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ARTICLE OPEN

Routing entanglement in the quantum internet
Mihir Pant1,2, Hari Krovi2, Don Towsley3, Leandros Tassiulas4, Liang Jiang 5,6, Prithwish Basu7, Dirk Englund 1 and Saikat Guha2,8

Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure
communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing
capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of
users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in
entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network.
Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that
can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that
the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state
measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear
repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum
memory physics, quantum information theory, quantum error correction, and computer network theory.

npj Quantum Information            (2019) 5:25 ; https://doi.org/10.1038/s41534-019-0139-x

INTRODUCTION

A quantum network can generate, distribute, and process quantum
information in addition to classical data.1,2 The most important
function of a quantum network is to generate long distance
quantum entanglement, which serves a number of tasks including
the generation of multiparty shared secrets whose security relies
only on the laws of physics,3,4 distributed quantum computing,5

improved sensing,6,7 blind quantum computing (quantum com-
puting on encrypted data),8 and secure private-bid auctions.9

Recent experiments have demonstrated entanglement links, viz.,
entanglement established between quantum memories separated
by a few kilometers using a point-to-point optical link,10 and
longer range entanglement with satellites.11,12 Further near-term
demonstrations of long-range terrestrial entanglement are
expected.13

The conceptually simplest measurement module at a quantum
network node is the two-qubit Bell state measurement (BSM), also
known as entanglement swapping. BSMs have been experimentally
demonstrated in many physical systems.14–19 As illustrated in Fig.
1a, BSMs performed at nodes of a quantum network can glue
together small entanglement links into longer-distance entangled
clusters. The quantum processing at a quantum network node in
the near-term to medium-term will probably be limited to BSMs
that are probabilistic because of losses in optical fiber, and
inherent limitations of the quantum processing hardware.
In this paper, we develop and analyze routing protocols for

generating entanglement simultaneously between multiple pairs
of users in a quantum network, where each network (repeater)
node is equipped with quantum memories, entanglement
sources, the ability to perform a BSM between any pair of

locally-held qubits, classical computing resources, and a classical
communication interface. Our entanglement routing protocols
instruct nodes, at every time slot, on how to dynamically choose
which BSMs to perform, based on the current knowledge of the
network topology, location of end users and current link state
knowledge, so as to maximize the entanglement generation rate
for a collection of entanglement flows.
We find that even with this limited quantum processing

capability at network nodes—the standard primitive to construct
and analyze linear repeater chains—entanglement routing on a
network affords some very interesting possibilities. For example,
we find that multi-path routing, i.e., using multiple paths for
routing entanglement between a pair of end users, can enable
long distance entanglement generation with a superior rate-vs.-
distance scaling than what is possible with a single linear repeater
chain routing along the shortest path connecting the users
(Pirandola recently showed,20 for an information-theoretic descrip-
tion of repeaters that are ideal fully-error-corrected universal
quantum processors, that the optimal rate attainable for multi-
path entanglement routing using such ideal repeaters is superior
to the rate of a linear chain of ideal repeaters). While an increased
rate would be expected with multi-path routing due to a constant
factor increase in the number of disjoint paths, we find that the
gap between the performance of our multi-path routing protocol
and that of a linear repeater chain grows exponentially with
distance. Moreover, if the repeater nodes have ‘global’ link-state
knowledge (knowledge of the state of all links in the network at
every time step) and the entanglement generation success
probability over each link is above a (percolation) threshold, we
find that multi-path routing enables long-distance entanglement-
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generation at a rate that depends only linearly on the
transmissivity η of a single link in the network, whereas the rate
achieved by a linear repeater chain connecting Alice and Bob
along the shortest path would be proportional to ηnSP where nSP is
the length of the shortest path. We also present a multi-flow
routing protocol that can allow multiple pairs of users to generate
shared entanglement simultaneously over the network with
simultaneous rates that significantly exceeds with those of
achieved when each repeater node makes BSM decisions by
simply time-sharing between catering to the individual flows.
Let us consider a quantum network with topology described by

