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Abstract

In this paper, we propose a routing algorithm calMthimum Fusion Steiner Tree (MFSTipr
energy efficient data gathering with aggregation (fusianireless sensor networks. Different from
existing schemes, MFST not only optimizes over the datastrassion cost, but also incorporates the
cost for data fusion which can be significant for emergingseemetworks with vectorial data and/or
security requirements. By employing a randomized algorithat allows fusion points to be chosen
according to the nodes’ data amount, MFST achieves an ajppation ratio of% log(k + 1), wherek
denotes the number of source nodes, to the optimal solutivextremely general system setups provided
that fusion cost and data aggregation are non-decreasaigsidghe total input data. Consequently, in
contrast to algorithms that only excel in full or non-aggrtgn scenarios without considering fusion

cost, MFST can thrive in a wide range of applications.

Index Terms. wireless sensor networks, data fusion, routing, randodnégorithm, approximation.



. INTRODUCTION

Wireless sensor networks have attracted a plethora ofnaseéiorts due to their vast potential
applications [1][2]. In particular, an extensive set ofeash work has been devoted to providing
energy efficient routing algorithms for data gathering [@-While a class of shortest path tree
(SPT) based routing strategies have been developed indBadsuming statistically independent
information, the more realistic case of correlated datadiss been considered in [5-8, 10-13,
15-18]. By exploring data correlation and employing inwak processing, redundancy among
sensed data can be curtailed and hence the network load caadiesd [6]. The objective of
sensor routing algorithm is then to jointly explore the dstiaicture and network topology to
provide the optimal strategy for data gathering.

Routing with data aggregation can be generally classifienl tiwo categories: routing-driven
and aggregation-driven. Irouting-driven algorithms [5-7, 10, 11, 13], data is routed through
shortest paths to the sink, with aggregation taking placpodpnistically when data flows
encounter. Iraggregation-drivemouting algorithms [12, 15, 16], routing paths are heaviyen-
dent on data correlation in order to fully benefit from inf@tmon reduction resulted from data
aggregation. In this paper, we will use “aggregation” angslién” interchangeably, denoting the
data reduction process on intermediate sensor nodes.

Regardless of the techniques employed, existing stratepiess one key dimension in the
optimization space for routing correlated data, namelydat aggregation costThe cost for
data aggregation may be negligible for certain types of agts For example, sensor networks
monitoring field temperature may use simple average, marjiorfunctions which essentially
cost nothing. However, other networks may require complegrations for data fusion. One
example is hop-by-hop secure networks where encryptiondaedyption at intermediate nodes
will significantly augment fusion cost even though the fasfanction itself may be simple. It
has been shown in [19] that energy consumption of a beamfigriadgorithm for acoustic signal

fusion is on the same order of that for data transmission. édweer, in our own experimental



study described in [20], we found that a typical aggregafiamction for vectorial data, such
as image fusion, costs tens of nano Joules)(per bit, which is on the same order as the
communication cost reported in the literature [19].

In this paper, we include fusion cost as another dimensidghdspace of routing optimization
for correlated data. Different from transmission cost tti@pends on the output of the fusion
function, the fusion cost is mainly determined by the inpitte fusion function. Therefore,
in addition to transmission cost, fusion cost can signifigaaffect routing decisions when
involving data aggregation. For example, high fusion coslyrdeter a node from employing
multi-hop transmission strategy, especially when the dataunt can not be significantly reduced.
At the same time, various pairing options among nodes andehdiiferent fusion costs may
ultimately affect the optimal routing topology. Therefpan optimal routing algorithm needs
to jointly optimize over the transmission and fusion costs in order itamize the total energy
consumption. Since this problem is NP-complete [15], oyeciive is to design an approximation

algorithm.

A. Related Work

Routing with data aggregation targets at jointly explorihg data structure and network
topology to reduce energy consumption for data gatheringsource limited sensor networks.

If the complete knowledge of all source correlations is laidé in advance at each source,
theoretically the best approach is to use distributed gocwding typified by Slepian-Wolf coding
[21]. In this technique, compression is done at originaksesiin a distributed manner to achieve
the minimum entropy and hence avoid the need for data agiipagan the intermediate nodes.
In [15], an optimal rate allocation algorithm is proposed f@des in the network and SPT is
employed as the routing scheme. However, implementatiodisifibuted source coding in a
practical setting is still an open problem and likely to insignificant additional cost because

of the aforementioned assumption.



Routing-driven algorithms emphasize source compresgieaceh individual node, and aggre-
gation occurs opportunistically when routes intersec{l1l], the directed diffusion scheme was
proposed where sensors create gradients of informatidmein tespective neighborhoods. If the
gradients match the broadcasted interests from the sifd¢mation routes back to the sink are
formed and data is aggregated at the intersections. To waeppath sharing for more energy
savings, a greedy incremental tree (GIT) is described ih fd @djust aggregation points on the
routes. LEACH [5] is a cluster-based protocol in which seashrectly send raw data to cluster
heads where data fusion is performed. Aggregated datarigigglevered to the sink through multi-
hop path. In PEGASIS [18], sensors form chains along whicbderiransmits and receives from
a nearby neighbor. Data aggregation is then performed wlailea moves from node to node. In
[13, 14], sensor collaboration issue in target trackingddrassed, where sensors in target area
collaborate among themselves to aggregate data, and oherofdenerates a data report to the
sink. This scheme focuses on dynamic tree expanding/pyuamid tree reconfiguration when the
target moves. The basic routing structure in target areanigle SPT. In [15], it has been proved
that the minimum-energy data gathering problem is NP-cetepby applying reduction to the
set-cover problem and claimed that the optimal result isvbeh SPT and traveling salesman
path. A common feature in these protocols is that data adroel is not exploited explicitly.

When designing aggregation-driven algorithms, variowsuagptions have been made on the
model regarding data aggregation. In the single-input egggion model, fusion of one node’s
information depends only on the information of one otherenaghd the encoded data can not
be recoded. This strategy best fits asynchronous sensoomstwnder this model, an optimal
algorithm MEGA for foreign-coding and an approximationaighm LEGA for self-coding are
proposed in [16]. In MEGA, each node sends raw data to its dingopoint using directed
minimum spanning tree (MST), and encoded data is then tridtesirio the sink through SPT.
On the other hand, LEGA uses shallow light tree (SLT) [22,28]the data gathering topology,

and achieveg(1 + /2) approximation ratio for self-coding.



