
., .- I.I..�.
-: -: �, -,- -" -- ' -�-, -- .'.' � -��- � -� '- --, 7-- -----, �, I �'-' ;�'- ,,. --, -: ��- ' ��',:.-- "': -�"'� �.I., -1 -'� -, I -I,-]I�, " ---, ��- �I,� I,-- �. �' �- 1, , , ,, -.1 -�" -- ,':�� -I I,��� '.�',;--,,, ` -���-�,I��� ,-' �,- �,�I- ��--.,-I.�

.' ,.,,-. I:1I: .. -- 1:'-��,�I,
-- ,'.-�.�,:I--����- -,--�--'-, �'.-:-;l%�--I-1-I,-,-.��-II.-

� � -7, .�
-�7--,-,..�I-�"�'.

" '�-L:� ��',.�' '�

--. �----1� -�_ -�- , -,-."--..'m--I-- � �,- ,I-,

,-:; ,' �: ,�� �- ,,-- , , ;.��

--. ,;;,-:,, -��,-,-I --- -���j.��� --
.- , �-,.� � I.-,� , I .�� � I �' -- ''' ��'�-'::� I:. -�' I'ii

�-� ., -- -�-

-�.��:`� -���-��, ,� ..,- �.".-�,,�1� �- .'',-�:'� '-'�-,
-,--,'-'---.',-- I,�-7,-I-,���,��.-, �'.-�I`I

-. -- ,-I�-�,I.4�I-�� ��I ': �,_-�I� ';��.�,�7,-',''-
�� ,��.," --� - I� -':;---- -Z -,i,.,-'� -,-, �".,,.,,.11," ',-'�-a1��--�

�-,r",�1:
:��--1�--,;- _----I-,

-,-'-'-�
-, ,,----,�,,,,-,�-�--.",- -- -- ,-,�� -- ,",,� , "":--�����-.I:-,

."--"�--',.'--,
,-�': ", '�II.,1�� -'�� -- -, -, �., �- � ��."' �, "--l' �-�' . ,-I ��IlI-. ,-� --

� � ;"""�' �': "-, �: -: ', � .-, '�-, :'�--' : �7�--I-�,�;., �-1'�-- ' � �' 1: -, ` :'I�---�I,

I ,,, : -" -.,��:-'i ".'� '� -�."I.-,-- 1;.-,-�r��-,,,,
-�,

-'t:��"

14.�.1, -1 "I ---. -'- �'. .,�,-'I--,- -�� �" �--�.- -"

7'---.:��,�' '� -., ,�" "�' � , � ,'�- -..��" � ,Z 4�,-' , ��. , , '�nI �L-l �-f �"�,�� --, -",I-- '- -- ,-�11.,��.--�
��---t',-

,�, -���... � --,--� ,-"�,"'��
�. �"--

.- �'� , � -- , , -, ,' '-.'� "."-, --- ,�, ,,-�',�' .- , '",�"--- -,�" ,'

,-- :'----%, ,,�.,--' � ,:-��'--,, ��- -.. -, -,--,,---� �"'� tl -,---� ,;�-,__ , ,"; ,-,,
,-�-. �- -�-�'-- ,��'-;-�- -�-, -, --- ",�'-- -,-�-�,,�''

I-�i�,-, �--': -,,-,,",,-1.
'-,-'l 1, -,,,� � -' --,�

�' "�,.
,'-

' -' '-
-----.-

,-,:-��-1,�V. -,,'�I

�,.,,------,,--.-,, ,r�-,-"� .- --''��� -:] r'--i-'
-.-- ,,,,,�.�--,,,- -.

-'�---- -- -:-,-,-,- '- �'�.'�'`,'i-'-1 ., ,�' � -r-- -, --. ��F� �.-�� -'.,-��,,- �,'-"
-,,-j -� '�� "',K,��j' ?� ��, -, .--�):'� t. , '-.:Z��-- ..;-_, .-- �'"b, ��-�-,I.'t-�n1,,�", -1..�.�:: ,--_�.�" ,7,

-,, -�,� .- ,�--.,--7,,-, �, ,---" ----- ,'-'-'i,�Ii�� ' 'II-I". ,_,,,

�"'- -�.--. ' �� ,;-- --- ,",,�- ,-,-,---� I----- --- ,-�"j.. -,,---`_--7 ",.

,--, -��- ,- --'E �'- --- ',�- --i "��,,!, �'!�- �' -L-"� :� .; �.�-''-1, '�""-�,�'?
' � '.; , , , -, �' -. - - -

,�.��.� '�,,-.- ��,''-��:',,�T�, it .: ',w,� '- 1, , �-,� , "� e ,'-, �::-�,.- ,,,,. .'��-., .ll.f
'�-,�. �'�,,.� ,,

"" 1. �.;':�1�----,,,---
-, -�- . ,.-��� I �Y' -' I Ix�, ,' ,-,---,-.��--,�' , 7-'� .",_�:�

-' -��
� ' " � ',

��,�-
--,��

',

I -ll�-

,,�"'',
.- ,'.. , � ,

,----��-��Z� , �- '-�-----! --"-' -- ��---.,,� -,-,� :'� � " :��-�I-1 --- � -�--- I--- � ,,:,

-- ,':� -��'""' -��' ��i�� -,, -"----� -':.,-,,�" , ,-;"" .. �� -",", ,-, ----- :-- ,,,, ,,�� "��,
---- �-,--- "-� -. � �'��," -.,�� " -��t' --. : -,-, Lt -,��c�,,-�",'�'-'. --'�-'�"."'-� �,'- , -,',',�,.,,

.�
� .,,����,-

,'-'-`--- , ,,, -".,�-,-- . ���-�-, "'l- ': -:z," ,---
,-� �'I�i ���,�,, ���. ",���,,�

-- ----- � -, t -'-- ��=-' '-,", - �-� �-' �--"� -'--�,"-.'�,," ,'--,'��: ,- -, 7", -Z ',l 1� �' -,���,-, -, -, ',i' "�: -,--�
i", -- , � -.,-- -- ""' -,'-'�- ,-�,, ". � ��,--.�,,�,-.- -, -- �- �

---.

�,----,--�'

-3 -- -- �"',� " ,-, ,.-,-:

�.-� ,-�--:� -��,,-- ------, -. -,- --" -�t�-.�--. ��'�" -"�7!,.e-,,-�j --".-,-- -"W�,,- : ,;,, -�.--.,_1...... : .�,,- -.- �-,,-� -�-���,
-:-�- -, -���' �� ""�,�� "�' �- �,:��- -f� ., �

., �,-� --,- ,q-.���.,�,�7- �,'�,'�� �� �� -�"','.'�"' :n-- ,�-Z� -',' '� -- ",.: ,�,----,:�
� ' "�� -i� ",'''-,-,

��: � .,,," � ,�, 3--.'.�,,,:
,, ,- � -�- : 1 �� � �`��' -"r,---" -' � ". ,", "�'�"�!'; -I..- �" ��.,, --1 -11 -�-�--�,l

-".-I"�-, " ,. �" ,� �--"�' ,-" ",-��

-N-'.� ,C'-!� --,,,--��:-,,4'-!'--�,�-",,�
--,

... �', ,-- -� , ,-,-,,-,,
-- ,� '�.-, " ", -�', "- , ,-, -� I�-- --� � II v 10- ,-- �"'�:" ----- ���,�,

'.�-- -., 44 -Q--7�' -_''`�--_ '--�T',-0''-- ,--� -'- -�� --.!, , �'�"' -- , �' , t "e,-.1 �--,: -' -", ',� � -'.�-- -;� ----l ;-" , -�-"-'i�'.-.� �--�---- -'�"'�-, -)-�- ---- �- --- , ",�- �.�,,�".� �� : ! , ,"', .1-

q I- �11, --".,",-�� �'� �'..-�--�4'--'� :�;'���-'�.--� ,-

' '�,

--`_

-q
-::,l'-,-

-'-' :,--
" ---,-- -7�' i;-'--" ,!. "---,. '�"' , �"" �"--' Z,., �'�',, �.� ,-� , ,-,-"- �'; --'�'� _"-,�- .�,-: ,�I,-,_-I ��' I �, -,

'-f -' ,- --- -- ,,,.,-- -Z, ': , �'-�-' --'i.. � ,,.--. ,', '�",I LI - �;�-. ��--'''
,-:Z� �- 1��.-� '� �,'�� ,� -l",---.-,-, , ,'.,--:-�,:-,.--, :1-�' � ,,Z,, ,�.---:'

-.�:,-, ' �---,-
, -'-

-:- �' -, '`:- � .;-�" ���' I ,-, " Z- .�-.-:� '�,"7"--,��:,��-�,, �-, -,- ,-',1�
,, -. ,� ��-�� � �' � � - �� :��' ��I � -- , � - �-.'�- , ��' , ," - , �- -'� � � � � :"'�' , -!� , - , ,�,� " - -1 . -, , �� - --,-� , pq-:����,

�"�
-"7-,-,'-

--� "'.,�-
,,-'

'��-,�;' � :!,-.' �." -�- -"' -"-"'-,',;--,� �:" -�

,'q ',�" ", .--,, --,..% �':',,---"-�-
".-
-- e -

-, -,
".
--'

-�-----.'