a graph G(V, E). Each of the N= |V| nodes is equipped with a
quantum repeater, and each of the M= |E| edges is a lossy optical
channel of range Li (km) and power transmissivity ηi / e�αLi , i∈ E.
Consider K source-destination (Alice-Bob) pairs (Aj, Bj), 1 ≤ j ≤ K,
situated at (not necessarily distinct) nodes in V, each of which
would like to generate maximally entangled qubits (i.e., ebits)
between themselves (and thus by definition not entangled with
any other party, due to the monogamy property of entanglement),
at the maximum rates possible Rj (ebits per channel use). The
high-level objective is: Given a class of quantum and classical
operations at each of the repeater nodes of the underlying network,
what operations should be performed at the repeater stations to
maximize the rate region (R1, R2, …, RK) simultaneously achievable
by the entanglement flows? More importantly, one would like to
address networking questions such as: (a) what is the maximum
rate-region attainable, (b) what is the tradeoff between sum
throughput and latency of the K entanglement flows, and (c)
where should repeater nodes be placed, subject to constraints on
device metrics (e.g., memories, sources, and detectors), to
maximize the attainable rate region. Ultimately one would like
to develop explicit and efficient practical quantum routing
protocols that employ quantum operations implemented via
lossy and noisy devices, while only requiring local link-state
knowledge and limited knowledge of the global network
topology, analogous to the classical internet. Ideally, one would
also want to look into what benefits are afforded by network
nodes being equipped with more complex quantum measure-
ment modules, e.g., a measurement that projects n locally held
qubits into one of the 2n n-qubit GHZ states, with n > 2 (BSM
corresponds to n= 2).

The entanglement-generation rate across a link of transmissivity
η, in the absence of any repeater mediation, is limited to:

CðηÞ ¼ �log2ð1� ηÞ ebits permode; (1)

which ≈1.44η ebits per mode when η � 1.21 (The achievability of
�log2ð1� ηÞ ebits per mode of secret communication rate over
the lossy channel with two way authenticated public classical
communication was first proven in 2009 by Pirandola.22 In 2014,
Takeoka et al. proved an upper bound to the secret-key agreement
capacity, log2½ð1þ ηÞ=ð1� ηÞ� ebits per mode,23 which equals �
2:88η ebits per mode when η � 1, thereby establishing that the
rate attained by any protocol must decay linearly with the
channel’s transmissivity and hence exponentially with distance L
in optical fiber since η � eαL. In 2015, Pirandola et al. proved an
improved weak converse upper bound of �log2ð1� ηÞ ebits per
mode, which established that as the secret key agreement capacity
of the pure loss bosonic channel.21 Subsequently, Wilde et al.24

proved �log2ð1� ηÞ ebits per mode as a strong converse upper
bound to the secret-key agreement capacity). The number of
modes per second is a device-technology-dependent constant,
upper bounded by the maximum of the optical bandwidth of the
source and the electrical bandwidth of the detector. Since η ~ e−αL

where L is the length of optical fiber, the ebits-per-mode rate also
falls off exponentially with range L. Most analyses of repeater
networks have been limited to linear chains, with the objective of
outperforming the repeater-less bound.25–32 Pirandola analyzed
entanglement-generation capacities of repeater networks assum-
ing ideal repeater nodes, i.e., those equipped with fully-error-
corrected quantum processors and argued that for a single flow
(K= 1), the maximum entanglement-generation rate R1 reduces to
the classical max-flow min-cut problem with edge e being
associated with capacity CðeÞ ¼ �log2ð1� ηðeÞÞ ebits per channel
use,20 where η(e) is the transmissivity of edge e. Pirandola
subsequently argued that classical cut-set bounds with the above
link capacity give outer bounds to the K-flow capacity region, but
again, for ideal repeater nodes. Azuma et al. independently
established an upper bound33 to the entanglement generation
bound to the rate which has the same asymptotic scaling but is not
tight. Azuma has also looked at an “aggregated” protocol in which
the repeater protocols run in parallel.34 Schoute and co-authors35

developed routing protocols on specific network topologies and
found scaling laws as functions of N, the number of qubits in the
memories at nodes, and the time and space consumed by the
routing algorithms, under the assumption that each link generates
a perfect, lossless EPR pair in every time-slot, and that the nodes’
actions are limited to (perfect) Bell-state measurements (BSMs).
Acín and co-authors36 have considered the problem of entangle-
ment percolation where neighboring nodes share a perfect,
lossless pure state. Further, van Meter and co-authors developed
explicit networking protocols also restricted to pair-wise EPR pair
generation and BSMs, but accounting for imperfect fidelities of the
EPR pairs (and thus requiring purification over multiple imperfect
pairs), and finite coherence times of the qubit memories.37 There
has also been previous work on quantum network coding38–41 and
linear-optic quantum routers.42