In a multi-input aggregation model, the amount of aggredjanéormation sent to the sink
from one node depends on the structure of the subtree robtibdtanode. In this model, each
node can theoretically obtain the joint entropy of its sebtto receive the maximal aggregation
ratio. One strategy is that aggregation is performed at & mwody if all input information from
its child nodes is available in order to exploit the coriielatamong them. Based on this model,
a hierarchical matching algorithm is proposed in [12], h#sg in an aggregation tree with a
logarithmic approximation ratio to the optimal for all c@ave aggregation functions. However,
in this model, aggregation depends only on the number of s\ade¢he subtree rooted at the

aggregation node regardless of the correlation among ttze da

B. Our Contributions

In this paper, we employ a general aggregation model wheeeatgyregation may potentially
occur at any point along a route. In particular, aggregatdd chay be fused again. Mathemati-
cally, the model only requires that the output data amournheffusion function is not less than
any of its inputs and not more than the summation of all inpEtem this point of view, the
model is a generalization of the multi-input model. Morepwair model does not depend on
any specific relations among information supplied by sensor on specific correlation models.

We define the minimum energy routing problem not only comséid by the transmission cost,
but also by the fusion cost, since fusion cost can be comfgtakiransmission cost in certain
sensor systems either due to data characteristics or gimrigecryption overhead. Consequently,
we formulate the problem as a combinatorial optimizatioobpgm. As the problem is NP-
complete, by proposing a new metric combining both fusioth tansmission costs, we design
Minimum Fusion Steiner Tree (MFSTa randomized algorithm with provable approximation
ratio of 2log(k + 1) to the optimal, where: denotes the number of source nodes. While our
technique is rooted in [12,24], the problem and approachsayeificantly different. On one

hand, we allow the costs of fusion and transmission to be diegendent and model it as a



function of the amount of data. On the other hand, there isata dggregation in [24] nor any
fusion cost in [12], while our model incorporates a geneggragation model to describe data
reduction.

Our model is quite unrestricted. It accounts for per linkhnaission cost, general non-convex
fusion cost as a function of input streams, and a broad rahgkata aggregation models. An
extensive set of simulations show that MFST performs wellarrvarious system setups. Unlike
MST and SPT algorithms that can only perform well under deréxtreme situations such as
full or non-aggregation of data without considering fusimost, MFST adapts well to varying
sensor correlations, fusion costs, and network topologies

The remainder of this paper is organized as follows. In $acti, we describe the system
model and formulate the routing problem. Section Il dstdhe randomized approximation
algorithm, followed by the analysis in Section IV. Section pvovides analytic comparison
between MFST and other algorithms, while Section VI stuthesperformance of MFST through

extensive simulations. Finally, Section VIl concludes gaper.

[I. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model

We model a sensor network as a gragh= (V, E) where V' denotes the set of sensors
(nodes) andE the set of edges representing the communication links legtveairs of sensors.
We assume that a sétC V' of k£ nodes are data sources of interests and the sensed data need
to be gathered at a special sink nade V', where it is further processed. Our focus is given to
energy efficient gathering of the information from the seunodes to the sink. Fig. 1 illustrates
an example of the data gathering process, where gray cirefgesent sensor nodes generating
source data, dashed lines are possible communicationdimicsg the nodes, and the solid lines

compose a possible routing tree for data gathering.



Intuitively, two components of the network will determirfeetenergy consumption of a routing
strategy, namely the information amount of the source nagesthe transmission cost on each
link. For convenience, we denote the amount of informatiba node to be itsveight Formally,
for a nodev € S, the node weightv(v) : S — R* denote the amount of information outgoing
from v, where R™ denotes the set of positive real numbers. In addition, areedg F is
denoted a% = (u,v), wherew is the start node and is the end node. The weight of edge
is equivalent to the weight of its starting node, i.e(e) = w(u). Associated with edge is
the the transmission cost which is definedit@s : £ — R, denoting the cost for transmitting
w(e) data fromu to v.

As mentioned earlier, along the routing path,
data from multiple nodes can be aggregated in
order to reduce the network load. For example,

data from node: can be aggregated with that of

nodeb which will in turn forward the aggregated
data tod. We assume that data aggregation cafy. 1. Example of data gathering tree
potentially take place at any intermediate node along theeran intermediate node can explore
the redundancy among multiple child-nodes’ data and agdeegll into one compressed data
stream.

In this paper, we also capture the cost of aggregating datheimetwork. Specifically, on
edgee = (u,v), we define fusion cosf(e) : E — R*, denoting energy consumption for fusion
process at node!. Therefore, the weight of a leaf node in the routing treehsas nodez in
Fig. 1, is the same as its original amount of information; kelas the weight of an intermediate
node, such as nodg is the total amount of information of the subtree rootechat intermediate
nodeafter data fusion. Since data fusion is performed by intermediatdes to aggregate their

own data with their children’s, in order to avoid confusiovre usew(-) to denote the temporary

The fusion cost is defined on the edge instead of the node fational convenience.



weight of a nodebefore data fusiorand usew(-) to denote the weight of a node after data
fusion.
In the following, we will further detail and formally defineath aggregation, transmission

cost, and fusion cost.

B. Correlation and Data Aggregation

Key to a sensor data routing protocol is the data reductidio r@fter data aggregation.
Unfortunately, this ratio is heavily dependent on the amtlon scenarios. For example, in
a sensor network detecting the maximum temperature in g felch node only sends out one
temperature value packet after data aggregation. On the btnd, in a video sensor network
monitoring an area, images collected by different sensalesaanay offer redundancy due to
overlapping fields of view. However, even with data aggregainformation is likely to increase.

To accommodate a variety of applications, we do not constoairselves to any particular
model on data aggregation. The only assumption we make igftttee data of nodes andv
is fused atv, the resulting amount of data is not less than either of tlrepmment data. In other

words, we assume

w(v) > max{w(u),w(v)}. (1)

And evidently we shall have(v) < w(u)+w(v). Otherwise, aggregation shall not be performed
at all and the problem becomes trivial.

In this paper, we assume that the aggregation process fdiptauhputs at a particular point
is performed step by step (fusing with nodes in turn) and éehe above formula is adequate
in characterizing the fusion process. The justification loé tassumption lies in the resource
limitation of sensor nodes. Storing multiple inputs andirigsthem at once may be difficult
for sensors as it requires large memory and additional gsiicg power. Second, data reported

from different sensors cannot arrive at the same time, edhe to the shared wireless medium



or various intermediate nodes and processing. Therefasngd existing data with the newly
received when it arrives is a natural solution. In other vgoid step by step fusion manner, the
fusion point aggregates its own data with one input first, aext fuses the aggregation result
with another input. This process will be repeated untilladl inputs are aggregated. For example,
in Fig. 1, noded fuses data from nodewith its original data and saves it as its temporary data,
then noded will aggregate it again with the data from noleand sends the final result along

its path to sink:.

