
Routing-Based Synthesis of Digital Microfluidic Biochips

Elena Maftei
em@imm.dtu.dk

Paul Pop
pop@imm.dtu.dk

Jan Madsen
jan@imm.dtu.dk

DTU Informatics
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark

ABSTRACT

Microfluidic biochips are replacing the conventional biochemical
analyzers, and are able to integrate on-chip all the basic functions
for biochemical analysis. The “digital” microfluidic biochips are
manipulating liquids not as a continuous flow, but as discrete droplets
on a two-dimensional array of electrodes. Basic microfluidic oper-
ations, such as mixing and dilution, are performed on the array, by
routing the corresponding droplets on a series of electrodes. So
far, researchers have assumed that these operations are executed on
rectangular virtual devices, formed by grouping several adjacent
electrodes. One drawback is that all electrodes are considered oc-
cupied during the operation execution, although the droplet uses
only one electrode at a time. Moreover, the operations can actually
execute by routing the droplets on any sequence of electrodes on
the array. Hence, in this paper, we eliminate the concept of virtual
modules and allow the droplets to move on the chip on any route
during operation execution. Thus, the synthesis problem is trans-
formed into a routing problem. We propose an approach derived
from a Greedy Randomized Adaptive Search Procedure (GRASP)
and we show that by considering routing-based synthesis, signifi-
cant improvements can be obtained in the application completion
time.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids

General Terms

Algorithms, Performance, Design

Keywords

Microfluidics, biochips, synthesis, routing

1. INTRODUCTION
Microfluidic biochips (also referred to as lab-on-a-chip) repre-

sent a promising alternative to conventional biochemical laborato-
ries, and are able to integrate on-chip all the necessary functions for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

biochemical analysis using microfluidics, such as, transport, dis-
pensing, mixing, and detection [6].

Biochips offer a number of advantages over conventional bio-
chemical procedures. By handling small amount of fluids, they
provide higher sensitivity while decreasing reagent consumption,
hence reducing cost. Moreover, due to their miniaturization and
automation, they can be used as point-of-care devices, in areas that
lack the infrastructure needed by conventional laboratories [16].

Due to these advantages, biochips are expected to revolutionize
clinical diagnosis, especially immediate point-of-care diagnosis of
diseases. Other emerging application areas include drug discovery,
DNA analysis (e.g., polymerase chain reaction and nucleic acid se-
quence analysis), protein and enzyme analysis and immuno-assays.

There are two generations of microfludic biochips. The first gen-
eration is based on the manipulation of continuous liquid through
fabricated micro-channels, using external pressure sources or inte-
grated mechanical micro-pumps [16]. Although adequate for many
simple biochemical applications, their integrated micro-structures
make continuous-flow biochips unsuitable for more complex appli-
cations, requiring complicated fluid manipulations [2]. The second
generation is based on the manipulation of discrete, individually
controllable droplets on a two-dimensional array of identical cells.
The actuation of droplets is performed without the need of micro-
structures, leading to increased scalability and flexibility compared
with continuous-flow biochips [12]. This generation is also re-
ferred to as “digital microfluidics”, due to the analogy between the
droplets and the bits in a digital system. In this paper, we are inter-
ested in the second generation, droplet-based Digital Microfluidic
Biochips (DMBs).

Researchers have so far considered that the execution of oper-
ations is constrained to a group of adjacent electrodes forming a
rectangular “virtual device”. In this context, DMBs have concep-
tual similarities to dynamically reconfigurable field-programmable
gate arrays (DR-FPGAs). However, in the case of DMBs, devices
are virtual, as operations can be performed on any sequence of elec-
trodes on the microfluidic array. The abstraction of using virtual de-
vices has the advantage that the same synthesis techniques used for
DR-FPGAs can be adapted for the synthesis of DMBs. Hence, re-
searchers have addressed the same problems: allocation of devices
from a module library, binding of devices to operations, scheduling,
placement and routing.

A unified high-level synthesis and module placement methodolo-
gy has been proposed in [14], where the focus has been on deriving
an implementation that can tolerate faulty cells in the biochip array.
Their algorithm was modified in [17] to include droplet-routing-
aware physical design decisions. Yuh et al. [18] have proposed a
synthesis and placement algorithm which uses a tree-based topo-
logical representation and is able to improve on the results from

41

(a) Cell architecture (b) Biochip: array of cells (c) Application graph

Figure 1: Biochip architecture and application model

[14]. In [10] we have proposed an ILP-based architectural-level
synthesis and placement approach for DMBs, which although has
the advantage of producing the optimal solution, is only feasible
for limited problem sizes. In [9] we have proposed a Tabu Search-
based synthesis methodology, where we considered that virtual de-
vices can move (change their placement) during their operation,
and have shown that significant improvements can thus be obtained.
All of the previous work considers that operations are performed

