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ABSTRACT
We formulate the delay-tolerant networking routing problem,
where messages are to be moved end-to-end across a connec-
tivity graph that is time-varying but whose dynamics may be
known in advance. The problem has the added constraints of
finite buffers at each node and the general property that no con-
temporaneous end-to-end path may ever exist. This situation
limits the applicability of traditional routing approaches that
tend to treat outages as failures and seek to find an existing
end-to-end path. We propose a framework for evaluating rout-
ing algorithms in such environments. We then develop several
algorithms and use simulations to compare their performance
with respect to the amount of knowledge they require about
network topology. We find that, as expected, the algorithms
using the least knowledge tend to perform poorly. We also find
that with limited additional knowledge, far less than complete
global knowledge, efficient algorithms can be constructed for
routing in such environments. To the best of our knowledge
this is the first such investigation of routing issues in DTNs.

Categories and Subject Descriptors:
C.2.2: Routing Protocols
General Terms: Algorithms, Performance
Keywords: Routing, Delay Tolerant Network

1. INTRODUCTION
In this work, we look at the problem of routing in a de-

lay tolerant network (DTN)[8]. Such networks are assumed to
experience frequent, long-duration partitioning and may never
have an end-to-end contemporaneous path. This problem con-
trasts with routing in conventional data networks which typ-
ically selects a shortest policy-compliant path in a connected
graph without considering availability of intermediate buffer-
ing and bandwidth capacity.

In graph theoretic terms, our problem is a form of the “quick-
est transshipment problem” in which both edge capacities and
transit delays along an edge can vary (down to zero) as a func-
tion of time and nodes have finite buffers [12]. In practical
terms, DTNs arise in networks with known connectivity pat-
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terns such as Low-Earth Orbiting Satellites (LEO) or those
with unpredicted, opportunistic connectivity (e.g., communi-
cation among PDAs when brought into close proximity [5]).
Here, we focus on the former case.

The routing problem in a DTN may at first appear as the
standard problem of dynamic routing but with extended link
failure times. This is not the case. For the standard dynamic
routing problem, the topology is assumed to be connected (or
partitioned for very short intervals), and the objective of the
routing algorithm is to find the best currently-available path
to move traffic end-to-end. In a DTN, however, an end-to-
end path may be unavailable at all times; routing is performed
over time to achieve eventual delivery by employing long-term
storage at the intermediate nodes. The DTN routing problem
amounts to a constrained optimization problem where edges
may be unavailable for extended periods of time and a stor-
age constraint exists at each node. This formulation reveals
DTN routing to be a considerably different and more challeng-
ing problem.

In this paper, we make several contributions: we first moti-
vate and formulate the DTN routing problem when the connec-
tivity patterns are known, then provide a framework for evalu-
ating various routing algorithms, and finally show a simulation-
based comparison of several of our own algorithms. We also
include an optimal algorithm based on a linear programming
approach to serve as a basis for comparison with the simula-
tions. Finally, we outline the future work to be accomplished
in the area.

2. EXAMPLE: CONNECTING A REMOTE
VILLAGE

The problem of providing data communications to remote
and rural areas is beginning to attract the attention of the
computer systems research community [23]. While many rural
connectivity projects involve attempts to provide conventional
Internet access to remote areas, a small number of projects are
taking an alternative approach which focuses on asynchronous
messaging in order to greatly reduce the cost of connectivity [25,
20, 23]. For example, the Wizzy Digital Courier service pro-
vides asynchronous (disconnected) Internet access to schools in
remote villages of South Africa [25]. In this system, a courier
on a motorbike, equipped with a USB storage device, travels
from a village school to a large city which has permanent (rea-
sonably high-speed) Internet connectivity. Typically, it takes a
few hours for the courier to travel from the village to the city.

In consideration of this scenario, we realize that several other
connectivity options may be available (e.g. satellites, either
LEO or GEO, possibly telephone), but are not likely to be cost
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Figure 1: Scenario illustrating a variety of connectivity op-
tions between a remote village and a city. Even in this
simple scenario, many route choices are possible.

effective or of sufficient capacity to handle all of the traffic.
Conversely, for some traffic, such as high-priority alerts, low
latency may be sufficiently important to justify using a higher-
cost communication system offering smaller delay. Thus, we
consider a simple extended scenario, based on this real-world
example, that motivates the DTN routing problem.

Figure 1 shows a hypothetical village served by a digital
courier, a wired dialup Internet connection, and a store-and-
forward LEO satellite (e.g. PACSAT). These satellites have
low to moderate bandwidth (around 10 Kbps) and are visible
for 4-5 short periods of time (“passes”) per day (lasting around
10 minutes per pass, depending on the orbit inclination and
location on Earth). We call the opportunity to communicate
a contact (as in [8]), which is characterized by a duration of
time, a capacity, and a propagation delay (assumed to remain
constant during the contact duration). In addition, depending
on the type of connection used, buffering constraints may also
need to be considered.1 The digital courier service represents a
high-bandwidth, high-latency contact, the dialup represents a
low-bandwidth, low-latency contact, and the LEO satellite rep-
resents a moderate-bandwidth, moderate-latency contact. The
problem of selecting which contacts to carry messages and when
represents an instance of the DTN routing problem. Route se-
lection may depend on a variety of factors including message
source and destination, size, time of request, available contacts,
traffic in the system, or other factors (e.g. cost, delay, etc.).

In the next sections we develop a set of definitions and a
framework for evaluating DTN routing algorithms. We then
propose several of our own routing algorithms and use the
framework in conjunction with simulations to evaluate their
performance in the context of this village scenario.

3. DTN NETWORK MODEL
Nodes and Edges The DTN graph is a directed multi-graph,

in which more than one edge (also called link) may exist be-
tween a pair of nodes (see Figure 2). The reason for using a
multigraph is straightforward: it may be possible to select be-
tween two distinct (physical) connection types to move data be-
tween the same pair of nodes. Furthermore, the link capacities
(and to a lesser extent, propagation delay) are time-dependent
(capacity is zero at times when the link is unavailable). Thus,
the set of edges in the graph must capture both time-varying ca-
pacity and propagation delay as well as multiple parallel edges.

A simple example of an edge captured by this description
involves a ground station and a LEO satellite rising, passing
directly overhead, and setting at the opposite horizon. As it

1The PACSAT satellite systems have limited file storage.
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Figure 2: Edges in a DTN graph. Nodes may be con-
nected by multiple edges, representing different physical
links. Each node j performs store-and-forward routing, and
has finite storage capacity (bj). An edge is parameterized
by its source and destination nodes plus a capacity (c(t))
and delay function (d(t)).

rises, its channel capacity will generally increase until it is di-
rectly overhead and will decrease for the remaining time of the
pass. This is because noise is minimal when the satellite is
directly overhead but increases at lower elevations. Another
example would be a bus (carrying a wireless access point) pass-
ing by a village. The throughput of the wireless link would
depend upon the distance of the bus from the village. When no
communication is possible, the edge is assigned zero capacity.

Contact A contact is an opportunity to send data over an
edge. More precisely, it is a specific edge and a corresponding
time interval during which the edge capacity is strictly positive.

Messages Communication demands are represented by mes-
sages. A message is a tuple (u, v, t, m), where u is the source
of the message, v is the destination, t is the time at which the
message is injected into the system and m is its size (messages
can be of arbitrary size). The set of all messages is called the
traffic demand.

Storage The nodes in a DTN have finite long-term stor-
age (buffers) used for holding in-transit data or data waiting
to be consumed by the application at a destination node. In
our model, the storage is exclusively used for holding in-transit
data. Destination nodes are assumed to have sufficient capacity
for holding data to be consumed by an application.

