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ABSTRACT: We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD)
within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We
discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved
in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in
which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double
precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to
performance, we have focused on understanding the implications of the different precision models on the outcome of implicit
solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy
conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within
the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for
long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are
comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at
significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that
is on par with, and in some cases exceeds, that of traditional supercomputers.

1. INTRODUCTION
Since the first simulation of an enzyme using molecular
dynamics (MD) was reported by McCammon et al.1 in 1977,
MD simulations have evolved to become important tools in
rationalizing the behavior of biomolecules. The field has grown
from that first 10-ps-long simulation of a mere 500 atoms to the
point where small enzymes can be simulated on the micro-
second time scale2−4 and simulations containing millions of
atoms can be considered routine.5,6 However, such simulations
are numerically very intensive, and using traditional CPU-
centric hardware requires access to large-scale supercomputers
or well-designed clusters with expensive interconnects that are
beyond the reach of many research groups.
Numerous attempts have been made over the years to

accelerate classical MD simulations by exploiting alternative hard-
ware technologies. Some notable examples include ATOMS by
AT&T Bell Laboratories,7 FASTRUN by Columbia University
and Brookhaven National Laboratory,8 MDGRAPE by RIKEN,9

and most recently Anton by DE Shaw Research LLC.10 All of
these approaches have, however, failed to make an impact on
mainstream research because of their excessive cost. Additionally,
these technologies have been based on custom hardware and do
not form part of what would be considered a standard workstation
specification. This has made it difficult to experiment with such
technologies, leading to a lack of sustained development or

innovation and ultimately their failure to mature into ubiquitous
community-maintained research tools.
Graphics processing units (GPUs), on the other hand, have

been an integral part of personal computers for decades, and a
strong demand from the consumer electronics industry has
resulted in significant sustained industrial investment in the
stable, long-term development of GPU technology. In addition
to low prices for GPUs, this has led to a continuous increase in
the computational power and memory bandwidth of GPUs, sig-
nificantly outstripping the improvements in CPUs. As a
consequence, high-end GPUs can be considered standard equip-
ment in scientific workstations, which means that they either
already exist in many research laboratories or can be purchased
easily with new equipment. This makes them readily available to
researchers and thus attractive targets for acceleration of many
scientific applications including MD simulations.
The nature of GPU hardware, however, has until recently

made their use in general purpose computing challenging to all
but those with extensive three-dimensional (3D) graphics pro-
gramming experience. However, the development of application
programming interfaces (APIs) targeted at general purpose scien-
tific computing has reduced this complexity substantially such that
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GPUs are now accepted as serious tools for the economically
efficient acceleration of an extensive range of scientific
problems.11,12

The computational complexity and fine grained parallelism of
MD simulations of macromolecules makes them an ideal
candidate for implementation on GPUs. Indeed, as we illustrate
here for implicit solvent and in a subsequent paper13 for explicit
solvent, the careful implementation of modern MD algorithms
on GPUs can provide capability, in terms of performance, that
exceeds that achieveable with any current CPU-based super-
computer. Several previous studies have investigated the use
of GPUs to accelerate MD simulations.14−20 For a detailed
review of the use of GPUs for acceleration of condensed phase
biomolecular MD simulations, we refer the reader to our recent
review.12

In this manuscript, we present our high-performance GPU
implementation of implicit solvent generalized Born (GB) MD
for the AMBER21 and CHARMM22 pairwise additive force
fields on CUDA-enabled NVIDIA GPUs. We have implemented
this within the AMBER23,24 PMEMD dynamics engine in a
manner that is designed to be as transparent to the user as pos-
sible, and we give an overview of what the code currently
supports, as well as our plans for future developments. We
discuss the specifics by which we exploit the processing power
of GPUs, both in serial and using multiple GPUs, and show the
performance that can be achieved in comparison to conven-
tional CPU clusters. We also discuss our implementation and
validation of three specific precision models that we developed
and their impact on the numerical results of implicit solvent
MD simulations.

2. GPU PROGRAMMING COMPLEXITIES

As illustrated by Figure 1, GPUs offer a tremendous amount of
computing power in a compact package. This, however, comes
at the cost of reduced flexibility and increased programming
complexity as compared to CPUs. In order to develop software
that runs efficiently on GPUs, it is necessary to have a thorough
understanding of the characteristics of the GPU hardware
architecture. A number of manuscripts have already discussed
this in detail in the context of MD.11,12,15,17,25 For this reason,
we provide simply a brief overview of the complexities involved
in programming GPUs as they relate to our implementa-
tion, focusing on NVIDIA hardware. For a more detailed
description, the reader is referred to the publications cited above.
2.1. Vectorization. A GPU is an example of a massively

parallel stream-processing architecture which uses the single-
instruction multiple data (SIMD) vector processing model.

Unlike a regular CPU, which typically operates on one to four
threads in parallel, GPUs typically process threads in blocks
(termed warps within the CUDA programming language28)
containing between 16 and 64 threads. These thread blocks
logically map to the underlying hardware, which consists of
streaming multiprocessors. At the time of writing, high-end
GPUs typically have between 16 and 32 multiprocessors. For
example, an NVIDIA M2090 GPU consists of 16 multi-
processors, each containing 32 cores for a total of 512 cores. All
threads in a single block must execute the same instruction on
the same clock cycle. This necessarily implies that, for optimum
performance, codes must be vectorized to match the size of a
thread block. Branching must therefore be used with extreme
care since if any two threads in the same warp have to follow
different code paths of the branch, then threads in the warp will
stall while each side of the branch is executed sequentially.

2.2. Memory Model. The memory hierarchy of GPUs has
its origins in their graphics lineage, and the high density of
arithmetic units comes at the expense of cache memory and
control units. All of the cores making up a multiprocessor have
a small number of registers that they can access, a few kilobytes
(64 kB on an M2090) of shared memory [this can be split into
directly accessible memory and L1 cache; in the case of an
M2090, it can be split 48/16 kB or 16/48 kB; in the case of
AMBER, the configuration is switched at runtime for optimal
performance of a given kernel] which is private to each multi-
processor and a small amount (typically 48 kB) of high-speed
but read-only texture memory. The majority of the memory
(6 GB on an M2090), termed global device memory, is available
to all multiprocessors. While being fast compared to the main
memory accessible by CPUs, access to the device memory by
GPUs is still relatively slow compared to the local cache
memory. The nature by which the multiprocessors are
connected to this memory also means that there is a significant
performance penalty for nonstride-1 access. Finally, it should be
noted that currently the CPU and GPU memories are in different
address spaces and this requires careful consideration. The unique
nature of this memory model leads to several considerations for
optimizing GPU performance, including optimizing device
memory access for contiguous data, utilizing the multiprocessor
shared memory to store intermediate results or to reorganize data
that would otherwise require nonstride-1 memory accesses, and
using the texture memory to store read-only information, such
as various force field parameters, in a fashion that allows very
rapid access.