on virtual devices, of rectangular shape, which have a fixed place-
ment on the microfluidic array. One drawback is that all electrodes
are considered occupied during the operation execution, although
the droplet uses only one electrode at a time. Moreover, the opera-
tions can actually execute by routing the droplets on any sequence
of electrodes on the microfluidic array. Hence, in this paper, we
eliminate the concept of virtual modules and allow the droplets to
move on the chip on any route during operation execution. Thus,
the synthesis problem is transformed into a routing problem (see
Fig. 2a and Fig. 2b for a visual explanation of module-based syn-
thesis, respectively routing-based synthesis).
Routing has been addressed so far as a post-synthesis step, fol-

lowing the placement of modules on the array. Several techniques
have been proposed for finding the routes on which droplets move.
A prioritized A* search algorithm is presented in [1], where at each
time the optimal motion plan is performed for the droplet with the
highest priority. In [15], a modified Lee algorithm is proposed for
finding the routes on which droplets are transported, while mini-
mizing the number of used cells. A variant of the Open Shortest
Path First network protocol is presented in [8], while a network-
flow based routing algorithm is proposed in [19]. The results in [19]
are improved in [4], by performing bypassibility analysis while
routing. Thus, at each time, the droplet less likely to block the
movement of the other droplets is chosen to be scheduled.
All these methods consider that routing is performed between

virtual devices whose position on the microfluidic array is fixed and
determined during the placement step, thus the routes have prede-
fined fixed start- and end-points. In addition, the assumption is that
the operation is executed within the virtual device. In our routing-
based synthesis approach we eliminate the concept of virtual de-
vices and perform operations while routing, and thus there are no
fixed start- and end-points for the routes. Also, to guarantee oper-
ation completion, we are not interested in minimizing the routes,
but we have to construct routes of a given length. Therefore, the
existing algorithms are not directly applicable in our context.
In this paper, we propose a routing-based synthesis approach

that, starting from a biochemical application modeled as a sequenc-

ing graph and a given biochip array, determines a complete synthe-
sis of the application on the biochip.

Given a route on which the droplets are routed to complete an
operation, we first devise a method for determining the percentage
of operation completion, considering the length and shape of the
route. Then, we present a Greedy Randomized Adaptive Search
Procedure (GRASP)-derived routing algorithm for establishing the
routes taken by droplets during the execution of operations. We
show that by using our proposed routing-based synthesis, signifi-
cant improvements can be obtained in the application completion
time, allowing us to use smaller area biochips and thus reduce costs.

The paper is organized in six sections. Section 2.1 presents the
architecture of a digital microfluidic biochip. We discuss the char-
acterization of routing-based operation execution in Sections 2.2
and 2.3. The biochemical application model is presented in Sec-
tion 2.4. We formulate the problem in Section 3 and illustrate the
difference between module-based and routing-based synthesis. The
proposed synthesis approach is presented in Section 4 and evalu-
ated in Section 5. The last section presents our conclusions.

2. SYSTEMMODEL

2.1 Biochip Architecture
In a digital microfluidic biochip the manipulation of liquids is

performed using discrete droplets. There are several mechanisms
for droplet manipulation [6]. Our work considers electrowetting-
on-dielectric (EWD) [12], but can be extended to handle other tech-
niques as well. EWD is the most promising technique, and can
provide high droplet speeds of up to 20 cm/s [12]. A biochip is
composed of several cells, see Fig. 1b. The schematic of a cell is
presented in Fig. 1a. The droplet is sandwiched between two glass
plates (the top plate and the bottom plate), and moves within a filler
fluid. The top plate contains a single ground electrode, while the
bottom plate has several control electrodes. The electrodes are in-
sulated from the droplet through an insulation material. With EWD,
the movement of droplets is controlled by applying voltages to the
required electrodes. For example, turning off the middle control
electrode and turning on the right control electrode in Fig. 1a will
force the droplet to move to the right. For the details on EWD, the
reader is directed to [12].

Several cells are put together to form a two-dimensional array
(an example architecture is presented in Fig. 1b). Using EWD
manipulation, droplets can be moved to any location without the
need for pumps and valves, which are required in a continuous-

42

(a) Module-based operation (b) Routing-based operation (c) Droplet movement

Figure 2: Execution of a mixing operation

flow biochip. Besides the basic cell discussed previously, a chip
typically contains input and output ports and detectors. The de-
tection can be done by using, for example, a light-emitting diode
(LED) beneath the bottom plate and a photodiode on the top plate.

2.2 Module- vs. Routing-Based Operations
Using this architecture, and changing correspondingly the con-

trol voltages, all of the required operations, such as transport, split-
ting, dispensing, mixing, and detection, can be performed. For ex-
ample, mixing is done by bringing two droplets to the same location
and merging them, followed by the transport of the resulted droplet
over a series of electrodes. By moving the droplet, external energy
is introduced, creating complex flow patterns (due to the formation
of multilaminates), thus leading to a faster mixing [11]. Mixing
through diffusion, where the resulted droplet remains on the same
electrode, is very slow. The operation can be executed anywhere
on the microfluidic array and is not confined to a certain area, thus
we say that mixing is a “reconfigurable” operation. Another re-
configurable operation is dilution, which consists of a sequence of
mixing and splitting steps. A biochemical application may also
contain “non-reconfigurable” operations, that are executed on real
devices, such as reservoirs or optical detectors.
So far, it has been considered that reconfigurable operations are

performed inside virtual modules, created by grouping adjacent
cells. Such a module is shown in Fig. 2a, where the droplet is
routed circularly on a series of electrodes until the mixing opera-
tion is completed. The movement of the droplet inside the module
is described by the mixing pattern, represented by the arrows inside
the virtual module.
Table 1 presents the results of the experiments performed in [11],

where several mixing times were obtained for various areas, creat-
ing a module library. One problem addressed by the experiments
is flow reversibility, when complex patterns inside the droplet are
unfold into simpler ones when the direction in which the droplet
is transported is changed by 180◦. This is the case of linear mixers
(e.g., Fig. 3b), where the motion of the droplet is bidirectional. One

