
Routing for Chip-Package-Board Co-Design Considering
Differential Pairs

Jia-Wei Fang1, Kuan-Hsien Ho1, and Yao-Wen Chang1,2

1Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan
2Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

Abstract— Nanometer effects have complicated the designs of chips as
well as packages and printed circuit boards (PCB’s). In order to improve the
performance, convergence, and signal integrity of the design, chip-package-
board co-design is strongly recommended by industry. In this paper, we
present the first routing algorithm in the literature for chip-package-board
co-design with differential-pair considerations. Our algorithm is based on
linear programming and integer linear programming and guarantees to
find an optimal solution for the addressed problem. It first creates global-
routing paths among chips, packages, and a PCB. Without loss of the
solution optimality, our routing formulation can reduce the numbers of
integer variables (constraints) by 95% (99%) on average. Then, any-angle
routing is applied to complete the routing. Experimental results based on
five real industry designs show that our router can achieve 100% routability
and the optimal global-routing wirelength and satisfy all differential-pair
constraints, under reasonable CPU times, whereas recent related work
results in much inferior solution quality.

I. INTRODUCTION

A. Chip-Package-Board Co-Design
Due to the nanometer technology, modern VLSI designs contain

greater functionality and require much higher performance than ever.
Consequently, the I/O count increases significantly, and more I/O
signals come out of a chip through a package. How to complete the
routing for such a large number of I/O pins has become a big challenge
to IC, package, and printed circuit board (PCB) designers. Figure 1
shows an example of a chip, a Ball Grid Array (BGA) package, and
a PCB. The package routing is to route a net from a finger to a bump
ball, while the PCB routing is to route a net from a bump ball to a pad.

Bonding wireFinger

BGA
PadBump ball

PCB

PCB wire

Package wire

Metal layers

Top metal layer

Stacked vias

Staggered vias

Chip

Fig. 1. Cross sections of a chip, a BGA package, and a PCB.

Due to the large I/O count of a chip, design performance would be
substantially degraded without considering chip-package-board (CPB)
co-design for I/O planning. The reason is that if a chip designer dose
not use the information of package and PCB to deploy I/O’s in the early
design stage, it might result in unsolvable design violations in the later
package and PCB designs. Furthermore, good I/O planning can have
many advantages such as a smaller package size, shorter wirelength,
higher routability, and fewer vias which also imply better reliability.
Therefore, it is desirable to address the I/O planning problem of package
generation, I/O pin assignment, and package and PCB routing for CPB
co-design.

B. Differential Pairs
Differential-pair (DP) routing is a popular technique for modern

high-speed PCB designs because differential pairs (DP’s) have high
noise immunity, electromagnetic interference reduction, and ground
bounce insensitivity, which are all critical issues in high-speed signal
transmission on a PCB (and even on a package or a chip). Figure 2
illustrates a DP transmission structure. Each DP consists of two

complementary signals used to transmit one signal. The input signal
is first encoded into a positive part and a negative counterpart. Then,
these two signals are transmitted in close proximity along the routing
channel. Since the signal wires are routed close to each other, the noises
on the channel can be simultaneously absorbed by the two signals.
As a result, the noises can be cancelled, and the original signal can
be transformed back. In order to utilize the advantages of DP’s, the
two nets of a DP shall be routed parallel to each other with similar
wirelength and far away from other nets. Therefore, it is desirable to
consider DP’s to improve the performance and signal integrity during
CPB co-design.

tOutput

Routing
Channel

-
+

t

Amp.

Input

Amp.
Noise

Negative

Positive Positive

Negative

Encode Decode

Fig. 2. Transmission structure of a differential pair.

C. Previous Work
To the best knowledge of the authors, there is no previous work in the

literature to address the routing problem of CPB co-design considering
DP’s. Some related works [1], [2], and [5] are proposed for BGA
routing, flip-chip routing, PCB routing, and package-board co-design.
The work [1] proposed a package-pin reassignment algorithm based
on simulated annealing (SA) to improve the routability considering
package and PCB co-design. However, the algorithm cannot guarantee
100% routabiliy of package and PCB routing after pin reassignment.
Furthermore, as shown in Figure 1, it also did not consider stacked
vias [6] which can have better reliability than staggered ones. The
work [5] proposed a greedy heuristic for global BGA routing which
did not consider co-design and I/O planning. The work [2] applied
integer linear programming (ILP) for single-layer flip-chip routing. It
used integer variables and constraints to formulate the wire-crossing
problem. However, the formulation is not efficient for CPB co-design.
The details will be discussed in Section IV.

D. Our Contributions
In this paper, we present the first routing algorithm for CPB co-

design. Our work also considers differential-pair routing, routability
optimization under stacked vias, and total wirelength minimization. Our
algorithm first constructs two independent routing networks for both
DP’s and other nets to find the routes among fingers, bump balls, and
pads. Each routing network can be formulated as a linear programming
(LP). To achieve optimal solutions, we apply ILP to solve all the routing
networks simultaneously. However, ILP is NP-complete [3] and thus
computationally expensive. Consequently, we propose two methods to
reduce the numbers of variables and constraints. Without loss of the
solution optimality, our routing formulation can improve the numbers
of integer variables (constraints) by 95% (99%) on average. Then, any-
angle routing is applied to complete the routing. Experimental results
based on five industry designs show that our router can achieve 100%

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 512

routability and the optimal global-routing wirelength, and satisfy all
differential-pair constraints, under reasonable CPU times.