C. Transmission and Fusion Costs

The transmission cost over an edgelepends on two factors: the unit cost of the link for
transmitting data fromu to v, and the amount of data to be transmitted. The latter fastsimiply
w(e). In practice, cost per unit data depends not only on the #iadlidistance between the two
nodes and the physical layer technology employed, but aigb@various networking overhead.
However, to simplify our model, we abstract the unit cost@g and thus the transmission cost

t(e) is
t(e) = w(e)c(e). (2)

Notice thatc(e) is link-dependent and hence can accommodate various camlper link, for
example, different distances between nodes and local stingesituations.

The fusion cost over an edgedepends on the amount of data to be fused as well as the
algorithms utilized. In this paper, the fusion cost is esgesl by a general functioy(-), such

that the cost for fusing the data of nodesandv at nodev is given as

fle) = g(ww), @) ). ©

We requireq(z,y) to possess the following properties} it is symmetrical ofz and y, b)

q(z,y) > 0 and equality is true iffr - y = 0, ¢) ¢(x,y) is monotonically non-decreasing of
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and y, andd) ¢(z,y) is non-convex when either or y is fixed. All these properties can be
naturally justified. For example, more energy is requiredfésing larger amount of data and
thus justifies c). Similarly, with the increase of data, thargin of fusion cost of unit data will
decrease as overhead will be averaged down. This justifies d)

Although both transmission and fusion costs are link-basexremark that they cannot be
simply combined together and hence rely on existing tealescolely based on the transmission
cost to solve this problem. The reason is that the fusion eosin edge is determined by the
inputs of the fusion function. The inputs include both theaming data from other nodes and
the data produced by the fusion point itself. On the contridwy transmission cost on an edge is
only determined by the weight of the start point of the edgeother words, for a fusion point,
the transmission cost is only determined by the output offtiséon function. More evidently,

this can be seen from Equations (2) and (3).

D. Problem Formulation

Given the source node sétand sinkt¢, our objective is to design a routing algorithm that
minimizes the energy consumption when delivering data fedinsource nodes % to the sink
t. Mathematically, the goal is to find a connected subgr@ph- (V*, E*) C G, which contains
all sources § C V*) and the sink# € V*), such that the following sum is minimized:
> (fe)+te). (4)
ecE*
Different from existing work, the objective function incles both transmission and fusion costs.
In particular, as discussed above, the transmission caostusion cost are link-dependent which
can account for general application scenarios.
As each node in the network will aggregate all inputs withoitgn data to form one outgoing
aggregated packet, the solution to the above problem etydisnin the form of a Steiner tree

rooted at sink. Therefore, our objective next is to find a routing Steineetthat is the solution
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to Equation (4) which minimizes the total energy consummptio

1. MFST ALGORITHM DESIGN

It has been shown that even if only the transmission costnsidered, the problem defined
in the last section is NP-complete [15]. Therefore, heuriatlgorithms have been designed in
the literature for finding approximations to the minimumnseission cost tree [15, 16]. Since
fusion cost is also incorporated into our design, the rastiltombinatorial problem is also
NP-complete. In this section, we design a randomized ajpition algorithm that is bounded
within 2log(k + 1) ratio to the optimal solution, where denotes the number of source nodes.
As our focus is given to the joint minimization of both trarisgion and fusion costs, we term
our solutionMinimum Fusion Steiner Tree (MFSTIo the best of our knowledge, this is the first
attempt that concurrently optimizes on both transmissiuth faision costs in designing routing

algorithms for gathering correlated data in wireless senstworks.

A. Minimum Fusion Steiner Tree

In MFST, we first pair up source nodes (or a source with the)diaked on the metric defined
below and then randomly select a fusion node from the nodeftae weight of the non-fusion
node will be transferred to the fusion node, paying appeggriransmission and fusion costs
on that edge. Subsequently, the non-fusion node will beietitad and the fusion node with
aggregated weight will be grouped as a new set of sourcesh@éerepeat this process on the
new set until the sink is the only remaining node. In this pape term each such process a

“stage” of the algorithm. The detailed algorithm is presenbelow.

MEST ALGORITHM:

1) Initialize stage index =0, Sp = S U {t}, and E* = (). Let wy(v) for anyv € S equal to
its original weight, and letv,(t) = 0 wheret is the sink.

2) GivenS; for stagei, for every pair of non-sink node@s:, v) € S;:



3)

4)

5)

6)
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« Find the minimum cost patfw, v) in G according to the metric

M(e) = q(wi(u), wi(v)) + a(wi(u), wi(v))c(e), (5)

w; (uw)w; (v) (w; (w)+w; (v))

w; (u)+w} (v)

. Define K;(u, v) to be the distance under metric (e) of this path.

wherea(w;(u), w;(v)) = :
For every non-sink node € S;:

« Find the minimum cost patfw,t) in G according to the metric
Me) = q(wi(u), wilt)) + wi(w)e(e) (6)

. Define K;(u,t) to be the distance under metrid(e) of this path.
Find minimum-cost perfect matchihdpetween nodes i1$;. Let (uij,v;;) denote thejth
matched pair inS;, wherel < j < |S;|/2. If there is only one non-sink node left after
matching, match it to itself without any cost, and considexsi the last “single-node pair”
in S;.
For each matched pajr, v), add those edges that are on the path defifing:, v) to the
set £™.
For each pair of non-sink matched nodesv), chooseu to be the fusion node with

probability

(7)

P(u = fusion node) = —

Otherwise,v will be the fusion node. For paifu, t), chooset to be the fusion node.

7) Transport the weight of a non-fusion node to its corregpanfusion node. According to

2Minimum-cost perfect matching is a matching that guarantke total cost (distance) for all pairs undei(e) is minimized.
Ref. [25] provides polynomial-time algorithms for this ptem. An example solution is to divide all nodes into difietre
connected subgraphs whose edges are determined by sgléwinearest neighbor for each vertex, construct an Eularfoo
each subgraph and reduce it to a Hamiltonian, and then gblediest matching out of all matchings on each Hamiltonian.
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Equation (1), the weight of the fusion node satisfies

wis1(fusion node) > max{w;(u),w;(v)} (8)

8) Remove all non-fusion nodes frof), then the remaining fusion nodes indugg ;.