2.3. GPU to CPU Communication. As mentioned above,
the CPU and GPU memories are, at the time of writing, in
different address spaces. This means it is up to the programmer

Figure 1. Peak floating-point operations per second (Flop/s; left) and memory bandwidth (right) for Intel CPUs26 and NVIDIA GPUs.27
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to ensure that the memories are synchronized as necessary to
avoid race conditions. However, there is a big performance
penalty for such synchronizations which have to occur via the
Peripheral Component Interconnect Express (PCIe) bus, and
thus they should be avoided unless absolutely necessary.
2.4. GPU to GPU Communication. The traditional

method for programming scientific algorithms in parallel
uses the message passing interface (MPI)29 in which each thread
runs in a separate address space. When running GPUs in parallel
under an MPI paradigm, additional complexity is introduced since
sending data between two GPUs involves copying the data from
the memory of the sending GPU to the CPU memory of the
corresponding MPI thread over the PCIe bus, an MPIsend by
this CPU thread, and corresponding MPIreceive by the receiv-
ing CPU thread, which copies the data between the memories
of the CPUs, and finally copying the data to the memory of the
receiving GPU. Clearly, this introduces additional consider-
ations for maximizing parallel performance as compared to
traditional CPU programming.
At the time of writing, there are efforts to streamline GPU to

GPU communication, particularly within a single node but also
for Infiniband connections between nodes. One such approach
under development by NVIDIA and Mellanox is termed
GPUDirect,30 which ultimately seeks to unify address spaces
between multiple CPUs and GPUs. Currently, the degree to
which this can be utilized is heavily dependent on the underlying
hardware design. Therefore, at present, the added complexity of
using the advanced features of GPUDirect, beyond the pinned
memory MPI optimizations offered by GPUDirect version 1, on
the large number of possible different hardware combinations is
not worth the effort for a widely used production code.
2.5. Mathematical Precision. Early versions of GPUs in

NVIDIA’s lineup (prior to the GT200 model) only supported
single precision (SP) floating point arithmetic. This was due to
the fact that graphics rendering did not require double
precision (DP). Scientific algorithms, however, typically require
DP arithmetic (for a discussion in the context of quantum
chemistry, see for example the work by Knizia et al.31). The
generation of GPUs at the time of our initial implementation
(2008) supported DP in hardware, but only at 1/8 the
performance of SP. In the latest generation of cards, at the time
of writing, termed the Fermi lineup by NVIDIA, the DP to SP
performance ratio is 1/2 and thus equivalent to that in CPUs.
This, however, only holds for the professional (termed Tesla)
series of cards. The significantly cheaper gaming cards (termed
GeForce) still only support DP at a fraction of the speed of SP.
It is therefore important to optimize the use of DP such that it
is only used when necessary to maintain numerical accuracy.
2.6. Programming Model. Early use of GPUs for scientific

computing was hampered by the lack of an application
programming interface (API) for general purpose calculations.
The problems to be solved had to be described in terms of a
graphics pipeline employing either OpenGL or DirectX, which
made the software development time-consuming and hardware-
specific. The barrier to utilizing GPU hardware for general
purpose computation has since been reduced by the intro-
duction of GPU programming models such as the Brook stream
programming language,32 OpenCL,33 and NVIDIA’s Compute
Unified Device Architecture (CUDA)28 and the availability
of corresponding software development toolkits (SDKs). The
AMBER implementation uses CUDA, which is a relatively
simple extension of the standard C programming language that
allows one to code in an inherently parallel fashion and perform

all necessary operations to access and manipulate data on a
GPU device. Realizing the full potential of GPUs, however, still
requires considerable effort as indicated above and outlined
below to take advantage of the particular GPU architecture, and
not all algorithms are suitable to achieve good performance on
these massively parallel processors.

3. OVERVIEW OF THE AMBER IMPLICIT SOLVENT
GPU IMPLEMENTATION

The nature of MD simulations requires what in computer
science is referred to as strong scaling, that is, reduction of the
solution time with an increasing number of processors for a
fixed total problem size. This enables access to simulations at
longer time scales, which is required for a proper convergence
of results. This becomes more important as one moves to larger
system sizes since the number of degrees of freedom increases.
Weak scaling, that is, the solution time with the number of
processors for a fixed problem size per processor, is only of
secondary importance, since this merely enables simulating
larger molecules at currently attainable time scales. Our imple-
mentation therefore has focused on accelerating problem sizes
that correspond to those typically studied by AMBER users. In
the case of GB simulations, this is in the range of 300 to 30 000
atoms.
The initial driving force in accelerating AMBER implicit

solvent GB calculations with GPUs was to provide the scientific
community with a computational tool that would allow an indi-
vidual researcher to obtain performance on a simple desktop
workstation equivalent to that of a small CPU cluster. Such a
tool alleviates the costs, both capital and recurring, involved in
purchasing, maintaining, and using individual research compute
clusters. To this end, our goal was that a single state-of-the-
art GPU should provide a performance equivalent to that of four
to six high-end CPU cluster nodes. Such an approach also re-
moves the need to purchase and maintain expensive interconnects
that are required to achieve scaling even on a modest number of
nodes.
Beyond this initial serial development, which was first

released as an update to AMBER 1034 in August 2009, we have
also developed a parallel implementation based on the MPI-229

message passing protocol, released as an update to AMBER
1123 in October 2010, that allows a single job to span multiple
GPUs. These can be within a single node or across multiple
nodes. As shown below, it is possible with this implementation
to achieve a performance improvement that goes beyond simply
making a desktop workstation faster, ultimately providing a per-
formance capability that surpasses what is achievable on all current
conventional supercomputers. Achieving this level of performance
required implementing the entire implicit solvent MD algorithm
including energy and force evaluations, restraints, constraints,
thermostats, and time step integration on the GPU. As described
in section 3.2, CPU to GPU communication only occurs during
I/O or to some extent when data is sent between GPUs during
parallel runs.
While we have designed our GPU implementation to achieve

substantial acceleration of implicit solvent MD simulations over
that achievable with AMBER’s CPU implementation, our
overriding goal has always been to maintain the precision of the
calculations. To this end, we have focused on ensuring that
GPU simulations will match CPU simulations. All approxima-
tions made in order to achieve performance on GPU hardware
have been rigorously tested as highlighted in the following
sections.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct200909j | J. Chem. Theory Comput. 2012, 8, 1542−15551544



An additional design goal has been to attempt to preserve
forward compatibility of our implementation. Using the CUDA
programming language provides this by abstracting the program
from the underlying hardware. The GPU accelerated version
of AMBER can be used on all NVIDIA cards that support
double precision in hardware, that is, those with hardware
revision 1.3 or 2.0 or higher. Our choice of CUDA and
NVIDIA graphics cards was largely guided by the fact that, at
the time we began this work, OpenCL was not mature enough
to offer the same performance and stability benefits that CUDA
did. A port to OpenCL is certainly possible, and this would
support AMD hardware. However, with the public release of
the CUDA API35 by NVIDIA and the release of CUDA
compilers for x86 platforms by PGI,36 it is possible that an
AMBER implementation will soon be available on a variety of
accelerator hardware.
3.1. Features of the Implementation. We have attempted

to make our GPU implementation all-inclusive of the features
available in the PMEMD program. At the time of writing, the
majority of features applicable to implicit solvent simulations
are available as described below.
Supported Methods. Support is provided for all GB models

currently implemented within AMBER37−41 as well as the
analytical linearized Poisson−Boltzmann (ALPB)42 model. In
addition to constant energy simulations, thermostats have been
implemented to perform constant temperature simulations.
This includes all three thermostats available in PMEMD, that is,
the Berendsen weak coupling algorithm,43 the Andersen tem-
perature coupling scheme,44 and the Langevin dynamics ther-
mostat.45 Constraints for hydrogen bond distances use a GPU
version of the standard SHAKE algorithm46,47 employed in
PMEMD, and harmonic restraints to a reference structure are
supported.
To the best of our knowledge, no GB formalism currently

exists that corrects for the errors introduced by the use of
cutoffs for long-range nonbonded interactions. The use of
cutoffs in GB simulations as implemented in PMEMD does
not conserve energy, and their use involves an approx-
imation with an unknown effect on accuracy. For this
reason, we chose not to implement van der Waals (vdW)
and electrostatic cutoffs in the GPU version of this code.
[Cutoffs for the nonbonded interactions are implemented
for explicit solvent simulations with periodic boundary
conditions using the particle mesh Ewald (PME) method,
as described in a later paper.] However, cutoffs in
calculating the effective Born radii are supported.
Reproducibility. A design feature of the GPU code that

goes beyond the CPU implementation is the deterministic
nature of the implementation on a given hardware config-
uration. Serial CPU calculations for a given set of input para-
meters on identical hardware are perfectly reproducible. This
does not hold for the parallel CPU implementation since the
need to load balance aggressively to achieve good parallel
scaling means that the order of numerical operations is not
defined, and therefore two simulations started from identical
conditions will always diverge due to rounding differences.
This poses a problem when transitioning to microsecond or
greater simulation time scales since it can be of advantage
to store trajectory information less frequently than what is
optimal in order to conserve available storage space and
produce data files of manageable size. It is thus not possible
to go back to a given point of the simulation and analyze the
trajectory in finer detail by restarting and sampling more

frequently unless the implementation is deterministic. The
deterministic nature of the GPU code coupled with machine
precision binary restart files (currently under development)
makes this mode of simulation possible. This also makes debugg-
ing and validation easier.