Routing Routing occurs in a store and forward fashion.
The routing algorithm is responsible for determining the next
edge(s) that a message should be forwarded along. Messages
not immediately forwarded wait until they are assigned to con-
tacts by the routing algorithm.

4. DTN ROUTING ISSUES
In this section, we consider a number of important issues in

any routing algorithm: the routing objective, the amount of
knowledge about the network required by the scheme, when
routes are computed, the use of multiple paths, and the use
of source routing. We focus on how these issues arise in the
context of the DTN routing problem.

4.1 Routing Objective
The routing objective of traditional routing schemes has been

to select a path which minimizes some simple metric (e.g. the
number of hops). For DTN networks, however, the most desir-
able objective is not immediately obvious.

One natural objective is to maximize the probability of mes-
sage delivery. Messages could potentially be lost due to creation
of a routing loop or the forced discarding of data when buffers
are exhausted. As an approximation, we focus on minimizing
the delay of a message (the time between when it is injected
and when it is completely received).
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While DTN applications are expected to be tolerant of delay,
this does not mean that they would not benefit from decreased
delay. Furthermore, we believe this metric is an appropriate
measure to use in exploring the differential evaluation of sev-
eral routing algorithms in an application-independent manner.
Minimizing delay lowers the time messages spend in the net-
work, reducing contention for resources (in a qualitative sense).
Therefore, lowering delay indirectly improves the probability of
message delivery. This is validated by our simulation results.

4.2 Proactive Routing vs. Reactive Routing
In proactive routing, routes are computed automatically and

independently of traffic arrivals. Most Internet standard rout-
ing protocols and some ad-hoc protocols such as DSDV (Des-
tination Sequenced Distance Vector) and OLSR (Optimized
Link-State Routing) are examples of this style [4]. In a DTN,
these protocols are capable of computing routes for a connected
subgraph of the overall DTN topology graph. They fail when
asked to provide paths to nodes which are not currently reach-
able. Despite this drawback, proactive network-layer routing
protocols may provide useful input to DTN routing algorithm
by providing the set of currently-reachable nodes from which
DTN routing may select preferred next hops.

In reactive routing, routes are discovered on-demand when
traffic must be delivered to an unknown destination. Ad-hoc
routing protocols such as AODV (Ad-hoc On-demand Distance
Vector) and DSR (Dynamic Source Routing) are examples of
this style [4]. In these systems, a route discovery protocol is
employed to determine routes to destinations on-demand, in-
curring additional delay. These protocols work best when com-
munication patterns are relatively sparse. For a DTN, as with
the proactive protocols, these protocols work only for finding
routes in a connected subgraph of the overall DTN routing
graph. However, they fail in a different way than the proac-
tive protocols. In particular, they will simply fail to return a
successful route (from a lack of response), whereas the proac-
tive protocols can potentially fail more quickly (by determining
that the requested destination is not presently reachable).

In a DTN, routes may vary with time in predictable ways and
can be precomputed using knowledge about future topology dy-
namics. Employing a proactive approach would likely involve
computing several sets of routes and indexing them by time.
The associated resource requirements would be prohibitive un-
less the traffic demand is large and a large percentage of the
possible network nodes exchange traffic. Otherwise, a reactive
approach would be more attractive.

A related issue is route stability, a measure of how long the
currently-known routes are valid. Route stability depends on
the rate of topological change. With relatively stable routes one
can employ route caching to avoid unnecessary routing protocol
exchanges. With future knowledge about topology changes,
caching could be especially effective in a DTN because it may
be possible to know ahead of time exactly when to evict existing
cached route entries.

4.3 Source Routing vs Per-hop Routing
In source routing the complete path of a message is deter-

mined at the source node, and encoded in some way in the
message. The route is therefore determined once and does not
change as the message traverses the network. In contrast, in
per-hop routing the next-hop of a message is determined at
each hop along its forwarding path. Per-hop routing allows
a message to utilize local information about available contacts
and queues at each hop, which is typically unavailable at the
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Figure 3: Conceptual performance vs knowledge trade-off.
The x-axis depicts the amount of knowledge (increasing in
the positive direction). The y-axis depicts the expected
performance that can be achieved using a certain amount
of knowledge. The figure shows that more knowledge is
required to attain better performance. Labels on top show
algorithms developed in this paper using the corresponding
oracles.

source. Thus, per-hop routing may lead to better performance.
Unfortunately, due to its local nature, it may lead to loops when
nodes have different topological views (e.g. due to incomplete
or delayed routing information).

4.4 Message Splitting
A message is split when forwarded in such a way that dif-

ferent parts (fragments) are routed along different paths (or
across different contacts on the same path). This technique
may reduce the delay or improve load balancing among multi-
ple links. It is particularly relevant in DTNs because messages
can be arbitrarily large and may not fit in a single contact.
However, splitting complicates routing because, in addition to
determining the sizes of the fragments, we also have to deter-
mine corresponding paths for the fragments.

5. ROUTING EVALUATION FRAMEWORK

5.1 Knowledge Oracles
The DTN routing problem has many input variables such

as dynamic topology characteristics and traffic demand. Com-
plete knowledge of these variables facilitates the computation
of optimal routes. However, with partial knowledge, the abil-
ity to compute optimal routes is hampered, and the perfor-
mance of the resultant routing is expected to be inferior. To un-
derstand this fundamental trade-off between performance and
knowledge, we create a set of abstract knowledge oracles, each
able to answer questions we ask of them. These oracles are
notational elements used to encapsulate particular knowledge
about the network required by different algorithms.

A key objective of our study is to understand the relationship
between algorithm performance and the use of these oracles.
Figure 3 illustrates this conceptually by showing the expected
performance and oracle requirements for each proposed routing
algorithm:

Contacts Summary Oracle This oracle can answer questions
about aggregate statistics of the contacts. In particular, the
contacts summary oracle provides the average waiting time un-
til the next contact for an edge. Thus, the contacts summary
oracle can only respond with time-invariant or summary char-
acteristics about contacts.

Contacts Oracle This oracle can answer any question regard-
ing contacts between two nodes at any point in time. This is
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equivalent to knowing the time-varying DTN multi-graph. The
contacts summary oracle can be constructed using the contacts
oracle, but not vice versa.

Queuing Oracle This oracle gives information about instan-
taneous buffer occupancies (queuing) at any node at any time,
and can be used to route around congested nodes. Unlike the
other oracles, the queuing oracle is affected by both new mes-
sages arriving in the system and the choices made by the routing
algorithm itself. We expect it to be the most difficult oracle to
realize in a distributed system.

Traffic Demand Oracle This oracle can answer any question
regarding the present or future traffic demand. It is able to
provide the set of messages injected into the system at any
time.

5.2 Routing Algorithm Classes
We now present different routing algorithms (Table 1 gives

an overview). They fall into the following three classes, based
upon the amount of knowledge they need to compute routes.

Zero knowledge These algorithms do not utilize any oracles.
Not surprisingly, they perform poorly. They define the minimal
extreme of the knowledge-performance relationship in Figure 3.

Complete knowledge This class consists of algorithms that
utilize all the oracles (contacts, queuing and traffic demand).
The Linear Programming formulation of the DTN routing prob-
lem falls into this category and is discussed in Section 8. While
these assumptions are far too strong to operate in a widely dis-
tributed, dynamic routing environment envisioned by DTNs,
we believe this to be the first full formulation of the problem
and is, therefore, an important step to establish a deeper un-
derstanding and baseline for performance comparisons.

Partial knowledge These algorithms route in the absence of
the traffic demand oracle and use one or more of the other ora-
cles (congestion, queuing). Messages are routed independently
of the future traffic demand. This is a more practical assump-
tion from an implementation perspective. Therefore, we devote
most of our attention to algorithms in this class.