The rest of this paper is organized as follows. Section II gives the
formulation of the routing problem of CPB co-design. Section III details
our routing algorithm. Section IV shows the experimental results.
Finally, conclusions are given in Section V.

II. PROBLEM FORMULATION

Figure 3 shows the structure of the chip, package, and PCB routing;
On the PCB, one component and one BGA package with a chip are
placed. There are two types of nets for routing: one from fingers to
bump balls, and one from fingers to pads via bump balls. Figure 3
illustrates the two types of routing. Package routing is referred to as
a net routed from a finger to a bump ball. The net ended at a bump
ball will be used to connect to the PCB (and other packages). PCB
routing is referred to as a net that connects to a finger routed from a
bump ball to a pad (e.g., s7 in Figure 3). A 2-pin net is referred to a
net routed from a finger to a bump ball or to a pad via a bump ball,
while a multi-pin one is referred to a set of 2-pin nets that share the
same pad. A DP in the PCB routing is a pair of nets (or pads), such
as s5 and s6 in Figure 3, which are used to transmit the same signal
and routed in parallel to each other with similar wirelength.

s5

s6

s7

PCB

BGA

Chip

Tile

Vertical interval

Component

Pad

Finger

Bump ball

Tile

Horizontal interval

PCB routing

Package routing

Differential pair

Unassigned fingers of nets SF:
s1, s2, s3, s4, s5, s6, s7, s8, s9, s10

Pre-assigned pads of nets SP:
s5, s6, s7

Fig. 3. A BGA package and a component on a PCB.

Let F be the set of fingers, B be the set of bump balls, and P be the
set of pads. Let LBGA and LPCB denote the sets of BGA and PCB
metal layers, respectively. We define a vertical/horizontal interval to be
the segment formed by two adjacent pads/bump balls, and a tile to be
the rectangle formed by four adjacent pads or bump balls. See Figure 3
for an illustration. Let SP be the set of pre-assigned nets associated
with pads, and SD be the set of pre-assigned DP’s associated with pads;
therefore, SD ⊆ SP . All pads of nets are pre-assigned before routing,
e.g., the pads with s5, s6, and s7. Let SF be the set of unassigned
nets associated with fingers. Note that no net is pre-assigned to fingers
before routing. Recall that the net ended at a bump ball will be used to
connect to other devices. Therefore, SP ⊆ SF since each pad assigned
a net must be routed to a finger of the chip.

We formulate the addressed routing problem as follows:
Problem 1: Given a PCB with pads in a set of components, BGA

packages with bump balls and chips with fingers, the numbers of BGA
and PCB metal layers, a netlist (with specified differential pairs), and
routing design rules, the routing problem for chip-package-board co-
design considering differential pairs is to complete the package and
PCB routing so that all nets are routed, no design rules (including
differential-pair constraints) are violated, and the resulting total wire-
length is minimized.

III. THE ROUTING ALGORITHM

A. The Chip-Package-Board Co-Design Flow

Our CPB co-design flow, as shown in Figure 4, consists of two stages:
PCB and package global routing followed by any-angle detailed routing.

Differential-Pair Routing

Global Routing Any-Angle Routing

Routing Network Construction

Routing Network Solving

BGA (Fingers and Balls), Design Rules,
Components (Pins), # Layers, Netlist

Routing Result OutputLayer Assignment

2- and Multi-Pin Routing

Fig. 4. The chip-package-board co-design flow.

In global routing, we first construct two routing networks GN and
GD to formulate the routing of nets (could be 2- or multi-pin nets)
and DP’s by LP. To concurrently route 2- and multi-pin nets and
DP’s, we then merge the two routing networks GN and GD into
a complete routing network G. The routing of the network G is
formulated as an ILP due to the additional complexity incurred by
wire congestions/crossings. Since ILP is NP-complete [3] and thus
computationally expensive, we present a method to reduce the numbers
of variables and constraints. Then, an ILP solver is used to solve the
ILP and find the global routes of nets. After getting the global routes,
layer assignment is applied to distribute nets to each metal layer with
stacked vias [6] which can provide high reliability. The distributed
global routes give the global-routing paths of the nets. Finally, any-
angle detailed routing is applied to complete the routing. We detail the
routing process in the following.

B. Global Routing
For global routing, we define six types of nodes as shown in

Figure 5(a). The bump balls in the package and PCB routing are the
same. In the PCB routing, for all tiles, we create a set TPCB of PCB tile
nodes. Each PCB tile node tPCB(i) represents a tile i. We also create a
set MPCB of PCB interval nodes. The PCB interval node mPCB(j) is
introduced to model the interval j on an outer boundary of a component
or a BGA (see the left of Figure 5(a)). For each BGA package, a set
DPCB of PCB nodes is created. Each PCB node dPCB(k) is inserted
near the bump ball k. By using the PCB nodes, we can route nets
from pads to bump balls. Similar to the PCB routing, we also create
a set MBGA of BGA interval nodes and a set TBGA of BGA tile
nodes for the package routing. A BGA interval node is introduced for
each interval not on the outer boundaries of the BGA (see the right
of Figure 5(b)). Around a chip, a set DBGA of four BGA nodes are
created. One BGA node dBGA(k) is created for the boundary k of the
chip. Then we can use the BGA nodes to route nets from bump balls
to fingers.