Transparency. Another key feature and a primary design
goal of our GPU acccelerated implementation is that its use
is completely transparent to the user. As far as the user is
concerned, our GPU implementation is indistinguishable
from the CPU implementation, and using the GPU version
of the code is simply a case of switching the executable name
from pmemd to pmemd.cuda or from pmemd.MPI to
pmemd.cuda.MPI for the MPI parallelized implementation.
All other items such as input and output files and regression
tests within the code remain identical. The only difference to
be noticed by the user is an increase of performance. This
guarantees effective uptake of our GPU implementation by
the scientific commmunity because there is no learning curve
for the use of the code, and all tools and scripts that have
been developed for the CPU version of PMEMD can be
utilized without modifications.

System Size. The maximum system size that can be treated
with the GPU implementation is a function of both the GPU
hardware and the MD simulation parameters. In particular,
Langevin temperature regulation and the use of larger cutoffs
for the effective Born radii calculations increase the memory
requirements. The physical GPU hardware also affects
memory usage since the optimizations used are nonidentical
for different GPU types. Table 1 gives an overview of the

approximate maximum atom counts that can be treated with
the present version of the code. The dominant sources of
GPU memory usage are the output buffers used for the
nonbonded interactions as described in section 3.2. The
memory used by those buffers is proportional to the square
of the number of atoms. Currently, the atom count limita-
tions imposed by GPU memory usage are roughly identical
in serial and parallel.

3.2. Technical Details of the Implementation. In
classical MD, the majority of the computational effort is spent
evaluating the potential energy and gradients, which has to be

Table 1. Approximate Maximum Atom Counts That Can Be
Treated with the GPU Implementation of GB Implicit
Solvent Simulations in AMBER 11 Using the SPDP
Precision Modela

GPU card GPU memory simulation type max atoms

GTX-295 895 MB constant E 20 500
constant T 19 200

Tesla C1060 4.0 GB constant E 46 350
constant T 45 200

Tesla C2050 3.0 GB constant E 39 250
constant T 38 100

Tesla C2070 6.0 GB constant E 54 000
constant T 53 050

aTest systems are droplets of TIP3P water molecules. All
simulations use SHAKE (AMBER input ntf=2, ntc=2); a time
step of 2 fs; the Hawkins, Cramer, Truhlar GB model37 (AMBER
input igb=1); the default cutoff value of 25 Å for GB radii (AMBER
input rgbmax=25); and temperature control with the Langevin
thermostat (AMBER input ntt=3), if applicable. Error-correction
code (ECC) was switched off on the Tesla cards.
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repeated each time step. In the case of the AMBER pairwise
additive force fields,21 the potential takes the form
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where the bond and angle terms are represented by a simple
harmonic expression with force constants bi and ai and equilibrium
bond distances/angles ri,eq and θi,eq, respectively. Torsional
potentials for the dihedral angles are represented using a truncated
Fourier expansion in which the individual terms have a potential
Vi,n with periodicity n and phase shift γi,n. The last two terms are
the vdW interaction represented by a Lennard-Jones potential
with diatomic parameters Aij and Bij and the electrostatic
interaction between atom-centered point charges qi and qj
separated by the distance rij. The prime on the summation of
the nonbonded interactions indicates that vdW and electrostatic
interactions are only calculated for atoms in different molecules or
for atoms in the same molecule separated by at least three bonds.
Those nonbonded interactions separated by exactly three bonds
(1−4 interactions) are reduced by the application of independent
vdW and electrostatic scale factors, termed SCNB and SCEE in
AMBER, which are dependent on the specific version of the force
field (2.0 and 1.2, respectively, for the ff99SB48 version of the
AMBER force field).
The CHARMM force field22 takes a similar form but

includes three additional bonded terms:
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The two-body Urey−Bradley terms account for angle bending
between atoms that are separated by two bonds using a
harmonic potential with force constant ui and equilibrium
distance rĩ,eq. The improper dihedrals with force constant ki
describe out-of-plane bending and are used to maintain

planarity and prevent undesired chiral inversions. Within the
AMBER force field, improper dihedrals are treated in the same
way as proper dihedrals. The third additional term is a cross
term between two sequential protein backbone dihedral angles
ϕ,ψ termed CMAP.49 Additionally, the CHARMM and
AMBER force fields handle 1−4 nonbonded interactions in a
different manner. The single prime on the electrostatic
summation has the same meaning as described above for the
AMBER force field with the exception that 1−4 interactions are
not scaled. The double prime on the vdW summation implies
the same exclusions as the single prime but the use of different
values Rij

min and εij for 1−4 interactions.
In the GB implicit solvent model, the effect of a surrounding

solvent is described via a continuum electrostatics model that
uses a pairwise descreening approximation and in general also
includes a Debye−Hückel term to account for salt effects at low
salt concentrations. The general form of the correction to the
energy of the solute is given as
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where qi and qj are the atomic partial charges, εr is the relative
permittivity of the solvent, and κ is the Debye−Hückel
screening parameter.38 The function f ij

GB interpolates between
an effective Born radius Ri when the distance rij between atoms
is short and rij at large distances according to

= + −f r R R r R R[ exp( /4 )]ij ij i j ij i j
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(4)

The effective Born radius Ri reflects how deeply buried a charge
is in the low-dielectric medium (solute), and it depends on the
intrinsic radius ρi of an atom and the relative positions and
intrinsic radii of all other atoms in the solute. The models
implemented in PMEMD differ in the intrinsic radii and the
function that is used to determine the effective Born radii.
The remainder of this section discusses key aspects of the

GPU implementation of these equations. This includes design
features to maximize performance while preserving accuracy as
well as addressing issues of reproducibility which are critical
when moving to longer time scale simulations.

Integration with the Existing Code Base. One of the initial
ideas we considered when implementing GPU acceleration for
AMBER was to write an entirely new code from scratch in a
combination of C++ and CUDA. However, this was quickly
dismissed for a number of reasons. In particular, we wanted to

1. keep the maintenance of the AMBER code base simple
2. minimize the amount of coding required
3. simplify the way in which features are ported to the GPU
4. maintain backward compatibility with existing input files

and regression tests.

The approach we ultimately chose was to utilize the existing
Fortran code base in PMEMD and extend it with calls to specific
CUDA kernels for the GPU acceleration with the CUDA code
protected with #IFDEF CUDA preprocessor directives. Building
and testing is automated within the existing installation procedure.
A series of GPU synchronization routines provide an abstract

way to copy relevant data to and from the GPU memory,
for example, gpu_upload_vel() and gpu_download_vel() for
atomic velocities. A complete list of synchronization routines is
provided in the Supporting Information. For performance, we
have implemented the entire MD algorithm on the GPU, which
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means uploads (to GPU memory) are only needed at the
beginning of a run and downloads (to CPU memory) are only
needed when I/O is required, for example, downloading the
coordinates to write to the trajectory file. It remains
nevertheless simple to add new features to the code in a way
that will work for both the CPU and GPU (see the Supporting
Information for an example). While this limits the performance
for the new feature due to repeated up- and downloads, it does
provide a mechanism by which new features can be easily added
and tested with the GPU code before writing an additional
GPU kernel.
Reproducibility. In order to achieve performance in parallel