6. ROUTING WITH ZERO KNOWLEDGE
Algorithms in this class route with almost no assistance from

any knowledge oracle. We explore one very simple such algo-
rithm that in effect routes randomly using any available con-
tact. Its main purpose is to provide one extreme point in the
knowledge-performance relationship space of Figure 3.

Algorithm: First Contact (FC)
Oracles: None
A message is forwarded along an edge chosen randomly among

all the current contacts. If all edges are currently unavailable,
the message waits for an edge to become available and is as-
signed to the first available contact.

Properties FC performs poorly in nontrivial topologies be-
cause the chosen next-hop is essentially random and forwarding
along the selected edge may not make any progress toward the
destination. A message may also oscillate forever among a set
of nodes (especially when frequent contacts are present among
a small set of nodes) or be delivered to a dead end. It has no
provision to route around congestion. Clearly, FC requires only
local knowledge about the network and is trivial to implement.

Improvements The basic approach can be enhanced in many
ways. One is to incorporate a sense of trajectory between the
source and the destination so that the message is routed in a
direction closer to the destination [17]. To prevent loops, a path
vector type of approach can be used.

7. ROUTING WITH PARTIAL KNOWLEDGE
The algorithms in this category compute paths using one or

more of the following oracles: contacts summary, contacts, and
queuing. Further, each message is routed independently of the
future demand because the traffic oracle is not used. These al-
gorithms are all based upon assigning costs to edges and com-
puting a form of minimum-cost (“shortest”) path. Costs are
assigned to edges (by consulting the available oracles) to reflect
the estimated delay of the message in taking that edge. The
challenge and sophistication lies in assigning costs such that
the assigned costs are close to the delay that will actually be
encountered when a message is forwarded across the DTN.

The reasons for considering only cost-based algorithms in this
class are two-fold. First, they provide a convenient and common
way to utilize the different knowledge oracles (thereby, identi-
fying to what extent global knowledge is necessary). Second,
they correspond naturally to traditional shortest-path based
routing problems which are well-understood and for which sim-
ple computationally-efficient distributed algorithms are known.
This simplicity, however, comes at the price of imposing certain
restrictions on the nature of routing paths determined. One key
limitation is that only a single path to a destination is derived.
As argued earlier, for DTNs it may be important to use multi-
ple paths (with splitting) to achieve near-optimal performance.
Interestingly, the basic ideas introduced here can be used to find
multiple routes and good split sizes. This is discussed briefly
at the end of this section.

7.1 Computing Shortest (minimum cost) Paths
To model the forwarding delay of a message in a DTN, we

consider three delay components: 1) queuing time: time until a
contact becomes available, 2) transmission delay: time to inject
a message completely into an edge, and 3) propagation delay.
Queuing time includes both the time waiting for an edge to
become available (waiting time) plus the time to drain messages
already scheduled for departure on that edge. Queuing time can
be large because edges may be unavailable for long periods of
time. Given that edge capacities and propagation delays vary
with time, we also expect route selection to vary with time.

When edge costs are time-invariant, shortest paths can be
computed using Dijkstra’s shortest path algorithm. However,
if the costs are changing with time the straightforward approach
does not work. We must make two modifications to overcome
this problem. First, the time a message will arrive at a par-
ticular node must be predicted. Second, the predicted arrival
time must be used to determine the cost of taking subsequent
edges. This would, in turn, affect the time the message arrives
at neighboring nodes. Interestingly, Dijkstra’s algorithm can be
adapted to compute the shortest paths for this case. Pseudo-
code for the modified algorithm is given in Algorithm 7.1.

The key difference between this algorithm and the traditional
Dijkstra’s algorithm is the definition and the use of the w (cost)
function. It takes into account the time a message arrives at a
node. This time is then used to compute the cost of travers-
ing edges emanating from that node (lines 7 and 8 of Algo-
rithm 7.1).

The modified Dijkstra’s algorithm requires the cost function
for all edges to have the FIFO property. This property ensures
that a message can not arrive earlier at the destination of an
edge by simply waiting longer at the source of the edge (i.e. you
will not travel more quickly over an edge if you wait to use it).
Formally, it means that for all edges e and all pairs of time t1, t2
with t1 < t2, w(t1, e) + t1 ≤ w(t2, e) + t2. When considering
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Abbr. Name Description Oracles Used

FC First Contact Use any available contact None

MED Minimum Expected Delay Dijkstra with time-invariant edge costs
based on average edge waiting time

Contacts Summary

ED Earliest Delivery Modified Dijkstra with time-varying
cost function based on waiting time

Contacts

EDLQ Earliest Delivery with
Local Queue

ED with cost function incorporating lo-
cal queuing

Contacts

EDAQ Earliest Delivery with
All Queue

ED with cost function incorporating
queuing information at all nodes and
using reservations

Contacts and Queuing

LP Linear Program - Contacts, Queuing and Traffic

Table 1: Overview of different routing algorithms. All Dijkstra-based algorithms incorporate a cost function sensitive to
edge propagation and transmission delays. Costs are ascertained by consulting the respective oracles.

Input: G = (V, E), s, T , w(e, t)
Output: L

1: Q← {V }
2: L[s]← 0 , L[v]←∞ ∀ v ∈ V s.t v 6= s.
3: while Q 6= {} do
4: Let u ∈ Q be the node s.t L[u] = minx∈Q L[x]
5: Q = Q← {u}
6: for each edge e ∈ E, s.t. e = (u, v) do
7: if L[v] > (L[u] + w(e, L[u] + T )) then
8: L[v]← L[u] + w(e, L[u] + T )
9: end if

10: end for
11: end while

Algorithm 1: Dijkstra’s Algorithm modified to use time-

varying edge costs. s is the source node. T is the start time.

L : V → R is the array returning the cost of the shortest path for

all nodes. The cost function w : E × R+
→ R+, gives the cost

as a function of edge and time. The interpretation of w(e, t) is the

following: Let e be an edge from node u to node v. Given a message

at u at time t, w(e, t) is the cost (delay) of sending it to v. Therefore,

if e is taken the message will reach v at time t+w(e, t). The algorithm

also works if the network topology is a multigraph. The unmodified

Dijkstra’s algorithm (for time invariant costs) is the same except that

the cost function w(e,L[u] + T ) is replaced by w(e) in lines 7 and 8.

different cost assignments, we make sure the above condition
holds. In practice it does because, in a single physical link, any
message would not be able overtake other messages sent earlier.

The above property does not prevent a message from waiting
at a node in order to reduce the overall delay. For example,
consider a case in which two nodes have two edges between
them with different propagation delays. The algorithm may
prefer to wait for the lower propagation delay link over the
other even if it is currently unavailable.

7.2 Algorithms with Time-Invariant Costs
Algorithm: Minimum Expected Delay (MED)
Oracles: Contacts Summary
The cost of an edge is the sum of the average waiting time,

propagation delay and transmission delay. The route of a mes-
sage is independent of time so a proactive routing approach
can be used. MED uses the same path for all messages with
the same source-destination pair. No mechanism is employed

to route around congestion or avoid message drops if storage

space is unavailable.
Properties The key property of MED is that it minimizes the

average waiting time. It fails to exploit superior edges which
become available after the route has been computed. For exam-
ple, a direct contact to the message destination arises when the
message is waiting for the pre-computed next-hop to become
available. In this case, the new contact would not be used.

Improvements Finding multiple disjoint paths with similar
costs and randomly selecting among them could improve load
balancing and reduce congestion [16]. The precomputed route
could be modified in-transit if a superior contact becomes avail-
able. This would, in effect, make it a form of loose source rout-
ing, with a somewhat reactive behavior.