9) If S;;; contains only the sink, we retur@* = (V*, E*), where E* is the set of edges
constructed an@l™ includes the source nodes and the sink. Otherwise, the mgtplocess
increment from step 2 can be executed again.

One of the key design components in the algorithm is mettite) for edgee = (u,v)

as defined in Equation (5). This metric is composed of twogpdtie fusion cost and the
transmission cost on edge As transmission cost is dependent on the data amount afiedeatif

choices of fusion pointi or v) will lead to different amount of information to be transted,

w; (w)w; (v) (w; (w)+w; (v)
w0 T w? (0)

we employa(w;(u), w;(v)) = ) as the expected weight for transmission to
evaluate the transmission cost. As we will show later, tle& metric will allow the algorithm
to jointly optimize over the transmission and fusion cost®ider to minimize the total energy
consumption.

Notice that the size of the sei; is reduced to half after each stage of the algorithm.
Therefore, the process terminates afies(k + 1) stages. Furthermore, since the fusion node
is randomly selected according to a probability based omtte weights, the fusion process is
randomly distributed among all sensor nodes. To utilize poperty, the algorithm can be rerun
periodically to generate a new realization of the tree. Asypréduct, the algorithm can then

balance fusion costs among sensor nodes naturally and lpgaeents certain node’s battery

power from being exhausted due to heavy fusion in a short.time

IV. ANALYSIS OF MFST

In this section, we prove that the approximation ratio of MH® the optimal solution is

2Jog(k+1), wherek is the number of source nodes. L&t denote the optimal solution tree. The
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optimal cost (minimum-energy consumption) @ is defined as"* = Y~ __,.(f(e) +t(e)). We
measure MFST’s performance against Since MFST is randomized, we analyze its expected
performance.

In each stage, the algorithm incurs transmission and fusasts on the se$;, which is the
source set in thé¢: + 1)th stage, for merging nodes. Lé&t; denote the total expected cost of
ith stage. The expected cost of the algorithm is then the suimmaf the expected costs of
all stages. Defing€’'* as the cost of the optimal routing tree 8. Obviously,C; = C*. Our
approach for proof is to first upper bound the expected cosh@foptimal routing algorithm,
Cf, for S; in Lemma 1. Then in Lemmas 3 and 4, we prove that, is in turn bounded by
(3)C;. Combining these lemmas, the desired result is derived Bofém 1.

Before proceeding further, we first introduce the followaggsumption needed in the analysis.
In the data gathering tree, a link may reside on multipleesdor different sources. If nodes
andu are physically in proximity, the probability of a link resid) on the route of: to the sink
and the probability of it residing on the route oto the sink are equal. This assumption can be
intuitively justified for sensor networks with dense depltmnt and also where the sink is not
deployed in the monitored environment together with thessemodes. Given this assumption,

we can obtain the following lemma.

Lemma 1: For each stage ¢ > 1, the expected coE[C}| < CF ;.

Proof: Let w;(v) denote the weight of source nodein stage:. Let (u; ;,v; ;) represent
the jth matching pair constructed in tHe+ 1)th stage of the MFST algorithm. For a given
construct a sequendg; ;, for 0 < j < [|S;[/2], where D} ; is the cost of the optimal solution
for the residual problefafter jth random fusion node selection during tfie- 1)th stage. Note

that the last pair may be the special “pair” with only one ndglg definition, we haveD;, = C7

and D s, /s = Ciyn = Diyi o

3For simplification in this proof, we useesidual problemto represent the routing problem for the remaining sourageso
after current fusion node selections in one stage.
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In order to provel[C}] < C;_,, we first prove that the sequenés; is super-martingale for
a fixed value ofi. That is: for all0 <i < log(k +1) and0 < j < [|S;/2], E[D;;,,] < D; .
Let T}, denote the optimal tree for the residual problem after jterandom fusion node

selection during thgi + 1)th stage, wher® < j < [|S;|/2]. For an edge: in tree T}, let

2,77
w(e) denote the total data routed throughAfter the (j + 1)th fusion node selection, let’(e)

be the total data through this edge for the new residual pmldn tree7;*.. Notice that the
optimal treeT},,, for the new residual problem might be quite different frdﬁ} For a node

pair (u; ;+1,v;;+1), there are three cases before fusion node selection:

1) Edgee lies on the paths from both; ;,, andv; ;, to the sink inT},.

2) Edgee lies on neither of the paths.

3) Edgee only lies on the path ofi; ;.1 or v; j11, but not on both.
In the first two casesw’(e) = w(e) regardless of which node is chosen as the fusion node.
In the last case, lep be the probability of selecting as a fusion node, then the probability
of selectingv is (1 — p). After the selectiony’(e) will increase byAw(v) with probability p
or increase byAw(u) with probability (1 — p), depending on which node is chosen, as extra
data will be routed through it. Similarlyy’(e) will decrease byAw(v) with probability p or
decrease by\w(u) with probability (1 — p) when data, routed through it earlier, changes path.
As u; ;11 andv; ;41 are nodes to be paired together, they shall be within prayimi each
other, as compared with other nodes remaining;inOtherwise, the high transmission cost will
factor in and deter the fusion. Using the aforementionedrapsion, the probability of an edge
being on either path to the sink shall be equal. Given thiglitmm, it is easy to show that the
expected value of’(e) in the third case is als@(e). For special “single node paiti; ;.;, only
the first two cases are possible before fusion node seleckimerefore, by exhausting all cases
we haveE[w'(e)] = w(e).

Let D; ;,, denote the cost of the trég’; for the residual problem after thg + 1)th fusion

node selection. In other wordg); ., is the cost ofl}7; with new weight on each edge. Since
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Dj ;.. is the cost of the optimal treg”; | for the same set of nodes, it must be less thanp, ;.
Formally, we have

Diyr € Digin = 3 (a(w'(e), @le)) +w'(e)e(e) )

EET:J

If e = (u,v) andwv is parent ofu in T

i, thenw,(e) is the weight ofv before the fusion on

e occurs. Since functiog(z,y) is non-convex when either or y is fixed, based on Jensen’s
inequality [26], we haveéE [q(x,y)] < q(E[z],y) if y is fixed. Substituting; andz with w,(e)
andw’(e) respectively, we obtain the following inequality on the egfed value ofD;; ,,

ED;,,.] < Bl Y (a(w/().3,00) +w'(e)ele))]

eETi’ij

< 3 (Bl @) + Bl
- Z (a(wle). @le)) +wle)e(e))
D,
Consequently, we obtaiy[C7] < 7, asC} = D}y = D} | 5,/2- |

Lemma 2: Given atre@ = (V, E) and a set of nodeS C V/, there exists a perfect matching
of the nodes in S that uses each edgd @it most once.

