix A: The listing of rules with the Apiori-
algorithm.

The purpose of Appendix A is to present a complete listing of rules generated by
the Apriori- algorithm with support 0.1 and confidence 0.8 for one test case. The
Apriori- algorithm is introduced in section 3.3.

The rules generated are:

walking,->inside, sitting,in lobby,->inside,

walking,->General, sitting,in lobby,->Meeting,

walking,->inside,General, sitting,in lobby,->inside,Meeting,

sitting,->inside, sitting,General,->in office,

in office,->sitting, sitting,General,->inside,

in office,->inside, sitting,General,->in office,inside,

in office,->General, sitting,Silent,->in library,

in office,->sitting,inside, sitting,Silent,->inside,

in office,->sitting,General, sitting,Silent,->in library,inside,

in office,->inside,General, sitting,Meeting,->in lobby,

in office,->sitting,inside,General, sitting,Meeting,->inside,

in library,->sitting, sitting,Meeting,->in lobby,inside,

in library,->inside, in office,inside,->sitting,

in library,->Silent, in office,inside,->General,

in library,->sitting,inside, in office,inside,->sitting,General,

in library,->sitting,Silent, in office,General,->sitting,

in library,->inside,Silent, in office,General,->inside,

in library,->sitting,inside,Silent, in office,General,->sitting,inside,

in lobby,->sitting, in library,inside,->sitting,

in lobby,->inside, in library,inside,->Silent,

in lobby,->Meeting, in library,inside,->sitting,Silent,

in lobby,->sitting,inside, in library,Silent,->sitting,

in lobby,->sitting,Meeting, in library,Silent,->inside,

in lobby,->inside,Meeting, in library,Silent,->sitting,inside,

in lobby,->sitting,inside,Meeting, in lobby,inside,->sitting,

inside,->sitting, in lobby,inside,->Meeting,

General,->inside, in lobby,inside,->sitting,Meeting,

Silent,->sitting, in lobby,Meeting,->sitting,

Silent,->in library, in lobby,Meeting,->inside,

Silent,->inside, in lobby,Meeting,->sitting,inside,

Silent,->sitting,in library, inside,Silent,->sitting,
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Silent,->sitting,inside, inside,Silent,->in library,

Silent,->in library,inside, inside,Silent,->sitting,in library,

Silent,->sitting,in library,inside, inside,Meeting,->sitting,

Meeting,->sitting, inside,Meeting,->in lobby,

Meeting,->in lobby, inside,Meeting,->sitting,in lobby,

Meeting,->inside, sitting,in office,inside,->General,

Meeting,->sitting,in lobby, sitting,in office,General,->inside,

Meeting,->sitting,inside, sitting,in library,inside,->Silent,

Meeting,->in lobby,inside, sitting,in library,Silent,->inside,

Meeting,->sitting,in lobby,inside, sitting,in lobby,inside,->Meeting,

walking,inside,->General, sitting,in lobby,Meeting,->inside,

walking,General,->inside, sitting,inside,General,->in office,

sitting,in office,->inside, sitting,inside,Silent,->in library,

sitting,in office,->General, sitting,inside,Meeting,->in lobby,

sitting,in office,->inside,General, in office,inside,General,->sitting,

sitting,in library,->inside, in library,inside,Silent,->sitting,

sitting,in library,->Silent, in lobby,inside,Meeting,->sitting,

sitting,in library,->inside,Silent,



Appendix B: Details on user identification.

The purpose of Appendix B is to provide details of walker identification which was
initially presented in Chapter 4. In Table B.1, the features selected for Hidden
Markov Models are described. In Table B.2, a confusion matrix for the results of
the hybrid LVQ-HMM method is presented. In Table B.3, the features selected for
LVQ are described.
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Table B.1. Footstep features for HMM. The first column describes the segment of

the footstep that the features have been calculated from. The sequence for HMMs

consists of three different parts.