Table 1: Module library

Operation Area (cells) Time (s)
Mixing/Dilution 2 × 4 2.9
Mixing/Dilution 1 × 4 4.6
Mixing/Dilution 2 × 3 6.1
Mixing/Dilution 2 × 2 9.95

Dispensing – 2
Detection 1 × 1 30

solution to avoid flow reversibility is to transport the droplet in a cir-
cular motion, as in the 2 × 2 virtual module shown in Fig. 3d. How-
ever, it has been shown that since the droplet is rotating around the
pivot point in the center of the created module, part of the droplet
remains unmixed and thus the operation takes longer (9.95 s) to
complete. In the 2 × 3 module shown in Fig. 3c two additional
electrodes are introduced in order to eliminate the static pivot point
present in the 2 × 2 module, thus reducing the mixing time to 6.1 s.
The mixing time is further improved for the 2 × 4 mixer in Fig. 3a,
leading to a 2.9 s completion time. The experiments show that
faster mixing is obtained by moving the droplet linearly for as long
as possible, reducing thus the flow reversibility.

During module-based operation execution, all cells inside the
module are considered occupied, although the droplet uses only one
cell at a time. Thus, the remaining cells cannot be used for other
operations, which is inefficient since it reduces the potential for par-
allelism. In addition, in order to prevent the accidential merging of
a droplet with another droplet in its vicinity, a minimum distance
must be kept between operations executing on the microfluidic ar-
ray. For example, in Fig. 2a these fluidic constraints are enforced
by surrounding the module by a 1-cell segregation area (the hashed
area), containing cells that can not be used by other operations un-
til mixing finishes. For further details on the fluidic constraints the
reader is directed to [19].

An alternative to modules, proposed in this paper, is routing-
based operation execution. As mixing is performed by routing, an
operation can be executed anywhere on the array, unconstrained by
a rectangular shape representing a virtual module. This character-
istic of the mixing operation is shown in Fig. 2b, where the droplet
is routed freely on a sequence of electrodes, according to the shown
route.

2.3 Characterizing Routing-BasedOperations
Table 1 gives the operation completion times for modules. For

routing-based operation execution, the completion time depends on
the actual route. In this section, we propose a safe approximation
for the percentage of mixing performed while routing the droplet on
a given route. As there is no mathematical model to characterize
how the percentage of mixing varies depending on the movement
of the droplet, our method provides estimates by decomposing the
devices from Table 1.

Let us consider that while mixing a droplet, it reaches the cell
c1 at time t in Fig. 2b. We have five possibilities for the next time
moment, t+1, as shown in Fig. 2c: routing the droplet to the left, to
the right, up, down or keeping the droplet on c1. Let us denote with
p0 the percentage of mixing obtained while routing the droplet on
an electrode in a forward movement (relative to the previous move),

43

(a) 2 × 4 module (b) 1 × 4 module (c) 2 × 3 module (d) 2 × 2 module

Figure 3: Characterization of droplet mixing

with p90 the percentage obtained from a perpendicular movement
of the droplet and with p180 the percentage of mixing obtained from
a backward movement, see Fig. 2c.
Considering Table 1, we can estimate the percentage of mixing

over one cell, coresponding to each type of movement (forward,
backward, perpendicular). In order to approximate p0, p90 and
p180 we decompose the mixing patterns from the module library
in Table 1 in a sequence of forward, backward and perpendicu-
lar motions, as shown in Fig. 3. For example, the 2 × 2 mixer in
Fig. 3d can be decomposed in perpendicular movements, because
after each move the droplet changes its routing direction by 90◦. As
shown in Table 1, the operation takes 9.95 s to execute inside the
2 × 2 module, thus we can safely approximate1 the percentage of
mixing p90 to 0.1%.
For the 2 × 3 module shown in Fig. 3c, the mixing pattern is

composed of forward and perpendicular movements. By consider-
ing the mixing time shown in Table 1 and p90 = 0.1%, we obtain
the percentage of mixing resulted from one forward movement p0

= 0.29%. Note that by decomposing the 2 × 4 module shown in
Fig. 3a, we obtain a different value for p0: 0.58%. This is because
the forward mixing percentage is not constant, but it depends on
the number of electrodes used. Therefore we consider that there
are two values that estimate the percentage of forward movement:
p01, when the forward movement is continued only for one cell as in
Fig. 3c, and p02, when the forward movement of the droplet is of at
least two cells. This is a safe (pessimistic) approximation, since the
value of p0 will further increase if the droplet continues to move
forward.
Considering the percentage of forward movement p02 in the de-

composition of the 1 × 4 module in Fig. 3b, we obtain the (pes-
simistic) percentage of mixing performed during a backward mo-
tion: p180 = −0.5%. The negative mixing is explained by the un-
folding of patterns inside the droplet, i.e., the two droplets tend to
separate when moved backward.
Using these percentages, we can determine the operation com-

pletion time for any given route. For example, in Fig. 2b we have
3.19% of the mixing completed in 0.13 s. We assume that before
routing-based synthesis is performed, the set of percentages µ =
{p01, p

0
2, p

90, p180} is determined through experiments such as the
ones in [11] which have produced Table 1. The method presented
in this subsection can be applied to any such experimental data.