Proof: We will prove this lemma by induction on the number of edgeshim tree. If the
tree has only one node, the result is trivially true sinceadhe no edge. For a tree with more
than one node, supposec V is the deepest leaf of this tree.df¢ S, we can remove and
the edge connecting it to its parent from the tree to produsmaller tree,7”’. We inductively
produce a perfect matching of the nodesSiton 7" and use the same matching fbrIf v € S,
we instead consider’s parent nodepar(v).

If par(v) has even number of children, we match every pair of siblindesowith edges via

their parent. Every edge connected to these children is aegdonce. On the other hand, if
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par(v) has odd number of children, we match every pair of siblingesodith edges via their
parent, and match the last child with the parent. Every edgmected to these children is also
used only once. We then remove all matched nodes and theksddgn the tred” to produce

a smaller treel”.

Notice that, Ifpar(v) has even number of children and it belongsStoit remains in7”; if
par(v) has even number of children and it does not belong tat will remain out of 7". If
par(v) has odd number of children and it belongsStpit remains out ofl”; if par(v) has odd
number of children and it does not belong$oit will remain in 7" (and also inS) on behalf
of nodew that is matched wittpar(v). The reason fopar(v) to remain in7” is thatw shall
obtain its real matching pair vipar(v) in the future in this case.

Then we inductively match the rest of S @i, until all nodes are matched or only the root
(sink) is left. In this process, the desired matching is pomdi, and each edge fih is used at

most once. |

Lemma 3: LetK; be the total distance of matchings in stage 1. Then, the expected cost
of that stage, denoted b¥,;,,, is the same ag(;,

Proof: The objective of the(i + 1)th stage is to find the perfect matching # and
match them. The cost of the process consists of the totalofdsansferring weight of matched
nodes from non-fusion nodes to their fusion nodes and tred taotst of fusing data at fusion
nodes. Suppose we matehandv with weightw;(u) andw;(v). The fusion cost(w;(u), w;(v))
is independent of which node is chosen to be the fusion nauee sihe fusion cost is only
determined by the fusion function itself and its inputs. l@er, the transmission cost is different
when using different fusion nodes. If we selects the fusion node, we need to transpost
data tov. This introduces a transmission costwf(u)c(e). On the other hand, if we seleat
as the fusion node, the transmission cost will:bgv)c(e). Let G4 (u,v) denote the cost of

matchingu andv, andG,,; denote the total cost in thg + 1)th stage. The expected value of
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Git1(u,v) is given by

E[Gi11(e)] = P(fuseat u) (fz-(e) +ti(u — v)) + P(fuse at v) (fi(e) +ti(u — v))

e=(u,v)
= e (10 0) + 1)
wl(v)i ( ( ; u),wi(v)> +wi(u)c(e)>
= q<wi(u),wi(v)> +Oz<wi(u),wi(v) c(e)

w;(u), + w;
w;(

q
q

N—

wherea (wi(u), wi(v)) = wi(“)‘fjg%%gg:)wi(“”. Notice that this expected cost is exacky(u, v)
defined in Equation (5). It follows that the expected costh#f (i + 1)th stage is equal to the
total K;-distance of the matchings found. L&t ; denote the set of matched edgegin- 1)th
stage, thus

E[Gin] =E[ Y Gin(e)l = > E[Gi(e) = )Y Ki(e) = Ki.

66Xi+1 GEXZ'+1 BGXi+1

Next we examine the relationship betwe&n and C';.

Lemma 4: The total distance of matchings in the- 1)th stage satisfies; < (2)C;.

Proof: Let 7} denote the optimal tree fas;. By matching the nodes if; in the proper
way described in Lemma 2, we can get a perfect matctipg which guarantees that we use
only edges in7; and use no edge more than once.Tli let wr-(-) denote the total node
weight in this optimal tree, only leaf nodes haveg-(u) = w;(u). Intermediate nodes satisfy
wr+(u) > w;(u) due to data aggregation. To illustrate the remaining praef,will use Fig. 2
as an example. This figure is a subtre€/pfwith 4 nodes where is the parentu,v ands are
children, and solid lines are the edges. According to thechiag) scheme described in Lemma
2, we can get two matchess, p) as the parent-child matching, afd, v) as the sibling-sibling
matching. Below we enumerate these two different kinds dichiags and analyze their fusion

cost and transmission cost individually.
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Fig. 2. Example of perfect matching using edgesTi. Here, the dashed lines connect the
matching pairs and the solid lines are the available comaatioin links.

For all sibling-sibling matchindu, v),
Ki(u,v) = q(wi(u), wi(v)> + a(wi(u), wi(v)>c(u, v) 9)

includes two parts. The first part @&f;(u, v) is the fusion costf;(u,v) = q<wi(u),wi(v)>. We

bound it by the fusion cost of edgés, p) and (v, p) atp in T as

q(wi(u),wi(v)> = q(wi(u),O)—i—q(wi(u),wi(v))

a(wiw),wi(p) + g (e (v), max(w,(u), wip)) )
a(wiw), wi(p)) +a(wi(v). @)
(

wre (), e (p)) + a(wr: (), 1 (0)) (10

IN

IN

< q

Here,w;(p) is the information amount at before fusion ofu andp, whereasu;(p) denotes the
information amount ap after fusion ofu andp and before fusion of andp. Similarly, wz-(p)
and {T}T; (p) respectively denote the information amounpdtefore fusion ofu andp, and after
fusion of w and p but before fusion ofv andp in 7. The first line in Inequality (10) is the
fusion cost inK;(u,v), and the last line is the fusion cost @f, p) and (v, p) in T};".