-' -
,,-,-,.'--,-

.��-.---,,

---,--'-�'--�� � �'--" --�- .- -,- ��: ,,'. ,;, I-

,,_y',--- "-��� ,-,-- -� ,- - �--, -- �--,-�� -'. .�II,- ��, � -, ,-� ,' ; �� �:' �", .,,-,-�' ----. �,,

-- ��w-- .:', ,", �;rI,,� �,��,,,I,��-�---,'
, "�

-, -,.,-.' -- �- '",, "-�- -�--�� ,��--I�L� .,-""' :'-� :'� -, "���
-- -�'.-' ":-� '�--�"-" i�!!� � ,- --�',-, ', ���"" -, --- -'� "-'-"� �,-, � ,�w ':--�r ----� -�� ��. , �' -�7-,,,. �, ,- -� ,-- --� --- "--�� ,-- �-. -',�-�I, -Y'.� '���"

-'- .� - " , -, -_, - , - -"'-.','-' �,�,'� '�' -r.,-,-,.,�,-,�I I-,,,

,� -------- �,-,-"'---���,I-�''---�� :'.'�-- ," �""-"�'-'�:,.��,_���,�-.',,��', '5' -- -- '-.:
,, " ��.. --. ""-�,-,.s,.,

-- � "I I- ,,-"" �-! .'-''- -- �-, --- ,' ' -, --�' -� ' ", : .'':�� -,,, -:- ---- ,--- �-- ,-"-- -� , .
�xlI

��.-

�---.-II-I,�..'e--

'�.I--�� ----------, �- -1 -.1-1 J"! 2- -.I, -�""'7 -, �---- -�--]--"--"� �,` , � � -- --., ,-----, , '," --. �----� �: -'-z2--,.. .", -,��-,,,':
��4 ,� ';��.-' -!�.--�-M, "!i �.�-,, --- , �1, , �--� 7", � : �,1---,' .: -, ", � I- -,, -.�" " ,- ,-'. .' � -" -"� ,-- ," , �, --'. ��Z--'�� -'r7:�� , ,'--"--' �'--.'-'

.,-,",,,.-�
� , --,--,I----�,-' �'-,", , -�,

-'--'' -''-'
'-, '-,'�'--.-'-�''��:1,���--- --- '':--- �-�� -. �--'��,- ,� , '� �� � � :', , ."-'�'--';�-

��---- -11-�,�,-'�' , -s7,.. �" � , -: �� ::4-I-I11 ,---�' -, -" , .�-�,,--,'r
, r" -,-� ___,

'''--', ,t--'m �' �-.
� "I� -��-, e ,,,.,�

:, ,.,-- .- ,�.'

- , �" '''-

-'�`r`

' Zll-'�'T�--'

� ------
-;�,'�

�:"i":-�

,'�i
���'V�-�---

-- 'I- -�'- -,-, ' 1 -�.-ZI��'-.- p -;".-"--.'�`r .�" " �� 1 ., --,�-- 1. -";

,, � ,�- --, !," n:',,-'; .-,,�I- ,-,--
-,, --,--'� '. --� '�'., Z�'-' -. �" I,',I-:����;-, �'���.-- ----- ,-, 2

- ,�,--.---'-�'�-.-�--�.---
�: ,'; �' --- , , �: �--I.,�--.,- 1�

�,�,-:--,:,;---,
', -1 '�'�--�'.-"i".--.-!�--!:-,.,

-- r--'--'�-,5;`� -: -ll� � 1, �; ' 1-11 I- �' I, I--�f:
'. --- ,,-,--'�"-, � ���, ,, ;'-, ,�,- -- � -�I1, � -1 -�- ---.��'.-',�--,,-- %.,.- ,� I,--,�-._-- --

��-�-�':�,��- �, -'�� y-�,�:� ----- ,'� ��;,,v �---I .-I ---. � I.1I,,��
-, ---I`�,'�-':-' --"�'---.,,-- .I. J -�.1���---- �-.,-�,,-,� `- ---- �-�p

;_--�,"�' -�':'�.-,,� -, "�- -'i : -.--�,,, o -�-�,.�
-,�-�-- �,-,-

-- " " , � '� -, ," -" , -�'�,,-:,,�',��!"'�
�:;-

-�' �i-�'�' _" ��'-.--"'�"--;' 'L, ,.'.. .-- �- ,- �,�"�,.--:'�,,,,-:,-
.1

,,, -,'.' �� � '��; ' '---�---.�- ,-�-- ' ",,-�";-, �� �- -,-,11 .,I, �� .�5,-�`�' '� -,�.--�,, """,,,: ,,I�, -�--;"--� :'U.
,� ,�- � --, ," ' � , ', -Z�" -��' --,-", , .�'. , �-,,-,,,,,-�,,�: �-" --�, �-�5,�� --,-, -, --,-, ."�m,,,I

-�-",� "- �� 'r " -- --- ','-� �'-�'",""-1-11 ,�,,,-��.,-,-,.',_-.� ,-�,�:--- -, �'

,� -- -";�---.���--.,.-
-- '';�'7 ' -- ''-, -,��-�-,�-.-:,` ,-'-�'Y� �,
-, �:,"'��,L, -, � "" 1, ",4 , -'��' �t,%� "4, -. " � � ', : --� � -,"----; -'-�-!� � '.'� ,�. -�--- ,, -, , -�"'-,� , --� '�' �;" 1�i-: , , : 1T, �%-2 !'.. -'- ��' ,':-!��2 �F- '��-- � , .j�.- " �, '. -1,--,d,,�,-�',.- -'� �- ��;�� ".-,'i�_',---,-,�,-�.

-.
� - �, ,,�

,Z,-,-I�,,�� -. '�,��-��,,!, �'7,-'-'�� -'.-,�- :,'�'�-- -, � ,, � "-�' " -- ,'---,- ,'

-,-,�-
�' ,7,�--� ."�""�---II'-,'-AI", � --,-�, ". -1 �;,-- -.t ;- �- ,�� _-�`��-'�'�'� � ,�..' -,"'I--, �,',,------� ,--,--�" ",---- -�.-'-- '- 4 --';� -� I I -.1

,�� .,,-- .,,-;Z-,
, ,�'.-" �. ;� --. �-�

-,R,, -�4��, ,�--.. ,f ,-, --� " :,"-.-
,. -,r .",-�,�'

�--��,,�

-� .,--

.!� � ,:" � '�-�-

--. �

�" , -- -,, , -,.. -, -,---,,�-;X: ,,- ��,, ,.

,.- � 4 �' , --,: -. '�,- �x� -��',;.,.- �- �'� ';',, .:-, '7�-1-.- �,,-'�-'- ,,--,il-�",-I,�-?.-,I.'
-�:.� �-' -- �': -��--`�,',��'� -�� �---�Z .--,-, �'. , , -, �'-.� :� �:'. 'r", ","-_ -,����-,- ,'� .� , -a ��': �� ,- '� -� .-I- ,- .'I," �, �' �'-"�-:�-: , ,--, ', -'�- -', �,-� �. --,,' -� �, "'�'�-' -:. -.I

��" � . -'�R��i� , '�', '4:�-,�,-,.�,,,,
'� ', � �� -, -,�---I-,,t-' .� ,' -�"-;--.I ,'' �-,�

..-- ' �.- -� ,", � � , , --- '�4- : �'- ,- �' :� -- -', �'Y,� �-' " -','.- IJ p��"',-, ��.�-L ,_,-��": -., -, :-Z� i, -4-,"-,,�, ,"e, -,,,-�'- �� -,�- -, �- --�- ;' �,- -.; ��� ;��,��- -"' � �, ,- , -,.' ,--, ,;� � _ ,-- ';;� .

;.-: -� ���7-,----- '"-r�'T�- , - ,"- ���--,-�'o �-' -- -. ,,-,-- � ,-,' ��-"'- " '- --- �� ,. --- �I : 1, �� ��` ;�.---'.,�..-�-,,' � I, -,-- "�� �-"- , "- ,", , �j 1, -, I -�.. -; � i"

-, �-"'-' -:--� -�"-- 't"� ,� �:----' 1,.---,- -,"-.-,
,---, ' '�.-,�"7,,, -, ,�.��,�

�--� �:�:�r'..----� ,,, -.--- --�"'-""--',� ,��'�' -,

--
,, -�� ��t� ��

i-' '----"--H""'-' ..' , -� ��., �;' I'� , �,; �.� -,,�- -,-�I-,,
---- ,,,,��" �--�-�,�.r.- .--,,--'�'�--��T,.- �r-l .:II -"-

'- -'�' -- , '---� --:- -7� -" ��:� "S -r -,-�'- :� � ��-,, - "��,-���: -��,�� -�'�' �'---1,-�-1-:�"'-','-, , :--- ': -:�'-- �-, 1 -. !�]" �'�- -�' , -I, i."'�.,

�� � -7;,., -'i -,":' � � ", ,�I" , , ., -,- -, ",�-;!�---
--- �I-I:���.-,--,, -�''6 '. -I�-' -�"': ,"','�"'��Z:�� '- -' , ,' �F� "�- -,: ", ��7 -'`�,'�,". �-" �. " :--. 't""�' �, � ;�� '� -:., '� ��':7 .� ' ��' ,��-'� ,�--,;_:- -"',--,�,- %-'.:-': �� � '�� %," �� --_--, ;- " , "-�.-.�-� -�- , -- ,II" �'I", ,--� .":,-,: - '

;� ..' I I I:..�- � � --?- : -,��. II,1..-,, �' " ", .-- ,, ��� '�,�

- -'l-l � 11 , -I�-�--.--''"-.�.1,--, �` '-,'I''��-:
��

-� - -AJL�" -'- �,-W
''��

�-S
��

�
�.;I�O--�'"r'

_'� � -�
.--,r --,,-, ,' -�

,- -- �' I I I ,I-:,__,
-,

"- �11 -- "",'� �--�� I��', -'.� I

-- '-��'--- -1�--
,,-�" Q. ". ,J�' 1� k,- ,,, �. , '�."' "": 'f,��I.,�:'Z� ��

',"--IL ', -1 --,-,---,�,,-I.-�1, -':,-, , .�-�--,,,- --,'--�� ,.. �I.�-,--,--'-'',-"-, -,'-"--i' '��;F -.'�.A-,i�_ , ,, I 1. �- ,
", -,7