2.4 Biochip Application Model
We model a biochemical application using an abstract model

consisting of a sequencing graph [3]. The graph G(V,E) is di-
rected, acyclic and polar (i.e., there is a source node, which is a
node that has no predecessors and a sink node that has no suc-
cessors). Each node Oi ∈ V represents one operation. For non-
reconfigurable devices (e.g., dispensing, detection), the binding of
operations to modules is captured by the function B : V → A,

1In this paper we consider the data from [12], where the time re-
quired to route the droplet one cell is 0.01 s.

where A is the list of allocated modules from the given library L.
Each reconfigurable operation Oi (e.g., mixing, dilution) is allo-
cated and bound to route Ri ∈ R on the array C.

An edge ei, j ∈ E from Oi to Oj indicates that the output of oper-
ation Oi is the input of Oj. An operation can be activated after all
its inputs have arrived and it issues its outputs when it terminates.
We assume that, for each operation Oi, we know the execution time
Ci on the non-reconfigurable module Mk = B(Oi) or route R(Oi),
where it is assigned for execution. In Fig. 1c we have an example
of an application graph with thirteen operations, O1 to O13. The ap-
plication consists of four mixing operations (O7, O8, O10 and O12),
one diluting operation (O9), six input operations (O1, O2, O3, O4,
O5, O6 and O11) and one output operation (O13).

O9 is a dilution operation during which two unit droplets of dif-
ferent concentrations are mixed, resulting in a droplet of interme-
diate concentration having twice the unit volume. The mixing is
followed by a split operation, during which two droplets of unit
volume and intermediate concentration are obtained. Considering
Fig. 1a, a droplet is split by turning on the left and right electrodes
and turning off the middle electrode [13]. The result of the dilu-
tion operationO9 is two droplets of intermediate concentration, one
used as an input for the mixing operationO12 (denoted by e9,12), and
the other one, corresponding to O13, discarded to the output reser-
voir. We assume that the biochemical application has been cor-
rectly designed, such that all the operations will have the required
input droplet volumes.

3. PROBLEM FORMULATION
The problem we are addressing in this paper can be formulated

as follows. Given (1) a biochemical application modeled as a graph
G(V,E); (2) a biochip consisting of a two-dimensional m × n array
C of cells ; and (3) a libraryL characterizing the completion time of
the operations, we are interested to synthesize that implementation
Ψ, which minimizes the completion time of the application δG. Let
us first illustrate the module-based synthesis, followed by our pro-
posed routing-based synthesis approach, presented in Section 3.2.

3.1 Module-Based Synthesis
The module-based synthesis problem consists in determining an

implementation Ψ = < A, B, S, P,R >, which means deciding on:
(1) the allocation A, which determines what modules from the li-
braryL should be used; (2) the bindingB of each operationOi ∈ V

to a module Mk ∈ A; (3) the schedule S of the operations, which
contains the start time tstarti of each operation Oi on its correspond-
ing module; (4) the placement P containing the locations at which
operations will be executed on the m × n array; and (5) the routes R
taken by the droplets between modules and between modules and
input/output ports.

Let us consider the graph shown in Fig. 1c. We would like to
implement the operations on the 7 × 7 biochip from Fig. 1b. We
consider the current moment of time as being t = 0. For simplicity,
in this example, we consider that the input operations are already

44

(a) Schedule (b) Placement for t ∈ [0.04, 4.64] (c) t ∈ (4.68, 7.58] (d) t ∈ (7.60, 10.50]

Figure 4: Module-based synthesis example

assigned to the corresponding input ports. Thus, O1 is assigned
to the input port S 1, O2 to R1, O3 to S 2, O4 to R2, O5 to S 3, O6

to B and O11 to R1. For the other operations in Fig. 1c, the mixing
operations (O7,O8,O10 andO12) and the dilution operation (O9) the
module-based synthesis will have to allocate the appropriate virtual
modules, bind operations to them and perform the placement and
scheduling.
Let us assume that the available module library is the one cap-

tured by Table 1. We have to select modules from the library while
trying to minimize the application completion time and place them
on the 7 × 7 chip. A solution to the problem is presented in Fig. 4,
where the following modules are used: three 1×4 mixers (Mixer1,
Mixer2, Mixer3), one 2×4 mixer (Mixer4) and one 2×4 diluter
(Diluter1).
Considering this allocation, Fig. 4a presents the binding of op-