Segment number name description
beginning 1. mean1 average from (xstart, xmin)

2. std1 standard deviation from (xstart, xmin)
3. area1 square area (amplitude) from (xstart, xmin)
4. length1 the length of the first segment
5. xmax1 a local maximum (time, heel push)
6. ymax1 a local maximum in (amplitude, heel push)
7. xheel heel push starting point (amplitude over ymin)
8. shapeheel ((ymax1 − ymin)/(xmin − xheel))

middle 9. mean2 average from (xmin, xmid)
10. std2 standard deviation from (xmin, xmid)
11. area2 square area (amplitude) from (xmin, xmid)
12. length1 the length of the middle segment
13. xmax2 a local maximum (time, toe push)
14. xtoe toe push ending point (amplitude under ymin)
15. shapetoe ((ymax2 − ymin)/(xtoe − xmid))
16. xmid the ending point of the actual footstep

end 17. mean3 average from (xmid, xend)
18. std3 standard deviation from (xmid, xend)
19. area3 square area (amplitude) from (xmid, xend)
20. length3 the length of the last segment
21. xneg a mimimum point (time)
22. yneg a mimimum point (amplitude)
23. shapeend length3/yneg

24. relend ymax2/xend
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Table B.2. Confusion matrix for the eleven persons’ footsteps using the hybrid

LVQ-HMM method.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
P1 62.5 37.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P3 0.0 50.0 50.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P4 0.0 0.0 0.0 87.5 0.0 0.0 0.0 0.0 0.0 12.5 0.0
P5 0.0 0.0 0.0 12.5 25.0 12.5 0.0 0.0 0.0 0.0 50.0
P6 0.0 0.0 0.0 0.0 0.0 88.9 0.0 0.0 0.0 0.0 11.1
P7 0.0 0.0 0.0 0.0 0.0 14.3 28.6 42.9 0.0 0.0 14.3
P8 0.0 0.0 0.0 12.5 0.0 0.0 25.0 50.0 12.5 0.0 0.0
P9 0.0 0.0 14.3 0.0 14.3 0.0 0.0 14.3 57.1 0.0 0.0
P10 0.0 0.0 0.0 0.0 0.0 14.3 28.6 0.0 14.3 42.9 0.0
P11 0.0 0.0 0.0 0.0 0.0 25.0 12.5 0.0 0.0 0.0 62.5

Table B.3. Footstep features for LVQ- modelling.

number name description
1. xmax1 a local maximum in time (heel push)
2. ymax1 a local maximum in amplitude (heel push)
3 . xmin a local minimum (time, between heel and toe)
4 . ymin a local minimum (amplitude, between heel and toe)
5 . xmax2 a local maximum (time, toe push)
6. ymax2 a local maximum (amplitude, toe push)
7 . xneg a mimimum point (time)
8 . xneg a mimimum point (amplitude)
9. mean1 average from (xstart, xmin)
10. std1 standard deviation from (xstart, xmin)
11. mean2 average from (xmin, xmid)
12. std2 standard deviation from (xmin, xmid)
13. meanmax average for the differences of ymax1

, ymax2, ym


	Abstract
	Acknowledgments
	Symbols and abbreviations
	Original publications
	Contents
	1 Introduction
	1.1 The author’s contributions

	2 Review of the literature
	2.1 Context-Recognition
	2.2 Routine Learning
	2.3 Techniques for Context Recognition
	2.3.1 Signal Preprocessing
	2.3.2 Neural Networks

	2.4 Techniques for Routine Learning
	2.4.1 Hidden Markov Models
	2.4.2 Association Rules
	2.4.3 Discussion


	3 Experiments on Context recognition and Routine Learning
	3.1 Signal Preprocessing: Health Indicators
	3.1.1 Data
	3.1.2 Dynamic Control Limits
	3.1.3 User interface
	3.1.4 Discussion

	3.2 Context recognition: Health Club Application
	3.2.1 Data
	3.2.2 Data Preprocessing
	3.2.3 Recognizing Environmental Contexts
	3.2.4 Recognizing Gear Shift
	3.2.5 Discussion

	3.3 Routine Learning: Know Your Whereabouts
	3.3.1 Data
	3.3.2 Results
	3.3.3 Discussion


	4 User Identification
	4.1 Introduction
	4.1.1 EMFi-Material
	4.1.2 Data

	4.2 Techniques for Footstep Identification
	4.2.1 Learning Vector Quantization
	4.2.2 LVQ-Hidden Markov Model combination

	4.3 Experimental Results
	4.3.1 Studies with Hidden Markov Models
	4.3.2 Studies with Learning Vector Quantization
	4.3.3 The Rejection Parameters

	4.4 Discussion

	5 Summary and Conclusions
	References
	Appendics
	Appendix A: The listing of rules with the Apiorialgorithm.
	Appendix B: Details on user identification.