��C

,rZ�f
-� '�_

11I4- ", __. ,, �',�,-
-' "'

� �-
"_� � �'_,,"_ , ��,�� _.. "

-,--,,-_,,Z -"j ��-,,-�-- --�'�-.I-�r' -"�'.� -,._-.- , � �, ,Q--.'�--,---'-'-"--'-- ,- ---5--,F7 71L - -, �-"'R"""'�' -iffw--'-�','�"�,,', ---�-- -4-,- -iii'
-� ��!-,' , ,�" :� � i7'0�',--i'-

N'-'�- "- '- "' -,- " � �'�-�'- -�:-- --_ -�" '�J=-,�,-, -, -��'.,.-, -'-, i'. lrll�:
'.: ," ,,ri "" ,- -'i�'`---11

,, ,- -,,"����-,"
,-.-,�

.-, ,--tm
,� ,�"` .. "-,---I,-�

o,", --.
-,, �-"�7-" � ,--, �

,,
,,- ", � i4�i�"'-. "TI'l -Ql� ,(�':'1-1 �F-E.NEE-1 , -, -, ,.; ., -". �'-r.1-.,,�". --"I �- 11 � .1. ., "�"". 11 '�� �r-,-,,.-I�,

� , : �� -
,-,II�- ,-- ,� :'-��__-,Z�I �- :"_,_'- ��'-,�� �,-, -_.

-", -' '-',--�:�'L"' �:�"'-, � .- ,-1-11,.�� J� .-, r -, :"�" ,--

,L�,--' `� -�. -7'�f-i-,`,'--,'-', ' ;';7-6 -'�!�- ,�,�-�-��-"�,L�.-'�,--�,��-.,-",-, , -�-�" " , , r--r: �-_'-�__-'-,�"', I' "' '� -�'�-�I�� �� �' �,� � -, -r�' , � ,-]-- �, -��'- r' "" ",��-: j�'� ;','�'�],'. � "711

Tj

ROUTING AND SCHEDULING ON A SHORELINE

WITH RELEASE TIMES

by

Harilaos N. Psaraftis

Marius M. Solomon

Thomas L. Magnanti

Tai-Up Kim

OR 152-86 September 1986

ABSTRACT

In this paper we examine computational complexity issues and develop

algorithms for a class of "shoreline" single-vehicle routing and scheduling

problems with release time constraints. Problems in this class are

interesting for both practical and theoretical reasons. From a practical

perspective, these problems arise in several transportation environments. For

instance, in the routing and scheduling of cargo ships, the routing structure

is "easy" because the ports to be visited are usually located along a

shoreline. However, because release times of cargoes at ports generally

complicate the routing structure, the resulting routing and scheduling problem

is nontrivial. From a theoretical perspective, this class of problems lies on

the borderline between problems in P and those that are NP-complete. For the

straight-line case (a restriction of the shoreline case), our analysis shows

that the problem of minimizing maximum completion time can be solved exactly

in quadratic time by dynamic programming. For the shoreline case we develop

and analyze heuristic algorithms. We derive data-dependent worst-case

performance ratios for these heuristics. We also discuss how these algorithms

perform on practical data. Finally, we examine the computational complexity

of other problem variants involving alternative objective functions and

different types of time window constraints.

1. INTRODUCTION

In this paper we examine a class of time-constrained vehicle routing

and scheduling problems that may be encountered in several transportation/

distribution environments. Our basic variant assumes one vehicle (initially

located at a prescribed point) that must pick up a number of cargoes, which

are located at some other known points. We assume that each cargo is

available for pickup at or after a given earliest pickup time (or, as we shall

refer to from now on, at or after a prescribed "release time"). Given the

vehicle is allowed to wait at any point if this proves desirable or necessary,

we wish to find the schedule by which all cargoes are picked up as soon as

possible (that is, the schedule that minimizes the maximum completion time).

As defined so far, this problem is a generalization of the classical

Traveling Salesman Problem (TSP). As such, it is NP-complete, even if the

interpoint distance metric is restricted to be Euclidean (Papadimitriou 1977).

In this paper we further assume a special network topology which we refer to

as the shoreline topology. Throughout most of the paper we also permit a

somewhat broader interpoint distance metric, a triangle-inequality metric,

rather than a Euclidean metric, (though in places, we assume that distances

are Euclidean). We call this problem SLP (SL for shoreline). The shoreline

network is defined as follows:

An ordered set of points i = 1,...,n is located on the shoreline if the

interpoint distance matrix [tij] of these points satisfies the following

conditions:

For all 1 < i < k < j < n,

(i) t.. =O

(iii) tij > tik
1J -ik

1

(iv) tij > tkj

(v) tij < tik+ tkj

Figure 1.1 shows typical forms of shoreline instances. Note that (a) due

to conditions (iii) and (iv) a shoreline network imposes a topological

restriction on the triangle-inequality metric, (b) a path along the shoreline

need not be convex, (i.e., lie on the boundary of a convex region), (c) given

a non-ordered set of n points and their corresponding distance matrix, it is

possible to check in O(n2) time whether there is a shoreline on which these

points are located, and (d) a further restriction of the shoreline problem is

the straight-line case that replaces condition (v) by tij = tik + tkj

We have adopted the name "shoreline" because problems with this metric

arise in the routing and scheduling of ships. In these apllications, the

ports to be visited by a ship are often located on a (real-world) shoreline

(many real-world shorelines obey the definition). In the presence of

shorelines, the underlying routing structure is "easy", in the sense that in

the absence of time constraints the optimal ship schedule is obvious.

However, one may also have to deal with earliest and/or latest pickup

times at each port. These times are often independently determined from cargo

availability requirements at the land side, and, as such, usually possess

little or no "regularity" (for instance, they need not be monotonically

increasing along the shoreline). This lack of regularity generally destroys

the "easy" routing structure and makes the resulting routing and scheduling

problem non-trivial. Similar situations may be encountered in other routing

and scheduling environments.

From a theoretical perspective, this class of problems is interesting

because it lies on the borderline between problems in P and NP-complete

2

problems. As we shall see, seemingly minor variations in the definition of a

problem can transform it from polynomially solvable to NP-complete.

The literature on vehicle routing and scheduling, in general, and

problems with time windows, in particular, has been growing at an explosive

rate over the last few years (see the comprehensive survey by Bodin et al.

(1983)). Algorithms for different variants of the routing problem in the

presence of time windows have been developed and analyzed by Baker (1983),

Baker and Schaffer (1984), Desrosiers et al. (1983), (1985), Jaw et al.

(1984), Psaraftis (1983), Sexton and Bodin (1983a), (1983b), Solomon (1983),

(1984a), (1984b), and Solomon et al. (1986), to name just a few. The litera-

ture on applications for the routing and scheduling of ships is considerably

less rich, but also growing: see for instance, Psaraftis et al. (1985),

Fisher and Rosenwein (1985) and Ronen (1983).

The scope of this paper is to introduce an important routing structure,

the shoreline structure, examine the complexity of different SLP variants, and

design and analyze exact and approximate algorithms that exploit this special

structure.

Without loss of generality, we assume a unit vehicle speed, so that all

interpoint direct travel times, tij.., for i,j = 1,..., n, equal the corre-

sponding distances. Also without loss of generality, as in our previous

definition, we number the points according to the order that they are

encountered when one traverses the shoreline from one endpoint (point 1) to

the other (point n). Finally, we assume that the vehicle is initially located

(at time t = 0) at point 1. A vehicle schedule can be represented by an

array (C1, C, ... , C) with C. defined as the completion time (or visit time)

of point i. A point's completion time is the time that the vehicle departs

from that point, which is not necessarily equal to the time the vehicle may

3

arrive at (or pass by) that point. Release times r. impose the restric-

tion that Ci > ri for all i in a feasible schedule; note that the vehicle is

allowed to wait at a point if this proves desirable or necessary.

Our objective for this problem is to minimize the maximum completion

time, C = max C., that is, complete all visits as soon as possible.
max i 1

Although our basic scenario assumes that the vehicle does not return to point

1 at the end of its schedule (we call this basic version the "path" case

(pSLP)), we shall also selectively examine the "tour" case, (tSLP) in which

the vehicle returns to point 1 at the end of the trip (and must arrive there

as soon as possible).

We focus on developing algorithms that take advantage of the shoreline

structure, in general, and the straight line structure, in particular. The

paper is organized as follows. In Section 2, we show that the straight-line

variant of the SLP is polynomial by developing an O(n) exact algorithm for the

tSLP and an exact O(n 2) dynamic programming algorithm for the pSLP, re-

spectively. Section 3 is concerned with the general shoreline SLP. Here we

develop several heuristics, derive data-dependent worst-case performance

bounds for them and conjecture that for Euclidean distances these are bounded

by constants. We also discuss how these algorithms perform in practice. In

Section 4 we examine the computational complexity of and the relation among

other problem variants involving alternative objective functions and different

types of time window constraints. Finally, Section 5 presents our

conclusions.

2. THE STRAIGHT LINE CASE

We begin our investigation by analysing the straight-line case with

release times. In this case, all points 1, 2,...,n to be visited are on a

4

linear segment of length L and no point i can be visited before a prespecified

"release time" r.. Our basic underlying scenario assumes that for all i and j,

the direct travel time tij from point i to point j, is equal to the corre-

sponding interpoint distance Ixi - x.I defined by the x-coordinates x.

and x of points i and j along the line (therefore L = tln). Note that the

straight-line case does not necessarily require a geometric linear segment,

but any metric that can be transformed to a linear segment, that is, one in

which condition tij = tik + tki for all l<i<k<j<n is satisfied. As such, this

case can occur in a wide range of applications (railroads, rivers, highways,

or even ship problems where ports are located along a convex hull with land at

the interior of the hull).