on CPUs, it has always been necessary to include complex
dynamic load balancing algorithms and extensive use of asyn-
chronous communication within the implementation. This
arises from the fact that the CPUs are expected to perform a
number of tasks above and beyond running the underlying
simulation. For example, the operating systems run multiple
daemons controlling I/O and various other OS related tasks. In
addition, the latency between any two CPUs in a large parallel
run can span an order of magnitude or more. As a result, the
various MPI threads become desynchronized. Load balancing
and asynchronous communication is used to minimize the
resulting effect. A downside of this is that the order of opera-
tions is not well-defined in the CPU implementation. This
results in rounding differences between otherwise identical
runs. Due to the chaotic nature of numerically integrating
Newton’s equations of motion, this means that two initially
identical simulations will always decorrelate on time scales of a
few nanoseconds or less. There is nothing inherently wrong
with this; the two simulations are just exploring two different
regions of phase space. As mentioned previously, this does,
however, pose a problem when one starts to routinely run
simulations on the microsecond time scale since it can be
necessary to return to a given point in a simulation and repeat it
exactly while saving the output more frequently. This is
something that Shaw et al. attempted to address with a bit-wise
reversible integrator50 based on scaled integers. However, this
did not solve the issue when using the SHAKE algorithm. The
architectural design of the GPU with many floating point units
controlled by a single instruction unit, and the fact that the
GPU is not required to time slice with OS related tasks, means
that work can be divided between GPU threads and indeed
entire GPUs in a predetermined fashion without detrimentally
impacting performance. This can be exploited by careful pro-
gramming and bookkeeping to ensure that the order of floating
point operations is always predefined at each given time step.
The GPU implementation of PMEMD has been designed such
that any two simulations with identical starting conditions run
on the same GPU model will always be bit-wise identical. This
is extremely useful for debugging purposes, for example, for
detecting shared memory race conditions, and has also been
used to determine that the use of ECC on GPUs has little to no
impact on the reliability of AMBER simulations.51

For Anderson and Langevin thermostatted simulations, it is
necessary for the random number generator (RNG) to also be
perfectly deterministic in order for any two initially identical
simulations to be reproducible. To this end, we use the
parallelized RNG that is implemented in the CURAND library
and available with the CUDA Toolkits.
Precision Model. In AMBER, all of the traditional CPU

codes are written entirely using double precision (DP) floating
point arithmetic. This is in contrast to developments by early

adopters of GPU technology. For example, the OpenMM
library of Pande et al.15 uses single precision (SP) floating point
numbers throughout the calculations with the exception of a
single double-precision accumulator in the reduction phase of
the force accumulation. Use of SP in all places within the code,
however, can cause substantial instabilities in the MD simula-
tions. For example, energy conservation in the NVE ensemble
can become problematic. While this error can be hidden using
tightly coupled thermostats, the true effects of such approxima-
tions have not been well characterized.
We distinguish three different precision models in our GPU

implementation in which the contributions to the nonbonded
forces are calculated in single precision arithmetic, but bonded
terms and force accumulation are in double precision (SPDP),
or everything is computed and accumulated in single precision
(SPSP) or double precision (DPDP). The exception to this is
the SHAKE algorithm (see below), which is implemented in
DP for all precision models since it involves calculating relative
differences in distance on the order of 10−6 Å. Attempting to
use SP for the SHAKE algorithm as implemented leads to numeri-
cally unstable simulations. The aim in developing our SPDP
precision model for the GPU implementation of PMEMD was to
achieve numerical stability during MD simulations equivalent to
that of traditional DP implementations but with performance as
close to the SPSP model as possible. As highlighted in the sub-
sequent sections, the SPDP model achieves these aims and for this
reason is the default precision model used in the GPU implementa-
tion of PMEMD, although the other precision models can be
chosen if desired.

Nonbonded Interactions. Our approach to the calculation of
nonbonded interactions is similar to that described in Friedrichs
et al.15 having been developed at the same time and with overlapp-
ing authors but with several differences and additional optimiza-
tions, including the way in which accumulations are handled.
The algorithm used for the calculation of the nonbond forces

is identical for all three precision models. The pairwise
interactions between atoms i and j, which can schematically
be represented by a matrix as in Figure 2, are grouped together

Figure 2. Schematic representation of the work-load distribution for the
calculation of nonbond forces with N atoms. Each square represents the
interactions between two atoms i and j for which the resulting forces
need to be evaluated. These are grouped together in tiles of sizeW ×W
that are each assigned to an independent warp. Due to symmetry, only
the blue diagonal tiles and the green off-diagonal tiles need to be
considered for the calculation. For details, see the text.
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into tiles of dimension W × W. The evaluation of the nonbond
forces for each tile is dynamically assigned to independent
warps across all of the Streaming Multiprocessors (SMs) of a
given GPU, which are each running a sufficient number of
threads to bury operational latency. The reason for doing this is
that the GPU schedules work in terms of warps which
effectively perform the same mathematical operation on W
values at once. In the case of NVIDIA, all current GPUs process
warps as 32-threads-wide; in this case, optimum performance is
achieved by making W = 32. Since the interaction between two
atoms i and j is symmetric, only the blue diagonal tiles and the
green off-diagonal tiles need to be considered for the
calculation as described below. Unlike the CPU code, which
can just simply loop over atoms i and j, it is crucial to divide up
the calculation on the GPU into as many warp size blocks as
possible. However, this presents a problem when it comes to
accumulating the forces for each atom since the warps can be
scheduled for computation in any order. A naıv̈e accumulation
of the resulting forces on each atom can thus lead to race
conditions and incorrect results. The use of atomic operations
within the nonbond routine to avoid this problem, however,
represents a serial bottleneck that would be unacceptable in
terms of performance. The approach we use is thus to allocate
(N/W) + 1 output buffers per atom where N is the total
number of atoms and W is the warp size. In the case of the
nonbond force calculation, each output buffer is three double-
precision-values-wide for the SPDP and DPDP precision
models and three single-precision-values-wide for the SPSP
precision model corresponding to the force in the x, y, and z
directions of Cartesian coordinate space. Forces calculated
within a tile can then be summed for each atom without fear of
overwriting memory effectively providing a separation in space
between tiles. At the conclusion of the force calculation, we
assign one thread per atom in linear order and cycle through
the output buffers, summing them to obtain the total force on
each atom.
While this approach provides a separation in space between

tiles, it is still necessary to deal with race conditions within a
tile. We have to distinguish on-diagonal tiles (blue) and off-
diagonal tiles (green), see Figure 2. The on-diagonal tiles
include the interaction of atoms i to i + W − 1 with themselves
and thus include the self-interaction from the GB term. In
contrast, off-diagonal tiles include the interaction of atoms i to
i + W − 1 with j to j + W − 1, where i ≠ j. To avoid race
conditions, it is necessary to handle these two types of tile in
different ways.
On-diagonal tiles store two copies of the coordinates and

associated parameters for each atom, one set in shared memory
(index atom i in Figure 2) and the second set in the registers
(index atom j in Figure 2). Each thread in the warp then runs
linearly through shared memory (atom j), accumulating only
the force acting on the register atoms i in the corresponding
force output buffer. As illustrated in Figure 2, on the first
iteration, the force on atom i resulting from interacting with
itself is obtained and stored in the corresponding register for i,
while simultaneously the force on atom i + 1 resulting from
interacting with atom i is obtained and stored in the register for
atom i + 1. Similarly the forces on atoms i + 2 to i + W − 1
resulting from interacting with atom i are obtained and stored
in the corresponding output buffer. All threads then step to the
next column to obtain the forces on atoms i to i +W − 1 due to
interactions with atom i + 1 etc. This approach does some
excessive computational work since, for any given atom pair

ij, the force on atom j is just the negative of the force on atom i,
and thus only the upper or lower triangle of the tile would have
to be considered. However, this is far outweighed by the
advantage of avoiding race conditions that would result from
several threads updating their force contribution to the same
atom.
In the case of off-diagonal tiles, a different approach is taken

such that the symmetry in the interactions is exploited while
avoiding race conditions. Again, the coordinates and associated
parameters of atoms labeled j to j + W − 1 are placed in the
registers, while the coordinates and associated parameters of
atoms i to i + W − 1 are placed in shared memory. If the off-
diagonal tiles were handled in the same fashion as the on-
diagonal tiles, on the first iteration, the force on atom j due to
interacting with atom i would be calculated and from this the
corresponding force on atom i obtained by negation. At the
same time, the force on atom j + 1 due to interacting with atom
i would be calculated and from this the corresponding force on
atom i obtained by negation. Thus, the forces on atom i due to
all atoms j of the tile would be calculated at the same time,
which would require atomic operations to accumulate correctly.
The solution to this problem that is implemented in AMBER is
to partition the off-diagonal tiles in time as illustrated in Figure 2.
By starting each thread offset by its thread ID, we avoid race
conditions in the accumulation and eliminate the need for per-
formance destroying atomic operations.