The second part of;(u, v) is the expectation of transmission cost

ti(u,v) = - c(u,v).

w;(u)w;(v)(wi(u) + w;(v))
wi(u) +wi(v)

We will bound it by the transmission cost efandwv to p in T}*. Sincew?(u)+ (2w;(u) —w;(v))? >
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0, we have

w; (v) (11)

As (u,v) are matched together using eddesp) and (v, p), we havec(u,v) = c(eyp) + c(€yp)-

Therefore,

wi(ww;(v) (wi(u) + wiv))
wi(u) + wi(v)

min (wi(u), wi(v)> : (c(eup) + C(evp)>
w;(u)c(eyp) + wi(v)c(evp)>

wrs ()elew) + wrs (v)elew) (12)

- c(u,v)

IA

VAN
= U | Ot | Ot
/N /N

IN

The first line in Inequality (12) is the transmission costiiu, v), and the last line is times
the transmission cost df:, p) and (v, p) in T}

For all parent-child matching, likés, p), again K;(s, p) includes two parts. We bound them
in the same way as what we did for the sibling-sibling matghifowards this end, we conclude
that for any node paifu,v) in S;, the total distances;(u,v) is ho more tharg times the cost

of mergingu andv in the optimal tre€l*. Therefore,

K; = Z K;(u,v) < Z %(q(wT;« (u),{ET;(v)> —|—wT;(u)c(e)> = (g)Cf (13)
e=(u,v)€Xit1 e=(u,v)eT}

The above lemmas lead to the following theorem.

Theorem 1. The approximation ratio of MFST is no more t@dg(k; + 1) to the optimal.

Proof: The expected cost of MFST is equal to the sum of the expectsts o all stages.
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This yields

Using Lemmas 1 and 4, we conclude
log(k+1) 5
E[G] < ) JElC7)]

1=1
log(k+1)

< ( ) Z =2 log (k+ 1)C*
u
We remark that for the simplified case analyzed in [12], MF&h achieve the same ap-
proximation ratio. There the authors assume that 1) eack had the same amount of original
information, and 2) the amount of information after fusienjust a function of the number of
incoming nodes. Under these assumptions, for any nodein S;, we havew;(u) = w;(v).

Therefore,

= w;(u).

wi(wywi(v) (wi(w) + wi(v))
w; (u) + wi(v)

In other words, Inequality (13) can be improvedAio < C}. As a result, the approximation ratio
can be improved ttog(k+1) as derived in [12]. Although in this sense MFST is a geneaéitin
of the algorithm described in [12], the generalized assionptand introduction of fusion cost

involve significantly different design and proof of MFST.

V. COMPARISON WITH OTHER ALGORITHMS

In this section we perform a comparison between MFST andr @tlgerithms such as SPT,
MST, and SLT. Recall that SLT is a routing algorithm propoge¢R3], targeting at simultane-
ously approximating both MST and SPT for a given node. SLBedun [16] as an approximation
solution to solve the aggregation tree problem. From thepasigon, we will conclude that MFST

can better approximate the optimal solution with differeatrelation coefficients.
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A. Scenario

Consider a sensor network where nodes are deployed && anV square grid, where only
N nodes in the left column are sources. The sink is locatedeati¢intmost bottom corner. We
assume that each source generates unit flathat is to be gathered at the sink. Data packets
will be aggregated when they encounter on their paths toitlle $he fusion cost at the sink
is naturally ignored from the total routing cost since a sirskially has abundant energy.

Nodes in the grid can only communicate with their neighb®ige cost for transmitting one
bit of data between neighboring nodes is assumed to,bket ¢, be the cost for fusing two
source data packets @f. For fusion to be meaningful, the fusion cagtshall be smaller than
the transmission cosfy/,. Otherwise, intermediate nodes will prefer forwardingaddirectly
instead of doing fusion for energy saving.

Under this setup, we compare four routing schemes, namely EBT, SLT and MFST. We
consider two extreme scenarios to demonstrate their pegioce differences.

« In the first scenario, the gathered data are identical foryesensor. In other words, the

data aggregation ratio among sensor$08%.

« In the second scenario, there is no redundancy among thenafimn gathered by different

sensors, i.e., data aggregation ratid.is

B. When Data Aggregation Ratio i$0%

In this scenario, the routes established by four algoritaresiepicted in Fig. 3. Since it reaches
the highest aggregation ratio, at each intermediate rgutode, two completely redundant data
packetsl, are aggregated without increasing of the data amount,tieguh anotherl, packet.

In this case, it is easy to verify that MST is the optimal satwhile SPT is the worst one.
In SPT, the distance from each source node to the sirflVis- 1) hops. In MST, the farthest
source is2(N — 1) hops from the sink. Sincg(N — 1) < (1+ +/2)(N — 1), according to [23],

SLT will degrade into MST for this scenario. Since MFST is adamized algorithm, we will
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Fig. 3. Data aggregation tree for MST, SPT and MFST when data agpegatio is100%.

only analyze its best case and worst case performance.
In the following we will examine the cost of MST (SLT), SPT,caMFST for this network.
For the sake of simplicity, we assunig= 1.

The cost for MSTC,57, can be derived as

N-1 N-1
Cusr =Y (co+ )+ Y co=(2c0+q)(N —1) (14)
=1 i=1
The cost for SPT is
N-1 N-1 N-2
. N(N -1
CSPT = 1Coy + Co + qo = Cop ( B ) + C(](N — 1) + QQ(N — 2) (15)
=1 i=1 =1

For MFST, since data aggregation ratioli¥%, matching between adjacent nodes is perfect.
When N = 2", all sources connect to one node which in turn will connedh sink via the
shortest path as shown in Fig. 3(c). Hence the cost is the sanMST which is the optimal.

WhenN = 2"—1, the perfect matching algorithm will divide the source®intclusters with node
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numbers2°, 2!, ... 27! respectively. Nodes within each cluster will be connected tcenter
which is connected to the sink via the shortest path as shawkig. 3(d). Since the largest
number of shortest paths are employed as compared with Hes sgher2” ! < N < 2" — 1,
it is indeed the worst case for MFST. Because MFST is a randtion algorithm, different
centers in each cluster will induce different paths and equently have different total costs.
However, we can examine the worst case scenario for the maizdtion when the center is
selected as the farthest node to the sink in each clustenidnorst realization,

n—1 n—1 N-1 n—2

CriFsr =) (2 =Dlco+a0) + (2 =2+ (D o+ ) (16)

i=1 =1 =1 i=1
The first component of Equation (16) represents the fusianti@msmission costs in each cluster,
the second component summarizes the transmission cosiscénter nodes to the fusion points

on the bottom line, and the third component captures theffuand transmission costs on the

bottom line. SinceV = 2" — 1, the above equation can be simplified as
Chiisr = (4N = 3n = 1)eo + (N = 2)qo (17)

Comparing the worst case cost of MFST in Equation (17) witkt tif MST, we have

Cypsy (AN —=3n—1)cg+ (N — 2)qo
Cusr 2¢co(N — 1) + (N — 1)

Evidently, provided thatV exceeds a certain threshold, even the worst case MFST always
outperforms SPT. And with increasiny, their difference is unbounded as demonstrated in the

equation below.
Cspr — Oyyorst = CQ—O(N2 — 7N +6log(N+1)) >0 (when N > 3)

If the fusion cost at the sink is not ignored, the same commhgscan still be drawn by

following similar analysis. We remark that MFST can actpadipproximate to the optimal
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solution within a factor of 2 in this case. Simultaneoustyjsi always better than SPT, and

their difference is unbounded.