RESULTS

Problem statement and notation

Consider a graph G(V, E) that denotes the topology of the repeater
network. See Fig. 1b for an illustration. Each node v∈ V is a
repeater (blue circles), and each edge e ∈ E is a physical link
connecting two repeater nodes. SðeÞ 2 Z

þ is an integer edge
weight, which corresponds to the number of parallel (spatial,
spectral, and/or polarization mode) channels across the edge e
(shown using dashed lines). The number of memories at node v isP

e2NðvÞ SðeÞ (see Fig. 1b), where the sum is over N vð Þ, the set of

Fig. 1 a Example of using Bell measurement (green ovals) to
connect two entangled links into a longer entangled link. Red circles
represent qubits and black lines represent entanglement. b
Schematic of a general quantum repeater network. The large
(green) circles represent ‘trusted’ nodes, which are connected via a
classical network. The blue circles denote repeater stations, and the
red circles inside them represent quantum memories. The dashed
lines connecting the red circles are lossy optical channels (e.g.,
optical fiber). In principle, all network nodes could be equipped with
quantum repeaters (i.e., no trusted nodes), in which case depending
upon the application need, a node can be a consumer of shared
entanglement, or act a router to conduit entanglement flows
between other nodes
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nearest neighbor edges of v, with d(v)= N vð Þj j being the degree
of node v.
To simplify our analysis, we assume that time is slotted and that

each memory can hold a qubit perfectly for T ≥ 1 time slots, after
which the stored qubit completely decoheres (T should be taken
to be much smaller than the memory’s coherence time). Each time
slot t, t= 1, 2, …, is divided into two phases: the “external” phase
and the “internal” phase, which occur in that order. During the
external phase, each of the S(e) pairs of memories across an edge e
attempts to establish a shared entangled (EPR) pair. An entangle-
ment attempt across any one of the S(e) parallel links across edge
e succeeds with probability p0(e) ~ η(e),21,27 where η(e) ~ e−αL(e) is
the transmissivity of a lossy optical channel of length L(e). Using
two-way classical communication over edge e(u, v), neighboring
repeater nodes u, v learn which of the S(e) parallel links (if any)
succeeded in the external phase, in a given time slot.
Let us assume that neighboring repeaters pick upto one

successfully created ebit (i.e., ignore multiple successes if any) as
in refs. 29,31, in which case the probability that one ebit is
established successfully across the edge e during the external
phase is given by: p(e)= 1− (1− p0)

S(e). Let us also assume S(e)=
S, ∀e ∈ E, which in turn gives us p(e)= p, ∀e ∈ E. While our results
in this paper can be adapted to any network topology, we will
henceforth use the 2D regular square grid topology (Fig. 2) to
illustrate the performance of our routing algorithms.
One instance of the resulting external links created between

repeater nodes after the external phase is shown in Fig. 2b using
solid lines. In the internal phase of the time slot, entanglement
swaps (BSMs) are attempted locally at each repeater node
between pairs of qubit memories (red circles in Fig. 2). We
associate these BSM attempts as internal links, i.e., links between
memories internal to a repeater node, shown using dashed lines
inside repeaters in Fig. 2b. If T > 1, a repeater node can attempt a
BSM between qubits held in two memories that were entangled
with their respective neighboring node’s qubits in two different
time-slots. For minimizing the demands on memory coherence
time,29,31 and to avoid requiring temporal switching, we will
assume T= 1. So, BSMs will always be attempted between two
qubits in distinct memories that were entangled with their
respective counterparts at their respective neighboring nodes in
the same time-slot. Each of these internal-link attempts succeed
with probability q. Therefore, after the conclusion of one time-slot,
along a path comprising k edges (and thus k− 1 repeater nodes),

one ebit is successfully shared between the end points of the path
with probability pkqk−1. The maximum number of ebits that can
be shared between Alice (say, node a) and Bob (say, node b) after
one time-slot is min{d(a), d(b)}, assuming S is the same over all
edges. For the square-grid topology shown, the maximum
number of ebits that can be generated between Alice and Bob
in each time-slot is 4.
Alice and Bob only learn whether entanglement was generated