1) Basic LP Formulation of 2- and Multi-Pin Nets: Figure 5(b)
shows the routing network GN of 2- and multi-pin nets, and Figure 6
sketches the complete routing network G. We define a set Q of nodes
and a set E of edges in GN . By using the routing networks, we can
route nets through the nodes and edges. There are 19 types of edges
in E as follows:

• e(source, p): directed edge from the source to a pad.
• e(source, b): directed edge from the source to a bump ball.
• e(f, sink): directed edge from a finger to the sink.
• e(p, tPCB): directed edge from a pad to a PCB tile node.
• e(p, dPCB): directed edge from a pad to a PCB node.
• e(tPCB(i), tPCB(j))/e(tBGA(i), tBGA(j)): bi-directional edge

between two PCB (BGA) tile nodes.
• e(tPCB ,mPCB)/e(tBGA,mBGA): directed edge from a PCB

(BGA) tile node to a PCB (BGA) interval node.
• e(tPCB , b): directed edge from a PCB tile node to a bump ball.
• e(mPCB , tPCB): directed edge from a PCB interval node to a

PCB tile node.
• e(mPCB , dPCB): directed edge from a PCB interval node to a

PCB node.
• e(dPCB,mPCB): directed edge from a PCB node to a PCB

interval node.
• e(dPCB, b): directed edge from a PCB node to a bump ball.
• e(dPCB(i), dPCB(j)): bi-directional edge between two PCB

nodes.
• e(b, tBGA): directed edge from a bump ball to a BGA tile node.
• e(b, dBGA): directed edge from a bump ball to a BGA node.

513

Pad

PCB
interval
node

PCB tile node

PCB node

PCB routing

(a)

Chip

Package routing
Bump
ball

Finger
BGA
interval
nodeBGA tile node

BGA
node

d Chip

t

s2s1

(b)

1 2

0

1 1
2

2 2
1 2

1 1

1
m

1
0
1 1 1

1

Chip

(c)

d Chip
t m

mt

d
d
d

DP node Bounding
box

s4

s3
3
4

3
4

3
4

3
4

s4

s3
3
4

3
4

3
4

3
4

(d)
Fig. 5. (a) Nodes in the routing networks. (b) Routing network of 2- and multi-
pin nets. (c) Refinement of routing paths. (d) Routing network of differential
pairs.

Pads

Bump
balls Fingers SinkSource |SP|

|SF||SF - SP|

|SF|

|SF|
|SP|

Fig. 6. Prototype of the complete routing network.

• e(mBGA, dBGA): directed edge from a BGA interval node to a
BGA node.

• e(dBGA, f): directed edge from a BGA node to a finger.
e(source, p), a pre-assigned net, is only constructed from the source

to the pad p. e(source, b) is constructed from the source to each
bump ball b, and e(f, sink) is constructed from each finger f to the
sink. e(p, tPCB) is constructed when the PCB tile node tPCB is the
closest one to the pad p. e(p, dPCB) is constructed when the PCB
node dPCB is the closest one to the pad p. e(tPCB(i), tPCB(j)) and
e(tBGA(i), tBGA(j)) are constructed when two PCB or BGA tile nodes
are adjacent. e(tPCB ,mPCB), e(mPCB , tPCB), and e(tBGA,mBGA)
are constructed when a PCB (BGA) tile node and a PCB (BGA) interval
node are in the same tile. e(tPCB , b) is constructed when the PCB tile
node tPCB and the bump ball b are in the same tile. e(mPCB , dPCB),
e(dPCB ,mPCB), and e(mBGA, dBGA) are constructed when a PCB
(BGA) node is the closest one to a PCB (BGA) interval node.

e(dPCB , b) is constructed when the bump ball b is the closest one to
the PCB node dPCB . e(dPCB(i), dPCB(j)) is constructed when two
PCB nodes are adjacent. e(b, dBGA) (e(b, tBGA)) is constructed when
a BGA (tile) node is the closest one to the bump ball b. e(dBGA, f)
is constructed when the BGA node dBGA and the finger f are on the
same side of the chip.

According to the routing network in Figure 5(b), the PCB and BGA
nodes are used to reduce the number of edges. For example, if we do
not use BGA nodes, each bump ball and BGA interval node need to
be connected to every finger, thus incurring a large number of edges.

In Figure 6, the size of a set associated with an edge gives the number
of essential nets routed from one node to the other. |SF | nets need to
be assigned to fingers. Since |SP | (SP ⊆ SF) nets are assigned from
pads, the other |SF − SP | nets need to be assigned from bump balls.
On the other hand, the |SF − SP | nets are the nets from bump balls
to fingers.