Generalized Born Terms. The GB terms are calculated in an
identical fashion to the nonbond terms described above. The
Born radii are first calculated within their own kernel and
reduced to per atom radii in an analogous fashion to how the
nonbond forces are handled. The remainder of the nonbond
calculation is then split over two additional kernels.

Bonded and 1−4 Interactions. The bonded and 1−4 terms
represent a very small fraction of the computational workload
(typically <1% of an iteration), and thus optimization of their
calculation is not critical for performance compared with, for
example, the nonbond interactions. However, efficient calcula-
tion on a GPU still requires some consideration in how these
terms are calculated in order to exploit the massive parallelism
within the GPU while avoiding race conditions and memory
overwrites. Our implementation simply creates a list of the
interactions, sorted by type, and then divides up the bonded
and 1−4 terms across SMs on a per interaction basis. Since the
resulting forces need to be summed for each atom, there is the
potential for a race condition to occur during this reduction if
two or more GPU threads attempt to accumulate forces for the
same atom at the same time in global memory. Our initial
attempts to avoid this used atomic operations for reduction of
the resulting forces to individual atoms but showed very poor
performance. Our solution to this is to make use of the tile
reduction buffers from the nonbond calculation as described
above and then sum these forces in the reduction step used in
the nonbond calculation.

Harmonic Restraints. At the time of writing, the AMBER
GPU implementation supports harmonic restraints to a
reference structure. These are handled in an identical fashion
to the bonded interactions being calculated as a bond between
an atom and a fixed virtual particle representing the reference
structure.

SHAKE Algorithm. The SHAKE implementation is currently
restricted to hydrogen atoms since this represents >99% of the
types of simulation AMBER users run. This restriction has the
benefit that each heavy atom and its attached hydrogen atoms
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can thus be handled independently. Our approach is to simply
spawn a thread for each heavy atom during the SHAKE
calculation. This provides sufficient parallelization to keep the
GPU busy. The use of double precision entirely within the
SHAKE routine provides sufficient precision to handle shake
tolerances on the order of 10−7 Å and thus avoids complexities
involved in attempting to implement SHAKE constraints in an
internal coordinate representation as would be required if
SHAKE was to be carried out in single precision.
Coordinate Update. Integration is carried out on the GPU

in a manner analogous to that on the CPU since it is
intrinsically parallel given that each atom can be handled
independently. The updated coordinates are stored in global
memory on the GPU. The integration is done on the GPU
rather than on the CPU to negate the need for expensive copy
operations of the coordinates back and forth between CPU and
GPU.
Thermostats. As mentioned above, three different thermo-

stats are supported. The Berendsen and Langevin thermostats
are applied in the same way during the coordinate update step,
while the Anderson thermostat is implemented as a separate
kernel that randomizes the velocities at regular intervals. The
reason for including the Berendsen and Langevin thermostats
within the integration kernel is that they operate on every time
step, while the Anderson thermostat is typically called every few
hundred time steps. In the case of the Langevin thermostat, a
total of 3N random numbers are required on each step, which
are extracted from a pool of GPU generated random numbers,
stored in global memory, which is refilled as needed using the
parallel random number generator implemented within the
CURAND library from the CUDA toolkit. The same pool is
used for the Anderson thermostat as needed.
Additional Optimizations. In the interest of performance

and conserving limited GPU resources, the energy is only
calculated alongside the forces when needed. Calculation of the
energies causes a small degree of register spillage to global
memory as well as additional code execution, and since one
only periodically needs these values, typically only every 1 to 2
ps when writing to the output file, it is not necessary to cal-
culate these on every iteration. Additionally, this is one aspect
of the algorithm that is allowed to be nondeterministic at the
level of double-precision round-off error. We allow this because
the energy values have no effect on the trajectory of the simula-
tion. However, it was disturbing to observe this in action in the
SPSP mode where nondeterminism was initially allowed at the
level of single-precision round-off error. This was harmless as
the forces remained consistent, but in the interest of avoiding
confusion among end-users, with regression tests showing
differences for repeat runs in SPSP mode, all energy summation
was promoted to double-precision where differences in round-
off of the energies are seen only once in approximately 106

printed interactions.
Parallelization. The parallel GPU implementation is

currently written exclusively using MPI. The reasons for this
were to maximize portability of the code and avoid hardware-
induced complexities such as the fact that inter-GPU com-
munication as implemented in CUDA 4.0 requires all GPUs to
be on the same PCIe controller. Support for GPU to GPU
copies in different nodes is also not yet sufficiently mature to be
exploited in a widely used software package. For these reasons,
the current parallel GPU scaling should be considered as a
lower bound on performance that will likely improve

considerably in subsequent versions of AMBER running on
next generation hardware.
Unlike the CPU MPI implementation, the GPU MPI

implementation is fully deterministic for a given number of
nodes and GPUs. At present, our GPU implementation per-
forms significant load-balancing between the SMs within each
GPU rather than between GPUs, which makes it possible to
produce a deterministic implementation. Achieving good
parallel scaling on CPU clusters has always required the use
of extensive load-balancing due to the noise introduced from
the operating system sharing the CPU resources on a node.
GPUs on the other hand provide significantly more stable
performance, and thus load balancing between GPUs is not as
critical.
In the current version of the software (AMBER v11), the

GPU parallel support for GB calculations is implemented by
dividing the force calculation evenly and linearly across all
GPUs. For M GPUs running a simulation consisting of N
atoms, GPU i calculates all forces for atoms (i − 1) × N/M + 1
to i × N/M. Since GB is a full O(N2) calculation, this
introduces a small degree of redundancy at the GPU level with
a worst-case outcome of doing twice the overall calculation, but
usually much less than this as long as N ≫ M. As currently
implemented, there are three stages to the calculation in
parallel, each in need of synchronizing force data across all
GPUs. The procedure used consists of three sequential
MPI_allGather operations per iteration to merge Born radii,
Born force, and general force data. As the hardware evolves and
GPUs can reliably communicate directly with each other within
a node, we intend to scrap the internode MPI communication
and instead replace it with direct peer to peer copies between
GPUs.

4. PERFORMANCE
To assess both the serial and parallel performance that can be
achieved with GPU accelerated AMBER, we ran a series of MD
simulations representative of typical research scenarios using
the GPU and CPU implementations on a variety of hardware.
The systems used consisted of partially folded TRPCage52 (304
atoms), ubiquitin53,54 (1231 atoms, PDB code 1UBQ), apo-
myoglobin (2492 atoms), and nucleosome (25 095 atoms, PDB
code 1KX5).
In all three simulations, the ff99SB48 version of the AMBER

force field was used with a time step of 2 fs and bonds to
hydrogen atoms constrained using the SHAKE algorithm. The
Hawkins, Cramer, and Truhlar GB model37 (AMBER input
igb=1) was used with no cutoff applied to the nonbonded
interactions and a cutoff of 15 Å for the calculation of the
effective GB radii. The output and trajectory files were written
to every 1000 steps (2 ps). Input files for these simulations are
provided in the Supporting Information.
The software base used for all simulations was AMBER