It is clear that in the absence of release times, or even in the case in

which all release times are "agreeable" (that is r. < r for all i < j), the

solution of this problem is trivial: a straight "traversal" from point 1 to

point n is optimal. However, if the release times are not agreeable, it

becomes less clear what the optimal schedule should be. Figure 2.1 shows a

typical schematic representation of a schedule for n = 5 (in the figure the

distance axis is horizontal and the time axis vertical with increasing time

downward). As illustrated in this figure, if the release times are not

agreeable, the optimal schedule can be anything but trivial (it may, for

instance, involve several direction reversals, such as those that occur at

points 4 and 6 in the example of Figure 2.1).

Before we solve the basic ("path") version of this problem in which we

do not require the vehicle to return to point 1 at the end of the schedule,

let us briefly examine the equivalent "tour" version. If the vehicle is

required to return to point 1, the problem can be solved very easily by the

following simple algorithm:

5

Algorithm (Solves Tour Version)

Step 1:

Step 2:

Step 3:

Without waiting at any intermediate point, go straight from point

1 to point n (that is, arrive at point n at time L.)

Wait at point n for an amount of time equal to

BW = max[max(O, r - L - t)].
max i in

Depart from point n at time L + BW and return to point 1
max

through point n-l, n-2,...,2 without waiting at any intermediate

point (that is, arrive at point 1 at time 2L + BW).
max

Theorem 2.1 "TRAVERSE" solves exactly the tour version in 0(n) time.

Proof: First, the route and schedule produced by the "TRAVERSE" algorithm

is feasible. Indeed, the quantity BW. = max(O r - L - t) (see Figure
1 1 in

2.2) is the amount of time the vehicle would have to wait at point i on its

way back from point n to point 1, if the only enforced release time were r.

By waiting at point n for BW = max BW., the vehicle schedule obeys the
max 1 1

condition C. > r. for all i and is therefore feasible.
1 - 1

To see that this schedule is optimal, we note that since it is feasible,

its total duration, 2L + BW is an upper bound on C the minimum
max max

possible duration. Hence C < 2L + BW . On the other hand, C cannot
max - max max

be smaller than the minimum trip duration if all release times, except the

one of point i, are ignored, for any choice of i. Given that such a trip has

a minimum duration of 2L + BWi, we conclude that C>max 2L + BWi for all i,

or C > 2L + BW . Thus, C = 2L + BW , that is, "TRAVERSE" is
max - max max max

optimal for the tour version.

Finally, the 0(n) complexity of "TRAVERSE" is obvious.

An O(n2) Algorithm For the Path Version

We now return to our basic (path) scenario: the vehicle need not return

6

"TRAVERSE"

to point 1, but can terminate its route at any point. A cursory investigation

shows that although it is always possible to convert a tour problem to a path

problem, the opposite is not necessarily possible, even if the last point to

be visited in the path version is prescribed. Moreover, although in the tour

case the schedule always has a simple pattern, the optimal schedule in a path

problem can be fairly complicated (see again Figure 2.1).

To motivate the solution approach for this problem, let us first present

the classical dynamic programming recursion that solves the general TSP with

release times and then see how we can exploit the special structure of the

problem at hand.

Let N = {1, 2,...,n) , S c N and i S, 1 e S. Define V(i, S) as the

minimum time to visit all points in S starting from point 1 and terminating at

point i subject to the release time constraints. Then V(i, S) obeys the

following recursion:

S {1} : V(i,S) = min {max(ri., ti + V(y,S- i))
yeS-{i}

S = {1} : V(1, {1})= r1

This recursion is, in fact, true for any form of distance matrix [tij]

and can be extended to the case that includes deadlines. The computational

effort associated with solving this well-known recursion is exponential: the

number of possible subsets S of N is 0(2n), the number of possible states

(i,S) is O(n2n), and the overall running time is O(n22n).

As we next show, in the straight line case we can exploit the problem

structure to reduce the computational effort from exponential to polynomial.

The theorem to follow essentially states that at any time along the optimal

schedule the set of visited points is the union of two disjoint sets S1 and

S2, both of which are "contiguous": S1 includes all points from point 1 to

point j, and S2 is either empty or includes all points from point k to point n

7

(see Figure 2.3). The theorem also states that one need consider only points

j or k to represent the last visited point i along the route, for any given

S1 and S2 (or point j only if S2 = 0).

Theorem 2.2 In the straight line case (the "path" version with release times

only) one need consider only states (i,S) for which i and S are defined as

follows (see also Figure 2.3):

(a) S = S1 U S2 with S1 = {x : 1 < x < and S2 = {x:k < x < n }

for some indices j and k satisfying 1 < j < k < n+l (with the

convention that S2 = 0 if k = n+l).

(b) If S2 = 0 then i = j. Otherwise, i = j or k.

Proof: Let R be an optimal route that does not satisfy properties (a) and

(b) of the theorem. Then at some time t and for some j and k, this route will

have visited all points 1 < x < j and k < x < n, but then depart to visit a

point p with j+l < p < k-1. Among all routes that violate (a) and (b), let R

maximize t. Also, let q be the point in R visited after point p.

At some time t' > t, route R must for the first time visit either point

j+l or point k-1. After t' route R must visit some point 1 to the left of p

followed by a point r to the right of p, or vice versa (see Figure 2.4). Now

consider another route R' that at time t travels to point q rather than point

p and then waits at point q to depart at the same time as route R. Route R'

will also visit point p on its way traveling from 1 to r. Otherwise R and R'

are identical. (Since tr = tlp + tpr the timing of routes R and R' coincide
lp pr'

after they both visit 1, p and r.)

Now either q = k-l or j+l, or we may repeat the argument and find

another route R" with both p and q visited after time t'. Continuing in this

8

way, we can find another optimal route R that visits every point j+l < p < k-l

after time t'. Our assumption that route R maximizes t among all routes that

violate (a) and (b) implies that R satisfies these properties.

Theorem 2.2 i ..; that the choice of y, the decision variable of

the recursion (best immediate predecessor of i) is limited to at most two

alternatives, depending on i: if i = j then y can be equal to either j - 1

(if S1 {1}) or k (if S2 0 0); if i = k then y can be equal to either

k + 1 (if S2 {n}) or j.

As a result of this observation, it is clear that only two indices,

j and k, are needed to represent the set S of the recursion. Consequently,

it is possible to rewrite the recursion as follows (1 < j < k < n + 1):

V(j,jk) = min {max(rj tjl j + V(j-l.j-l,k)), max(rj,tkj + V(kj-l,k))}

V(k,j,k) = min {max(rk,tk+l k + V(k+l,j,k+l)), max(rk,tjk + V(j,j, k+l))}

with V(1,1,n+l) = r1.

By convention, in the recursion we set V(O,O,k) = V(n+l,j,n+l) = + for

all k > 1, j < n.

This recursion can be executed in 0(n 2) time and the optimal value of

the problem is:

C = min V(j,j,j+) = min V(k,k-l,k)
max l<j<n l<k<n+l

We mentioned earlier that the classical DP recursion can be easily ex-

tended to the case that includes deadlines, that is, to the case in which we

further require that the schedule be such that C < di for all i. Here d is

a prescribed deadline for point i. One might wonder therefore whether a

similar extension is possible for the 0(n2) algorithm as well. Unfortunately,

the answer to this question is no, since in the presence of deadlines Theorem

2.2 will not be valid in general. Indeed, if there are deadlines, feasibility

9

conditions might imply that the route shown as the dashed line in Figure

2.4 cannot substitute for the one depicted as a solid line. Thus, the

general case that includes deadlines cannot be solved by an extension of the

O(n2) algorithm. Indeed, and as we note in our discussion of other problem

variants in Section 4, the status of the computational complexity of this

case is at this time open, and we conjecture the case to be NP-complete.

Special cases with deadlines that are solvable in polynomial time include

(a) the case of one common deadline d, which is solved by applying the

0(n2) algorithm as if no deadline were present and then checking whether

C* < d (if yes, the (n)algorithm produces the optimal solution, and if no
max -

the problem is infeasible), and (b) the case of nonoverlapping time windows,

in which the points are visited by increasing order of ri's (this problem

could be infeasible as well, but checking feasibility requires only 0(n) time

once the ri's have been sorted in 0(nlogn) time).

Having examined the straight line case, we now consider the shoreline

case.

3. THE SHORELINE CASE

In the absence of release time constraints, or when these are agreeable,

it is easy to see that the shoreline problem can be solved optimally by simply

traversing the points in order from 1 to n. In particular, the traveling

salesman problem for shoreline problems without time constraints is

polynomially solvable.

On the other hand, as is well known the Euclidean traveling salesman

problem is NP-complete even in the absence of time windows (Papadimitriou

1977). Nevertheless, the general shoreline case with release times has so far

resisted our attempts to either solve it in polynomial time, (possibly as an

10

extension of the straight-line case) or prove that it is an NP-complete

problem. We conjecture, however, that this problem is NP-complete. In this

light, we shall design and analyze approximate algorithms for its solution.