Now we can formulate the routing network of 2- and multi-pin nets
as an LP. The notations used in the LP formulation are as follows:

• l(e(i, j)): the known length of edge e(i, j).
• f(e(i, j)): real variable that denotes the number of routed wires

of edge e(i, j).
• n(i): the known number of wires connected to the pad i (2- or

multi-pin nets).
• wBGA(i) (wPCB(i)): the known maximum number of wires

passing through a BGA (PCB) tile/interval i.
• wBGA(i, j) (wPCB(i, j)): the known maximum number of wires

passing through two adjacent BGA (PCB) tile nodes i and j.
Consequently, the routing problem can be formulated as follows:

min
∑

e(i,j)∈E

l(e(i, j)) × f(e(i, j))

subject to
∑

e(i,j)∈E

f(e(i, j)) = n(i),∀i ∈ P, (1)

∑

e(i,j)∈E

f(e(i, j)) = 1, ∀j ∈ F, (2)

∑

e(i,j)∈E

f(e(i, j)) ≤ 1,∀i ∈ B, (3)

∑

e(i,j)∈E

f(e(i, j)) =
∑

e(j,k)∈E

f(e(j, k)),∀j ∈ Q, (4)

∑

e(i,j)∈E

f(e(i, j)) ≤ |LBGA| × wBGA(i), ∀i ∈MBGA ∪ TBGA, (5)

∑

e(i,j)∈E

f(e(i, j)) ≤ |LPCB | × wPCB(i), ∀i ∈MPCB ∪ TPCB , (6)

∑

e(i,j)∈E

f(e(i, j)) ≤ |LBGA| × wBGA(i, j),∀i, j ∈ TBGA, (7)

∑

e(i,j)∈E

f(e(i, j)) ≤ |LPCB | × wPCB(i, j),∀i, j ∈ TPCB , (8)

∀f(e(i, j)) ≥ 0

The objective function is to minimize the total wirelength. Con-
straints (1)–(2) ensure 100% routability by forcing all fingers and pads
with pre-assigned nets to be routed to bump balls. Constraint (3) ensures
that at most one net connects to a bump ball. Constraint (4) makes the
number of wires routed into a node equal to that routed from the node.
Constraints (5)–(8) avoid wire congestions in every interval and tile of
all metal layers.

According to the integrality theorem in [7], applying integer data to
our routing network can get optimal solutions with each variable being
an integer. Therefore, after solving the LP formulation, we can get an
optimal legal solution without any incomplete wire. The solid edges in
Figure 5(b) show the routing result where s1 is a multi-pin net. The
number associated with an edge denotes the number of wires. Then we
refine the routing paths as shown in Figure 5(c). The method of the
refinement is that for each edge with a non-zero integer solution i, we

514

split the edge and its two terminals into i wires. For example, at the right
routing network of Figure 5(b), since the solution of e(t,m) = 2, we
split e(t,m) into two dashed wires as shown in the left of Figure 5(c).
Therefore, in the right of Figure 5(c), all nets are independent without
any wire crossing. Note that no wire crossing implies fewer vias and
better reliability in the package and PCB routing. Finally, each finger
not connecting to a pad is assigned a net si ∈ SF − SP .

We have the following theorem:
Theorem 1: Given the routing network GN of 2- and multi-pin nets,

the LP formulation can find the minimum global-routing wirelength
with no wire crossing.

2) Basic LP Formulation of Differential Pairs: For PCB design, DP’s
are an important concern for better signal integrity. Figure 5(d) shows
the routing network GD for the DP (s3, s4). The case of multiple DP’s
can be handled in the similar way. Since each net of a DP usually has
a wirelength constraint, we can draw a bounding box for the net. For
example, the dashed bounding box for the pad of s3, and the solid one
for the pad of s4. The distance from a pad to any position inside its
bounding box must meet its wirelength constraint. Therefore, we can
find the solution only in the intersection of the two bounding boxes
(the thick bounding box). Then we create a set DP of DP nodes for
differential-pair routing. For each interval, we create two DP nodes i
and j for si and sj , respectively. Each DP node i represents the node
which may be passed through by si in an interval and is named by the
net. As shown in Figure 5(d), we use the DP nodes in vertical intervals
as an example. Those in horizontal intervals can be created in the same
way. The two DP nodes 3 and 4 are inserted into every interval. Since
the two pads/nets of a DP shall be routed in parallel to each other,
the sequence of each pair of two adjacent DP nodes has to be decided
according to the sequence of the two pads. For example, since the pad
of s4 is under the pad of s3, the DP node 4 has to be also under the DP
node 3 in every interval. Thus, the two pads of s3 and s4 are always
routed in parallel to each other if they pass through the same intervals.

We define the set ED of four types of edges as follows:
• e(p, dp): directed edge from a pad to a DP node.
• e(p, b): directed edge from a pad to a bump ball.
• e(dp(i), dp(j)): directed edge from a DP node to another one.
• e(dp, b): directed edge from a DP node to a bump ball.
e(p, b) is not shown in Figure 5(b), and e(p, dp) is constructed when

a pad and a DP node are of the same net. e(dp(i), dp(j)) is constructed
when the two DP nodes are of the same net. All edges are forbidden
to cross through any vertical interval since we want to use an edge to
exactly represent a net passing through a particular interval. As shown
in Figure 5(d), the left routing network shows all the routing paths of
s3, and the right routing network shows all the routing paths of s4.
Then we can formulate the routing networks as an LP. Note that the
construction of the package routing network of DP’s is the same as the
right of Figure 5(b).