7.3 Algorithms with Time-Varying Costs
The w function varies with both edge and time. In addition,

it depends on the size of the message under consideration (be-
cause of transmission delay). It may also depend on the node
assigning costs because costs may depend on its local queue
occupancy. Therefore, for sake of uniformity, we represent the
cost function w(e, t) in the following form:

w(e, t) = w′(e, t, m, s)

Here, e is the edge, t is the time for which we are comput-
ing the cost, m is the size of the message under consideration
and s is the node assigning the costs (and invoking Dijkstra’s
algorithm). The w′ function is now defined as:

w
′(e, t, m, s) = t

′(e, t, m, s)− t + d(e, t′)

where,

t
′(e, t,m, s) = min{t′′|

� t′′

x=t

c(e, x) dx ≥ (m + Q(e, t, s))}

The functions c(e, t) and d(e, t) are the capacity and the prop-
agation delay functions for the DTN topology (given by the
contacts oracle). The function Q(e, t, s) is the queue size at the
source of edge e at time t as predicted by the node s. The pa-
rameter s in Q(e, t, s) is used to distinguish between local and
global queuing. We now explain how w′ models the delay that
will be seen by the message when sent over the edge e starting
at time t.

t′ is the earliest time the queued data at edge e and the mes-
sage under consideration can be unloaded into the network for
transmission (assuming FIFO queuing). The integral captures
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the volume of data that could be moved through the edge dur-
ing the time interval [t, t′′]. The d(e, t′) function captures the
propagation delay seen by the message. Therefore, the w′ func-
tion represents the total time to transfer a message of size m

over edge e (starting at time t).
The cost assignments used in the algorithms we present next

differ primarily in the definition of the Q function. The first
algorithm uses only the contacts oracle and lacks information
about either local or global queuing (it thus assigns a value of
zero to Q). The second algorithm assigns a non zero value to
Q(e, t, s) whenever e is a local edge with respect to s and a zero
value otherwise. Finally, the third algorithm uses the queuing
oracle to determine Q(e, t, s) everywhere, thereby incorporating
global knowledge about the status of queues.

Algorithm: Earliest Delivery (ED)
Oracles: Contacts

This algorithm does not incorporate any queuing information
and assigns a value of zero to the Q function:

Q(e, t, s) = 0

Computed routes are loop free, because the paths computed
by the Dijkstra’s shortest path algorithm are loop free. The
route is determined once at the source and fixed, making ED a
form of source routing. Paths are computed without considering
the availability of storage at intermediate nodes on the path
and this may lead to drops when buffers overflow. The route
computation is not affected by existing messages in the system,
limiting ED’s ability to route around congestion.

Properties ED is optimal in the following two cases: if the
nodes on the selected path have no queued messages, or if con-
tact capacities are sufficiently large. In the first case, ED is op-
timal because it has assigned the correct value (zero) to the Q

function everywhere. In the second case, it is also optimal (even
if queuing is not zero) because once an edge is available and its
capacity is large, the time to transmit all the queued data (in-
cluding the message itself) is negligible. Thus, the queue size
does not affect the delay in these cases, and ED’s selection of a
zero value for Q is appropriate.

Paths computed by ED do not take into account queuing
delays. If an edge is purported to be available at a certain
time, the algorithm assumes that it can, in fact, be used to
send the message. However, if many other messages are ahead
in the queue, the contact may finish before the message is sent.
This is now disastrous because the time the message reaches
the next-hop is very different from what was predicted when the
route was computed. Therefore, continuing the route computed
earlier may be far from optimal. We explore this point in detail
in our evaluation in Section 9.4.

Algorithm: Earliest Delivery with Local Queuing (EDLQ)
Oracles: Contacts

In this algorithm, local queue occupancy is taken into ac-
count in estimating the edge delays. The Q function is:

Q(e, t, s) = � data queued for e at time t if e = (s, ∗)
0 otherwise

The Q function accounts for queuing at all edges outgoing
from the current node (denoted by ∗ above) and helps to route
around congestion at the first hop. It does not account for
queuing that will be encountered when the message reaches
other nodes in the path. However, unlike ED, we recompute
the route at every hop (per-hop routing). This allows the path

traversed to be sensitive to the queuing present at all edges in
the path.

Properties The EDLQ cost assignment function depends on
the node which is computing the route. This may lead to loop
formation and the possibility that messages may oscillate for-
ever. Such oscillations can be avoided by employing path vec-
tors and performing a re-computation with fixed routes (e.g.
calculated using ED) when a loop is detected. Like ED, mes-
sages might get dropped because of buffer overrun.

Algorithm: Earliest Delivery with All Queues (EDAQ)
Oracles: Contacts, Queuing

EDAQ uses the queuing oracle to determine the instanta-
neous queue sizes across the entire topology at any point in
time. The Q function is:

Q(e, t, s) = data queued for e at time t at node s

Like ED, messages are source routed. Routes are not recom-
puted at every hop because when routes were selected, the Q

function already took into account queuing at all nodes.
After computing the best route for a message, edge capacity

must be reserved for the message over all edges (at appropri-
ate times) along its path. Such reservations ensure that mes-
sages will have been moved in sufficient time to avoid missing
scheduled contacts. In addition, reservations allow the queu-
ing oracle to make accurate predictions about queuing in the
network. Realizing bandwidth reservations is likely to be a sig-
nificant challenge for a DTN, where communicate with some
nodes may be significantly delayed. For systems where central-
ization is practical (e.g. a separate low-delay control network
exists), bandwidth allocation would be greatly simplified.

Properties EDAQ determines an optimal route for a new
message given existing reservations for the previous messages.
This follows because it correctly accounts for the queuing de-
lay, provided by the queuing oracle. Bandwidth reservations are
required to accurately implement the queuing oracle. Finally,
like previous algorithms, EDAQ is also oblivious to available
buffer capacity. Incorporating storage constraints within the
framework of computing shortest paths by assigning costs is
much harder and open for future investigation. One approach
is to use a different algorithmic methodology such as a linear
programming formulation, as discussed in the next section. Dy-
namic flow control may also be effective.

7.4 Other Algorithmic Variations
The algorithms discussed here can be extended in various

ways. We briefly introduce these ideas and leave a detailed
study for future work.

Active route re-computation The ED algorithm may per-
form poorly when computing paths over a congested network
because precomputed routes remain unchanged even if intended
contacts are missed during delivery. This can be addressed
by re-computing routes as a message transits the network (i.e.
when it becomes apparent a message will miss its next antici-
pated contact).

Global queuing estimation Implementing the queuing oracle
(used by EDAQ) in a practical system will be difficult due to its
requirement for global knowledge. To approximate its function,
the EDLQ algorithm can be augmented by keeping track of the
size of messages it forwards along each routing path. This can
be used to construct an an estimate of queuing at nodes beyond
the local one, so as to mimic the queuing oracle, but can still
be implemented with only local computations.
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Splitting revisited The algorithms discussed so far determine
a single route for a given message. This approach is fine if
messages are small enough to be sent completely during one
contact. But if messages are large, it may be better to split
them and send different parts over different paths. A slight
variant of EDAQ can be used to determine both the split sizes
and the routes. The algorithm works by repeatedly invoking
EDAQ to determine the shortest path in the network (for a
very small message size). After each invocation of EDAQ, the
capacity of the computed shortest path is determined and that
amount of data is sent over it. Reservations have to be made
before the next iteration to ensure correctness. This idea is
similar to the use of shortest path algorithms in determining
a minimum cost flow in a network (known as the sequential
shortest path algorithm) [1]. Another heuristic approach is to
split a large message into small messages of a predetermined
size. In many cases, the underlying edge properties can be used
to determine a suitable size. Each of the smaller messages can
then be routed independently. This offers simplicity at the cost
of sub-optimal routes.