C. When Data Aggregation Ratio is

Since there is no redundancy, the amount of data will not deaed at each fusion point.
In this case, SPT is the optimal solution and MST is the woosit®on. As explained before,
SLT is the same as MST in this network. MFST, derived by oudoanized approximation
algorithm, lies in between them. Similar to the previoustise¢c we can conclude that MFST
also outperforms MST (and hence SLT) in this extreme scenArid the cost difference between
MFST and MST is unbounded. Whévi > 4, the approximation ratio of MFST to SPT, i.e., the
optimal solution, is less than 3.

The above analysis concludes that MFST can trade off MST Y&ltd SPT in different
scenarios while SPT and MST (SLT) can only excel in certaitmeexe cases. Indeed, the data
aggregation ratio is usually between 0 and 1. In the neximseate will give extensive simulation

results to illustrate the outperforming of MFST under moemgyal system setups.

VI. SIMULATION STUDY

In this section, we present an extensive set of simulatiorevaluate the performance of our
proposed routing algorithm. For sensor nodes randomlyogeplin a 2-D field, we compare the
performance of MFST with other routing algorithms based &1,9VIST, and SLT. The impact
of network connectivity, correlation coefficient, and ufusion cost on different algorithms are
carefully studied.

Concurring with our design goal and analysis of the MFST,kayr finding of the experiments
is that MFST can adapt itself to a wide range of data cor@iadimong sensor nodes and fusion
costs. While other algorithms may achieve better perfomaan some extreme cases, they suffer

from varying conditions and hence perform poorly in gensranarios.
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A. Simulation Environment

We consider 100 sensors uniformly distributed in a squaggoneof size50m x 50m. We
assume that each node produces one unit dgtafd sends it to the sink located at the bottom-
right corner. All sensors act as both sources and routersal¥deperformed a set of experiments
with different numbers of sensors and different sizes oflfigthe results are similar and omitted
here.

We assume the maximal communication radius.id.e, if and only if two sensor nodes are
within r., there exists a communication link between them, and henadge in grapiG. By
varying r., we can control the network connectivity and hence topolofjyhe network. We
instantiate unit transmission cost on each edg¢e), using the first order radio model presented
in [5]. The transmission cost for sendidgamount of information from one node to another node
d distance away is given by(8d" + ) whend < r.. We sety = 2 and 8 = 100pJ/bit/m? to
calculate the energy consumption on the transmit amplHiere,e denotes energy consumption
per bit on the transmitter and receiver circuit. The typiele ofe is 10 — 100n.J/bit [19] and
is set to40n.J/bit in our simulation.

To possibly accommodate a wide range of scenarios, we absgtita redundancy among two
sensor nodes using a single valu¢éermedcorrelation coefficientp will determine the amount
of data reduction due to aggregation. Given the correlatmefficient between node andwv, if
their parent node fuse their data together, we assume thateight of the parent node equals

to

max(w(u), w(v)) + min(w(u), w(v))(1 — p(u,v)) (18)

wherew(u) andw(v) are weights ofu andv beforedata fusion.
The correlation model employed here is an approximatedapabdel where the correlation
coefficient decreases with the distance between two nod®gded that they are within a

correlation ranger,. If two nodes are more than, distance apart, simply the correlation
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coefficient is 0. Otherwise, the correlation coefficientpis= 1 — d/r,, whered denotes the
distance between the nodes. By varying the correlationerapgwe can control the average
correlation coefficient of the network.

In order to distinguish the correlation between data o&tgd from two nodes and that among
aggregated data, we use a “forgetting” factor on the cdroglacoefficient among aggregated
data. For example, the correlation between aggregatedmiatmon at two parent nodes is only
a fraction of their own data correlation calculated acawgdio their distance. Throughout the
simulation, we use a factor of 0.8. A set of other values ase atudied which lead to similar
results and are omitted here.

For the fusion cost, in the simulation, we assume thaty) = w - (x + y), wherew denotes
fusion cost of unit data. In other words, fusion cost is Imeéh the total amount of data to be

fused. Table | summarizes the parameters and values usad sinoulation.

TABLE |
SIMULATION PARAMETERS

Term Definition Range of Value

N number of sensors 100

Iy data size of original data 400 Bytes

g cost at transmit amplifier | 100pJ/bit/m?
€ cost at TX and RX electroni¢ ~ 40n.J/bit

Te communication range 5~ 40m

Ts correlation range 0.1 ~ 4000m
w unit fusion cost 1 ~ 50nJ/bit

B. Impact of Network Connectivity

Sincer, denotes the transmission range of a node, by varyingve can control the connec-
tivity of the network. Naturally, different connectivitynéde degrees) will affect the behaviors
of different routing algorithms.

1) Without fusion costin this set of experiments, we first disregard fusion costidéothat

MFST is an algorithm designed with fusion cost. By disregegdusion cost, we can validate



28

its performance in a scenario that actually favors thosécdest their optimization solely to the
transmission cost. Surprisingly, our results show that Mk&s comparable performance with

SLT while outperforming MST and SPT in varying scenarios.
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Fig. 4. Total cost as a function of network connectivity (Fusiontdaeszero,r. = 5 ~ 40m).

Fig. 4 summarizes the results. Two extreme cases are studibdth cases;.. is varied from
5m to 40m, denoted by the x-axis. In the first case shown in 4a), r, is set t00.1m; in
the second case shown in Fig. 4(b),is set to4000m. According to the correlation model
p=1—d/rs whend < ry, a very small-, essentially eliminates the correlation among sensors
(p — 0) while an extremely large, makes the sensed data completely redundanrt (1). Our
simulation results correspond to those described in [Xb& Weakly correlated network, SPT is
the optimal solution while MST is the worst. On the contranya strongly correlated network,
MST is the optimal solution and SPT is the worst. Similar tof SMFST can balance SPT and
MST and has comparable performance with SLT even thougmbialg SPT and MST is not
the main objective of MFST.