The new notations used in the LP formulation are as follows:
• φk(e(i, j)): if e(i, j) is in the tile/interval k, φk(e(i, j)) = 1;

otherwise, φk(e(i, j)) = 0.
• ψ(i, j): if the two DP nodes (bump balls) i and j are adjacent in

the same interval, ψ(i, j) = 1; otherwise, ψ(i, j) = 0.
• ÎBGA/ÎPCB : set of intervals in the BGA package (PCB).
• T̂BGA/T̂PCB : set of tiles in the BGA package (PCB).

Then the DP routing problem can be formulated as follows:

min
∑

e(i,j)∈ED

l(e(i, j)) × f(e(i, j))

subject to
∑

e(i,j)∈ED

f(e(i, j)) = 1, ∀i ∈ P, (9)

∑

e(i,j)∈ED

f(e(i, j)) ≤ 1, ∀j ∈ B, (10)

∑

e(i,j)∈ED

f(e(i, j)) =
∑

e(j,k)∈ED

f(e(j, k)),∀j ∈ DP , (11)

∑

e(i,g)∈ED

∑

e(j,h)∈ED

ψ(i, j) × (f(e(i, g)) − f(e(j, h))) = 0, (12)

∀i, j ∈ DP ,

∑

e(i,g)∈ED

∑

e(j,h)∈ED

ψ(i, j) × ψ(g, h) × (13)

(f(e(i, g)) − f(e(j, h))) = 0, ∀i, j ∈ DP , ∀g, h ∈ B,∑

e(i,j)∈ED

φk(e(i, j)) × f(e(i, j)) ≤ 2 × |LPCB |, (14)

∀k ∈ ÎPCB ∪ T̂PCB ,∀f(e(i, j)) ≥ 0.

The objective function is also to minimize the total wirelength.
Constraint (9) guarantees 100% routability by forcing all pads of DP’s
to be routed to bump balls. Constraint (10) ensures that at most one
net connects to a bump ball. Constraint (11) makes a wire routed into
a node also routed from the node. Constraint (12) makes the two nets
of a DP routed together in each interval. Constraint (13) makes a DP
routed to two adjacent bump balls. Constraint (14) ensures that only
one DP (two nets) is routed in a tile/interval of a metal layer because a
DP shall be routed far away from other nets for better signal integrity.

Note that since we route the two nets of a differential signal together
in every tile/interval, the wirelengths of them should be the same after
they meet at the first adjacent DP nodes. Besides, the objective function
will force the two pads of a DP routed near the midline of them, thus
resulting in a balanced wirelength. After the differential-pair routing,
therefore, the wirelengths of the two nets of a DP are similar.

According to the integrality theorem in [7], we can get an optimal
legal solution with each variable being an integer. The thick edges in
Figure 5(d) show the routing result for PCB routing.

We thus have the following theorem:
Theorem 2: Given the routing network GD of DP’s, the LP formu-

lation can route the two nets of a DP in parallel to each other.
3) The ILP Formulation of Concurrent Routing: To concurrently

route 2- and multi-pin nets and DP’s, we merge the two routing
networks GN and GD (Figures 5(b) and (d)) into the complete routing
network G. Note that applying LP to G may result in unsolvable wire
crossings between DP’s and other nets. For example, one DP net and
one 2-pin net cross each other in a PCB tile which can be passed
through by two wires. The reason is that in PCB routing, GN and
GD are two independent routing networks. Furthermore, DP’s shall be
routed far away from other nets for better signal integrity. Therefore,
we apply ILP to solve the wire crossings between DP’s and other nets
in every tile/interval in a PCB. The new notations used in the ILP
formulation are as follows:

• u(k): 0-1 integer variable; if any f(e(i, j)) (e(i, j) ∈ ED)) is
larger than or equal to one in a PCB interval/tile k, u(k) = 1;
otherwise, u(k) = 0.

• w(k): the known maximum number of wires passing through an
interval/tile in each metal layer.

• NL: a known large real number.
Then we solve the following ILP formulation.

min
∑

e(i,j)∈E∪ED

l(e(i, j)) × f(e(i, j))

subject to Constraints (1) − (14), (15)∑

e(i,j)∈ED

φk(e(i, j)) × f(e(i, j)) ≤ NL × u(k), (16)

∀k ∈ ÎPCB ∪ T̂PCB ,∑

e(i,j)∈ED

φk(e(i, j)) × f(e(i, j)) ≥ u(k), (17)

∀k ∈ ÎPCB ∪ T̂PCB ,∑

e(i,j)∈E

φk(e(i, j)) × f(e(i, j)) ≤ (|LPCB | − u(k)) × w(k), (18)

∀k ∈ ÎPCB ∪ T̂PCB .

The objective function is to minimize the total wirelength. Con-
straints (16)–(17) find every interval and tile passed by DP’s in the PCB.
Constraint (18) decreases the maximum number of nets of a tile/interal
passed by DP’s to avoid routing 2- and multi-pin nets through it in a
certain PCB metal layer.