eration to modules and the optimal schedule. The schedule is de-
picted as a Gantt chart, where, for each module, we represent the
operations as rectangles with their length corresponding to the du-
ration of that operation on the module. The routing times needed
for merging the inputs of the operations are represented as hashed
rectangles in the schedule. For example, operation O12 is bound to
module Mixer4, starts after the dilution operation O9 is completed
(t f inish9 = 7.58) and after its inputs, e9,12 and O11, are merged on
the microfluidic array, thus tstart12 = 7.60. The operation takes 2.9 s,

finishing at time t f inish12 = 10.50 s.
The placement for the solution is as indicated in Fig. 4b–d. Note

that only two virtual devices can be placed on the biochip due to
space constraints, thus only two operations can execute in parallel.
In our case O7, O8 and O9 could potentially be executed in parallel.
If we decide to select smaller areas to increase parallelism, such as
a 2 × 2, the execution time is much larger, e.g., 9.95 s for a 2 × 2,
which eliminates the potential gain obtained through parallelism.

3.2 Routing-Based Synthesis
Let us consider the same synthesis problem for DMBs in the case

when we remove the concept of “virtual device” (also called “mod-
ule”) and allow operations to execute by routing the droplets on any
sequence of electrodes on the array. Similar to the problem formu-
lation for module-based synthesis, we want to synthesize an imple-
mentation Ψ = < A,B,S,P,R >, deciding the allocation, binding,
scheduling, placement and routing. However, there are differences
when performing routing-based synthesis. The allocation, binding
and placement need to be performed only for non-reconfigurable
operations, such as input and detection operations. For reconfig-
urable operations, such as mixing and dilution, the synthesis is de-
termined by the routes R. For each reconfigurable operation Oi

we have to determine a time-ordered list containing electrodes on
which Oi is executed (i.e., a route). Thus, for reconfigurable opera-
tions, the synthesis problem is transformed into a routing problem.

Let us consider the same example presented in Section 3.1. Fig. 5
shows the synthesis of the application on the 7 × 7 array. The
allocation and binding of physical modules to non-reconfigurable
operations is the same as the one presented in 3.1. We consider the
characterization of droplet mixing as discussed in Section 2.3. We
have to find the routes R for all the reconfigurable operations such
that the application completion time δG is minimized.

Fig. 5 shows a complete solution for synthetising the application
G in Fig. 1c to the 7 × 7 chip. Before the reconfigurable operations
O7, O8 and O9 can start, we route their inputs to the locations de-
picted in Fig. 5b. In order to simplify the visual representation of
the solution, we assume a repetitive route for the operations: the
droplets corresponding to O7, O8 and O9 in Fig. 5c are repeatedly
routed on the shown paths 13.58 times, until the mixing is com-
pleted.

After completion, the droplets resulted from the mixing oper-
ations O7 and O8 are routed to a common location on the chip,
where they merge, forming the droplet corresponding to operation
O10 (Fig. 5d). The dilution operation O9 continues by splitting the
mixed droplet into two droplets of intermediate concentration and
equal volume, corresponding to e9,12 and the output operation O13.

Because of simplicity reasons, in this example, the paths on which
the droplets are routed while operations are executed are of rectan-
gular shape. However, in routing-based synthesis any sequence of
electrodes can be used as a path, as shown in Fig. 2b.

The schedule of the operations is presented in Fig. 5a, where we
notice that the completion time of the application is significantly re-
duced compared to the module-based schedule presented in Fig. 4a,
4.34 s compared to 10.50 s.

There are several reasons for this reduction. Compared to the
solution in Fig. 4, operation O9 can be executed in parallel with
O7 and O8 in Fig. 5c. Routing-based synthesis leads to an increase
in paralellism due to a more efficient use of the microfluidic ar-
ray. In module-based synthesis the entire module area, including
the segregation borders, is considered occupied by the operation.
In routing-based operation execution we know the actual position
of the droplets, therefore all the other cells can be used, as long
as the droplets are not too close to each other (i.e., the microflu-
idic constraints from [19] are enforced). For example, in Fig. 5d
the droplet corresponding to O7 must be kept on the initial position
shown from time 2.20 s until time 2.23 s, in order to prevent the ac-
cidential merging with the droplet discarded to the output reservoir
(corresponding to the operation O13).

45

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

46

(a) Choosing moves for Lmerge (b) Choosing a move for Lmix (c) Placement at tcurrent + 1

Figure 7: Performing droplet moves

droplet is transported in the corresponding direction. We use prob-
abilities to favour the candidates from RCL which have a greater
cost function. Thus, there is a probablity of 50% of choosing the
best candidate from the RCL, 33.3% of choosing the second best
candidate and 16.6% for the third best feasible move. Two cost
functions are considered for determining the quality of the moves,
depending on the state of the droplets. For a droplet in the mix
state, the quality of a move is given by the percentage of mixing
performed while transporting the droplet in the given direction cal-
culated based on the set µ, see Section 2.3. For a droplet in the
merge state, the quality of a move is determined by the distance
between the two droplets that need to be merged, measured by the
Manhattan distance.
Let us use Fig. 7a to illustrate how we determine the directions

in which the droplets are moved. We consider that at time tcurrent
there are three operations executing on the array: the operations O1

