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Routing and Wavelength

Assignment in All-Optical Networks

Rajiv Ramaswami, Member, /EE.E, and Kumar N. Sivarajan, Member, /EEE

Abstracf— This paper considers the problem of routing con-

nections in a reeontigurable optical network using wavelength

division multiplexing. Each connection between a pair of nodes

in the network is assigned a path through the network and a

wavelength on that path, such that connections whose paths share

a common link in the network are assigned d]fferent wavelengths.

We derive an upper bound on the carried traffic of connections

(or equivalently, a lower bound on the blocking probability) for

any routing and wavelength assignment (RWA) algorithm in such

a network. The bound scales with the number of wavelengths and

is achieved asymptotically (when a large number of wavelengths

is available) by a fixed RWA algorithm. Although computationally

intensive, our bound can be used as a metric against which the

performance of different RWA algorithms can be compared for

networks of moderate size. We illustrate thii by comparing the

performance of a simple shortest-path RWA (SP-RWA) algorithm

via simulation relative to our bound. We also derive a similar

bound for optical networks using dynamic wavelength converters,

which are equivalent to circuit-switched telephone networks, and

compam the two cases for different examples. Finatly, we quantify

the amount of wavelength reuse achievable in large networks

using the SP-RWA via simulation as a function of the number of
wavelengths, number of edges, and number of nodes for randomly

constructed networks as well as deBruijn networks. We also

quantify the difference in wavelength reuse between two different
optical node architectures. The results show that it is feasible to

provide several all-optical connections to each node in a large

network using a limited number of wavelengths. For instance,

using 32 wavelengths, it is possible to provide 10 full-duplex

connections to each node in a 128-node random network with

average degree 4, and 5 full-duplex connections per node in a

1000-node random network with average degree 4. The results

also show that wavelength converters offer a 10-40% increase in
the amount of reuse achievable for our sampling of 14 networks

ranging from 16 to 1000 nodes when the number of wavelengths

available is small (10 or 32).

1, INTRODUCTION

w

AVELENGTH-division-multiplexing (WDM) technol-

ogy offers the capability of building very large wide-

area networks consisting of thousands of nodes with per-node

throughput of the order of a gigabit-per-second [ I ]–[4]. Fig. I

shows a WDM all-opricd network employing wavelength

routing. consisting of optical routing nodes interconnected

by optical links. Each link is assumed to he bidirectional

,Mmruscript received May 3, 1995; revised October 11. 1995; approved by

lEEE/ACM TtMNsM_TIorw ox NETWORKINGEditor B, Mukherjee, Tfris work

was supported in part by ARPA under Grant MDA 972-92-C-0075.

R. Ramaswarrri is with IBM T. J, Watson Research Center, Yorktown

Heights, NY 10598 LISA (e-mail: rajivtl?watson, ibm,com),

K, N. Sivamjan is with the Indian Institute of Science, Bangalore, India (e-

mfiil: kumurt@ece. iisc,emet. in). He is afso with the IBM T, J. Watson Research

Center, Yorktown Heights, NY 10598 USA.
IEEELog Number 9414429.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.
B

..

Node

Fig. 1. A WDM network consisting of muting nodes mterconnecled by

point-t{~-point fiber-optic Iink\.

and actually consists of a pair of unidirectional links. An

optical routing node is capable of routing each wavelength

on an incoming link to any outgoing link. However, the

same wavelength on two incoming links cannot be routed

simultaneously onto a single outgoing link, If there are .1

wavelengths on each link, the routing node may be viewed as

consisting of,1 independent switches, one for each wavelength

(Fig. 2). Each switch has A inputs and A outputs where A is

the number of incoming (and outgoing) links. There is no

optical to electronic conversion and vice versa, and hence

no buffering, at the intermediate nodes, in these all-optical

networks. In addition to routing and switching signals. the

optical node also serves as a source and sink of traffic in

the network. Theoretical studies of such networks appear in

[5]-[ 14] and these networks are currently being explored at

the testbed level by several groups [3].

In our network model, connection requests and terminations

arrive at random. Each connection must be assigned a specific

path in the network and a wavelength which is the same on

every link on the assigned path. Moreover the wavelengths

and paths assigned must be such that no two paths that share

an edge are assigned the same wavelength. For example, in

Fig. 1, a connection between node A and node C is earned on

wavelength ,11, a connection between node C and node E also

on the same wavelength Al, but a connection between node

13 and node D must be carried on a different wavelength AZ.

This routing and wavelength assignment (RWA) problem,

or variants of it, have been considered earlier in [7]–[9].

Several heuristic RWA algorithms have been proposed and

their performance has been quantified via simulation.

Related work on determining the number of wavelengths

required to support specific traffic patterns, such as permu-
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Fig. 2. Structure of an optical routing node and its attached source and sink

of traffic. The routing nnde can switch each wavelength at its input ports

independent of the other wavelengths.

tation routing, and constructing networks using a minimal

number of wavelengths appears in [ 10]–[ 12]. Related models

are also considered in [13], [14] where a “virtual topology”

is imposed on top of the underlying physical topology. The

virtual topology is a graph consisting of the nodes in the

network with an edge between two nodes if a connection is set

up between the two nodes using some wavelength and path in

the physical topology.