8. ROUTING WITH COMPLETE KNOWLEDGE
In the previous section we considered algorithms that com-

pute routes without regard to the future traffic demand. It
can be shown easily by constructing examples that these algo-
rithms are not globally optimal. The sub-optimal performance
is fundamental because these algorithms lack knowledge about
the traffic demand and do not consider the buffer constraints.
We now present a Linear Programming formulation that uses
all the oracles to determine the optimal routing for minimizing
average delay in the network. The LP formulation is an adap-
tation of the dynamic version of the classical multi-commodity
flow problem [12]. The dynamic version involves balancing flow
during a set of disjoint time intervals. Thus, the first step in
employing an LP approach is to determine the time intervals
over which the balance equations must hold. The second step
is to construct the other LP constraints for the DTN routing
problem in which edges and nodes are capacitated in a time-
varying fashion. These constraints may cause messages to split.

8.1 Time Intervals
For the DTN LP formulation, we have a flow balance equa-

tion for each time interval. Each equation balances the flow en-
tering or leaving a node against both input/output flows (as in
the traditional multi-commodity flow problem) and flows enter-
ing or leaving the local buffer. One simple approach to obtain
the set of time intervals is to discretize time into very small,
fixed-sized intervals. However, this can lead to a very large
number of time intervals and may not be practical. Instead,
we can show that a set of intervals satisfying a certain subdivi-
sion property is sufficient (though not necessary) to achieve the
same results. Intuitively, these time intervals represent time
shifts of the periods when message transmission or reception
can occur. Contact start and end times and the message arrival
times are the natural markers for constructing these intervals,
but with propagation delays, further refinement is needed. For
a detailed discussion of the algorithm to determine these time
intervals (and proofs of their sufficiency to solve the problem)
please refer to the technical report [2]. The rest of the paper
assumes that the time intervals have been determined.

8.2 LP Formulation
Time Intervals The set of time intervals is denoted by IE .

The time intervals are numbered I1, . . . , Iq, . . . , Ih. Further, by
construction Iq = [tq−1, tq) (and tq−1 < tq). Therefore, the set
IE partitions the interval [t0, th).

For an interval I = [a, b) and r ∈ R+, we let I ⊕ r denote the
(shifted) interval [a + r, b + r). The conditions for constructing
time intervals enforce that an interval, when shifted by any
propagation delay, is also a valid interval in the set IE . This
ensures that for all edges, the messages transmitted during an
interval of the sending node would be received at the destination
node also in a valid interval.

We make an important assumption that both the capacity
and delay of an edge are constant over a time interval. If not,
the time interval can be subdivided so that the variable capacity
(or delay) can be satisfactorily approximated by a constant in
each interval.

Graph construction The following definitions are based upon
our discussion of the DTN model in Section 3.

V is the set of nodes in the network.
E is the set of edges in the network.
c : E ×R+ → R+, where ce,t is the capacity of the edge e at

time t.
d : E ×R+ → R+, where de,t is the propagation delay of the

edge e at time t.
bv is the storage capacity of the node v.
Iv is the set of edges whose destination node is v (incoming

edges).
Ov is the set of edges whose source node is v (outgoing edges).
Traffic demand Traffic demand is the set of all messages and

is denoted by K. A message is a tuple (u, v, t, m) where (u, v)
is the source-destination node pair, t is the time at which the
message is injected and m is the message size. For a message
k ∈ K, the functions s(k), d(k), ω(k), m(k) are used to retrieve
the source node, the destination node, the start time and the
size of the message respectively.

Variables used in formulating the LP The following defini-
tions capture the state and the transitions in the network.
• Nk

v,t is the amount of message k occupying the buffer at node
v at time t ∈ TE

• Xk
e,I is the amount of message k transmitted (at the tail of

the edge) over edge e during I ∈ IE

• Rk
e,I is the amount of message k received (at the destination

of the edge) over edge e during I ∈ IE

• Kv = {k|k ∈ K and d(k) = v} i.e the set of messages whose
destination node is v.

The transmission variables (denoted by X) and the recep-
tion variables (denoted by R) are used together to model the
propagation delay encountered in sending messages.

Objective function The objective function is to minimize the
average delay, which can be realized by minimizing the sum of
the delays for all messages:

min �
v∈V

�
k∈Kv

�
Iq∈IE

(tq−1 − ω(k)) · ( �
e∈Iv

R
k
e,Iq
− �

e∈Ov

X
k
e,Iq

) (1)

The summation, � e∈Iv
Rk

e,Iq
represents the amount of data be-

longing to message k that is coming into the node v in the
interval Iq. Because of limited storage, it is possible that the
data leaves the destination node temporarily to some other node
with more storage and re-enters it at a later point. This is ac-
counted for by subtracting the term �

e∈Ov Xk
e,Iq

. The above
difference is multiplied by the length of time that has passed
since the start of that message (i.e. tq−1−ω(k)) to get the total
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delay suffered by that fraction of the message k that arrived in
the interval Iq at node v. Finally, we sum over all the possible
intervals for all messages and all nodes.

Observe that if a message is received over two time intervals
(due to splitting) the net delay of the message is the weighted
sum of the delay of the two fractions. A more natural approach
would be to consider the time at which the last fraction of the
message is received. However, we found that modeling that as
a linear constraint requires the use of integer variables. This
results in significantly increased computational complexity as
compared to solving standard linear programs and therefore
was not considered.

LP constraints

�
e∈Iv

R
k
e,Iq
− �

e∈Ov

X
k
e,Iq

=

� Nk
v,tq
−Nk

v,tq−1
+ m(k) if s(k) = v, ω(k) = tq

Nk
v,tq
−Nk

v,tq−1
otherwise

k, v, Iq (2)

R
k
e,Iq⊕de,tq−1

= X
k
e,Iq

k, e, Iq (3)

�
k∈K

N
k
v,tq−1

≤ bv v, Iq (4)

�
k∈K

X
k
e,Iq

≤ ce,tq−1
· |Iq| e, Iq (5)

N
k
v,t0

= � m(k) if v = s(k), t0 = ω(k)
0 otherwise

k, v (6)

N
k
v,th

= � m(k) if v = d(k)
0 otherwise

k, v (7)

The notation k, v, Iq in equation (2) means that there is an
equation of this form for all k ∈ K, v ∈ V and Iq ∈ IE . The
same is true for other equations.

Equation (2) gives the flow constraints, which balance the
change in the storage occupancy of a node against the net in-
coming flow for every time interval.

Equation (3) relates the variables X and R by stating that the
traffic transmitted at the initial point of e during Iq is equal to
the traffic received at the end point of e during the time interval
Iq ⊕ de,tq−1

(i.e. after the edge delay).
Constraints are also needed to ensure that the amount of data

sent over a link is limited by its capacity over that time interval
and that the storage at any node does not exceed the specified
limit. These are captured by equation (4) and equation (5).

Finally, equations (6) and (7) are the initial and the final
conditions regarding storage. Equation (6) says that in the
beginning, only nodes that have messages to send have an oc-
cupied buffer. Equation (7) states that at the end, only nodes
that are destinations for messages have an occupied buffer.

9. PERFORMANCE EVALUATION

9.1 Simulator for DTN
We use simulation to compare the performance of the routing

algorithms in different environments. We developed a publicly-
available custom simulator for DTN environments [7]. We use
it to explore two scenarios, the remote village described in Sec-
tion 2 and a city bus network scenario (Section 9.3).

The DTN simulator is a discrete event simulator written in
Java. Its main theme is to simulate DTN-like store and for-
warding of messages over long periods of time sustaining link
disconnections and failures. The two key components of the
simulator are the nodes and the links, which can be created and
destroyed dynamically (and also temporarily or permanently).
Nodes have finite storage capacity.