515

We apply two methods to reduce the numbers of integer variables
and constraints in the ILP formulation. The first one is to use integer
variables to formulate wire congestions of each tile/interval in the
routing network G, and thus a tile/interval has at most one integer
variable (see Constraints (16)–(17)). Different from the work in [2], we
do not directly use integer variables to formulate wire crossings between
edge e ∈ E and edge ed ∈ ED . Therefore, the number of our integer
variables is much smaller than that in the work [2]. comparative studies
will be given in Section IV. The second method to prune the solution
space is the bounding-box reduction as illustrated in Section III-B.2
(also see Figure 5(d)). Since there are wirelength constraints of DP’s,
we only need to set an integer variable u(k) to represent the tile/interval
k inside the thick bounding box.

After solving the ILP formulation and refining the routing paths of
2- and multi-pin nets in the PCB and all nets in the BGA package, we
can get a routing result without any wire crossing in all metal layers.
Therefore, we have the following theorem:

Theorem 3: Given the routing network G of 2- and multi-pin nets
and DP’s, the ILP formulation can find the minimum global-routing
wirelength with no wire crossing in all metal layers.

4) Layer Assignment: In our routing network G, we integrate
|LBGA|+ |LPCB | metal layers into one metal layer by increasing the
routing resources of every interval/tile. Therefore, we need to do layer
assignment for every net before any-angle detailed routing. We apply
layer assignment to the PCB and the BGA routes. For PCB routes, we
shall handle DP’s first because assigning them to the upper metal layers
implies fewer vias. Further, the two nets of a DP should be assigned to
the same metal layer. As a result, we assign one of them first and simply
assign the other net to the same layer. Then the nets of PCB routes can
still be assigned into each metal layer because we consider the wire
congestions between DP’s and other nets in the routing network G.
Figure 7 shows an example of the routing result on a complete routing
network. We define a set R of wire segments of nets. A wire segment
r(i, j) represents the segment j of net i. Every net is divided into a
set of wire segments by intervals. For example, in Figure 7(a), net 1 of
the pad of s1 is divided into three wire segments, r(1, 1), r(1, 2), and
r(1, 3). In this example, we assume that there are one PCB metal layer
and two BGA metal layers. In the PCB routing (Figure 7(a)), since
our ILP formulation considers the wire congestions between DP’s such
as (s3, s4) and other nets, we can route all nets successfully. In the
package routing (Figure 7(b)), we assume that each tile/interval can
only be passed through by one wire of every metal layer. Therefore,
in the dashed tile, we need to apply layer assignment to nets i and g
(r(i, j) and r(g, h)). We formulate the layer assignment as an LP. The
notations used in the LP formulation are as follows:

• lq(r(i, j)): a real variable; lq(r(i, j)) = 1 if r(i, j) is assigned to
metal layer q.

• φk(q, r(i, j)): if r(i, j) is in the interval/tile k of metal layer q,
φk(q, r(i, j)) = 1; otherwise, φk(q, r(i, j)) = 0.

• c(q): a user-defined cost of the metal layer q.

Chip

s2s1

s4

s3

Tile

r(i,j)

r(g,h)
r(1, 1) r(1, 2) r(1 ,3)

(a) (b)
Fig. 7. (a) Routing result of the PCB. (b) Routing result of the BGA package.

Then we can give the LP formulation of the layer assignment as
follows:

min
∑

q∈LBGA∪LP CB

∑

r(i,j)∈R

c(q) × lq(r(i, j))

subject to
∑

q∈LBGA∪LP CB

lq(r(i, j)) = 1, ∀i ∈ SF , (19)

∑

q∈LBGA∪LP CB

∑

r(i,j)∈R

φk(q, r(i, j)) × lq(r(i, j)) ≤ w(k), (20)

∀k ∈ T̂PCB ∪ T̂BGA ∪ ÎPCB ∪ ÎBGA,

lq(r(i, j)) − lq(r(i, k)) = 0, ∀j, k ∈ i, ∀q ∈ LBGA ∪ LPCB (21)

0 ≤ lq(r(i, j)) ≤ 1, ∀lq(r(i, j)).

The objective function is to minimize the number of total vias under
the maximum number of stacked vias constraint. Constraint (19) forces
each net to be assigned to only one BGA/PCB metal layer. Constraint
(20) avoids the wire congestion of each tile/interval in every metal layer.
Constraint (21) gets the maximum number of stacked vias by forcing
each wire segment of a net to be assigned in the same BGA/PCB metal
layer.

We set c(q) = 0 if j is not a finger/pad because the number of vias
of a net in the BGA/PCB routing can only be counted once. In the
BGA package, since fingers are in the top metal layer and bump balls
are in the bottom metal layer, there is at least |LBGA|−1 vias of each
net. Therefore, we set c(q) to a constant. In the PCB, since pads and
bump balls are in the same metal layer, the upper layer implies fewer
vias. Thus, we set c(q) to a smaller number in the upper metal layer.

The LP formulation satisfies the integrality theorem in [7]. Therefore,
we can guarantee that each net is completely assigned to only one
BGA/PCB metal layer, and the number of stacked vias of the net is
also maximized. Furthermore, since we consider wire congestions in the
routing network G, and there is no wire crossing among DP’s or other
nets, we can certainly find a feasible solution without wire crossing in
each metal layer.

C. Any-Angle Routing

In order to efficiently perform the detailed routing, the fingers along
the chip are sorted in counterclockwise order at the beginning. Then, our
detailed router can process net by net according to the order. Since the
constraints of DP nets are more stringent than other nets, two different
routing strategies are proposed for DP routing and ordinary 2- and
multi-pin net routing in the following.