A similar routing problem arises in circuit-switched tele-

phone networks. Here, we must route connections by selecting

a path for each connection such that there is a circuit available

to accommodate the call in every link on the path. In our

optical network model, we must not only satisfy the constraint

in circuit-switched telephone net works, but also satisfy art

additional constraint that the same circuit (wavelength) must

be assigned to the connection on every link in the path. Note

that if we are allowed to use dynamic wavelength convert-

ers inside the optical network, then it becomes equivalent

to the circuit-switched telephone network. We assume that

the wavelength converters are used such that a signal at a

particular wavelength on an input link can be converted to

any other wavelength on any of the output links (as long as

two connections do not use the same wavelength on a single

link). This can be achieved in principle by using wavelength

converters in conjunction with a large switch inside an optical

routing node as shown in Fig. 3. This configuration adds

significant complexity to the routing-node structure but will

yield somewhat better wavelength reuse, as will be seen later.

The routing node now has a single wavelength-independent

switch with AA inputs and outputs as compared to A switches

with A inputs and outputs for the case without converters.

It is possible to have intermediate structures allowing partial

wavelength conversion [15], but we do not consider this in our

paper, Henceforth, we will use the term “circuit-switched” to

refer to a circuit-switched telephone network or to an optical

network using dynamic wavelength converters. We will use

the term “optical network” to refer to a network that does not

use wavelength converters.

‘l%e routing problem in circuit-switched networks has been

studied extensively [16], [17]. It is well known that the routing

—
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Fig. 3. Structure of an optical routing ncde with wavelength converters. The

node can switch a signal at a particular wavelength on an input port to any

wavelength on any output port.

problem can be formulated as an integer linear program (ILP)

[18, ch. 6, Section 2]. In [16], it was shown that an upper

bound on the carried traffic can be obtained by relaxing the ILP

to a linear program (LP), and moreover, that the bound holds

for random offered traffic as well. Since the RWA problem in

our model is a more constrained version of the routing problem

in circuit-switched networks, it is clear that this bound will

also be an upper bound for the carried traffic in our network

model. However, our objective in this paper is to derive a

better upper bound.

For clarity of exposition, we first consider the case when we

are given a fixed set of connections to be routed. We formulate

the RWA problem as atI integer linear program (ILP) where the

objective is to maximize the number of connections that are

successfully routed. If we relax the integrality constraints in

this ILP, we get an LP whose value represents an upper bound

on the number of connections that can be successfully routed.

We show that a straightfonvard formulation, when relaxed into

a linear program, yields an upper bound that is the same as

the upper bound for the circuit-switched case. We then show

how to formulate the ILP suitably so as to get a better upper

bound when it is relaxed into an LP.

We then consider the more general case where connections

arise at random between some source-destination pair in the

network and have a random holding time. (The deterministic

case is a special case of this more general model.) For this

case, using the results in [16], we show the following. By

suitably normalizing the LP for the deterministic case by the

number of available wavelengths, we obtain an upper bound

on the carried traffic (expected number of connections in

progress) per available wavelength that is achievable by any

RWA algorithm for this network. Moreover, for a large class of

traffic models (including the standard Poisson arrivals), there

exist RWA algorithms whose carried traffic approaches this

upper bound arbitrarily closely when the number of available

wavelengths is sufficiently large.

The usefulness of our bound lies in the fact that it can be

used as a benchmark against which the performance of various

heuristic RWA algorithms cart be compared. We illustrate
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(his by comparing the simulated performance of a simple

shortest-path heuristic RWA (SP–RWA) algorithm against the

bound. Moreover the solution to the LP that gives the bound

can also indicate how to modify the network to improve its

performance,

Finally, we quantify the amount of wavelength reuse achiev-

able in large networks using the SP–RWA algorithm as a

function of the number of nodes. edges and wavelengths via

simulation. We consider both randomly constructed networks

as well as regular deBruijn networks,

The paper is organized as follows. The next section formu-

lates the ILP’s and corresponding LP’s for the RWA problem.

Section III presents two examples that show that this bound

is indeed better than the bound for circuit-switched networks.

and also compares the performance of the heuristic and a fixed

routing algorithm against our bound in one of the examples.

Section IV presents simulation results for the wavelength reuse

fi~ctor as a function of various network pammeters. Section

V proposes an alternate routing node architecture that trades

off complexity against performance, Section VI discusses the

implications of our work and concludes the paper.

[1. THE BOUND

We represent the network by an undirected graph, G. Each

node in the graph corresponds to a node in the network and

each edge to a link. We assume that all connections to be

routed are full duplex, that all links are bidirectional and the

twt) halves of a duplex connection are to be routed over the

same path using the same wavelength.

Let N denote the number of source-destination (s-d) pairs

in the network, M the number of links and .1 the number of

wavelengths available on each link (assumed to be the same

for all links). For any RWA algorithm, let r~ii. i = 1. . . IV,

denote lhe number of connections carried between source-

des[ination pair i, and m. the N-vector (m,). Let p denote

the total offered load, p, JJ. i = 1.. . V, the offered load

bet ween source-destination pair i. and p, the N-vector (FJ,).