Links are attached to nodes and are directional by default.
They have finite propagation delay and finite bandwidth. To
model link unavailability (or availability), patterns (simulator
objects) can be associated with a link to specify the exact time
intervals during which the link is down (or up). These patterns
can be generated randomly from a probability distribution or
specified explicitly in a file. Unlike traditional network simu-
lators, the DTN simulator distinguishes between the following
two modes of link disconnection:

1) Complete link failure: causes all the transiting messages
on the link to be dropped. This corresponds to failure of the
physical media or complete interference.

2) Link close at the source: prevents sending any more data
into the link. The data that has been sent, however, continues
to reach the destination. This is similar to a wireless/satellite
connection fading away. It is especially relevant for networks
with very long propagation delays.

The simulator also supports reactive fragmentation. If a mes-
sage is being sent when a link closes, a fraction of the message
is transferred successfully (the amount is based upon the trans-
mission start time, the link capacity, and the close time). The
transmitting node is then informed of the amount of data trans-
mitted, and is given the opportunity to route the remaining
fraction. The final destination of the message is responsible for
reassembling its constituent parts.

9.2 Scenario 1: Routing to a Remote Village
We now return to the problem of routing to a remote village

mentioned in Section 2 (Figure 1). The village is Kwazulu-
Natal and and the city is Capetown, both in South Africa.
Their respective (latitude, longitude) locations are as follows:
(28.8830S, 31.4670E) and (31.282S, 29.45E). We shall assume
the dialup provides 4 Kb/s and is available only during late
night (11 pm to 6 am, local time).2 We assume the availabil-
ity of three PACSAT satellites for the purpose of delivering
data: OSCAR-11, PACSAT and PCSAT [3]. We use the PRE-
DICT [15] satellite tracking software to determine the time of
the passes of these satellites. The satellite is assumed to be in
range of both the city and the village at the same time as it is
flying over them. This is a reasonable assumption because the
village and the city are geographically close in this case. We
also have three motorbikes that travel from the village to the
city (and vice-versa) every day at different times. Each trip
takes about two hours (one way), the bandwidth to/from the
motorbike is taken to be 1Mbps, its contact time at the city or
the village is 5 minutes, and it can store up to 128MB (the size
of a USB dongle).

These (partially hypothetical) parameters represent only one
of the many ways to connect a remote village, and we cannot
currently claim it to be representative. Nevertheless, even this
relatively simple scenario exhibits a richness in routing deci-
sion opportunities and allows us to examine the type of choices
made by our proposed algorithms. In the next section, we con-
sider a more general and complex DTN topology and explore
its performance in more detail.

2During day time it is too expensive to use this connection.
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Figure 4: Traffic breakdown by different connectivity op-
tions.

Traffic demand generation Messages are injected at the vil-
lage (destined for the city) and vice-versa. Messages from the
village are small (1KB average) and messages from the city to
the village are larger (10KB average). These are based upon
average web request and web response sizes [21]. We consider
two traffic rates, a) a low load of 200 messages from village to
city (and vice-versa) per day, and b) a high load of 1000 mes-
sages per day. Messages are injected at randomly-chosen points
in time during the first 24 hours of simulation. Simulation is
performed over a period of 48 hours, starting at 11–Jan–2004,
11:59 pm.3 The simulation duration is chosen to ensure that
no traffic remains undelivered when the simulation ends.

Routing issues The topology of this scenario is straightfor-
ward. In some sense, the “routing” decision is merely to choose
the first hop among the three classes of contacts: the satellite,
the dialup, or the motorbike. Consider a message originating
at the village at 6 pm (local time). The viable options for de-
livering the message are: 1) wait until 11 pm to use the dialup
connection, 2) use the motorbike scheduled to leave the village
at 8 pm, or 3) use a satellite which will be visible at 8:10 pm.

Taking the first available contact may be sub-optimal. Here,
the first contact (motorbike) would deliver the message to the
city at 10:00 pm. Using a satellite would have been the best
option in this case because the message would be transferred
to the city (using the satellite as an intermediate hop) at 8:10
pm, saving 110 minutes.

The routing decision becomes more complex when a large
amount of data has to be delivered. In the same example, if
the size of the message is larger than what can be delivered
using the satellite, choosing the higher-bandwidth motorbike
may be better. Clearly, these decisions depend on the size and
time of the requests, the available connectivity options, and the
other messages already waiting in the system.

Results One interesting question to investigate is how dif-
ferent routing algorithms utilize the available connectivity re-
sources (i.e. dialup, satellites, and motorbike). To understand
this, we plot in Figure 4 the fraction of data routed using each
connectivity mode by the different algorithms.

For MED, all the data is routed using the dialup connection
during both low and high load because MED statically chooses
a single path to route all data based on aggregate link proper-
ties. The dialup connection, which is available for a significant
fraction of the day (7 hours), has the best average delay. For
ED, most data is routed using satellites (60%) and the rest us-

3The precise starting time, coupled with the location on Earth,
is required by the satellite tracking software in order to deter-
mine the satellite contact parameters.

Figure 5: Delay comparison for different algorithms.

ing dialup. No traffic is routed using the motorbike because
doing so would require at least two hours to reach the city and
vice-versa. Thus, ED will take the motorbike only if both the
satellite and the dialup connections are more than two hours in
the future. This rarely occurs because there are three satellites
each visiting about four times a day. For low loads, EDLQ and
EDAQ make choices similar to those of ED.

The FC algorithm routes data based on the first available con-
tact and sometimes selects the motorbike (for about six percent
of the messages). This explains why the maximum delay for FC
is much higher as compared to EDAQ. The average, however,
is similar to the other algorithms because only a small fraction
of the traffic is routed this way. The moderately good perfor-
mance of a simple technique like FC is somewhat surprising at
first glance and is due to the simple topology under consider-
ation. FC can never make a terrible choice because all paths
lead directly to the city. In Section 9.3, where we consider a
more complex topology, the performance of FC is much worse.

At higher loads, the situation is somewhat different. The
congestion-aware schemes (EDLQ, EDAQ, and LP), which un-
der low load did not use the motorbike at all, now route about
fifteen percent of the data using it. However, the choices made
by ED and MED remain the same as in the low load case be-
cause they are not traffic-aware. Both suffer because of this.
In particular, the performance of ED deteriorates sharply when
the next-hop is a satellite. Because of the large number of re-
quests, only some of them can be served during one satellite
pass. The rest have to wait for the next visible pass of the
same satellite (as constrained by the ED algorithm) which, in
the worst case, can be as long as ten hours. FC continues to
route using the first available contact. With an increased vol-
ume of traffic, a larger proportion of it gets routed through the
motorbike because the motorbike offers higher bandwidth and
can consume data at a faster rate than either the motorbike or
the satellites.

We also solved this scenario using the LP formulation pre-
sented in Section 8. We used the CPLEX optimization suite [6]
from ILOG on an 8-processor Pentium-III (700MHz) machine
with 3 GB of RAM. Even for this simple scenario, the resulting
LP had close to 500,000 constraints containing 550,000 vari-
ables and took about 8 minutes with 16,000 iterations to solve
in CPLEX. For more complex scenarios (as the one presented
in Section 9.3), the size of the resulting LPs were very large and
we were unable to solve them practically.

A key observation is that EDAQ compares favorably, in terms
of average delay, with the optimal solution. We also observe
that the LP’s maximum delay sometimes exceed that of EDAQ.
This is possible because LP optimizes for the average delay.
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Figure 6: Map of San
Francisco used for the
bus movements. The
physical cross-section of
the above area is 4400m
X 5600m. The three la-
beled lines A,B,C denote
three of the twenty bus
routes. It takes approx-
imately 30 minutes for
Bus A to complete one
round-trip.

Discussion The village scenario is a simple scenario, but
serves to illustrate that many factors have to be taken into
consideration when making a routing decision. Using our eval-
uation framework, we find that simple techniques may fail to
deliver the best performance, especially under congestion. We
use our framework in the next section to explore a more com-
plex scenario with multiple hops and mobile routers.