and O2, that need to be merged, and the mixing operation O3, thus
Lmerge = {O1, O2} and Lmix = {O3}. As discussed in Section 2.3, for
an operation executing by routing, the amount of mixing performed
during one move depends on the previous path on which the droplet
was transported. The previous two moves for mixing operation O3

are as indicated in Fig. 7a, by the position of theO3 droplet, and the
corresponding connecting arrows. For each of the droplets on the
array we have a number of feasible moves that can be performed
at the current time step. In Fig. 7a the feasible moves are depicted
with thick arrows. The set of feasible moves includes also the de-
cision of keeping the droplet on the same position, illustrated with
an “X” under the droplet. When considering the feasible moves set
we enforce the microfluidic constraints, which prevent the droplets
from getting too close to each other and accidentialy merge. For
example the move of droplet O1 up is not permitted, since doing so
would cause it to merge with droplet O3.
The operations in Lmerge are considered first. For the droplet cor-

responding to operation O1 we have three possible moves: to the
right, down or mantaining the droplet at the current location. We
evaluate each of the possible directions, by computing the Man-
hattan distance between the new feasible position of O1 and the
position of the droplet that O1 has to merge with, O2. The current
positions of the O1 and O2 droplets are (0,2) and (3,4) respectively,
thus the initial Manhattan distance is 5, as shown in Fig. 7a. By
moving O1 to the right the new location of the droplet is (1,2),
therefore the Manhattan distance between O1 and O2 is reduced
to 4. Similarly, the Manhattan distance obtained by moving the
droplet O1 down and maintaining it at the current location are 6
and 5, respectively. Thus, moving O1 to the right is the best de-
cision, as it brings the droplets O1 and O2 closer to each other.
The RCL is constructed by considering only the three best moves,
thus RCLO1

= {right,mantain, down}. A move is randomly cho-

sen from the RCL and the placement of the droplet on the chip is
updated. Let us consider for example that the droplet is moved to
the right. Similarly we construct RCLO2

= {down,mantain, right}
and randomly choose to mantain the droplet corresponding to O2

at the current location. Fig. 7b shows the updated placement on the
microfluidic array after the two moves are performed.

Next, the mixing operation O3 is considered. The feasible direc-
tions in which the droplet can be routed are to the left, up or main-
taining the droplet on the current position. Moving the droplet in a
forward direction is not possible, as this could lead to an acciden-
tial merge with the droplet corresponding to O1 (see Fig. 7b). As
moving the droplet to the left would result in a perpendicular move
compared to the previous one, the percentage of obtained mixing
according to Section 2.3 is p90 = 0.10%, while moving it back-
wards (up) would result in a negative mixing, p180 = −0.5%. We
consider mixing by pure diffusion negligible, thus no mixing is per-
formed while the droplet remains at the same location. Therefore,
RCLO3

= {le f t,mantain, up}. We assume the droplet is randomly
moved to the left, resulting in the placement at tcurrent + 1 shown in
Fig. 7c.

In Step 2, for all the droplets in Lmerge that have been brought to
a common location at time tcurrent, their successors are activated and
inserted into the corresponding lists. Their tstart is set to tcurrent(line 16)
and their positions are at the same location where the droplets have
met. For example, when O1 and O2 in Fig. 5b are merged at time
t = 0.03, the mixing operation O7 is placed on the array and starts
executing, thus tstartO7

= 0.03.
In Step 3, all the mixing operations completed at time tcurrent and

having sucessors are promoted to themerge state (lines 20–30). For
example, at time t = 2.20, the state of the operation O7 in Fig. 5d
is changed from mix to merge, as O7 needs to be merged with O8

in order to form the droplet corresponding to the operation O10.
If the completed operation is of type dilution, then the droplet is
split into two droplets of equal volumes, see the dilution operation
O9 in Fig. 5d. The droplets resulting from the split operation are
scheduled (line 26) and their locations on the array are determined
by their predecessor’s final position.

Regarding non-reconfigurable operations, such as dispensing from
input reservoirs and detection using optical devices, we consider
that their allocationA and placement P are fixed and given as part
of the biochip architecture model, see Fig. 1b for an example. How-
ever, we decide the binding B ∈ Ψ and scheduling S ∈ Ψ of non-
reconfigurable devices as part of the synthesis process. Thus, if a
droplet corresponding to an input operation is needed on the mi-
crofluidic array at tcurrent, we schedule the dispensing of the droplet
such that it finishes at time tcurrent, and not earlier. This is in order
to avoid storing the dispensed droplets on the array, until they are
needed by other operations, as they will otherwise occupy space

47

Table 2: Results for the real-life applications

Application Area Best Average Standard dev.
RBS MBS RBS MBS RBS MBS

8 × 9 68.43 72.94 68.77 77.81 0.16 2.12
In-vitro 8 × 8 68.87 82.12 69.13 102.37 0.14 13.58

(28 operations) 7 × 8 69.12 87.33 69.46 111.18 0.17 12.26
11 × 11 113.63 184.06 117.51 205.30 4.65 8.38