The offered load for the deterministic case (Sections II-A

and –B) is the number of connections that are available to be

routed. In the random case (Section II–C), it is the expected

number of connections that would be in progress if one could

successfully route all call arrivals.

Let T denote the total number of available paths on which

connections can be routed. The set of paths could either be

given or can be computed given the graph G and the set of

source-destination pairs. (Note that the number of paths be-

tween a source-destination pair in an arbitrary graphhetwork

can be exponential in the number of nodes or links).

I.et .4 = ((/.,j ) be the P x iV path–s-d-pair incidence matrix,

i.e.,

{

1, if path z is between source-destination pair j.
(1

‘J = O, otherwise.

Let B = (b,J ) be the P x .If path-edge incidence matrix, i.e.,

{

I, = 1, if Iinkj is on path i,
lJ

0. otherwise.

We first give a straightfotward ILP formulation of the

RWA problem as a multicommodity flow problem [18, ch.

6, Section 2].

A. A Simple Formulation

The operation of every RWA algorithm in an optical network

can be represented by a F’ x .4 path–wavelength assignment

matrix which we denote by C = [c,]) where,

C,j =

{

1, if the RWA algorithm assigns wavelength j to path i.

0, otherwise.

Then, the optimal RWA algorithm for the deterministic case

is found by solving the following ILP whose value we denote

by CO(p. p).

(Maximize carried traffic)

.V

Co(p. p) = max ~ m,

1=1

subject to

rn, > (). integer. ~=1, . . ..N.

is used at most once

CZJ >0, integer, ~= l,... .P, j=l . . . ..’i.

(capacity constraint: the same wavelength

on a given link)

~rB < l.ix.ii

(traffic demands)

rlt < 1.1CT.4.

m, < p,p. i=l . . . ..N

( 1.Y, ~ represents an .Y x Y matrix all of whose elements

are unity, and 1.y represents a 1 x X matrix all of whose

elements are unity.)

Now consider the corresponding circuit-switched network.

The operation of every routing algorithm in such a network

can be represented by a vector of path-flows ~ = (~,) where f,

denotes the flow on path i. Then, the optimal routing algorithm

for the deterministic case is found by solving the following ILP

whose value we denote by CC(p, p).

(Maximize carried traffic)

.\’

Cr(p, p) = Inax ‘r rni

subject to

?TJ,l> 0, integer.

~i ~ O. integer,

(capacity constraint: not more than

U

,=1

2=1, . . ..N.

a=l, . . ..p.

A units of flow on any link)

fB < l.vfA,

(traffic demands)

m < -fA,

‘m~ < p~p. ~=1, . ..l N.
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Lemma I:

Co(p, p) < Cc(p, p).

Proof Let C;j and m; constitute a feasible solution to

the CO(P, p) ILP. Then set ~i = ~~=1 Cjj and rni = m;.

Since f = lACT,

fA = 1A(7TA > m,

and

fB = lACTB < lAIAXM = lMA.

Therefore, fi and mi constitute a feasible solution to the

Cc(p, p) ILP. Hence,

CO(PIP) < &( P, P). ❑

In order to get upper bounds on Co(p, p) and CC(P, p), we

can drop the integrality constraints on m;, ci~ and ,fi and

solve the corresponding LP’s. Let Uo(p, p) and (JC(p, p) denote

the (maximum) values of the LP’s for the optical and circuit-

switched case respectively. Then, we can show (with a proof

virtually identical to that of Lemma 1), that

Uo(p, p) < Uc(p, p). (1)

Interestingly however, suppose fj and m: constitute a feasible

solution to the fJC(p, p) LP. Then set czj = f~/A and mi = m:.

Since C = fTIA/A,

lACTA = lAl~fA/A = fA ~ m,

and

CTB = l~jB/A < l~AIM/A = l,iX&l.

Therefore, cij and ~i constitute a feasible solution to the

Uo(p, p) LP. Thus we have the following lemma.

L.4mma 2:

Uo(p, p) 2 Uc(p, p).

Using (1) and Lemma 2, we have the following proposition.

Proposition 1:

Uo(p, p) = ZJc(p, p).

Thus this formulation of the RWA problem yields an upper

bound on carried traffic that is identical to the upper bound

for the corresponding circuit-switched network. However, a

different formulation of the problem given below can be used

to obtain a better upper bound.

B. A Better Formulation

We create a new graph GP where each node corresponds

to a path in G and two nodes in GP are adjacent iff the

corresponding two paths in G share a common link. Now

our RWA problem is transformed into assigning wavelengths

to nodes in GP so that no two adjacent nodes are assigned

the same wavelength. In other words, a set of paths in G can

be assigned a common wavelength only if the corresponding

nodes in GP form an independent set. Let L denote the number

of maximal independent sets in GP, let wi denote the number

of wavelengths that are assigned to the nodes in independent

set z by a RWA algorithm, and w the L-vector (w; ).’ Let

D = (dij ) be the P x ~ path–independent-set incidence matrix,

i.e.,

d~j =

{

1, if independent set j contains path i,

O, otherwise.

The ILP, whose value we denote as T) (p, p) can then be

formulated as follows:

(Maximize carried traffic)

N

Tj(p, p) = max~ ‘mz

2=1

subject to

Wi > 0, integer, i=l, . . ..L.