2) With fusion costin this set of simulations, we include fusion cost and studympact on
the performance of routing algorithms. We sgtthe fusion cost for unit data, to bén.J/bit.
Again the cases for, = 0.1m andr, = 4000m are studied and the results are depicted in Fig.

5.

Compared with the results shown in Fig. 4,as-> 0 (illustrated in Fig. 5(a)), the performance
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Fig. 5. Total cost as a function of network connectivity € 15n.J/bit, r. = 5 ~ 40m).

of MFST is the closest one to the optimal solution SPT. Ther@pmation ratio is below
1.5 through the range of communication radius. Notably, wite thcrease of communication
radius, the approximation ratio gets smaller. This can lpgagixed as follows. In a network with
poor correlation, nodes shall send data directly to theimgubodes near the sink instead of
relaying information through multiple hops, as fusion atleaop is not efficient in reducing the
data amount. As MFEST explicitly considers fusion cost, fli®nomenon can be captured and
exploited. On the contrary, SLT results in a fixed routingistinre according to network topology
and a fixed approximation ratio to MST and SPT, and hence caradept to the change of
data correlation. Therefore, whenapproaches zero, SLT can not recognize the advantage of
transmitting over direct links and results in poor perfono& Wherp — 1 as illustrated in Fig.
5(b), MFST performs better than all other algorithms. Tlsidue to the waste of energy for
fusion at every node in MST and the waste of transmissiorggniarSPT for using shortest paths
with long hop distance. In contrast, MFST and SLT can baldreteveen data aggregation and
direct transmission and thus produce better performanoee SLT gets the benefit implicitly
and and MFST explicitly targets at this balance, we obsene¢ the cost of MFST decreases
faster than SLT. Longer transmission range and thus bettgrank connectivity of the network
is in favor of MFST as it can employ more direct shortest pathprevent unnecessary fusion

cost at each node.
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C. Impact of Correlation Coefficient

Next, we fix the transmission range of the sensor nodes amly $fie impact of correlation
coefficient on the routing performance. Here, wesetio be 30m and the unit fusion castis
set to bel5n.J/bit. We increase; from 1 to 4000m which corresponds to varying from 0 to

1. Fig. 6(a) illustrates the total costs of the four algorth

180 13

-------- - o MFST — MFST
160 N ©- SPT |] 12 ©- MFgT;SF;T
-* MST - O -» . MFST/MST
0 N o SLT 1.1 ®=-a o MFST/SLT
X ~
/'_"\ ‘\ 1 q\ o o o o o
120 * -
£ o N -
= = 0.9 »
et
3 100 & o D
o 4+ 0.8 LSRR TR
O gf mmia 2 B o -0 -0 0= ®
< O o7
8
O 60§-
= 0.6, K
*
40 05 ,
.
20 04 - —me_ymwr -

o

o
(3

16 i 6‘4 2é6 10‘24 4096 16 . 64 256 1024 4096
Correlation range (m) Correlation range (m)

(a) total cost (b) ratio of cost

4

iR
i
IS

Fig. 6. Total cost and cost ratio as a function of correlation coeffic(-. = 30m, w = 15n.J/bit,
rs = 1 ~ 4000m).

Costs of all algorithms decrease with the increasep,othe correlation coefficient. This
exemplifies that data aggregation in sensor networks catlgiegenefit the routing performance
by reducing redundancy among correlated data. Whensmall, SPT performs well. However,
it does not benefit from the increaseoés the total cost only incurs slight drop. Although both
MFST and SLT are more balanced than MST and SPT, we observ®&&T performs much
better than SLT, especially when < 64m. The main reason is that MFST recalculates node’s
weight in every stage to get perfect matching and thus captadahe correlation among nodes.

Fig. 6(b) shows the cost ratio of MFST to other algorithmswiscan see, MFST achieves the
optimal tradeoff over the entire range of correlationsai save nearly 20% of energy compared
with SLT, whenp is small, while retaining almost the same performance as\@hénp is large.
On the other hand, MFST can save more than 60% energy comwaleMST, whenp is small,

and maintaining comparable performance wheis large. Finally, compared with SPT, MFST
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can save about 25% of energy whenis large at the cost of spending slightly more energy
(less than 15%) whep is small. As the correlation among nodes often vary from iappbn
to application, from node to node, and even from time to tio/dy a general algorithm such

as MFST optimized for a wide range of the valuepofan accommodate versatile scenarios.

D. Impact of Unit Fusion Cost

Since MFST includes fusion cost in the routing constraintyill evidently outperform other
algorithms with the increase of fusion cost. In this set gdezxments, we study the performance

gain of MFST as compared with other algorithms when the wstdn cost is increased.
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Fig. 7. Total cost and cost ratio as a function of unit fusion cast £ 30m, r, = 20m,
w = 1 ~ 50n.J/bit).
Fig. 7 illustrates the results when is increased fromin.J/bit to 50n.J/bit. The total cost
of SPT, MST and SLT exhibit linearity witbv as shown in Fig. 7(a). However, MFST shows
logarithmic increase witkv. The reason is that SPT, MST and SLT generate routes onhydbase
on network topology and do not take fusion cost into accotiherefore, the resulting routing
trees are fixed and hence the total cost will increase lipeaith w. Since MFST explicitly
exploits the fusion cost when optimizing routes, it can lejust to the change of fusion cost.
Fig. 7(b) clearly shows that with increasing MFST can continually distant itself from others.
As described in Section I, the fusion cost per unit data magy wvidely from network

to network. As an example, a temperature surveillance semswvork has little fusion cost
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to calculate the max, min, or average temperature. On ther ¢thnd, a wireless video sensor
network may incur significant fusion cost when performingga fusion. Our experiments show
that MFST can adapt well to a wide range of fusion costs anddapplicable to a variety of

applications.

VIlI. CONCLUSION

In this paper, we propose a randomized algorithm, tergimum Fusion Steiner Tree
(MFST) for routing correlated data in sensor networks. MFST ipocaites the missing di-
mension of fusion cost into the problem formulation and gutges an approximation ratio
of glog(k; + 1) to the optimal solution. Analytical and experimental résidhow that MFST
adapts well to varying network conditions including netwdopology, fusion cost, and the
degree of correlation. Therefore, MFST provides a feagjeleeral routing scheme for wireless
sensor networks facing various applications, unpredietamvironments, and time evolving
reconfigurations.

As an ongoing effort, we are designing an online algorithrseldlaon MFST that can be
executed in a distributed manner by sensor nodes. At the siame we are investigating the

robustness of the proposed algorithm and possible enhamtem
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