3.1 Worst-Case Analysis of Heuristics

In this section, we present two classes of simple heuristics and derive

data-dependent worst-case performance ratios for them. For this purpose, let

us first introduce some notation. Let v.. = k t be the travel time
ij k=i k.k+l

along the shoreline between i and j, l<i<j<n. Denote the length of the shore-

line, vln, by S. In addition let L = tn denote the length of the direct

segment between point 1 and point n. Let also r* = r = max r.. Futher-
m l<i<n 1

more, define FW = max{0,ri-vli} and let FW* = FW max FW The quantity
1 1 ii s l<i<n i

FW. = max {O,r. v i} is the amount of time the vehicle would have to wait
1 1 11

at point i when traveling along the shoreline from point 1 to point n, if ri

were the only release time constraint enforced. Finally, let BW. = max
1

{0,r. - L - v. } and BW* = BW = max BW . Note that these latter quantities
1 inf~ b l<i<n i

are the extensions to the shore-line case of the similar quantities defined in

Section 2. We present now two classes of heuristics for the shoreline

problem.

The (Tour) "TRAVERSE" Heuristic

The description of this procedure for the tour problem has been

given in Section 2. Its worst-case behavior is established in the

following theorem.

Theorem 3.1 The "TRAVERSE" heuristic solves the tour problem in O(n)

time and its worst-case performance ratio is 2S/(S + L).

T T
Proof: If BW* = 0, it is obvious that C = L + S, where C is the value

max max

of the "TRAVERSE" heuristic. Assume now that BW* > 0. Then rb > L + vbn.

11

Let now the tSLPA be the relaxation of the tSLP where there are no

release time constraints. Then, it is clear that C (A) = L + S. where
max

C (A) is the optimal completion time for the tSLPA.
max

Consider now problem tSLPB which is a tSLP with only three points:

point 1, with r1 = 0, point b with rb > tlb and point n with r = 0. Then,

C (B) = r + t. Hence C > max C (A), C (B)} =
max b lb max - max max

max {L+ S, rb + tlb}. Furthermore,

T
C = BW* + L + S = rb + Vlb, and hence
max b lb

C /C < (r + v)/max {L + S rb + tlb)
max max- b lb b lb

Now , if L + S > rb + tlb

C
T

/C* < (r + vlb)/(L + S) < (L + S - tlb + vlb)/(L+S)
max max - b lb lb

= 1 + (Vlb - tlb)/(L+S) < 1 + (S-L)/(L+S) = 2S/(L+S), since

S - = > tbn > L - tb Assume now that L + S < r + t. Then:
lb bn - bn - lb b lb

CT /C* < (r + v)/(r + t) < 1 + (v - t)/(L+S)< 2S/(L+S)
max max b lb b lb lb lb

To show that this bound is tight, we need consider only an example with

ri = 0 for i = l,...,n-l and r = S.

Note that if S/L = 1 (the straight line case), then the "TRAVERSE"

heuristic worst-case performance ratio becomes 1, i.e., this method solves the

problem exactly. We have already proved this result in Section 2.

Consider now the path problem. The "TRAVERSE" heuristic is:

(Path) "TRAVERSE" Heuristic

Step 1: Go straight form point 1 to point n.

Step 2: Wait at point n for an amount of time equal to BWmax =

max(max{O, r - L - v. }}
i 1 in

Step 3: Visit all the points sequentially from point n to point 2. The

total duration of the trip is L + S - t2 + BW*.

12

Step 4: Wait at point 1 for an amount of time equal to FW*.

Step 5: Visit all the points sequentially from point 1 to point n. The

total duration of the trip is FW* + S. The value of

T
the heuristic is C min {L + S - t + BW*, FW* + S}

max 12

Note that in Step 4, by waiting for FW at point 1, the vehicle is
max

certain to visit all the points on or after each point's release time. The

following theorem specifies the worst-case behavior of this heuristic.

Theorem 3.2 The "TRAVERSE" heuristic solves the path problem in O(n
2) time

and its worst-case performance ratio is min{2(L + S)/3L,(4S - L)/2S}.

Since the proof is similar to that of Theorem 2.1, we will omit it (the

reader may refer to Kim (1985) for more details).

A second class of heuristics is the "MAXEPT" class. For the

tour problem we have:

(Tour) "MAXEPT" Heuristic

Step 1 Go straight from point 1 to point m (recall that r = r* =
m

max r.).
i 1

Step 2 Visit all the points from m to n.

Step 3 Return directly to point m-l.

Step 4 Visit all the points from m-l to 1. The total duration of the

trip is CM = max{r*, t + S - t + t
max lo m-l,m m-l,n

The intuition underlying this procedure is that a schedule that goes

directly to the point with the largest release time will visit the rest of the

points after their release time, and hence incur no additional waiting time.

A proof similar to that in Theorem 3.1 establishes the following result.

13

Theorem 3.3 The worst-case performance ratio of the "MAXEPT" heuristic is 2

and its complexity is O(n).

For the path problem, this heuristic can be described as follows:

(Path) "MAXEPT" Heuristic

Step 1 Go straight from point 1 to point m.

Step 2 Visit all the points from m to n.

Step 3 Return directly to point m-l.

Step 4 Visit all the points from m-l to 2. The total duration of this

trip is max{r*,t m + S - t1 2 - t + t
i 1 m-l,m m-l,n

Step 5 Go to point 1.

Step 6 Go directly from point 1 to m.

Step 7 Visit all the points from m to 2.

Step 8 Go directly to point m + 1.

Step 9 Visit all the points from m+l to n. The total duration of this

trip is max{r*,tlm} + S - t12 - + t2,m+1

The value of this heuristic is C = min{(max{r* tlm}+S-t12-t m Am+tmt n)'

(max{r*tlm} +S-tl2-tm,m+l+t2,m+l) }

Methods similar to the ones presented previously, establish the

following result:

Theorem 3.4 The "MAXEPT" heuristic solves the path SLP in O(n) time and its

worst-case performance ratio is (L + S)/L.

From these results it is obvious that the worst-case performance of the

"TRAVERSE" heuristic is better than that of the "MAXEPT" heuristic. A strong-

14

er result is that the former heuristic always performs better than the latter

as shown below.

Theorem 3.5 The "TRAVERSE" heuristic always performs better than the "MAXEPT"

heuristic.

Proof: For the tSLP, if BW* > 0, then C = r + v and
max rb + lband

Mv T
CM - CT > max(r*, t) r + +t - > 0.
max max - lm) b Vbn tm-l,n - tm-l,m -

T
For the pSLP, if C FW* + S = r - v + S,

max s ls

CM - CT > max(r*, t) - r + - t > 0.
max max -- s Vls 12 -

The proofs for the other cases are similar so they will be

ommitted.

So far, all the worst-case performance ratios we have derived are data-

dependent. Specifically, they are strictly increasing functions of S/L. This

ratio can be thought of as a measure of how far a given shoreline is from the

straight line (for which S/L = 1).

To complete our worst-case analysis, we have to investigate the worst

possible value of the ratio S/L itself. For instance, one might wonder

whether this ratio can be made arbitrarily large, or whether it is bounded by

a constant. Thus far our analysis has shown that the answer to this question

depends on whether or not the distance matrix is restricted to be Euclidean.

Specifically, the following observations are in order:

(1) If the distance matrix is not restricted to be Euclidean (but still

satisfies the shoreline requirements), S/L can grow as fast as n.

In fact, for a distance matrix in which all interpoint distances

are the same, S/L equals n-l.

(2) If the distance matrix is Euclidean, we conjecture that

S/L < 2/3(=2.094) and that this upper bound is tight.

15

The investigation of the maximum possible value of the S/L ratio in the

Euclidean case is rather complicated. The limiting case S/L = 27 /3

corresponds to the "half football" continuous curve shown in Figure 3.1 (this

curve consists of two 60 circular arcs AO and BO, each of radius L, centered

at endpoints B and A respectively). The complicating factor in the Euclidean

shoreline case is due to the fact that whereas a discrete set of n points may

satisfy the shoreline conditions, the continuous piecewise linear curve that

joins these points may not.

If our conjecture for the Euclidean shoreline case is correct, that is,

if the ratio S/L is bounded from above by a constant, then each worst-case

performance ratio we have derived is also bounded by a constant.

3.2 Computational Performance of Heuristics

In this section we conduct a computational study of several heuristics

for the "path" version of the problem. The heuristics examined include the

"TRAVERSE" and "MAXEPT" heuristics described earlier, plus another three algo-

rithms. The first approach we considered is:

The "ZOOM" Heuristic

This heuristic is the dynamic programming algorithm developed for the

straight-line pSLP. It is easy to see that this algorithm is not necessarily

optimal for the general shoreline case. However, its worst-case performance

cannot be worse than that of the "TRAVERSE" heuristic, since the "ZOOM"

heuristic always checks all the paths considered by the "TRAVERSE" heuristic.

Another approach we examined is:

The "GREEDY" Heuristic

In this nearest neighbor heuristic, the vehicle always moves from its

current location to visit the "nearest" point. The metric we are using tries

16

to account for both the geographical and temporal closeness of the points.

This measure is defined as max{rj - ai,tij}, where ai is the departure time

from the current point i, and j is yet unvisited.

Since the candidates for the next visit are, at worst n points, the

overall time bound will be 0(n2).

Finally, we have developed:

The "ADJACENT POINT INTERCHANGE" (API) Heuristic

This algorithm can be described as follows:

Given the vehicle's current location, determine the three adjacent

points closest to the origin and as yet unvisited. The heuristic then tries

to interchange the first and second points (in order of increasing distance

from point 1). If the interchange is feasible and it results in a

smaller arrival time at the third point, the second point becomes the next

point to be visited; otherwise, the first point becomes the next point to be

visited. This algorithm will take 0(n) time.