(capacity constraint—not more than A units of flow on any

link)

L

x
tui < A,

izl

(traffic demands)

f < ll)DT.

m < fA,

‘mi < ~ip, 2=1, . . ..N.

C. Random Traflic Demands

Henceforth, we let pi denote the offered traffic to s-d pair

i in Erlangs.2 If calls arrive at random and have random

holding times, under the operation of any RWA algorithm,

the network is in a random state which we denote by m =

(m~,m~,., ?nN ) where ?rt~is the number of calls in progress

between .+d pair i. The set of feasible states for this network

when the number of available wavelengths is A, which we

denote by S.i, is the set of all nonnegative integer IV-vectors

7n for which the T:’(p, p) ILP is feasible, i.e., m E ZN if

1Note that the number of maximal independent sets could be exponential in

the number of nodes in GP. The maximal independent sets in GP correspond

to maximal cardinality cliques in a graph G\ consisting of the same set of

nodes as GP and all the edges that are not present in Gp. An rdgorithm to

generate all cliques in a graph is given in [19].

2The offered traffic is the average call arrival rate (in cal Is per second)

multiplied by the average call duration (in seconds) and measured in units of

Erlangs.
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there exist nonnegative integer vectors H! E Z~ and f E .ZP

such that,

r~ld + (w j)B < .IC.

where,

A = (l,yyy (),yxp ():.).

and

c = (oy op 1).

This set of feasible states for the network is of the form

described in [ 16, Section 6].~

Using ~16, Theorem 3. I ]. the carried traffic for any RWA

algorithm, R, for this network. satisfies,

#R((), ~)) < T<, (7”. p)

where r = p/.4 and T,, ( r. p) is the value of the following

linear program.

,\

z=]

subject to

.?.4 + tll < c,

.? < pr.

(This is just the ~~ ((1, p) program normalized by dividing

the objective function and each of the constraints by A and

dropping the integrality constraints.)

The corresponding circuit-switching LP, obtained by nor-

malizing the objective function and each of the constraints

in the i ‘(.(p, p) program by .4 and dropping the integrality

constraints, is the following.

.Y

7;(/’. p) = lIlax
x’
,=1

subject to

,s < t,4.

tl?< l,lf,

,’4 < pr.—

From [ 16, Theorem 2. I ], 7’,)(r, p) and ~,.(7”, p) are contin-

uous, nondecreasing, convex n functions of r. Moreover. the

7;, (r, p) and T, (r. p) programs are parametric linear programs

with parameter r in the sense of [20, Section 1.9] and hence,

‘/;,( r. p) and ~ (r, p) are piecewise-linear functions of r [20,

p. 701.

The blocking probability, fl~(p, p) for any RWA algorithm,

R. is related to its earned traffic by

‘r~(p.?)) = /)(1 – lli’~(p. p)),

{WC have used nra[rix and vector notation here in lieu cd’ stating the

uonstmints as in the earlier 11.P fnrmulalion to make il consistent with the

mwit}<m uied in [ I61.

49?

and

Therefore,

Tv(r. p)
L?(,(7-.p) = 1 – —

r

‘f;.(r. p)
Li’C(r.p) = 1 – —

r

are lower bounds for the blocking probability of any RWA al-

gorithm in the wavelength-routing and circuit-switching cases.

respectively.

We now show that ~, and ~. (or equivalently

are achievable when the number of wavelengths

large.

D. Asymptotic Optimality of ~, ( r, p ) and ~. (~. ~J)

B. and B.)

(circuits) is

Let s = Tn’. t = ( 111’J’) yield an optimal solution to the

To( r, p) LP. Consider a fixed RWA algorithm F, that assigns

the fixed set of wavelengths Ii), = lt~~{.!j to each path in

independentseti.LetTF~(~).p) denote the carried traffic for

this algorithm.

1) The Deterministic Case: The asymptotic optimality of

this fixed RWA algorithm in the deterministic case follows

essentially from the fact that appropriately rounding any

optimal solution to the T,, ( r. p) program yields a feasible

solution to the T,; (p. p) ILP whose value is asymptotically

optimal (if .4 is large and r = p/.\ is fixed). We now prove

this formally.

Lemma 3: Let .S= m’ and t = ( m’~’ ) constitute an optimal

solution to the T,, ( r. p) linear program. Then II!, = l?f~{Aj.

~, = tllax( lf~!] – [,. 0). 7rI., = HlaX( 17rL:AJ – I>P – ~. ())

yield a feasible solution to the T(; (p. p) integer linear program.

Proof Since .s, t constitute a feasible solution to

the TO(r. p) LP, we must have ~~=1 Ji, /1~ z f: and

Xll U1l.f: ? TI): We now show that similar inequalities

are satisfied by UII, ~, and VI,.

We have obviously ~~=1 dl, w, > 0. Furthermore,

]=1 J

where we have used the fact that ~1 d,J < L. Therefore

E (it,? I’, 2 f,.

I
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where we have used the fact that xi aij < P. Therefore,

i

For the fixed routing algorithm

~i, f i, ad wi, we have

•1

F, using the above values of

Also

From the above we have the following proposition.