9.3 Scenario 2: A Network of City Buses
Our second scenario is a city bus network. The nodes in the

scenario are 20 city buses making scheduled bus trips inside
San Francisco (Figure 6). The buses are capable of DTN-style
store and forward operations and are equipped with radio-based
communication capabilities. We compute the complete DTN
graph for this scenario in two steps.

In the first step, we plot the motion of each individual bus on
a two-dimensional plane representing the city. For each bus, an
ordered sequence of stops (representing its route) is placed on
the plane. Every time the bus makes a turn onto a new street,
a stop is generated at the corresponding intersection. The bus
moves along a straight line between two bus stops with a con-
stant base speed. We use the actual bus routes published in the
transit bus network schedule for San Francisco. We then add
random pause times (chosen uniformly between 0 and 5 min-
utes) at each stop. In addition, the bus base speed is modified at
each stop (chosen uniformly between 10 and 20 meters/second).

In the second step, we compute the time intervals during
which the buses can communicate. We assume that the buses
are fitted with radio transceivers and the ability to communi-
cate is based on a very simple disc radio model. In the disc
model, two buses can communicate if they are within a certain
threshold distance, called the radio range. This model is an ap-
proximation and its main goal here is to provide a simple way to
generate (dis)connections based on a known mobility pattern.
To generate the time intervals when the buses can communi-
cate, we wrote a separate program which moves nodes on a
two-dimensional surface and computes the times when nodes
are separated by the radio range threshold or less. The output
of this program provides the dynamic topology input needed
by the DTN simulator. The default radio range is 100 m in
simulations. We also study the effect of varying radio range.

Traffic workload Traffic is generated over a period of 12
hours, which is divided into 12 intervals of 1 hour each. For
each interval, 20 random source/destination bus pairs are cho-
sen. Each source bus sends 200 messages to its destination
bus during the one hour interval. The messages are injected
simultaneously at a randomly-chosen time inside the one hour
interval. This represents a bursty traffic pattern and creates
more congestion in the network as compared to a more uniform

load. The total simulation time is 24 hours. It gives most of
the algorithms enough contacts to completely deliver the traffic
demand.

Load As we shall see, the relative performance of the different
algorithms is most sensitive to the amount of congestion present
in the network. Congestion in a DTN depends on the relative
ratio of traffic demand to the product of capacity and frequency
of contacts. We define this ratio as the load on the network:

Load =
Traffic Demand in time T

Contact V olume

where,

Contact V olume = �
e∈E

� T

0

c(e, t) dt

The contact volume gives the maximum amount of data that
can be exchanged during the whole simulation time (T ). The
traffic demand accounts for the entire volume of messages in-
jected into the simulation. Even with a load of less than one,
the network may be congested. A message may have to tra-
verse multiple hops to reach its destination, thus reducing the
effective usable bandwidth to handle other traffic demand. Fur-
thermore, because both traffic demand and contacts are time
sensitive, there may be times when contacts are available but no
traffic is present to utilize them, thus underutilizing the avail-
able contact volume. In spite of these limitations, the above
ratio provides some useful insight regarding the relationship
between scenario parameters and algorithm performance.

Parameter sensitivity The load can be increased by either
generating additional traffic demand or by reducing the con-
tact volume. We fix the traffic demand and vary the contact
volume. The contact volume can be varied by either varying
the contact bandwidth (edge capacity) or the contact duration
(the fraction of time an edge is available). For our scenario, the
contact durations can be increased (decreased) by increasing
(decreasing) the radio range.

Although increasing bandwidth and increasing the radio
range both decrease the overall load on the network, they have
different effects. The differences can be understood by observ-
ing the impact of parameter changes when traffic demand is
minimal. A small radio range effectively disconnects the net-
work even if bandwidth is plentiful. If bandwidth is limited but
radio range is large, however, the impact on delivery is only
minimal for light traffic. Thus, the role of bandwidth is promi-
nent only when there is relatively large amounts of data to be
moved.

Performance metrics In addition to average delay, we also
use delivery ratio to compare our algorithms. The delivery ratio
is defined as the ratio of the total amount of data delivered
by the end of simulation to the total amount of data injected
into the system. The delivery ratio may be less than one either
because of buffer drops or because of insufficient contact volume
to move data to its destination before the end of the simulation.

The next three subsections present a comparison of different
algorithms as we vary bandwidth, radio range and buffer capac-
ity. In each section, only one parameter is varied and the rest
are kept constant. The default value for radio range is 100m.
The default storage capacity was 100 MBytes and the default
link bandwidth was 100 Kb/s.
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Figure 7: Effect of scaling load (by scaling bandwidth).
Radio range is fixed at 100m.

9.4 Results of Varying Bandwidth
Figures 7(a) and (b) show the average delay and the delivery

ratio, respectively, as load on the system increases (by decreas-
ing bandwidth).

When the load is very small (less than .01), increasing band-
width does not lead to any improvement in delay. At low load
the bottleneck is due to poor timing: an insufficient volume
of contacts is available when needed even though the aggregate
volume of all contacts is sufficient to move all the generated
data. However, in this operating range, the dynamic cost-based
algorithms ED, EDLQ, and EDAQ (smarter algorithms) per-
form much better than FC and MED (simpler algorithms). For
example, at a load of .01, MED has three times the delay of
ED. As expected, FC has the worst performance among all the
algorithms because of its essentially random selection of the
next-hop.

As the load increases (or, equivalently, bandwidth decreases),
average delay increases because the amount of data generated
is comparable to the amount that can be moved in one contact.
Therefore, multiple contacts are often required to move the data
stored at a node. The effect of increased load is most evident
in the line of ED in Figure 7. At low load (about 0.05), ED
performs as well as EDAQ and EDLQ, but as load is increased
its performance deteriorates and becomes similar to MED. This
behavior is explained by recalling that under congestion a con-
tact may finish before all the messages queued for it are sent.
In the context of ED, this can now be disastrous for the un-
sent messages. Those messages delayed only to the next-hop
(but reaching in time to catch the contact scheduled at the
next-hop) continue on the planned route. However, messages
that miss contacts at subsequent nodes as a result of missing
the scheduled contact at the current node can get significantly
more delayed. The situation is analogous to missing a connect-
ing airline flight. Somewhat surprisingly, EDLQ and EDAQ
have similar performance.

For very high load (above one), most of the data cannot be
delivered during the simulation run (Figure 7(b)). For unde-
livered messages, we assign their delivery time as the end of
the simulation. This underestimates the delay (perhaps signif-
icantly), but also ensures that we never overestimate it. As a
consequence, all the algorithms appear to have almost the same
(very high) delay when the load is extremely high.

Figures 8(a) and 8(b) show the cumulative distribution func-
tion of delay of the set of messages for the two cases: a) when
bandwidth is high (400 Kb/s), and b) when bandwidth is low
(20 Kb/s). The graph indicates superior performance of the
smarter algorithms ED, EDLQ and EDAQ. It also illustrates
that ED has exactly the same (optimal) performance when
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Figure 8: Cumulative Distribution Function of delay for
the set of all messages. Radio range is fixed at 100m.

Radio range (km) .05 .1 .2 .4 1 2 4
fup% .1 .2 .6 2.6 15 45 97

Table 2: Network connectivity as a function of radio range.
fup denotes the percentage of time a pair of nodes are in
mutual contact. fup = 100 denotes that two nodes are in con-
tinuous contact. The numbers reported here are obtained
by averaging fup over all pairs of nodes.

bandwidth is large, illustrated by observing that the lines for
ED, EDLQ and EDAQ coincide. However, when bandwidth
is low, the performance of ED is significantly worse than both
EDLQ and EDAQ. The almost-overlapping CDFs for EDLQ
and EDAQ again indicate that their performance is close, even
at high load.
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Figure 9: Average delay as radio range is scaled. The plots
for ED, EDLQ and EDAQ overlap.