version 11, including patches 1−15 for AmberTools and
patches 1−17 for AMBER, which were released on August 18,
2011.55 The executables were built under the RedHat
Enterprise Linux 5 operating system with Intel compiler
version 11.1.069, the Intel MKL library version 10.1.1.019, and
the NVIDIA CUDA compiler version 4.0. MVAPICH2 version
1.5 was used for the parallel runs for both the CPU and GPU
versions of the code. The default SPDP precision model was
used in the GPU code. While the Fortran compiler and use of
MKL has little impact on the GPU code performance, this
compiler/library combination gives the best performance for
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the CPU code and thus forms a fair basis when assessing the
capabilities of the GPU implementation. Both the CPU and
GPU simulations were run on machines equipped with a
SuperMicro X8DTG-DF motherboard with dual hex-core Intel
X5670 processors clocked at 2.93 GHz and Mellanox quadruple
data rate (QDR) Infiniband interconnects. Each compute node
was equipped with one GPU and one Infiniband card, which
were each connected to a PCIe x16 slot. Error-correction code
(ECC) was switched off on the Tesla cards, and the 64-bit
NVIDIA Linux Driver version 275.21 was used. Additionally,
CPU simulations were run on the XSEDE Trestles super-
computer at the San Diego Supercomputer Center, whose
nodes are equipped with four oct-core AMD Opteron 6136
processors clocked at 2.4 GHz and also interconnected with
QDR Infiniband.
Serial GPU Performance. The results of the simulation

timings for single GPU runs are summarized in Table 2. For

small simulations such as TRPCage with 304 atoms where the
GPU’s arithmetic hardware cannot be fully utilized, the serial
GPU implementation is approximately twice as fast as a current
state of the art CPU node. The real advantage of the AMBER
GPU implementation, however, becomes apparent for implicit
solvent GB simulations of medium to large systems with 2500
to 25 000 atoms. For apo-myoglobin (2492 atoms), the serial
GPU version of the code is significantly faster on a single GPU
than a state of the art CPU node. For nucleosome, this per-
formance gap increases dramatically such that a simulation that
takes two weeks on a single desktop machine with one GPU
would take nine months using the same desktop machine with-
out GPU acceleration.
Parallel GPU Performance. The parallel performance of

the GPU and CPU implementations is compared in Table 3.
A throughput of up to 135.1 ns/day for apo-myoglobin and up
to 3.95 ns/day for nucleosome can be achieved with eight
NVIDIA M2090 GPUs, which is a factor of 4 to 5 faster than
the maximum throughput that can be achieved on a typical
supercomputer given that the CPU scaling plateaus long before
it reaches the performance achieved by the GPU implementa-

tion. Even a single GPU is a factor of 2 to 3 faster than the CPU
scaling limit.

Precision Model Performance. As mentioned above, the
AMBER GPU implementation supports three different
precision models. The DPDP model is logically equivalent
to the traditional DP approach used on the CPU. However,
the use of DP on GPUs can be more detrimental to
performance than its use on CPUs. Therefore, the desire to
achieve high performance prompts for use of SP where
possible. It is critical though to use SP carefully in order not
to detrimentally affect the accuracy of the MD. For this
reason, we designed our hybrid precision SPDP model to
achieve performance very close to that achievable with SP
but in a manner that does not impact accuracy. While we
recommend using the SPDP precision model, it is instructive
to compare the performance of the different precision
models available in the AMBER GPU implementation. As
shown in Table 4, the single precision (SPSP) model

achieves the highest performance as expected but, as
highlighted in section 5, at the cost of accuracy. Our hybrid
SPDP precision model, however, achieves a performance of
greater than 75% of the SPSP precision model with accuracy
comparable to that of the full double precision (DPDP)
model, which is between 4 to 7 times slower.

Table 2. Single GPU Throughput Timings (ns/day) for
AMBER GB Simulations with a Time Step of 2 fs Using the
Parallel CPU Version on One Node (12 Intel X5670 Cores
or 32 AMD Opteron 6136 Cores) and the Serial GPU
Version with the SPDP Precision Model on One Node (One
Intel X5670 Core and One GPU)a

CPU/GPU
TRPCage

(304 atoms)
ubiquitin

(1231 atoms)
apo-myoglobin
(2492 atoms)

nucleosome
(25 095 atoms)

GPU version
M2090 (6 GB) 399.9 184.2 78.1 1.42
C2070 (6 GB) 364.1 157.2 64.3 1.09
C1060 (4 GB) 234.6 78.3 31.5 0.40
GTX580 (1.5 GB,
PNY XLR8)

471.1 215.9 88.7 −

CPU version
32 × Opteron
6136

225.0b 29.9 10.3 0.08

12 × X5670 247.1 19.8 6.6 0.07
aFor details on the hardware and software stack, see text. A dash
indicates insufficient GPU memory for the simulation. bThe CPU
code requires >10 atoms per core, and thus the TRPCage simulation
was run on 24 CPU cores.

Table 3. Multi-GPU Throughput Timings (ns/day) for
AMBER GB Simulations with a Time Step of 2 fs Using the
Parallel CPU Version (12 Intel X5670 Cores or 32 AMD
Opteron 3136 Cores on Each Node) and the Parallel GPU
Version with the SPDP Precision Model (One Intel X5670
Core and One GPU Per Node)a

CPU/GPU
apo-myoglobin
(2,492 atoms)

nucleosome
(25,095 atoms)

GPU version
8 × M2090 135.1 3.95
4 × M2090 115.0 2.71
2 × M2090 93.1 1.80
1 × M2090 78.1 1.42

CPU version
2048 × Opteron 3136 − 0.53
1024 × Opteron 3136 − 0.78
512 × Opteron 3136 − 0.65
256 × Opteron 3136 − 0.55
128 × Opteron 3136 29.8 0.31
64 × Opteron 3136 18.3 0.17
32 × Opteron 3136 10.3 0.08
12 × X5670 6.6 0.07
aFor details on the hardware and software stack, see the text. A dash
indicates lower speed than with less nodes.

Table 4. Throughput Timings (ns/day) for AMBER GB
Simulations of Apo-Myoglobin (2,492 atoms) with a Time
Step of 2 fs Using the Serial GPU Version with Different
Precision Modelsa

precision model SPSP SPDP DPDP

M2090 (6 GB) 92.7 78.1 25.8
C2070 (6 GB) 73.7 64.3 20.5
C1060 (4 GB) 41.2 31.5 5.4
GTX580 (1.5 GB, PNY XLR8) 111.4 88.7 16.0

aFor details on the hardware and software stack, see the text.
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5. VALIDATION

A critical and often overlooked aspect of any major change to a
widely used scientific software package is a detailed validation
of any and all new approximations made. In the case of the
AMBER GPU implementation the validation falls into two
distinct categories. The first is a detailed testing of the code
itself to ensure that it correctly simulates the existing systems
and does not introduce any new bugs or contain critical logic
errors. This is the key reason why we implemented a full double
precision (DPDP) model within the GPU code. This precision
model matches the CPU code to machine precision and thus
can be used to check that the GPU code is indeed giving the
correct answers. This allowed us to take the CPU-based
regression tests that we have used for many years to validate an
AMBER installation and run them using the GPU code and
obtain answers to the limits of machine precision. More
complex, however, is the second category for validation which is
the careful testing of our hybrid (SPDP) precision model. This
is significantly more complex since it requires a careful
evaluation of any subtle differences in the dynamics as well as
ensemble properties from converged simulations run in DPDP
and SPDP precision. In this section, we attempt to extensively
validate our SPDP model comparing a number of key
observables across all three, DPDP, SPDP, and SPSP, precision
models.
5.1. Single Point Forces. The first metric tested was the

effect of the numerical precision model on the force
calculations as compared to a reference precision model, in
this case, the result from the CPU implementation. We are
using the starting structures of the test systems described in
section 4 above. The deviations in the forces are summarized
in Table 5. The DPDP model matches the reference forces

very closely with maximum deviations not exceeding 10−7 kcal/
(mol Å) and RMS deviations not exceeding 10−8 kcal/(mol Å),
even for systems as large as nucleosome. These deviations
are entirely due to the different order of execution of the
floating point operations in the CPU and GPU implementa-
tion. The DPDP GPU implementation of PMEMD will thus
generate trajectories of precision equivalent to the CPU
implementation. The forces obtained from the SPSP model,
however, show very large deviations from the reference
values on the order of up to 10−2 kcal/(mol Å) for the largest
system studied. Such large deviations introduce significant
numerical noise into the simulations, and it is reasonable
to expect that this may render the results of MD simula-
tions questionable. Calculating the force contributions in SP and

accumulating them in DP, however, leads to an improvement
of more than 1 order of magnitude in all cases for the SPDP
model as compared to the SPSP model. In the following section,
we will indeed show that the forces obtained from the SPSP
model are not precise enough to conserve energy in biomole-
cular MD simulations and can lead to instabilities in long time
scale MD simulations, while the SPDP model is sufficient for this
purpose.