Proposition 2:

2) The Random Case: The fixed RWA algorithm is a

greedy algorithm in the following sense. It accepts a

connection request between an s-d pair if there is a free

wavelength on any of the paths between that s-d pair and

rejects the connection request otherwise. Using [16, Theorem

4.1 ] if the offered traffics to different s-d pairs are independent

of one another, and if the traffic model satisfies the asymptotic

traffic property (ATT) [16], this fixed RWA algorithm, F,

satisfies,

i.e., this fixed RWA algorithm is asymptotically optimal.

The ATP can be stated by considering a network with a

single s-d pair with an offered traffic of p Erlangs and a fixed

RWA algorithm that assigns A channels to this s-d pair and

blocks a connection request if and only if all the A channels

are occupied. Let Z’F(p, 1, A) denote the carried traffic for this

fixed RWA algorithm. Then, the statistics of the offered traffic

are said to satisfy the ATP if,

~lmm
TF(rA, 1, A)

A
= min(r, 1).

Informally, the ATP is a kind of law of large numbers and

simply states that, for a single s–d pair, if the offered traffic

tEEEJACM TRANSACTIONS ON NETWORKING, VOL. 3, NO. 5, CXXOBER 1995

exceeds the number of available wavelengths, all the available

wavelengths are asymptotically occupied, and if the offered

traffic is less than the number of wavelengths, all connection

requests are asymptotically honored. The ATP is satisfied by

many common traffic models including Poisson arrivals [16].

It was shown in [16] that a similar fixed routing algorithm is

asymptotically optimal for the circuit-switched case.

E. Some Simple Bounds on T. (r, p) and TC(r, p)

The following observations are useful in deriving the values

of TO(r, p) and T,(r, p) for simple networks.

Proposition 3: Let K be the maximum number of edge

disjoint paths in a graph G, i.e., K is the cardinality of

the maximum independent set in the path graph GP. Then

To(r, p) < K.

Proofi Since paths in G that use the same wavelength

must be edge-disjoint, the maximum number of times a

wavelength can be used is the maximum number of edge-

disjoint paths in G; hence, TO(r, p) s K. ❑

Proposition 4: Let E be the total number of links in a

circuit-switched network G. Let H denote the minimum

number of edges in a shortest-path between all desired source-

destination pairs between which there is nonzero traffic. Then

TC(r. p) ~ E/H.

Proof Since a connection takes up at least H circuits,

and there are a total of EA circuits, the total number of

connections that can be supported is < EA/H. Thus the

maximum number of connections that can be supported per

wavelength, TC(r, p) < E/H. ❑

Definition: We define the reuse factor at a blocking prob-

ability b of a network G for a given path-s-d-pair incidence

matrix A and traffic pattern vector p, under the operation of

a routing and wavelength assignment algorithm, X, @:$(G),

to be the maximum offered traffic per wavelength so that the

blocking probability is <b. In the simulation results that we

will present below, we will consider the reuse factor at a

blocking probability of 17..

We define the asymptotic reuse factor RA,P(G) of a network

G for given A and p as the maximum offered traffic per

wavelength for which the blocking probability can be made

arbitrarily small if the number of wavelengths is sufficiently

large.

Proposition 5: Consider a circuit-switched network G with

exactly one path between every s-d pair (i.e., A is the identity

matrix, 1). Let p denote the total offered traffic to such a

network G with traffic pattern vector p. Let pj denote the

offered traffic to link j in the network and let p~w = maxj Pj.

Then,

R1,P(G) = -$

Proof It CiUI be checked that si = ti = pir is a feasible

solution to the T=(r, p) LP for r < p/pmW and is also optimal

because of the constraints s < pr, i.e., T=(r, p) = r for

r < p/pm.X. Therefore, R1,P (G) ~ p/pmu. Furthermore, the

constraints s < tl = t and t~ < 1~ imply that ~i = p,r is

not a feasible solution for r > p/pmu, and thus T=(r, p) < r

for r > p/pm.x. Therefore, RIP(G) = p/p~=. ❑
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Q 2

4 3

Fig, 4 A live node ne[wnrk

,----- ------ .-.
,

0 1 2 3 4
OfferedTratfic per Wavelength (Erlangs)

Fig. 5. Carried tmffic versus offered traffic for the above five-node network.

T,, [r. I,) is the upper bound without wavelength converters and T, (r. p)is the

upper bound with wtiveleng!h mnverters,

F. ,4 Heuristic RWA Algorithm

Consider the following shortest-path RWA (SP–RWA) algo-

rithm, The set of shortest paths between a source-destination

pair is ordered in some manner. The set of wavelengths is

ordered in some manner. A new connection is routed on the

first path on which a wavelength is available. Among the set

of uvaiiable wavelengths on that path. the first one is selected,

It no path can be found, the connection is considered blocked.

We simulated the performance of this simple algorithm

for traffic where connection requests are assumed to arrive

according to a Poisson process and last for a duration that is

exponentially distributed.

III, EXAMPLES

TO illustrate the use of our bound, we provide two examples,

The first is a simple 5-node network that brings out the dif-

ference between the circuit-switched network and the optical

network. The second is a more complicated 20-node network

and is intended to demonstrate the application of our results

to more realistic networks.