after a communication lag proportional to the length of the end-
to-end channel. For many applications including quantum key
distribution,3,4 secure private-bid auctions,9 quantum digital
fingerprinting43 and quantum-enhanced sensing,7 this does not
affect the performance of the protocol, except for a latency.
However, for some other applications like distributed quantum
computing44 and quantum private queries45 that require knowl-
edge of whether entanglement was generated in a particular
time-slot, we will need an additional memory at Alice and Bob
capable of holding entanglement during this latency period. A
conventional linear repeater chain would also require these
additional memories for these applications.
The remainder of the paper is dedicated to finding the optimal

strategy for each repeater node in order to decide which locally
held qubits to attempt BSM(s) on during the internal phase of a
time slot, based ideally only on knowledge of the outcomes
(success or failure) of the nearest neighbor links, i.e., local link-
state knowledge, during the respective preceding external phases.
We will assume that each repeater node is aware of the overall
network topology, as well as the locations of the K Alice-Bob pairs.
The goal of the optimal repeater strategy will be to attain the
maximum entanglement-generation rate (if there is a single Alice
and Bob, i.e., K= 1) or the maximum rate-region for multiple flows
(i.e., K > 1).

Multipath routing of a single entanglement flow

Entanglement routing with global link-state information. We begin
with the assumption that global link-state knowledge is available
at each repeater node, i.e., the state of every external link in the
network after the external phase is known to every repeater in the
network and can be used to determine the choice of which
internal links to attempt within the nodes. Each memory can only
be part of one entanglement swap, i.e., each red node can only be
part of one internal edge. Consider the following greedy algorithm
to choose the internal links: consider the subgraph induced by the

Fig. 2 Schematic of a square-grid topology. The blue circles represent repeater stations and the red circles represent quantum memories.
Every cycle (time slot) of the protocol consists of two phases. a In the first (external) phase, entanglement is attempted between neighboring
repeaters along all edges, each of which succeed with probability p (dashed lines). b In the second (internal) phase, entanglement swaps are
attempted within each repeater node based on the successes and failures of the neighboring links in the first phase—with the objective of
creating an unbroken end-to-end connection between Alice and Bob. Each of these internal connections succeed with probability q.
Memories can hold qubits for T ≥ 1 time slots
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successful external links and the repeater nodes (at the end of the
external phase), and find in it the shortest path connecting Alice
and Bob. If no connected path between Alice and Bob exists, no
shared ebits are generated in that time slot. If a shortest path of
length k1 is found, all internal links along the nodes of that path
are attempted, and the (conditional) probability of a shared ebit is
generated by this path is the probability that all k1− 1 internal link
attempts were successful, i.e., qk1�1. We then remove all the
(external and internal) links of the above path from the subgraph,
and find a shortest path connecting Alice and Bob in the pruned
subgraph. Note that instead of removing the links of the first path
from the subgraph, we could simply search for a shortest path in
the original subgraph but one that is edge disjoint from the
previous path. If such a path exists, we again attempt all internal
links at the nodes of this path, so the probability in the path
contributes to the generation of an ebit (distinct from the ebit that
may have been generated by the first path) is qk2�1 where k2 is the
length of the second path; and so on.
The entanglement generation rate achieved using this greedy

algorithm Rg is the sum of expected rates (in ebits per time-slot)
from these paths. Given the degree-4 nodes in a square grid
topology, there can be a maximum of four edge disjoint paths
between Alice and Bob. Figure 2b illustrates our greedy algorithm.
Given the set of external links created, the shortest path has
length k1= 4, the next path has length k2= 6, and no further
paths can be found. The two edge-disjoint paths are highlighted
in green. Hence, the internal links depicted with the dashed lines
in Fig. 2b are attempted and the expected number of shared ebits
generated in this time cycle is: qk1�1 þ qk2�1. The net entangle-
ment generation rate is the expectation of sums like the above
(with up to four terms) over many random instantiations of the (p,
1− p) external-link creations during the external phase of many
time-slots. Evaluating this expected rate Rg(p, q) achieved by the
above routing strategy analytically as a function of the Alice-Bob
distance (X1, X2) is difficult, even for a square-grid topology.
The intuition behind this simple greedy algorithm is that the

entanglement generation rate along a path of length k decays
exponentially as qk−1, suggesting that attempting internal links to
facilitate connections along the shortest path first would optimize
the expected rate. However, it is possible to draw random
instances of successes of external links, where either one of the
two possible options—(1) picking the shortest path (which
disrupts all other paths) and (2) picking two edge disjoint (but
longer) paths—could yield either a larger or a smaller expected
rate than the other, depending upon the value of q. If q is larger
than a threshold, option (2) will have a larger expected rate and

vice versa. Finding the global optimal rule remains an open
problem. It is easy, however, to prove that the greedy algorithm
achieves a rate within a factor of 4 of the optimum algorithm
employing global link-state knowledge, Ropt(p, q). Let us denote
the length of the shortest path between Alice and Bob with
Manhattan distance (X, Y) in the induced subgraph after the
external phase, as nSP(p). This quantity is of interest in percolation
theory, and is not known analytically, even for simple graph
topologies. It undergoes a sharp transition (i.e., starts out large and
suddenly jumps to a much smaller value) as p crosses the bond-
percolation threshold pc of the graph G, from below to above.