Our computational experiments have been conducted within the context of

cargo ship scheduling. We have first established a travel time matrix on a

real-world shoreline, namely, the East Coast of North America (from Boston, to

Cristobal, the entrance to the Panama Canal). The number of points considered

was n=8, 10, 20, 30. All travel time matrices satisfied the shoreline

requirements but were not Euclidean. The corresponding S/L ratios were 1.986,

2.055, 2.075 and 2.60 (note that the last ratio exceeds the maximum ratio for

a Euclidean case). Then, for each port on the shoreline we have generated

random release times which are mutually independent and uniformly distributed

between 0 and R , where R is a user-specified parameter. For each given
max max

R value we have created 10 problem instances for each problem size. To
max

simulate different degrees of tightness for the release times, we made a

17

series of runs with R equal to 7, 14, 21, 28, and 35 days. In all runs,
max

the ship is initially located in Boston.

The computational experiments were carried out on an IBM PC and on a

SANYO MBC - 555 which are personal computers with 256 K RAM. We summarize the

results in Table 3.1, where each value represents the average ratio, over the

10 problem instances, of the objective value obtained by the heuristics

divided by either the optimal value or a lower bound. Due to the limit of

static memory allocation of the Microsoft Pascal Compiler, n=8 was the largest

problem on which we were able to run the exact O(n 22) Dynamic Programming

algorithm of Psaraftis (1983) and obtain the optimal solution. In the other

cases, we used a lower bound on the optimal value given by max S, r*}. This

bound is, in many cases, very loose.

The computational performance of the "ZOOM" heuristic seems to be

remarkably good for any range of release times and any problem size. For n=8,

the algorithm never deviated more than 10% from the optimal value. For n > 8,

the algorithm performed better for the upper range of release times for which

it was within 20% of the lower bound in most cases. For the lower range of

release times, the ratios are larger, but this result might be attributable to

the looseness of the lower bound rather than to the performance of the

algorithm.

Not surprisingly, the performance of the "GREEDY" heuristic was very

good for small problem sizes and large release times ranges. This performance

may be due to the dominance of the release times; the traveling times become

insignificant, thus the routing problem becomes a "release time-game."

The performance of the "API" heuristic was very good, on all problem

sizes, for low release times ranges. It seems that this behavior, as opposed

to that of the "GREEDY", can be explained by realizing that in a low release

18

times range the spatial rather than the temporal component is most sig-

nificant.

In conclusion, the "ZOOM" heuristic consistently performed very well

even though the underlying routing structure was far from the straight line.

Finally, the performance of the "MAXEPT" and "TRAVERSE" heuristics were

inferior to that of the "ZOOM" heuristic. (Further details on these runs be

found in Kim (1985)).

4. OTHER PROBLEM VARIANTS

So far we have focused on the problem of minimizing C subject only
max

to release time constraints. This problem, defined either on the straight

line network or on the more general "shoreline" network, is but one member of

a broader family of problems, each having a different objective function

and/or different time constraints. The purpose of this section is to

introduce these other problem variants and report our (limited) knowledge

about their status. We continue assuming that the vehicle is at point 1 at

time t = 0 and that we do not require the vehicle to return to point 1 at the

end of its schedule.

Let us classify each problem in this class by the triplet [RITIZ], with

parameters R, T and Z representing the distance metric, the time constraint

configuration and the objective function respectively. By convention, R = ST

for the straight line case and R = SH for the shoreline case.

Parameter T may correspond to one of the following cases:

(a) T=r, the case with release times (only), that is, the case examined

in the previous two sections in which we require that C > r

for all i.

(b) T=d, the case with "hard" deadlines (only). In this case,

each point i must be visited no later than a specified

19

deadline di, that is, C. < d. for all i. In this instance, the overall
1 1 - 1

schedule is infeasible if C. > d. for some i.
1 1

(c) T=sd, the case with "soft" deadlines (or, due dates). In this case

each point i again has a deadline di, but we no longer require the

deadline to be a hard constraint. The potential violation of deadlines

obviously makes sense if we penalize such violations by an appropriate

choice of Z (see items (1)-(4) to follow).

(d) T = r+d, the "time window" case with "hard" deadlines, a combination of

cases (a) and (b), and

(e) T = r+sd, the "time window" case with "soft" deadlines, a combination of

cases (a) and (c).

Finally, parameter Z may correspond to one of the following cases:

(1) Z = C , as discussed already in Sections 2 and 3.
max

(2) Z = ZC., the case in which we wish to minimize the sum of completion

times 1 Ci (or, equivalently, the average completion time (1/n)i lCi)

(3) Z = Lma the case in which we wish to minimize the maximum lateness

L = max L., and the lateness of point i is defined as L. = C. - d.
max 1 1 1 1

for all i.

(4) Z = T., the case in which we wish to minimize the total tardiness

i. T and the tardiness of point i is defined as T = max(L.,0)
i=l i 1 1

for all i,

(5) Z = U., the case in which we wish to minimize the number of late

visits ilUi and Ui= 1 if C.>d. and is zero otherwise; and finally,
li 1 I 1

(6) Z=0, by which we denote the "feasibility case" for which no optimization

is involved. In this instance, we simply wish to find whether the

problem has a feasible schedule, that is, one satisfying the constraints

imposed by T.

20

Several remarks are in order:

(i) Although it is possible to define a few additional variants with respect

to Z. we shall not examine these in this paper. For instance, we shall not

examine the cases Z=Ew.C., Z=Ew.T., or Z=Ew.U., in which each point i
11 1 1 1 1

"weighed" by a prescribed weight w > 0. Similarly, we shall not examine the
1

cases Z = L. or Z = T , because the former is equivalent to Z = C. (EC.
1 max 1 1

- L. = Ed. = const) and the latter is minimized whenever L is minimized
1 1 max

(because min T = max(min L , 0) - the opposite is not necessarily true).
max max

(ii) For a specific R, not all combinations of T and Z will make sense.

Obviously, the objective Z = 0 (the feasibility case) is meaningful only

if T = d or T = r+d, for in all other cases the problem always has a feasible

schedule. In addition, if T = r, the objectives Z = L , Z = T., and Z = U.
max i

become irrelevant. Also, if T=sd or T=r+sd (soft deadlines), the objectives

Z = C and Z=EC. become irrelevant too, for they do not account for the
max 1

deadlines that could be violated anyway without penalty. Finally, we shall

not examine the variants [RldlZ] and [Rlr+dlZ] with R = any and with Z = Lmax"

ET., or Ui.. These cases either have optimal solutions identical with those

of the corresponding soft deadline variants [RIsdiZ] and [Rlr+sdIZ]

respectively (this is true if min Z < 0 for Z = L , and if min Z = 0 for

Z = ET. or U.), or, are infeasible (otherwise).

(iii) Our prior choices reduce the number of relevant variants from 30 to

14 for a specific R. Thus, for hard deadlines or no deadlines (T = d,r,r+d),

Z can be C or C.. For soft deadlines (T = sd, r+sd), Z can be L or
max 1 max

EU.. Finally, we have the two feasibility cases Z=0 for T = d, r+d.
1

Relationships Among Variants

It is obvious that these variants are related to one another. First,

all variants of the form [STITIZI are special cases of (or "reduce" to)

21

variants of the form [SHITIZ] for all relevant pairs of T and Z. Second, all

variants of the form [RlrlZ] and [RjdlZ] reduce to the more general case

[Rlr+dlZ] for any R and relevant Z. Similarly, all variants of the form

[RlrlZ] and [RlsdlZ] reduce to the more general case [Rlr+sdIZ] for any R and

relevant Z.

There are also some other more interesting and less obvious

relationships among these problems. Figure 4.1 gives a schematic

representation of these relationships; in this figure, an arc from problem P'

to problem P means that the former reduces to the latter. Problems that are

linked by bidirectional arcs are "equivalent", that is, reduce to one another.

Reductions corresponding to unnumbered arcs in Figure 4.1 are obvious.

In the following discussion we highlight proofs for the reductions

corresponding to the eleven numbered arcs in the figure. We note that

although many of the reductions to be proved are completely analogous to

similar reductions that have been reported in the literature for variants of

the single-machine scheduling problem (see for instance Lenstra et al.

(1977)), there are also some other reductions that have no analogous to (or

have not been reported in) the single-machine scheduling context (to our

knowledge).

Let P' -> P denote that problem P' reduces to problem P and let P' <->

P denote that P' and P are equivalent. To investigate reductions, we first

convert each one of these problems (cast, except for Z=0, as optimization

problems) to "recognition" (or "decision") problems. For R=ST, these

recognition versions are defined as follows:

+ + +
Instance of P: (n, x, r, d, y) with neZ , x. Z0, ri Z0 di sZ for all i

and yeZ.

22

Question: Is there a schedule (C.) with C.eZ for all i that satisfies all of
i 1 0

the requirements listed below? (as appropriate).

(a) IC.- C.jI >xi-xjI for all (i,j).

(b) For T = r, r+d, r+sd , C. > r. for all i.
1 - 1

(c) For T = d, r+d , C < d for all i.

(d) For Z = C , C. < y for all i.
max 1-

(e) For Z = Lmax C.-d < y for all i.

(f) For Z = C C Y
i 'i1 i<-

(g) For Z = ETT i.- max(Ci-di, 0)< y.
ii i1

(h) For Z = ZU. , I{i: Ci > di}I < y.

(The definition for R = SH is identical with this definition above except that

the set of distances t..eZ+ replaces the set of x.'s in the problem instance,

and constraint (a) is replaced with ICi-Cjl > tij for all (i, j)).

P' -> P if for every instance (n',x',r',d',y') of P' it is possible to

construct in polynomial time an instance (n,x,r,d,y) of P so that the answer

to P is yes if and only if the answer to P' is also yes. We now prove the

reductions (corresponding to the numbered arcs of Figure 4.1):

(1) [RIr+d10] <-> [Rlr+dlC].