A, A Simple Example

Consider the S-node pentagon network G5 shown in Fig. 4.

Let the source-destination pairs of interest, indexed from 1

(o 5, be (1. 3), (2, 4), (3, 5), (4, l), and (5, 2), i.e., each

node communicates with two other nodes in the network. The

paths of interest are then 123, 1543, 234, 2154, 345, 3215,

451, 432], 512. 5432 and will be indexed from 1 to 10.

The maximal independent sets in the path graph are {1, 2],

{3. 4}, {5, 6), {7. 8]. (9, 10}, {1, 7), {3, 9}, {5, l), (7,

3). {9. S}, For simplicity. consider the uniform traffic case,

20
17

4

2

1

3 8

Fig. 6. A 20-node network representing a skeleton of the original Arpanet.

i.e., p, = 1/5, i = 1, . ...5. In this case, observe that the

maximum cardinality of an independent set is 2 and hence

from Proposition 3, TO(r, p) < 2. The shortest-path has two

links (H = 2) and there are E = 5 links in the graph; hence

from Proposition 4, we get Tc(r, p) < 5/2. Solving the linear

programs yield,

{
Tc,(r. p) = ;:

05 T<2.—
T>2.

and

{

O<r- <5/2,
T,(T. P) = ~;2 ~ > 5/2

and hence the upper bounds of Propositions 3 and 4 are tight

for large r in this example. Fig. 5 plots TC,(r. p) and T.(r-. p)

as a function of T.

An asymptotically optimal fixed RWA algorithm for the

optical network assigns the first A/5 wavelengths to both paths

between s–d pair 1, the second ,4/5 wavelengths to both paths

between s-cl pair 2, etc. For r- 2 2, this algorithm realizes a

total carried traffic of 2,f asymptotically, thus achieving the

bound of Proposition 3.

An asymptotically optimal fixed RWA algorithm for the

circuit-switched network assigns A/2 circuits for connections

between each s-d pair, All connections are routed on the

unique shortest paths. For r- ~ 5/2, this algorithm realizes

a total carried traffic of 5A/2 asymptotically, thus achieving

the bound of Proposition 4.

B. A Larger Example

Consider the 20-node skeleton of the Arpanet shown in

Fig. 6 from [21, p. 138]. For this network we consider the

class of algorithms that use only shortest paths. Let the s-d

pairs of interest be {1,13}, {2, 7], {3, 15], {6, 8), {11, 14),

{4,20), {5, 19), {9, 18}, {10, 17), (12, 16}. In this example

there are 14 shortest paths: 3 shortest paths between s-d pairs

{2,7 ) and (6,8} and a single shortest path between the other 8

.+–d pairs. The path graph consists of 14 nodes corresponding

to these shortest paths and has 43 maximal independent sets.

Consider first the uniform traffic case. Fig. 7 shows the

carried traffic and blocking probability as a function of offered

traffic. In this case,

Tr(r. p) = TO(r_.p) = min(r.7r-/lO + l,3r/10 + 3,6).

The performance of the fixed RWA algorithm of Section II-D

and the simulated performance of the heuristic algorithm of

Section II–F are also indicated.
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Fie. 7. Carried traffic and bloekine rwobabilitv versus offered traffic for the 20-node network. assumine uniform traffic. T,, ( r. D) is the usmer bound on-. .
c&-ied traffic without wavelength converters and T, ( r. p ) is the upper bound with wavelength converters. Bo ( r. p ) is the corresponding lower bound on

-.. , . .

blocking probability without wavelength converters and B, (r. p) is the lower bound with wavelength converters,

Remark: For this example, instead of just shortest paths, if

we consider all paths with five or fewer hops, there are a total

of 63 paths between the desired source-destination pairs, and

there are 6865 maximal independent sets in the corresponding

path graph, illustrating the exponential growth in the number

of independent sets as a function of the number of nodes in the

path graph. The carried traffic in the network can be improved

if we route over these paths. Specifically, in this case,

Tc(r, p) = TO(7-,p) = min(r, 3r-/lO + 3, 2T-/lO + 4, 7).

Surprisingly, if we consider all paths with eleven or fewer

hops (there are 2038 such paths), TC(r-,p) does nor increase

further, implying TO(r-,p) does not increase either (since

~0(~, p) < T.(T, p)). This suggests that, at least for a large

number of wavelengths, more complicated routing algorithms

that consider paths with many hops may not help improve the

carried traffic. We are investigating tlis further.

Now consider the case of nonuniform traffic with the

(arbitrarily chosen) vector

P = (2/23, 6/23, 2/23, 6/23, 2/23, 1/23,

1/23, 1/23, 1/23, 1/23).

Fig. 8 shows the carried traffic and blocking probability as a

function of offered traffic. In this case,

T=(r-, p) = min(r-, 10r/23 + 2, 5r/23 + 3, 2r/23 + 4, 6)

and

T“(r,p) = min(r, 10T/23 + 2. 4r/23 + 3, 2r/23 + 4, 6).

Figs. 7 and 8 also illustrate the asymptotic optimality of

the fixed RWA algorithm for large A proved in Section II–D.