Clearly, Rgðp; qÞ � E½qnSPðpÞ�1� since using the shortest path is
the first step of the greedy algorithm. Furthermore, since the
optimal rule can create entanglement over a maximum of
four edge-disjoint paths in each time-step, each of which must
have a length no less than the length of the shortest path,

Roptðp; qÞ � E½4qnSPðpÞ�1� ¼
Δ
R
ðUBÞ
opt ðp; qÞ. Therefore,

Roptðp; qÞ � Rgðp; qÞ �
Roptðp; qÞ

4
; (2)

i.e., the greedy rule achieves the same rate-vs.-distance scaling as
the optimal algorithm that employs global link-state knowledge,
and at worst is lower that the optimal rate only by a constant
factor equaling the node degree.
In Fig. 3a we plot Rg(p, q) as a function of the Alice-Bob X

separation (measured in number of hops). We choose the X= Y
direction here (45° with respect to the grid axes) but other
directions show similar behavior, and a 3D plot with all directions
is in Supplementary Fig. 1 in Supplementary Note 1. When q= 1
and p > pc (pc= 0.5 for the square lattice), a giant connected
component is formed by the external links alone at the end of the
first (external) phase of a time slot. Recall that the rate along a
length k path is pkqk−1, where p ~ η is the transmissivity of each
link. In the network case, when p > pc and q= 1, we find that the
pk portion of the rate expression becomes immaterial for scaling
with Alice-Bob distance. This behavior can be explained by
percolation theory: in a large lattice in this regime, the probability
of a connected path between Alice and Bob along successful
external links in each time-slot approaches a non-zero constant as
the Alice-Bob separation is increased. Furthermore, we numerically
find that finite size effects do not have a significant impact on this
behavior, even when the Alice-Bob separation is as small as 5
hops. So, if q= 1, Rg(p, q) remains essentially distance invariant.
When p < pc, the rate falls off exponentially with distance (even
when q= 1). It is instructive to note here that the optimal rate
(entanglement-generation capacity) achievable on a single length

Fig. 3 Entanglement generation rate vs. Alice-Bob X separation for different (p, q). We choose direction X= Y here but other directions show
similar behavior, and a 3D plot with all directions is in Supplementary Fig. 1 in Supplementary Note 1; (a) Rg(p, q) is the rate attained by the
global-knowledge-based protocol. For q= 1, Rg is distance independent when p is greater than the bond percolation threshold (0.5 for the
square lattice). R(UB)(0.6) is the distance-independent rate upper bound for p= 0.6, achieving which requires perfect quantum processing at
repeater nodes. Rg(0.6, 1) is also distance independent, and within a factor 3.6 of R(UB)(0.6). With q < 1, e.g., Rg(0.6, 0.9), the rate decays
exponentially with distance. b Rloc is attained by our local link-state knowledge protocol. The rate-distance scaling exponent of Rloc is clearly
worse than Rg, but is superior to that of a linear repeater chain along the shortest path, Rlin, demonstrating multi-path routing advantage even
with local link-state knowledge
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k path does not depend on k, and only on the transmissivity of the
lossiest link in the path, i.e., C ~ η,20 but achieving this requires
infinite-coherence-time quantum memories and ideal quantum
operations at nodes. The multi-path gain in the p > pc regime lets
us achieve a distance-independent rate, but with memories whose
coherence times are no more than one time slot, and only using
BSMs. The rates were calculated using Monte-Carlo simulations
which resulted in some numerical noise as is apparent in Fig. 3.
A general upper bound on the entanglement generation rate is

given by the min-cut of the graph,20 and for a square lattice, is
given by:

RðUBÞðpÞ ¼ �log2½ð1� pÞ4�: (3)

R(UB)(0.6) is plotted in Fig. 3a. The known methods for achieving
R(UB) require infinite coherence time memories and error-corrected
quantum processors at each node. For our implementation
(assuming global link state knowledge), Rg(0.6, 1) is also plotted
in Fig. 3a. Although our protocol only requires memories to hold
entanglement for one time step, the multi path advantage gives
us the same constant rate-distance scaling and within a factor of
~3.6 of R(UB)(0.6). The assumption of perfect BSMs is unrealistic and
thus q < 1, in which case Rg(p, q) falls off exponentially with
distance; even when p > pc, as seen in the plot for Rg(0.6, 0.9).