Proteins 11×10 114.33 185.91 119.62 202.14 6.63 8.84
(103 operations) 10 × 10 115.65 208.90 120.65 219.17 7.73 7.89

Table 3: Results for synthetic benchmarks

Operations Area1 Average1 Best1 Area2 Average2 Best2 Area3 Average3 Best3
RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS

10 6 × 6 39.92 42.61 39.12 42.61 5 × 7 39.95 76.1 39.55 76.1 5 × 6 40.97 102.9 40.46 102.9
20 8 × 8 50.18 52.71 49.73 52.71 7 × 8 50.95 53.62 50.5 49.01 7 × 7 51.74 60.06 51.19 49.81
30 8 × 8 65.96 72.84 64.73 67 7 × 8 67.79 84.08 66.92 76.4 7 × 7 69.68 95.54 68.42 82.49
40 8 × 8 61.93 102.69 61.18 91.97 7 × 8 63.74 111.47 63.01 98.25 7 × 7 65.85 131.63 64.75 99.29
50 9 × 10 83.89 86.99 83.27 82.4 9 × 9 84.76 93.5 84.02 87.21 8 × 9 86.34 101.59 85.37 87.03
60 9 × 9 94.98 100.44 93.82 89.90 8 × 10 95.15 104.80 94.34 95.70 8 × 9 95.85 122.42 94.39 106.7
70 10 × 10 179.97 194.91 140.4 153.8 9 × 11 197.05 182.99 155.93 164.01 9 × 10 186.02 233.57 147.39 162.41
80 10 × 10 112.98 124.98 112.38 113.4 9 × 10 113.48 139.26 112.43 124.75 9 × 9 114.23 147.86 113.6 133.87
90 11 × 11 139.33 180.64 128.08 127.41 10 × 10 144.23 215.76 131.32 149.68 9 × 10 148.59 227.02 136.94 156.31
100 11 × 11 172.15 325.57 153.06 285.05 10 × 10 172.46 321.87 154.09 255.97 9 × 11 170.17 325.66 153.08 278.63

required for performing other operations. Because of the constraint
on the number of available reservoirs on a given chip, creating a
dispensed droplet at tcurrent is not always possible. In this case, the
input operation is bound using a greedy approach to the reservoir
that will be available at the earliest time. We use the same approach
for determining the binding of detection operations to optical de-
vices.
Due to its randomized nature, the algorithm in Fig. 6 might pro-

duce different results for different runs, with the same inputs. The
algorithm terminates when all operations have been synthetized,
and returns the solution Ψ (line 32). Our route-based synthesis ap-
proach is given a time limit, and runs repeatedly RoutingBasedSyn-
thesis from Fig. 6 until the time limit is reached, collecting the best
solution Ψ in terms of the application completion time δG.

5. EXPERIMENTAL EVALUATION
In order to evaluate our proposed approach, we have used two-

real life examples and ten synthetic benchmarks. The GRASP-
derived algorithm was implemented in Java (JDK 1.6), running on
SunFire v440 computers with UltraSPARC IIIi CPUs at 1,062 GHz
and 8 GB of RAM. The module library used for all the experiments
is shown in Table 1.
In our experiments we were interested to determine the improve-

ment that can be obtained by using Routing-Based Synthesis (RBS)
compared to Module-Based Synthesis (MBS). For MBS, we have
used the Tabu Search-based synthesis approach we have proposed
in [9].
Table 2 presents the results obtained by using RBS and MBS for

two real-life applications: (1) In-vitro diagnosis on human phys-
iological fluids (IVD) [15], which has 28 operations and (2) the
colorimetric protein assay (103 operations) [14], utilized for mea-
suring the concentration of a protein in a solution. Table 2 presents
the best solution (in terms of the application completion time δG),

in columns 3 and 4. The comparison is made for three progres-
sively smaller areas for both approaches, using a time limit of 10
minutes for both synthesis approaches.

As we can see, eliminating the concept of “virtual modules” and
allowing the operations to perform on any route on the microfluidic
array can lead to significant improvements in terms of application
completion time, allowing us to use smaller areas and thus reduce
costs. Using routing-based synthesis is particularly important for
more constrained synthesis problems, when knowing the exact lo-
cation of all droplets on the array, leads to more efficient space us-
age. For example, in the most constrained case for the colorimetric
protein assay, the 10 × 10 array, we have obtained an improvement
of 44.95% in the schedule length.

Moreover, the routing-based approach determines a complete so-
lution for the problem, while for the module-based synthesis a post-
synthesis step is necessary to determine the routing, which means
additional delays.

Both RBS and MBS implementations are stochastic; random de-
cisions during the exploration process can lead to slightly different
results. To determine the quality of the RBS implementation, we
have run RBS and MBS 50 times. The best results for RBS and
MBS, presented in columns 3 and 4 in Table 2, respectively, are
collected after 50 runs. The average and standard deviation over
the 50 runs compared to the best application completion time δG
are also reported in Table 2. As we can see, the difference between
RBS and MBS is larger in the average case, and the standard devi-
ation with RBS is very small, which means that RBS consistently
finds solutions which are very close to the best solution found over
the 50 runs.