5.2. Energy Conservation. One of the most important
gauges for judging the precision of MD software is its numerical
stability, which is reflected in its ability to conserve the
constants of motion, in particular the energy. To this end, we
have performed constant energy MD simulations of the first
three test systems described in section 4 above. We collected
data for 100 ns (TRPCage), 50 ns (ubiquitin), and 20 ns (apo-
myoglobin) after an initial equilibration for 1 ns at 300 K using
Langevin dynamics. Center of mass motion was removed
before starting the constant energy runs. In addition to
simulations using a time step of 2 fs with bonds to hydrogen
atoms constrained using the SHAKE algorithm with a relative
geometrical tolerance of 10−6, we have run simulations using
time steps of 0.5 and 1.0 fs without constraints.
The energy drifts along the trajectories are summarized in

Table 6, while Figure 3 shows a plot of the total energy for the

trajectories of TRPCage and ubiquitin for the different pre-
cision models at a time step of 0.5 fs. The corresponding plot
for apo-myoglobin is very similar to that for ubiquitin and can
be found in the Supporting Information along with plots for the
larger time steps. The plots underline that it is important to
validate the precision models for trajectories that are long
enough to uncover numerical instabilities. While the SPSP model
seems to perform reasonably well for a trajectory of 1 ns length,
in particular for smaller systems like TRPCage, it becomes
apparent that the errors introduced lead to unacceptably large
energy drifts in the long term. Apart from the magnitude in the

Table 5. Deviations of Forces (in kcal/(mol Å)) of the
AMBER PMEMD GPU Implementation Using Different
Precision Models As Compared to Reference Values
Obtained with the CPU Implementation

precision
model

TRPCage
(304 atoms)

ubiquitin
(1231 atoms)

apo-myoglobin
(2492 atoms)

nucleosome
(25 095 atoms)

max deviation
SPSP 3.0 × 10−3 4.8 × 10−3 4.2 × 10−3 2.7 × 10−2

SPDP 5.6 × 10−5 3.7 × 10−4 1.6 × 10−4 1.1 × 10−3

DPDP 1.1 × 10−8 7.3 × 10−8 3.4 × 10−8 8.0 × 10−8

RMS deviation
SPSP 5.0 × 10−4 6.1 × 10−4 4.1 × 10−4 1.5 × 10−3

SPDP 7.0 × 10−6 1.5 × 10−5 8.1 × 10−6 3.0 × 10−5

DPDP 1.5 × 10−9 3.6 × 10−9 2.6 × 10−9 3.2 × 10−9

Table 6. Energy Drifts Per Degree of Freedom (kT/ns/dof)
from Simulations of 100 ns (TRPCage), 50 ns (Ubiquitin),
and 20 ns (Apo-Myoglobin)a

time step 0.5 fs 1.0 fs 2.0 fs

TRPCage (304 atoms)
CPU 0.000006 0.000066 0.000355
GPU (DPDP) 0.000012 0.000082 0.000382
GPU (SPDP) 0.000003 0.000070 0.000222
GPU (SPSP) 0.000184 0.000252 −

ubiquitin (1231 atoms)
CPU 0.000004 0.000011 −0.000216
GPU (DPDP) 0.000001 0.000006 −0.000247
GPU (SPDP) 0.000003 0.000030 −0.000165
GPU (SPSP) 0.001065 0.000305 −

apo-myoglobin (2492 atoms)
CPU 0.000012 0.000094 0.000416
GPU (DPDP) −0.000004 0.000117 0.000290
GPU (SPDP) 0.000019 0.000185 0.000139
GPU (SPSP) 0.002230 0.000442* −

aThe SHAKE algorithm to constrain bond lengths to hydrogen atoms
was used for a time step of 2.0 fs; no constraints were used for smaller
time steps. A dash indicates that the system heated up extremely
during the simulation to the point that it is meaningless to report an
energy drift. An asterisk indicates that the energy drift increases
dramatically for longer time scales.
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energy drift, the plots for the other time steps show a similar
behavior (See Supporting Information). Table 6 shows that the
SPDP model is able to conserve energy to the same degree as the
full double precision model (DPDP) and the reference CPU
implementation. The SPSP model, on the other hand, shows
energy drifts that are 1 to 2 orders of magnitude larger and,
on the time scales investigated, leads to completely unphysical
results. While the CPU implementation and the GPU imple-
mentations with the full double precision model (DPDP) and
mixed precision model (SPDP) achieve excellent energy con-
servation on the order of 10−6 kT/ns/dof, where dof means
degree of freedom, for simulations with a time step of 0.5 fs, the
energy drift for the SPSP model remains as large as with a time
step of 1.0 fs. In addition, the energy drift for the SPSP model is
not constant and in general increases significantly along the
trajectory as the temperature increases, which eventually leads to
unstable simulations.
By way of comparison to other GPU implementations of

MD, the closest published constant energy GB simulation is
that of the λ repressor (1254 atoms) using OpenMM.15 Simula-
tions of this system at a time step of 1.0 fs over 1 ns of simula-
tion time without constraints using the GPU implementation of
OpenMM gave energy drifts of 0.0054 kT/ns/dof (NVIDIA
hardware) and 0.0178 kT/ns/dof (ATI hardware) (Table 3 of
Friedrichs et al.15) compared with our values of 0.000006 kT/
ns/dof (DPDP), 0.000030 kT/ns/dof (SPDP), and 0.000305
kT/ns/dof (SPSP) for the similarly sized ubiquitin system
(1231 atoms). It is also interesting to compare the energy
conservation achieved with the AMBER GPU implementation
using the typical simulation settings that one would use in a
production MD simulation with those published for the OpenMM
implementation. Most AMBER simulations would use SHAKE
constraints and a 2 fs time step with the SPDP precision model,
which for ubiquitin gives an absolute energy drift of −0.000165
kT/ns/dof. This compares extremely favorably with the drift of
0.0060 (NVIDIA hardware) and 0.0558 (ATI hardware) for
OpenMM. The energy conservation of the AMBER GPU imple-
mentation looks even better when one considers that the OpenMM
constraint numbers were obtained with a smaller time step of 1 fs.
5.3. Structural Properties. On the molecular level, protein

dynamics are at the heart of biological function.56 MD simula-
tions that are able to accurately describe protein motions aid in
understanding the multitude of functions that proteins carry
out and can be used to interpret and predict experimental
results that are related to its structural and dynamic properties,

for example, NMR spectroscopic parameters such as spin relaxa-
tion57,58 or residual dipolar couplings.59,60 In order to scrutinize
the reliability of our implementation for protein dynamics, we
present results of MD simulations of ubiquitin with the different
accuracy models of our GPU implementation and compare these
to trajectories obtained with the CPU implementation which
serves as a reference. We focus on root-mean-square deviations
(RMSDs) and root-mean-square fluctuations (RMSFs) of the Cα

backbone carbon atoms with respect to the crystal structure
(PDB code 1UBQ53,54). The highly flexible end tail of ubiquitin
(residues 71 to 76) was excluded from our analysis. Results
for the radius of gyration Rg of ubiquitin can be found in the
Supporting Information.
Although the use of a thermostat will to some extent cover