Entanglement routing with local link-state information. Rg(p, q),
the rate attained by the protocol described in the previous
subsection that employs global link-state knowledge, is re-plotted
in Fig. 3b. We also plot:

Rlinðp; qÞ ¼ pnSPð1ÞqnSPð1Þ�1; (4)

the rate attained by a single linear repeater chain, where nSP(1) is
the shortest-path length between Alice and Bob along the edges
of the underlying square grid. The assumption of global link-state
knowledge in large networks is unrealistic, as it requires memories
whose coherence time increases with the network size due to the
time required for the traversal of link-state information across the
entire network. In this section, we describe a more realistic
protocol in which knowledge of success and failure of an external
link at each time slot is communicated only to the two repeater
nodes connected by the link, as is the case in the analysis of many
‘second-generation’ linear repeater chains.26,27,29 Repeater nodes
need to decide on which pair(s) of memories BSMs should be
attempted (i.e., which internal links to attempt), based only on
information about the states of external links adjacent to them.
We assume that network topology and positions of Alice and Bob
are known to each repeater station, and communicated classically
beforehand.
Every repeater, except Alice and Bob which do not attempt any

internal links, uses the same local rule, which is illustrated in Fig. 4
using the example of repeater u inside the dotted box. A repeater
decides which internal edges to attempt based on the information
of (1) which of the four neighboring external edges have been
successfully created in the external phase and (2) The distance of
it’s four neighbors to Alice and Bob. The distance of a repeater to
Alice and Bob is denoted, respectively, by dA and dB. We use the L2

norm for both these distances (other distance metrics are
discussed in Supplementary Note 3). The rules used to determine
the internal links to be attempted at a repeater are:

● If less than one of the neighboring external links is successful:
no internal links are attempted, since this repeater node
cannot be part of a path from Alice to Bob in that time slot.

● If two or more neighboring external links are successful: of all
the nearest neighbor nodes of u whose links to u were
successful in that time slot, we label the one that has the
minimum dA as v. Similarly, the neighbor with a successful
external link with u and the minimum dB is labeled w. If two
neighbors have the same values of dA and dB, an unbiased

coin is tossed to determine the choice of v and w, to preserve
symmetry in the protocol. If v and w are the same node, v (or
w) is replaced by node u’s nearest-neighbor node with the
next smallest value of dA (or dB). The choice of whether to
replace v or w is made in a manner that minimizes the sum of
dA and dB from the eventually chosen two neighbors to
connect. An internal link is attempted between the memories
connected to v and w respectively, as shown in Fig. 4a.

● If all four neighboring external links are successful: in addition
to the internal link attempted in the previous point, an
additional internal link is attempted between the remaining
two memories as shown in Fig. 4b, since the addition of this
internal link can only increase the entanglement generation
rate.

The entanglement generation rate Rloc(p, q) achieved by the
above described local rule is plotted in Fig. 3b and compared to
Rg(p, q) and Rlin(p, q). We use p= 0.6 and q= 0.9, the same values
used for the global-information rate plots in Fig. 3a. As one
expects, the rate-distance scaling of Rloc is worse than that of Rg.
However, the rate-distance scaling exponent achieved by the local
rule is superior to that of a linear chain, even though the physical
elements employed to build the repeaters are identical. In other
words,

Rgðp; qÞ>Rlocðp; qÞ>Rlinðp; qÞ; (5)

where each of the above three rates can be expressed as an
exponential decay with the distance L, i.e., R ~ e−αL, where the
exponents satisfy:

αgðp; qÞ<αlocðp; qÞ<αlinðp; qÞ; (6)

where it is known that αlin(p, q) < αfiber, the loss coefficient of a
fiber, which is the rate scaling exponent when no repeaters are
used.29 This is proven analytically in Supplementary Note 2A.
The scaling advantage of Rloc over Rlin arises because the local rule

allows the entanglement-generation flow between Alice and Bob to
find different (and potentially simultaneously multiple) paths in
different time slots, and does not have to rely on all links along a
linear chain to be successful. This is analogous to multi-path routing
in a classical computer network. The contour plot in Supplementary
Fig. 1d in Supplementary Note 1 further illustrates this point: there is
a noticeable enhancement of Rloc along the X= Y line because the
diagonal direction contains the largest spatial density of possible
paths between Alice and Bob. The scaling advantage over Rlin
persists in any direction, i.e., along Y= 0 as well.
Sweeping over different values of p and q, we find that the multi-

path advantage relative to a linear repeater chain increases as p
decreases from unity, but there is little relative improvement as q is
varied (see Supplementary Note 2B).
Clearly, other distance metrics (e.g., Lp norm for p ≥ 1) can be

used in lieu of the L
2 norm in the algorithm described above. In

Supplementary Note 3, we present a recursive numerical evaluation
technique to find the rate-optimal distance metric, which can be
applied to any network topology. For planar network topologies, we
find that the L2 norm is near-optimal for our local routing algorithm.
An analytical enumeration of the expected number of edge-

disjoint paths as a function of p between Alice and Bob separated by
a given distance (X, Y) in a bond-percolation instance (i.e., with p >
pc) of a network is an open question, the solution of which will
enable a firmer quantitative understanding of the multi-path
advantage in entanglement generation in a repeater network.

Simultaneous entanglement flows

In this section, we consider simultaneous entanglement-
generation flows between two Alice-Bob pairs, using local link
state knowledge at all repeater nodes. Consider two pairs Alice 1 -
Bob 1 (red nodes) and Alice 2 - Bob 2 (green nodes) as shown in
the two scenarios in Fig. 5. In Fig. 5a, the shortest paths
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connecting the two Alice-Bob pairs do not cross, but they do in
Fig. 5b. In both cases, they are placed at the four corners of a 6 ×
6 square grid, embedded within a large square grid network.
Denote by R1 and R2 the entanglement generation rates achieved
by the two Alice-Bob pairs respectively. We first consider the case
of non-intersecting flows shown in Fig. 5a. A simple strategy is for
every single repeater node (including the nodes labeled as the
two Alices and Bobs) to use the local rule described in the
previous section tailored to support the Alice 1-Bob 1 flow for a
fraction, λ, of the time slots and to support the Alice 2-Bob 2 flow
for the remaining 1− λ fraction. For p= q= 0.9, the rate region
attained by varying λ∈ [0, 1] is depicted with the blue line in Fig.
5b, which we refer to as single-flow time-share. However, if every
repeater with the exception of the Alices and Bobs carry out the
above time-sharing strategy, even when all repeater nodes
support flow 1, there is still some ‘left-over’ non-zero R2 that is
attained. This multi-flow time-share rate region is shown using the
red line in Fig. 5b.
In Fig. 6, for the case that a single Alice and a single Bob are

separated by 6 hops on the square grid, we plot a color map of
pusage, the probability a given repeater node is involved in a
successful creation of a shared ebit generated between Alice and

Bob when our local rule (for multi-path entanglement routing
described in the previous section) is employed. We observe that
only the repeaters lying in a small spatial region surrounding the
straight line joining Alice and Bob are used significantly.
This observation motivates a multi-flow spatial-division rule for

routing multi-flow entanglement, in which we divide the network
between two spatial regions corresponding to the two flows, as
shown in Fig. 5a. Any repeater in the red shaded region follows
the local rule tied to the Alice 1 - Bob 1 flow while repeaters in the
green region operate with the local rule tied to the Alice 2 - Bob 2
flow. The placement of the boundary determines the rates R1 and
R2. The rate region attained is plotted with the yellow line in Fig.
5b. This significantly outperforms time sharing. The two flows can
co-exist and operate with a very small reduction from their
individual best rates, because the repeaters they respectively
benefit the most from, form (almost) disjoint sets.
In the other extreme, we consider two Alice-Bob pairs, still

separated by six hops, but with their shortest paths crossing as
shown in Fig. 5c. The rate region attained by multi-flow time
sharing, shown by the line segment BC, still provides an
improvement over single-flow time-sharing, shown by the line
segment AD, as shown in Fig. 5d. It is interesting to note that the