In a second set of experiments we have compared RBS with
MBS on ten synthetic applications. We have generated a set of
synthetic graphs using Task Graphs For Free (TGFF) [5]. We have
manually modified the graphs in order to capture the characteristics
of biochemical applications. The graphs are composed of 10 up to

48

100 operations and the results in Table 3 show the best and the av-
erage completion time obtained out of 50 runs for RBS and MBS,
using a time limit of 10 minutes.
For each synthetic application we have considered three progres-

sively smaller areas. The results in Table 3 confirm the conclusion
from Table 2: as the area decreases, performing routing-based syn-
thesis becomes more important, and leads to significant improve-
ments. For example, for the synthetic application with 100 oper-
ations, in the case of the 9 × 11 array, we have obtained an im-
provement of 47.74% in the average completion time compared
with module-based synthesis.

6. CONCLUSIONS
In this paper we have presented a routing based-approach for the

synthesis of digital microfluidic biochips. We have shown that by
eliminating the concept of “virtual modules” and allowing droplets
to move on any route during operation execution significant im-
provements can be gained, allowing us to use smaller area biochips
and thus reduce costs. We have proposed a method for determining
the percentages of operation completion for any given route. Using
this metric, we have devised an algorithm for routing-based synthe-
sis such that the application completion times is minimized. Two
real life examples and ten synthetic applications have been used for
evaluating the effectiveness of the proposed algorithm, compared
to module-based synthesis.

7. REFERENCES
[1] K. F. Bohringer. Towards optimal strategies for moving

droplets in digital microfluidic systems Proc. IEEE Int. Conf.
Robotics and Automation, pages 1468–1474, 2004.

[2] K. Chakrabarty and J. Zeng. Design automation methods and
tools for microfluidic-based biochips. Springer, 2006.

[3] K. Chakrabarty and J. Zeng. Design automation for
microfluidics-based biochips. ACM Journal on Emerging
Technologies in Computing Systems, 1(3):186–223, 2005.

[4] M. Cho and D. Z. Pan. A high-performance droplet router for
digital microfluidic biochips. In Proceedings of International
Symposium on Physical Design, pages 200–206, 2008.

[5] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs
for free. In Proceedings of the Sixth International Workshop
on Hardware/Software Codesign, pages 97–101, 1998.

[6] R. B. Fair. Digital microfluidics: is a true lab-on-a-chip
possible? Microfluidics and Nanofluidics, 3(3):245–281,
2007.

[7] T. A. Feo and M. G. C. Resende. Greedy Randomized
Adaptive Search Procedure. Journal of Global Optimization,
6:109-133, 1995.

[8] E. J. Griffith, S. Akella, and M. K. Goldberg. Performance
characterization of a reconfigurable plannar array digital
microfluidic system. TCAD, 25:340–352, 2006.

[9] E. Maftei, P. Paul, and J. Madsen. Tabu Search-Based
Synthesis of Dynamically Reconfigurable Digital
Microfluidic Biochips. In Proceedings of the Compilers,
Architecture, and Synthesis for Embedded Systems
Conference, pages 195–203, 2009.

[10] E. Maftei, P. Paul, J. Madsen, and T. Stidsen.
Placement-aware architectural synthesis of digital
microfluidic biochips using ILP. In Proceedings of the
International Conference on Very Large Scale Integration of
System on Chip, pages 425–430, 2008.

[11] P. Paik, V. K. Pamula, and R. B. Fair. Rapid droplet mixers
for digital microfluidic systems. In Lab on a Chip,
3:253–259, 2003.

[12] M. G. Pollack, A. D. Shenderov, and R. B. Fair.
Electrowetting-based actuation of droplets for integrated
microfluidics. Lab Chip Journal, 2:96–101, 2002.

[13] H. Ren, V. Srinivasan, and R. B. Fair. Design and testing of
an interpolating mixing architecture for electrowetting-based
droplet-on-chip chemical dilution. In Proceedings of the
International Conference on Transducers, Solid-State
Sensors, Actuators and Microsystems, pages 619–622, 2003.

[14] F. Su and K. Chakrabarty. Unified high-level synthesis and
module placement for defect-tolerant microfluidic biochips.
In Proceedings of the 42nd annual Conference on Design
Automation, pages 825–830, 2005.

[15] F. Su, W. Hwang, and K. Chakrabarty. Droplet routing in the
synthesis of digital microfluidic biochips. In Proceedings of
Design, Automation and Test in Europe, volume 1, pages
73–78, 2006.

[16] T. Thorsen, S. Maerkl, and S. Quake. Microfluidic largescale
integration. Sci., pages 580–584, 2002.

[17] T. Xu and K. Chakrabarty. Integrated droplet routing and
defect tolerance in the synthesis of digital microfluidic
biochips. In Proceedings of Design Automation Conference,
pages 948–953, 2007.

[18] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. Placement of
digital microfluidic biochips using the T-tree formulation. In
Proceedings of Design Automation Conference, pages
931–934, 2006.

[19] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. BioRoute: A
Network-Flow-Based Routing Algorithm for the Synthesis
of Digital Microfluidic Biochips. In Proceedings of
International Conference on Computer-Aided Design, pages
752–757, 2007.

49