up numerical noise introduced by numerical inaccuracies in the
implementation, we are analyzing constant temperature
simulations here since typical biomolecular AMBER simula-
tions are generally run with some form of temperature control.
In order to obtain statistically meaningful results, 50
independent MD trajectories each of 100 ns length were
generated at 300 K both for the CPU implementation and for
each of the precision models of the GPU implementation. The
ff99SB48 force field was used for all simulations with a time step
of 2 fs and bonds to hydrogen atoms constrained using the
SHAKE algorithm with a relative geometrical tolerance of 10−6.
The GB model developed by Onufriev et al.40 (AMBER input
igb=5) was used with no cutoff applied to the nonbonded
interactions and a cutoff of 15 Å for the calculation of the
effective GB radii. The output and trajectory files were written
to every 1000 steps (2 ps). Temperature control during produc-
tion runs was achieved with the Berendsen weak coupling
algorithm43 using a time constant of τT = 10.0 ps for the heat
bath coupling. The initial coordinates and velocities that form
the starting point of the 50 trajectories were generated using
the CPU implementation as follows. After energy minimization
for 2000 steps followed by heating and an initial equilibration
for 1 ns at 300 K using Langevin dynamics with a collision
frequency of γ = 1.0 ps−1, snapshots were extracted at time
intervals of 4 ns from a constant temperature MD simulation at
300 K. Each of these snapshots was then assigned random
velocities corresponding to a temperature of 10 K followed by
heating and equilibration to 300 K using Langevin dynamics for
50 ps and removal of any center of mass motion that may have
been introduced. Using the CPU generated restart files in all
cases guarantees that any numerical differences observed

Figure 3. Total energy (kcal/mol) along constant energy trajectories using a time step of 0.5 fs without constraints. Shown are results for TRPCage
(left) and ubiquitin (right) for different precision models. The insets show the first nanosecond of each trajectory.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct200909j | J. Chem. Theory Comput. 2012, 8, 1542−15551552



between the various implementations can be traced back to the
numerical precision of the implementation and is not an artifact
of different initial conditions. Input files for these simulations
are provided in the Supporting Information.
The plot of the RMSD values vs time (Figure 4) clearly

shows the stability of the MD simulations using the CPU
implementation and the GPU implementation with the full
double precision model (DPDP) and the mixed single/double
precision model (SPDP). The value of Rg also remains constant
throughout all simulations of ubiquitin using the CPU and
GPU DPDP and SPDP versions of the code (see Supporting
Information), indicating that the relative compactness of the
protein is maintained. The Rg value stays around 11 to 12 Å,
typical for proteins of this size, assuming a spherical conforma-
tion,61 and are in good agreement with the Rg reported for
other native-state simulations of ubiquitin.62 The RMSF values
for each residue for the 50 native-state simulations are shown in
Figure 5. The data show an excellent agreement among the
CPU implementation and the GPU implementation using both
the DPDP and the SPDP precision model with the majority of
the residues remaining within 2 to 3 Å of their positions in the
experimental structure and somewhat larger fluctuations around
residue numbers 33, 48, and 63. On the time scale investigated,
no major structural change is taking place during the simula-

tion, confirming that the protein remains within a native-state
ensemble.
The situation is very different for the SPSP precision model

of the GPU implementation. While approximately half of the
trajectories show a similar behavior and stability as the
trajectories obtained with the other precision models and the
reference CPU implementation of PMEMD, the remaining
trajectories experience a very large increase in the RMSD values
(Figure 4) and a corresponding increase in the RMSF values
(Figure 5). The reason for this behavior is that the numerical
noise introduced in the simulations due to rounding errors can
lead to an accumulation of errors such that ubiquitin starts
to unfold. This is accompanied by an increase in Rg (see
Supporting Information) and is also reflected in the large
RMSF values of the residues close to the termini of the protein.
Since it cannot be predicted whether a simulation using the
SPSP precision model will be stable or not, no judgment can be
made whether the results obtained are meaningful. The GPU
implementation of PMEMD should thus only be used with the
DPDP and the SPDP precision models. On the basis of the
results shown here, we recommend the use of the mixed-
precison SPDP model since the numerical results obtained are
comparable with those obtained with the full double precision
DPDP model but at significantly reduced computational cost.

Figure 4. Root-mean-square deviations (RMSDs) of the Cα backbone carbon atoms of ubiquitin (excluding the flexible tail, residues 71−76) with
respect to the crystal structure for 50 independent trajectories as obtained with the CPU implementation and the GPU implementation of PMEMD
using different precision models.

Figure 5. Root-mean-square fluctuations (RMSFs) of the Cα backbone carbon atoms of ubiquitin residues 71−76 with respect to the crystal
structure for 50 independent trajectories of 100 ns length as obtained with the CPU implementation and the GPU implementation of PMEMD using
different precision models.
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6. CONCLUSIONS AND OUTLOOK

We presented a framework for the acceleration of classical
molecular dynamics simulations on graphical processing units
within the PMEMD program of the software package AMBER.
In this contribution, we described the efficient and highly pre-
cise implementation of implicit solvent generalized Born
molecular dynamics simulations realizing performance that
exceeds that achievable on any current conventional supercom-
puter. The implementation supports serial runs on a single
NVIDIA GPU or parallel runs across multiple GPUs using
MPI. Performance for moderately sized systems can exceed 100 ns
per day, making microsecond or longer simulations routine
on deskside workstations. For large systems, the performance
differential between our GPU code and the CPU implementa-
tion increases significantly. A GB simulation of the nucleosome
running on just one NVIDIA M2090 GPU completes in two
weeks what a current high-end workstation would take nine
months to run using CPUs. This massive performance increase
for minimal investment in hardware will transform the
traditional molecular dynamics workflow, providing a platform
for sustained innovation.
The implementation is transparent to the end user and does

not require any specialized knowledge beyond that required to
run the traditional CPU code. Our GPU implementation sup-
ports the majority of the features provided by the CPU imple-
mentation including the AMBER and CHARMM families of
biomolecular force fields. It reads traditional AMBER input and
writes standard AMBER output. We have developed a hybrid
precision model for floating point arithmetic termed SPDP that
provides performance close to full single-precision calculations
but retains energy drifts in constant energy MD simulations
and structural properties of proteins for long time scale MD
simulations equivalent to what is achievable with full double
precision. Energy conservation with our hybrid SPDP model is
approximately 1 to 2 orders of magnitude better than what has
been published for other similar GPU implementations of
molecular dynamics. Simulation size is limited by the memory
available on GPU cards, which at the time of writing is at maxi-
mum 6 GB corresponding to approximately 54 000 atoms.
The current cost benefits of GPUs are enticing, and this is

driving both soft- and hardware development at a rapid pace. In
a few short years, GPU-based MD codes have evolved from
proof-of-concept prototypes to the production level AMBER
GPU implementation we described here. With GPUs becoming
ubiquitous in workstations and also as accelerators in high-
performance computing (HPC) platforms, the impact of our
implementation on the field of molecular dynamics is broad and
transformative. A GPU accelerated implementation of the particle
mesh Ewald (PME) algorithm for explicit solvent calculations is
also available in AMBER 11 as described in another publication.13

This, along with future support for advanced features including
accelerated MD (aMD), umbrella sampling, replica exchange
MD (REMD), thermodynamic integration (TI), polarizable force
fields, and constant pH simulations means the use of GPUs is a
viable alternative to traditional supercomputers for classical mole-
cular dynamics simulations.
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(59) Showalter, S. A.; Brüschweiler, R. J. Am. Chem. Soc. 2007, 129,
4158−4159.
(60) Lange, O. F.; van der Spoel, D.; de Groot, B. L. Biophys. J. 2010,
99, 647−655.
(61) Crighton, T. E. Proteins: Structures and Molecular Properties, 2nd
ed.; W. H. Freeman and Company: New York, 1993.
(62) Alonso, D. O.; Daggett, V. Protein Sci. 1998, 7, 860−874.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct200909j | J. Chem. Theory Comput. 2012, 8, 1542−15551555

http://ark.intel.com
http://ark.intel.com
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_Toolkit_Reference_Manual.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_Toolkit_Reference_Manual.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_Toolkit_Reference_Manual.pdf
http://www.pgroup.com/resources/cuda-x86.htm
http://www.pgroup.com/resources/cuda-x86.htm
http://ambermd.org/bugfixes.html
http://ambermd.org/bugfixes.html