Proof: (la) Prove that P' = [Rlr+dl0] -> P =[Rlr+dC max]. Take n=n', r. =
max 1

r!, d=d! for all i and y=max d.. Then if P' has a solution C with C < d,

P has a solution C.= C for all i with C. < d. and C. < y for all i. And if P
1 1 - 1 -

has a solution C. with C. < d. and C. < y for all i, P' has a solution C = C.

with C! < d' for all i.
1 - 1

(lb) Prove that P' = [Rlr+dlCmax] -> P = [Rlr+dl0]. Take n=n', r.i= r,
max 1 1

and d. = min(d!, y') for all i. Then if P' has a solution C with C < d!
1 1 1 1 - 1

and C < y' for all i, P has a solution C. = C for all i with C. < d.. And
i- 1 1 1 - 1

if P has a solution C. with C. < d. for all i, P' has a solution C! = C. for
1 1 - 1 1 1

23

all i with C < d and C < y' for all i. (Note: This result essentially
-1 1 -

states that in terms of computational complexity there is no difference

between the feasibility problem and the-seemingly more difficult-optimization

problem whose objective is to minimize C)

(2) [Rldl0] <-> [RdlC].
max

Proof: Follows immediately from (1) (take r. = r = 0 for all i).

(3) [RIr+dl0] -> [RIr+dlZCi].

Proof: Take n = n', r = r, d. = d for all i and y =i 1d. Then if P' has

a solution C! with C! < d!, P has a solution C. = C! for all i with C. < d.
1 1 - 1 1 1 1 - 1

n
for all i and i 1lCi < y. And if P has a solution C with C < d for all i (and

with il Ci < y), P' has a solution C = C with C < d for all i.

(Note: unfortunately, this reduction does not go the other way. Therefore,

the Ci optimization problem is at least as hard as-and may in fact be harder

than-the feasibility problem in terms of complexity.)

(4) [Rldl0] -> [RdlC].

Proof: Follows immediately from (3) (take r. = r = 0 for all i).

(5) [RIr+dlC max] <-> [Rlr+sdlLmax.

Proof: (5a) Prove the P' = [Rlr+dlC max -> P = [Rlr+sdILmax . Take n = n',

r. = r', d. = min(d!,y') for all i and y = 0. Then if P' has a solution C!

with C! < d! and C! < y for all i, P has a solution C. = C! for all i with
1 - 1 1 - 1 1

C.-d. < 0 for all i. And if P has a solution C. with C.-d. < 0 for all i, P'
1 1 - 1 1 1 -

has a solution C! = C. for all i with C < d. and C < y for all i.
1 1 1 - 1 1 --

(5b) Prove that P' = [RIr+sdIL] -> P = [Rlr+dIC . Take n = nmax max

i = r! d = d' + y' for all i and y = y' + max d.. Then if P' has a solution

C'! with C - d! < y' for all i, P has a solution C. C' for all i with C. <

d. for all i and C. < y for all i. And if P has a solution C. with C. < d.
i 1- 1 1 - 1

for all i and C < for or all i, then P has a solution C = C. for all i

with C! - d! < y' for all i.
i 1-

24

(6) [RldIC] <-> [RlsdlL].
max max

Proof: Follows immediately from (5) (take r.i= r = 0 for all i).

(7) [Rlr+sdlLmax] -> [Rlr+sdlZTi].

Proof: Take n = n', ri = r', d = d!+ y' for all i and y = 0. Then if P' has

a solution C with C-d! < y' for all i, P has a solution C = C for all i with

ilmax (C - di, 0) < y, because both the left hand side and the right hand
i=l 1 13 -

side are zero. And if P has a solution C with i max(Ci - dis 0) < 0 then

C. < d. for all i and thus P' has a solution C! = C. for all i with
1 - 1 1 1

C' - d' < y' for all i.
1 i -

(8) [RIsdlL] -> [RlsdlT.] i.
max 1

Proof: Follows immediately from (7) (take r. = r! = 0 for all i).
1 1

(9) [Rir+sdlL] -> [Rlr+sdl.U.].
max 1

Proof: Same as proof for (7), except substitute I{i: C > di}l for

(10) [RsdL max] -> [RjsdZU.i].

Proof: Follows immediately from (8) (take r = r = for all i).

(11) [RIrlZC -> [Rlr+sdlIT].

i i

Proof: Take n = n', r. = r!, d. = 0 for all i and y' = y. The reduction is
1 1 1

then obvious.

Note that in Figure 4.1 we have omitted arrows that represent reductions

that can be proven by transitivity (for instance, [RlrlC -> [Rlr+sdlL max

because [RIrlC I -> [Rlr+dlC max and [Rlr+dC max -> [Rr+sdL max, etc.).
max max max max

We also note that to our knowledge, the equivalences [Rlr+dlC] <->
max

[RI r+sdIL i and [RIdIC <-> [RlsdlL have been reported in the
max max max

single-machine scheduling context only in one direction (C -> L and not
max max

vice versa). Section 5 further describes the possible relation of these

problems with the machine scheduling class.

25

Complexity Status

The following discussion summarizes our current state of knowledge

regarding the computational complexity of this class of problems.

(1) For the straight line case (R = ST), the following variants are

trivially solvable and thus belong to P. [STIdIl], [STldIC] , [STIdlC.],.
max 1

[STIsdlL], [STsdlZT.] and [STIsdIZU.]. The solution in all of these cases
max 1 1

is a one-way traversal of the vehicle from point 1 to point n. If any of the

(hard) deadlines in the first three problems is violated during the

traversal, then the problem is infeasible. All cases can be solved in O(n)

time.

(2) As described in Section 2, problem [STIrIC] can be solved in 0(n2)
max

time and also belongs to P.

(3) Problem [STlr+dlEC.] is NP-complete. The credit for this result must
1

be attributed to a recent paper by Afrati et al. (1985), who, working

independently, showed that the so-called Traveling Repairman Problem (TRP) is

NP-complete. In the TRP, a repairman must repair m+n machines so as to

minimize the sum of completion times. Repairman and machines are all located

on a straight line, with m machines on the left of the repairman and n on his

right. Repair times are zero. Afrati et al. (1985) showed that in the

absence of deadlines this problem can be solved in O(mn) time, and that if

"hard" deadlines are imposed for each machine, the TRP is NP-complete. They

proved NP-completeness for the TRP by a rather involved transformation from

0-1 KNAPSACK. Kim (1985) easily showed that TRP->[STIr+dIECi] and hence the

latter problem is NP-complete as well.

(4) The complexity status of all other problems on the straight line is thus

far open. We have focused our efforts on two "key" problems, [STlr+dlC i
max

and [STlrlZC.], so far without success. We conjecture that both these
1

26

problems (and, as a result, their "descendants" [STIr+dl1], [STlr+sdIL],
max

[STr+sdZTi] and [STlr+sdlZUi]) are NP-complete.

(5) With the exception of [SHlr+dlZCi], which, as a generalization of

[STlr+dlIC.] is also NP-complete, all other problems on the shoreline (R = SH)

are open. This is true even for those variants whose straight line

counterparts are trivial (that is, the [SHldl0], [SHldlC], [SHldlECi],

[SHIsdlCmax [SHIsdIZT i] and [SHlsdlEUi] cases), and for the [SHlrIC]
max 1 max

case.

5. CONCLUSIONS

In this paper we have introduced a class of single-vehicle routing and

scheduling problems with time constraints. These problems share one common

feature: because of their special topology, in the absence of time con-

straints, they are trivial to solve. We have introduced the "shoreline"

topology, a generalization of the straight-line case and a restriction of the

triangle-inequality case, and have focused on the problem of minimizing

C (the time the last point is visited), subject to "release time" con-
max

straints. For the straight-line case we have seen that this problem can be

solved exactly in 0(n 2) time by a dynamic programming algorithm. For the

shoreline case we have presented some heuristics and analyzed their worst-case

and practical performances.

Concerning the computational performance of the heuristics, the dynamic

programming algorithm, while not optimal for the shoreline structure, seems to

consistently perform very well.

The analysis in Section 4 has shown that this class of problems is on

the borderline between problems in P and NP-complete problems. As with

machine scheduling problems, the resolution of exactly which of the problems

27

left open in Section 4 are polynomially solvable and which are NP-complete is

an effort that would probably require a nontrivial number of man-years to

complete (not to mention that many more extensions such as the multi-vehicle

case can be considered). We think that such a research effort would be

worthwhile for two reasons: First, from a practical perspective, in many

routing and scheduling situations, the imposition of time constraints destroys

a relatively simple routing structure. Second, from a more theoretical

perspective, progress in this area would shed more light on the exact location

of the boundary between problems in P and NP-complete problems and would

enhance the state of the art in the routing and scheduling of vehicles with

time windows (in itself an already rapidly growing area).