However, this is a different (but fixed) RWA algorithm for

each value of the offered traffic. Therefore, the implementation

of the fixed RWA algorithm requires that the offered traffic

be known and since in practice the offered traffic may be

unknown and changing, this is an impractical algorithm.

In this case, an RWA algorithm whose implementation does

not require an estimate of the offered traffic is desirable. The

SP-RWA algorithm of Section II–F has this property and it

is gratifying to note, from Figs. 7 and 8, that its performance

is close to that achievable by tzny4 RWA algorithm in this

example (for both the uniform and nonuniform cases). More-

over, we would not have been able to draw this conclusion

in the nonuniform case, if our tighter upper bound had not

been available.

4Note that even though an RWA algorithm has no choice regarding the path

on which to route the connection for most of the s-d pairs in this example,

it still has the choice of deliberately blocking the connection request and the

task of choosing one of the (potentially) many available wavelengths on thk

path, Even if there were a fixed path between every sd pair in the network,

a number of RWA heuristics can be designed simply based on the way in

which they pick one of the available wavelengths on this path-least used,

most used, etc. [7].
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Fig. 8. Carried traffic and blocking prcrbabilit y versus offered traffic for the 20-node network, for the nonuniform traffic case.

1[ must also be noted that since a fixed RWA algorithm

implies a fixed setting of the switches shown in Fig. 2, if

the mean offered traffic is known and not changing, the

network can be implemented withouf optical switches. Thus

the principal advantage of optical switching in an all-optical

network is probably the ability to adapt to the unknown traffic

and not just the amount of wavelength reuse that can be

obtained.

The blocking probability curves shown in Figs. 7 and 8

can be plotted in different ways to illustrate the effect of

different parameters. For instance Fig. 9 shows the blocking

probability plotted against the number of wavelengths for the

nonuniform traffic case, for a total offered load of 40 erhmgs

(i.e., an average of 4 full-duplex connections per node). It is

also possible to recast the results in Figs. 7 and 8 to plot the

blocking probability as a function of the offered (or carried)

traffic for a fixed number of wavelengths.

IV. WAVELENGTH REUSE IN LARGE NETWORKS

We now turn to the question of determining the wavelength

reuse factor R for large networks with and without wavelength

converters, One way to compare the performance of different

topologies is to compare the values of R for uniform traffic.

Using Proposition 5, we can easily compute the asymptotic

value of R. for any given RWA algorithm and use that as a

measure to compare different topologies. Although Proposition

5 gives a bound on R for a circuit-switched network (with

I
-..

2 Offered traffic= 40 erlangs
i

o 5 10 15

Number of Wavelengths

Fig, 9, Blocking probability versus number of wavelengths for the 20-node

network, for the nonuniform traffic case. The total offered traffic is 40 erlang$.

wavelength converters), our simulation results below show that

the reuse factors with and without wavelength converters are

strongly correlated.

In order to determine R when the number of wavelengths

is limited (in practice), we studied the performance of the

SP-RWA algorithm of Section II–F for many topologies via

simulation assuming a uniform traffic distribution over all

possible source-destination pairs, with Poisson arrivals and

exponential holding times for connections. A I% blocking

probability requirement was assumed.
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Fig, 11. Reuse factor plotted against the number of edges for a number

of 128-node random graphs, with wavelength converters (WC) and without

converters (NWC).

Fig. 10 shows the reuse factor R plotted against the number

of wavelengths for a 32-node random graph with average

degree 4. (To generate a random graph with n nodes and

average degree A, we first place n edges to create a cycle

and then, for each of the remaining n(A/2 – 1) edges we

choose, in succession, a pair of nodes randomly from the node

pairs that are not connected by an edge.) Also shown is our

circuit-switched network bound (TC) with one shortest path

for every s–d pair. We expect the reuse factor to increase

with the number of wavelengths due to the effect of trwnking

eflciency, i.e., the phenomenon whereby if both the traffic

and the link capacities are scaled proportionally in a circuit-

switched system, the blocking probability is reduced. For the

case of Poisson arrivals on a link, this property can easily be

proved using the Erlang-B formula [22, p. 147]. The figure

verifies that this is indeed the case for networks and also

that the reuse factor is close to the asymptotic reuse factor

when 1000 wavelengths are available. We observed a similar

behavior with our other sample networks as well.

Fig. 11 shows the reuse factor R plotted against the number

of edges for a number of 128-node random graphs. Clearly,

increasing the number of edges reduces the average path length

between nodes and hence improves the reuse factor.
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Fig. 12. Reuse factor plotted against the number of nodes for random

graphs with average degree 4, with wavelength converters (WC) and Without

converters (NWC).

Fig. 12 shows the reuse factor R plotted against the number

of nodes, n. For each value of n, we obtained R via simulation

for three different random graphs, each of average degree 4.

In addition we have also simulated two 1000-node random

networks of average degree 4, but with uniform traffic over

only 5000 randomly chosen source-destination pairs. The reuse

factors for these two networks were 43 and 49, respectively,

without wavelength converters, and 58 and 68, respectively,

with wavelength converters, assuming 10 wavelengths are

available. l%ese results show that 1) R incremes with n, and 2)

the difference in performance between having and not having

wavelength converters increases with n (almost no difference

for 16 node networks and up to a 40% difference for the 1000

node networks considered here). The reason for the former

is that the average path length in the network grows roughly

as log n, while the number of edges grows as n and thus we

would expect the reuse factor to grow roughly as n/ log n.