1) Differential-Pair Routing: For DP routing, two signal nets should
be routed in close proximity, and their wirelength difference cannot
exceed a tolerance bound in order to smoothly couple with each other
and hereby provide better electrical characteristics. For this purpose,
we propose a DP routing strategy to transform a global routing result
into a legal detailed DP routing result. The routing idea is illustrated in
Figure 8. Figure 8(a) and Figure 8(b) show the global routing result and
the corresponding detailed routing result of a DP based on our approach,
respectively. The dotted ring (minimum spacing ring) represents the
minimum spacing between a wire and a pad/bump ball.

The two nets of a DP can be routed in close proximity and satisfy
the length constraint simultaneously if they are always parallel to each
other within a desired distance. In fact, the parallel routing structure can
be viewed as to connect a series of parallelograms (see Figure 8(b)).
Each turn for two parallel nets is just like to process a parallelogram
and then create a new parallelogram. Here, two DP nets route from “A”
to “B” by the parallel topology with four parallelograms. The length of
the two nets within the four parallelograms must be the same since the
routing topology is just like to connect four different parallelograms. In
the first step of our approach, therefore, the routing paths starting from
the DP bump balls and from the DP pads can be individually routed
toward their bisectors with the same space. If the length difference of
the initial non-parallel net segments is small, the total length difference
must also be small. By this observation, the length difference can be
minimized by routing the DP nets toward their individual bisectors.
Then, the two DP nets can be treated as a virtual single net, and the
2-pin net routing strategy can be applied to finish the routing. Finally,
the detailed DP routing result can be obtained.

2) 2- and Multi-Pin Net Routing: Since the PCB routing does not
allow any routing path with an acute angle, the router first checks every
turning point to avoid an acute angle for each ordinary net. Once the
router detects an acute corner, the two adjacent net segments can be
cut off to generate two obtuse angles, as shown in Figure 8(c). Then,
the spacing between the net to other components is estimated to avoid
other design-rule violations. If the net is too close to other components
and violates the design rule, a turning point can be added to change the
routing topology. As illustrated in Figure 8(c), adding a turning point
can effectively solve the minimum spacing violation.

516

B

Minimum
spacing ring

Parallelogram

: Pads

: DP pads

: DP bump balls

: Bump balls
Acute angle

Turn

Original routing
path

A

(a) (b) (c)
Fig. 8. (a) Global routing result of a differential pair. (b) Detailed routing result
of a differential pair. (c) Correction of an acute-angle route.

IV. EXPERIMENTAL RESULTS
Our algorithm was implemented in the C++ programming language

on a 2.8 GHz AMD Opteron Linux workstation with 8 GB memory. The
public lp solve [4] was applied to solve the LP and ILP. The benchmark
circuits, listed in Table I, are real industry designs. In Table I, “Circuits”
gives the names of circuits, “#Pads (DP/BGA)” lists the number of pads
that are DP pads or connect to BGA, “#Fingers” gives the number of
fingers, “#Balls” gives the number of bump balls, “#Nets (multi-/2-
pin)” gives the number of multi-pin nets over all nets, and “#Metal
layers (BGA/PCB)” gives the number of metal layers in the BGA and
PCB, respectively.

TABLE I
BENCHMARK CIRCUITS FOR CHIP-PACKAGE-BOARD CO-DESIGN.

2/231/720740720380 (28/274)3CPB4
2/112/429453429192 (16/93)3CPB3
2/15/260275260126 (8/58)1CPB2

1024

150

#Fingers

1075

159

#Balls

51/1024

3/150

#Nets
(multi-/2-pin)

683 (36/460)

74 (6/59)

#Pads
(DP/BGA)

4

2

#Compo-
nents

4/4CPB5

1/1

#Metal layers
(BGA/PCB)

CPB1

Circuits

2/231/720740720380 (28/274)3CPB4
2/112/429453429192 (16/93)3CPB3
2/15/260275260126 (8/58)1CPB2

1024

150

#Fingers

1075

159

#Balls

51/1024

3/150

#Nets
(multi-/2-pin)

683 (36/460)

74 (6/59)

#Pads
(DP/BGA)

4

2

#Compo-
nents

4/4CPB5

1/1

#Metal layers
(BGA/PCB)

CPB1

Circuits

TABLE II
COMPARISONS AMONG SAR, WG, AND OURS.

3663*10596396/11887968/100831CPB5
195
34
16
6

Ours

75641
9737
456
510
WG

5%/1%

302/906
83/249
35/105
45/135
Ours SARWG

21
9
5
2

CPU times (s)

100%/100%

6010/69892
1106/13288
426/4938
670/8430

#Integer variables/constraints

CPB3
CPB2
CPB1

Comp.

CPB4

Circuits

3663*10596396/11887968/100831CPB5
195
34
16
6

Ours

75641
9737
456
510
WG

5%/1%

302/906
83/249
35/105
45/135
Ours SARWG

21
9
5
2

CPU times (s)

100%/100%

6010/69892
1106/13288
426/4938
670/8430

#Integer variables/constraints

CPB3
CPB2
CPB1

Comp.