On several occasions in this paper we drew an analogy between this class

of problems and the class of single-machine scheduling problems (identify the

machine with the vehicle and the jobs with the pickup points). With this

identification, the shoreline problem lies some where between (i) a general

machine scheduling problem with arbitrary sequence-dependent processing times

t.. and (ii) a specialized, but important version with sequence-independent

processing times (with t.. independent of j). The analogy between single-

machine scheduling and shoreline routing so far has been restricted to the

classification structure of these problems in terms of their objective

function and constraints, and we have seen that indeed there are many

resemblances. A more substantive question is whether there is any direct

connection between these two classes of problems (particularly machine

scheduling with sequence-independent processing times) in terms of

computational complexity. This connection (if it exists) could conceivably be

very useful in increasing our knowledge about the complexity status of our

problems. We have tried to discover such connections, mainly with the better-

understood class of straight-line problems, but without success. It is inter-

28

esting to note, however, that for all straight-line problems that are either

NP-complete or open, their single-machine, sequence-independent processing time

scheduling counterparts are NP-complete, and for all single-machine sequence-

independent processing time scheduling cases in P. their straight-line

counterparts are in P as well. These facts seem to indicate that the

straight-line class is probably at least as hard as single-machine scheduling

problems with sequence-independent processing times. There is, however, one

case that does not obey this "rule". Whereas the computational complexity of

the problem of minimizing total job tardiness on a single machine is still

open, (Lenstra et al. 1977, Garey and Johnson 1979), the corresponding

straight-line problem [STIsdlTi.] can be solved in 0(n) time.
1

Even tougher seems to be the resolution of the complexity status of the

more general "shoreline" case. In particular, the [SHIrIC max case lies

"between" two problems, one of which is in P (the [STIrIC i case) and the
max

other NP-complete (this is the [EuclideanlrlC i case, which is NP-complete
max

even if ri = 0 for all i (Papadimitriou 1977)). The "shoreline" restriction

(which amounts to the extra requirement that [tij] satisfiest tik < tij and
12 ik -j

tkj < tij for all <i<k<j<n) is strong enough to "soften" a problem from NP-

complete to trivial in the absence of release times. Whether the problems

remain "easy" when release times (or other time constraints) are imposed,

remains to be seen.

ACKNOWLEDGMENTS

Work on this paper was supported in part by contract No. N00016-83-K-

0220 of the Office of Naval Research, by an internal grant of the MIT Center

for Transportation Studies, by an internal grant from Northeastern Uiversity's

Research and Scholarship Development Fund, and by Grant # ECS-83-16224 of the

National Science Foundation.

29

ZOOM GREEDY API

n=8* Rmax = 7

14

21

28

35

n=10** Rmax = 7

14

21

28

35

n=20** Rmax = 7

14

21

28

35

n=30** Rmax = 7

14

21

28

35

*Each number represents the average ratio, over 10

of the objective value obtained by the heuristics

the optimal value.

**Each number represents the average ratio, over 10

of the objective value obtained by the heuristics

the lower bound max {S,r*}.

Underlined numbers designate the minimum entry in

random problem instances,

divided by

random problem instances,

divided by

each row.

Table 3.1

Average Performance of Heuristics

30

1.02

1.02

1.07

1.06

1.04

1.18

1.44

1.19

1.09

1.07

1.36

1.54

1.24

1.21

1.09

1.26

1.46

1.42

1.29

1.22

1.04

1.13

1.06

1.02

1.01

1.33

1.74

1.32

1.14

1.11

1.52

1.83

1.50

1.33

1.13

1.50

1.74

1.58

1.38

1.28

1.01

1.19

1.17

1.24

1.15

1.08

1.85

1.41

1.38

1.23

1.22

1.78

1.53

1.41

1.26

1.17

1.66

1.67

1.46

1.33

1.02

1.04

1.09

1.17

1.07

1.23

1.54

1.25

1.25

1.15

1.32

1.63

1.30

1.28

1.17

1.26

1.54

1.48

1.34

1.29

1.21

1.34

1.39

1.41

1.32

1.54

2.00

1.67

1.51

1.40

1.73

2.00

1.76

1.58

1.48

1.58

2.03

1.86

1.70

1.56

TRAVERSE MAXEPT

REFERENCES

AFRATI, F., S. COSMADAKIS, C. PAPADIMITRIOU, G. PAPAGEORGIOU, and N.

PAPAKOSTANTINOU. 1985. The Complexity of the Travelling Repairman

Problem. Working Paper, National Technical University of Athens.

BAKER, E. 1983. An Exact Algorithm for the Time-Constrained Traveling

Salesman Problem. Operations Research 31, 938-945.

BAKER, E. and J. SCHAFFER. 1984. Solution Improvement Heuristics for the

Vehicle and Scheduling Problem with Time Window Constraints. Working

Paper, University of Miami.

BODIN, L., B. GOLDEN, A. ASSAD, and M. BALL. 1983. Routing and Scheduling

of Vehicles and Crews: The State of the Art. Computers and Operations

Research 10, 62-212.

CHRISTOFIDES, N., A. MINGOZZI, and P. TOTH. 1981. State-Space Relaxation

Procedures for the Computation of Bounds to Routing Problems, Networks,

Vol. 11, No. 2.

DESROSIERS, J., F. SOUMIS, and M. DESROCHERS. 1983. Routing with Time

Windows: Synthesis. Working Paper G-83-05, HEC, Montreal.

DESROSIERS, J., Y. DUMAS, and F. SOUMIS. 1985. A Dynamic Programming Method

for the Large-Scale Single Vehicle Dial-A-Ride Problem with Time

Windows. Working Paper 84-12, HEC, Montreal

FISHER, M., and M. ROSENWEIN. 1985. An Interactive Optimization System for

Bulk Cargo Ship Scheduling. Working Paper, 85-08-07, University of

Pennsylvania.

GAREY, M., and D. JOHNSON. 1975. Complexity Results for Multiprocessor

Scheduling Under Resource Constraints. SIAM Journal of Computing, 4,

397-411.

GAREY, M., and D. JOHNSON. 1979. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco,

1979.

GRAHAM, R., E. LAWLER, J. LENSTRA, and A. RINNOOY KAN, 1979. Optimization and

Approximation in Deterministic Sequencing and Scheduling: A Survey.

Discrete Optimization II, Annals of Discrete Mathematics 5, 287-326.

North-Holand Publishing Company.

JAW, J., A. ODONI, H. PSARAFTIS, and N. WILSON. 1984. A Heuristic Algorithm

for the Multi-Vehicle Advance-Request Dial-A-Ride Problem with Time

Windows. Transportation Research, forthcoming.

KIM, TAI-UP. 1985. Solution Algorithms for Sealift Routing and Scheduling

Problems. PhD. Dissertation, Massachusetts Institute of Technology.

LENSTRA, J., A. RINNOOY KAN, and P. BUCKER. 1977. Complexity of Machine

Scheduling Problems Studies in Integer Programming, Annals of Discrete

Mathematics, 1, 343-362, North-Holand Publishing Company.

31

PSARAFTIS, H. 1983. An Exact Algorithm for the Single Vehicle Dial-A-Ride

Problem with Time Windows. Transportation Science 17, 351-357.

PSARAFTIS, H., J. ORLIN, B. BIENSTOCK, and, P. THOMPSON. 1985. Analysis and

Solution Algorithms of Sealift Routing and Scheduling Problems: Final

Report. Working Paper, No. 1700-85, Sloan School of Management, M.I.T.

RONEN, D. 1983. A Review of Cargo Ships Routing and Scheduling Models, Euro.

Journal of Oper. Res., 12.

SEXTON, T. and L. BODIN. 1983A. Optimizing Single Vehicle Many-to-Many

Operations with Desired Delivery Times: I, Scheduling, Transportation

Science (forthcoming).

SEXTON, T. and L. BODIN. 1983B. Optimizing Single Vehicle Many-to-Many

Operations with Desired Delivery Times: II, Routing, Transportation

Science, forthcoming.

SOLOMON, M., 1983. Algorithms for the Vehicle Routing and Scheduling Problem

with Time Window Constraints. Operations Research, forthcoming.

SOLOMON, M. 1984a. On the Worst-Case Performance of Some Heuristics for the

Vehicle Routing and Scheduling Problem with Time Window Constraints.

Networks, forthcoming.

SOLOMON, M. 1984b. The Minimum Spanning Tree Problem with Time Window Con-

straints. American Journal of Mathematical and Management Sciences,
forthcoming.

SOLOMON, M., E. BAKER, and J. SCHAFFER. 1986. Accelerated Branch Exchange

Procedures for the Vehicle Routing and Scheduling Problem with Time

Windows, Working Paper, Northeastern University.

32

LIST OF FIGURE CAPTIONS

Figure Caption

1.1 Typical shoreline instances.

2.1 Straight line case: a typical schedule.

2.2 Definition of BWi in "TRAVERSE" heuristic.

2.3 Sets S1, S2 and S3 for the straight-line case (tour version).

2.4 The dashed line schedule can replace the solid line schedules with

no additional delay.

3.1 The Euclidean shoreline configuration with the conjectured maximum

ratio S/L.

4.1 Relationships among problem variants in this class. An arc from

problem P' to problem P means that P' reduces to P. Bidirectional

arcs denote equivalence. Numbers on certain arcs refer to reduc-

tion proofs in the text. For the R=ST case (only), the symbols

*(in P), (NP-complete), and ?(open) display the complexity status

of the problem.

33

3 4

2

4

3

)6
2

5

6
4

2

Figure 1.1. Typical Shoreline Instances

�� I__ � I _ _

r.

I

11
P

2 3 4

r1 = r6 = 0

Time

r4

r 5

Figure 2.1. Straight Line Case: A Typical Schedule

1 5 6

I
I

I
I

I
I
I
I
I

L

L

r

L

1 i n

Figure 2.2. Definition of BWi in "TRAVERSE" Heuristic

m -~~~ I

k

S1

Figure 2.3. Sets S1,

S3 S2

S 2 and S3 for the Straight-line Case
(tour version)

___ILI___YIL__I__I_____·Y___s__1--��·l II_�

All Visited

t
i

ITime

t'

P r q

All Visited

k

oute R'

Figure 2.4. The Dashed Line Schedule Can Replace the
Solid Line Schedule with No Additional Delay

------- ---

I

O

Co

L

L

A B

Figure 3.1. The Euclidean Shoreline Configuration
with the Maximum Ratio S/L

-0 : Cd o 6Vq F4 Q b* ,

a °

cQ .: o- O

E 02*x
., ;0 X

02°a o

02r C

O 5;

k _

OQ
Y _

~ *

o ;, X

Q O~

_ d

OL Q ,

e cb

* Q

r: V)

sw c

O v 1