Fig. 4 The entanglement swap rule used at the repeater C in the dotted box in the case of local link-state knowledge. A and B are the
repeaters closest to Alice and Bob, respectively, with a direct edge to C. a If two or three links are up, the memories linked to A and B undergo
an entanglement swap. b If four links are up, the remaining two memories also undergo an entanglement swap
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maximum R1 under multi-flow time sharing (point B) is slightly
lower than maximum R1 with the single-flow time-share rule
(point A). This happens because unlike in single-flow time-share,
the nodes at Alice 2 and Bob 2 do not contribute to R1 under
multi-flow time-share. A point along AB represents time sharing
between the strategies at points A and B. To further increase the
rate, we adopt a multi-flow spatial division strategy in which
nodes in the red region are configured to assist flow 1 and nodes
in the green region are configured to assist flow 2. Varying the
angle θ demarcating those regions results in the rate region
shown by the yellow line in Fig. 5d. This time, the improvement
due to the spatial-division rule is not as pronounced, since the
spatial regions corresponding to ‘useful’ repeater nodes for the
two flows are not disjoint.

DISCUSSION

We proposed and analyzed quantum repeater protocols for
entanglement generation in a quantum network in an architecture
that uses the same elements as in many theoretical proposals and
analyses of linear repeater chains. We accounted for channel losses
between repeater nodes and the probabilistic nature of entangle-
ment swaps at each repeater stemming from device inefficiencies,
as well as the probabilistic nature of Bell-state measurements (e.g.,
due to inherent limitations of using linear optics and lossy
detectors). The rate attained for a single entanglement-generation
flow can far outperform that is attainable over a linear repeater
chain along the shortest path, even when the nodes only have local
link-state knowledge, due to a multi-path routing advantage. We
also proposed a modified version of our routing protocol for
supporting simultaneous entanglement generation flows between

multiple Alice-Bob pairs. We found multi-flow entanglement routing
strategies that far outperform the rate region attained when each
repeater node’s local action simply time shares among assisting
each flow. Our results suggest that building and connecting
quantum repeaters in non-trivial network topologies could provide
a substantial benefit over building linear repeater chains. Seen
another way, given constraints on the number and quality of
quantum memories, link losses between nodes, and limited and
imperfect processing capabilities at repeater nodes, a 2D network
topology can outperform the repeater-less rate-vs.-distance upper
limits21,23 more easily than a linear repeater chain connecting the
communicating parties.
Our work has also opened up a number of new questions. Even

in our simplified model—an abstraction that applies when the
only source of imperfection for each component (including the
quantum memories) is pure loss—the rate-optimal (single-flow
and multi-flow) entanglement routing protocol remains open.
Rate-distance performance of the class of protocols we studied
when allowing for temporal switching at the repeater nodes—
BSM between locally-held qubits that were entangled with their
respective neighboring-node counterpart qubits in different time
slots—remains open. Since our protocol only requires a quantum
memory to hold a qubit for one entanglement attempt between
neighboring stations, photon loss would indeed be the major
source of imperfection in many implementations of the protocol.
However, accounting for more general errors (such as detector
excess noise, qubit decoherence models in the memory, multi-pair
generation probabilities in the entanglement sources, etc.) will
require purification of entanglement,25,46,47 i.e., converting several
poorer-quality EPR pairs into a few good ones using local quantum
operations and classical communication, accounting which will

Fig. 5 a Multi-flow routing for two Alice-Bob pairs that lie along the sides of a 6 × 6 square, embedded in a 100 × 100 grid; (b) rate region (R1,
R2) with different rules at repeater nodes, each employing local link-state knowledge, for p= q= 0.9. c Multi flow routing when the Alice-Bob
paths cross (d) multiflow rate region for two local-knowledge rules
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require us to introduce the Fidelity of shared entanglement at
intermediate steps of the protocol. Furthermore, we restricted our
analysis to nodes making 2-qubit measurements. Being able to
perform multi-qubit unitary operations and multi-qubit measure-
ments at repeater nodes (e.g., a 3-qubit GHZ projection across
three locally held qubits) may improve the achievable rate regions.
The idea of using a distance metric to choose the measurements
at the repeater station could be used in protocols that use
measurements of more than two qubits as well. Finally, it will be
interesting to consider repeater protocols for the distillation of
multi-partite entanglement shared between more than two
parties, and a repeater network that can support multiple
simultaneous flows of generation of multi-partite entanglement.

Code availability

All the numerical data presented in this paper are results of C
simulations conducted by MP on idealized grid network
topologies. The code used to generate this data will be made
available to the interested reader upon reasonable request.
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