CPB4

Circuits

29/47
11/18
10/14

5/8
2/4
1/3

SAR

#DP violations

N/A
N/A
0/14
0/8
0/4
0/3
WG

0/47
0/18
0/14
0/8
0/4
0/3

Ours OursWGSAR

21580
10028
4924
1614
643

Wirelength (mm)

N/A
12263
6789
2033
1005

29402
12248
6780
2040
997

100N/A80CPB5
N/A

100
100
100
100
WG

100

100
100
100
100

OursSAR

81

87
79
84
76

Routability (%)

CPB3
CPB2
CPB1

Comp.

CPB4

Circuits

29/47
11/18
10/14

5/8
2/4
1/3

SAR

#DP violations

N/A
N/A
0/14
0/8
0/4
0/3
WG

0/47
0/18
0/14
0/8
0/4
0/3

Ours OursWGSAR

21580
10028
4924
1614
643

Wirelength (mm)

N/A
12263
6789
2033
1005

29402
12248
6780
2040
997

100N/A80CPB5
N/A

100
100
100
100
WG

100

100
100
100
100

OursSAR

81

87
79
84
76

Routability (%)

CPB3
CPB2
CPB1

Comp.

CPB4

Circuits

Since there is no previous work on the addressed problem, one
heuristic and one ILP based algorithms were implemented for the
comparative study. The first algorithm SAR performs sequential as-
signment and routing from the top to the bottom metal layer based
on maze routing. It routes DP’s and then other nets. While routing a
DP, it first routes one of the two DP pads to an un-assigned bump
ball near the midline between them. The other one is then routed to
other un-assigned bump balls following the path of the routed pad.
Each pad of a 2- or a multi-pin net is routed to the closest un-assigned
bump ball. If a bump ball is connected to a pad, it is routed to one
of the fingers. Finally, all un-connected fingers are also routed to the

Fig. 9. CPB routing result for CPB1.

closest un-assigned bump balls. The second algorithm WG is similar
to ours. The only difference is that it applies ILP to formulate the
wire-crossing constraints as in [2], instead of Constraint (18) as ours.
Each edge e of GD represents a 0− 1 integer variable u(e). When an
edge a of GD and an edge b of GN cross each other, the constraint
f(b) ≤ (|LPCB | − u(a)) × w(k), ∀k ∈ ÎPCB ∪ T̂PCB is added. It
means that only one of a and b can be routed in each metal layer,

The experimental results are shown in Table II. Table II gives
the routability, the total wirelength, the number of DP violations,
the number of integer variables/constraints, and the CPU times. In
the column of “#DP violations”, the numerator gives the number of
violations and the denominator gives the total number of DP’s. As
shown in the table, SAR results in the worst quality mainly because
no concurrent assignment and routing is involved. Compared with WG,
our algorithm can reduce the number of variables (constraints) by 95%
(99%) on average. Further, without using our ILP formulation to solve
the congestion between DP’s and other nets incurs very long CPU
times (even > 3 days for a circuit), and is thus not feasible for this
problem. The experimental results show that our algorithm can achieve
100% routability and the optimal global-routing wirelength and satisfy
all differential-pair constraints in reasonable CPU times, due to the
concurrent assignment and routing and much smaller numbers of integer
variables/constraints. Figure 9 shows the routing result of CPB1. The
red, green, blue wires are PCB, DP, and BGA wires, respectively.

V. CONCLUSIONS
We have developed the first router for CPB co-design in the literature,

considering DP’s and total wirelength minimization. Our ILP-based
algorithm guarantees to find an optimal solution for the addressed
problem with concurrent assignment and routing and much fewer
integer variables/constraints. Experimental results have demonstrated
that our routing algorithm is very effective and efficient for CPB co-
design.

ACKNOWLEDGMENTS

This work was partially supported by Etron, SpringSoft, TSMC, and
National Science Council of Taiwan under Grant No’s NSC 96-2628-E-
002-248-MY3, NSC 96-2628-E-002-249-MY3, NSC 96-2221-E-002-
245, NSC 96-2752-E-002-008-PAE, and NSC 096-2917-I-002-120. The
authors would like to thank Professor Ting-Chi Wang of National Tsing
Hua University, Taiwan for his very constructive comments.

REFERENCES

[1] S.-S. Chen, W.-D. Tseng, J.-T. Yan, and S.-J. Chen, “Printed circuit board
routing and package layout codesign,” Proc. of APCCAS, pp. 155–158,
2002.

[2] J.-W. Fang, C.-H. Hsu, and Y.-W. Chang, “An integer linear programming
based routing algorithm for flip-chip design,” Proc. of DAC, pp. 606–611,
2007.

[3] M. R. Garey and D. S. Johnson, A Guide to the Theory of NP-
Completeness, Freeman, 1979.

[4] http://lpsolve.sourceforge.net/5.5/.
[5] Y. Kubo and A. Takahashi, “A global routing method for 2-layer ball grid

array packages,” Proc. of ISPD, pp. 36–43, 2005.
[6] F. H. Liu, G. E. White, V. Sundaram, A. O. Aggarwal, S. M. Hosseini, D.

Sutter, and R. R. Tummala, “A novel technology for stacking microvias
on printed wiring board,” Proc. of ECTC, pp. 1134–1139, 2003.

[7] R. J. Vanderbei, Linear Programming: Foundations and Extensions,
Springer, 2007.

517