However, we do not yet have an intuitive explanation as to

why 2) should be true.

Finally, a wide class of regular networks such as shufflenets

[23] and deBruijn graphs [24] have been studied as possible

topologies for optical networks. An (undirected) deBrttijn

graph of degree A and diameter D has (A/2)D nodes,

corresponding to the state transition diagram of a D-digit shift

register with each digit E {O, 1. . . . . A – 1}, Fig. 13 shows

the reuse factor R plotted against the number of nodes, n for

deBruijn graphs and random graphs. For each value of n, we

use a deBruijn graph of degree 4 and and a random graph with

average degree 4. The figure shows that for moderate number

of nodes (16-64) there is no advantage to using deBrttijn

graphs, but for larger networks (128 and above), deBruijn

graphs appear to perform better, implying that careful design

of topology is not as important when the number of nodes

is small for uniform traffic. When the traffic is known to be

nonuniform, then significant benefits can be obtained by proper

topology design.

V. AN ALTERNATE ROtJTfNG NODE ARCFUTECTLJRE

So far, we have assumed that in networks without wave-

length converters, two connections can be assigned the same

wavelength provided they do not share any link in the network.
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Fig. 14. Structure of a simplified reconfigurable routing node

Implicitly, this also assumes that two connections emanating

from a node can be at the same wavelength provided they

are routed on different links out of the node. The optical

hardware required to realize this is shown in Fig. 2. An arrayed

multiwavelength transmitter and an arrayed multiwavelength

receiver are required for each link at the node. The amount

of hardware required can be reduced by using the node

structure shown in Fig. 14. However, this structure imposes

an additional constraint on the RWA problem in that two

connections emanating from a given node must be assigned

different wavelengths. Clearly this reduces the reuse factor.

Fig. 15 shows the reduction in reuse factor due to this added

constraint.

VI. CONCLUSION

Although the bound presented in this paper can be obtained

by solving a linear program, the number of variables in the

linear program may be an exponential function of the number

of source-destination pairs in the case of the optical network

without wavelength converters. However. since the bound is

on a per-wavelength basis, it need be computed only once and

can then be scaled easily with the number of wavelengths.

Moreover, the bound is achieved by a fixed-routing algorithm
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TABLE 1

ILLUSTRATIVEREUSE FACTORSFOR SAMPLERANDOMNETWORKS,

EACHOF AVERAGEDEOREE4 FOR UNIFORMTRAFFIC ANDTHE

SIMPLERWA HEURISTICWITHOLITWAVELENGTHCONVERTERS

No. of Wave- Reuse Connections
nodes lengths factor per node

128 10 12 2

128 32 20 10

1ooo 10 58 1

1000 32 78 5

asymptotically (when the number of wavelengths is large).

It can be used as a metric against which the performance

of different heuristics can be compared. Moreover, solving

the LP enables us to determine the assignment of paths and

wavelengths used by an asymptotically optimal fixed RWA

algorithm. This information can be useful in indicating which

links are congested and how the network can be modified

by the addition of more Iinks/wavelengths to relieve this

congestion and improve its performance.

Using two examples, we showed that this bound yields

a better bound on the carried traffic than the bound for

the corresponding circuit-switched network, or equivalently

the corresponding optical network using dynamic wavelength

converters. Indeed using this bound, we showed in the second

example that the performance of the simple SP-RWA heuristic

described here, assuming Poisson arrivals and exponential

holding times, is very close to that of an optimal algorithm.

We then quantified the reuse factor for larger networks as

a function of the number of nodes, edges, and wavelengths

via simulation. Table I provides some illustrative results for

sample networks. Based on the results, we can infer the

following:

1) We can build large ail-optical networks without wave-

length converters and support a modest number of

connections per node with a reasonable number of

wavelengths. For instance in the 128-node network

considered in Table I we can obtain a reuse factor

of 20 when 32 wavelengths are available, assuming

uniform traffic and using the simple RWA heuristic.

This indicates that with 32 wavelengths, we can .Yupporf

an average of 10 all-optical full-duplex connections per
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node. Another example from Table I shows that we

can support over 2500 connections, or approximately

5 connections per node in a 1000-node random network

with average degree 4 using 32 wavelengths.

2) The results also show that wavelength converters offer

a 10-409t0 increase in the amount of reuse achievable

for our sampling of 14 networks ranging from 16 to

1000 nodes when the number of wavelengths available

is small (10 or 32). They appear to help more for large

networks than for small ones, or when the number of

wavelengths available is small.

Although the difference in blocking performance between

networks with and without wavelength converters was not

very large for all the network examples considered here, it

is possible to construct networks where the difference is large.

This can be done by ensuring that there is a large set of paths

that form a clique in the path graph (i.e., any two paths in

this set share some link in the network), but choosing them so

that few very paths share any single link. An example given

in [12] shows such a network and traffic pattern that can

be supported without blocking by a small constant number

of wavelengths if wavelength converters are available, but

requires as many wavelengths as the number of nodes when

wavelength converters are not available.
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