9.5 Results of Varying Radio Range
Figure 9 plots the average message delay as radio range is

increased (which effectively increases contact volume). For this
plot, the link bandwidth was taken as large, allowing us to
factor out congestion issues due to limited bandwidth.

From the graph, one can see that increasing the radio range
reduces the average delay. This is expected, because by in-
creasing the radio range, the buses are in mutual contact more
frequently (and for longer duration) and hence, the waiting time
is reduced. Table 2 shows the increase in network connectiv-
ity as radio range is increased (spanning nearly three orders of
magnitude).

The difference between the simpler (FC, MED) and the
smarter algorithms (ED, EDLQ, EDAQ) is much more pro-
nounced when the radio range is small (i.e when the network is
more disconnected), suggesting the increased benefits of smarter
routing techniques as networks become more intermittent. Con-
versely, when radio range is very large (links are mostly avail-
able), the benefits of the smarter algorithms vanishes.
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9.6 Results of Varying Buffer Capacity
Most of the algorithms considered in this paper (except LP)

are oblivious to buffer limitations. Therefore, we expect to
see message drops when storage is limited. To explore this
behavior, we vary the maximum available storage at each node
to see how different algorithms perform with respect to message
delivery. Figure 10 plots the data delivery ratio for different
algorithms as a function of storage. The bandwidth is 400Kb/s
(large) and the radio range is 100m.

When storage is limited, the smarter algorithms (ED, EDLQ,
EDAQ) have significantly fewer drops than the simpler algo-
rithms (FC, MED). When storage is sufficiently large, there are
no drops and all algorithms have a delivery ratio of one. How-
ever, when storage availability is very limited, most messages
get dropped and there is little benefit in employing a smarter
route selection process. Therefore, we conclude that ED, EDLQ
and EDAQ perform better than FC and MED when storage is
limited, but any such performance benefits may be unrealized
for networks with extremely large or extremely small store-and-
forward buffering.

9.7 Summary
It is evident that the smarter algorithms (ED, EDLQ, EDAQ)

outperform the simpler algorithms (FC, MED), both in terms of
delay and delivery ratio. The performance differences become
more pronounced as the network becomes more intermittent.
Further, as load is increased, ED performs much worse than
EDLQ and EDAQ, as it is unable to mitigate the effects of
congestion. Finally, EDLQ, which routes around congestion
using only local queuing, performs comparably to EDAQ. This
point is encouraging from an implementation standpoint, as
implementing the queuing oracle on a frequently-disconnected
network would likely present a significant distributed systems
problem.

10. RELATED WORK

10.1 Store-and-Forward Systems
Electronic mail may appear as a natural approach for han-

dling message delivery in a frequently-disconnected environ-
ment. It does provide the required store-and-forward capabil-
ity, but typically lacks any robust approach to dynamic routing.
In the Internet, successful e-mail exchange (i.e. with SMTP)
generally depends both on a successful DNS request/response
transaction along with a reliable transport layer exchange pro-
tocol. The mail exchanger DNS facility (“MX record”) provides
a limited form of routing in the e-mail overlay, but falls far short
of handling the type of routing problem discussed here. Thus,
e-mail (at least Internet e-mail) is unable to deal with true dy-
namic routing and is not very robust to errors during message
transfer.

Prior to the wide availability of Internet connectivity, the
UUCP network carried news and electronic mail to a small but
growing (and active) user community. It used source routing,
and responsibility for route selection was left primarily to end-
users. It was later enhanced with a form of static routing based
on computing shortest paths on a topology graph distributed by
e-mail (or entered manually). 4 To choose among local outgoing
connections, fixed costs were assigned manually to links based
upon the frequency and the quality of the connection. The
MED algorithm is similar to above idea.

10.2 Optimization Techniques and Network Flows
The field of operations research is rich with variations on op-

timization problems involving network flows, shipment of mate-
rials, and scheduling. A complete survey could not possibly be
accomplished here. However, some of the more relevant work
includes the quickest transshipment problem, dynamic multi-
commodity flow problems, etc. [14]. Frequently, network flow
problems that involve temporal sensitivities are solved as tradi-
tional graph problems on time-expanded graphs. These graphs,
introduced as early as 1962 by Ford and Fulkerson [9], can be
used to capture the temporal dynamics as additional nodes and
edges. The issue with computing on such graphs is that they
can significantly expand the search space, leading to very large
problems.

Focusing specifically on shortest path (single path) solutions,
algorithms for dynamic networks have been investigated by
Orda et.al. in [19]. In this respect, our primary contribution has
been to define appropriate cost functions in the context of the
DTN routing problem. The issue of splitting (allowing message
fragments to take multiple paths) and buffer constraints makes
the problem much more challenging. The problem is further
complicated because of multiple commodities, time-varying ca-
pacities, non-zero and possibly time-varying propagation de-
lays, etc. The specific case of zero propagation delays with
finite buffers and time-varying capacities has been addressed
by Ogier [18]. In summary, although many of these aspects
have been discussed in literature either individually (or as a
subset), the complete LP formulation taking into account all
these aspects is novel.

10.3 Routing in Disconnected Mobile Adhoc Networks
Our present exploration of the DTN routing problem is fo-

cused on cases where the topology dynamics are known (or
nearly known) in advance. Clearly, however, many systems
will not exhibit such predictability or will exhibit partial pre-
dictability. A series of efforts [13, 22, 24, 5] in the context of
sensor/mobile-adhoc networks looks into providing connectivity
when topology dynamics are unknown. Generally, these tech-
niques employ a form of data duplication within the network
and achieve eventual delivery. Such duplication requires a way
of getting rid of unnecessary copies to reduce the buffer occu-
pancy. We believe that a hybrid approach, possibly employing
some of the epidemic techniques in conjunction with the tech-
niques discussed here, may be appropriate for such systems.

11. CONCLUSION
DTN routing appears to be a rich and challenging problem. It

requires techniques to select paths, schedule transmissions, es-
timate delivery performance, and manage buffers. The problem
of networking on frequently-disconnected networks is receiving
more attention as the desire to have data connectivity in devices

4A user program called pathalias [11] performed this function.
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which may be mobile or into regions that may only be reach-
able by non-conventional network devices (e.g. motorbikes) in-
creases. We believe that in many frequently-disconnected sce-
narios, communication opportunities may be predictable. The
algorithms devised in this paper focus on these situations, and
we believe such systems have received little attention to date.

In this paper, we have developed a framework for evaluat-
ing DTN routing algorithms, suggested and evaluated several
individual algorithms, and provided a basis for future work in
the area. Our findings suggest that in networks with plen-
tiful communication opportunities, the need for smart rout-
ing algorithms is minimal. In situations where resources are
limited (contact opportunities, bandwidth or storage, in our
case) smarter algorithms may provide a significant benefit. In-
deed, those which take network congestion into account (EDLQ,
EDAQ, LP) do especially well in these environments. The find-
ing that global knowledge may not be required for good perfor-
mance in many cases suggests that implementing the queuing
oracle (the most challenging to realize except for the traffic or-
acle), in particular, may not be worthwhile. This last point is
significant, and merits further investigation. Our construction
of the knowledge oracles allowed us to avoid the complexities
of how routing meta-data is created and propagated. In real-
world situations, however, the realization of these oracles would
present a distributed systems challenge made worse by the as-
sumed frequent network disconnections.

12. FUTURE WORK
Our work to date has revealed that many additional ques-

tions remain to be answered. We now discuss several of these.
The algorithms presented here (except LP) do not account for
buffer limits at intermediate nodes when determining routes.
If a node has insufficient storage to hold in-transit data, that
data is dropped. Flow control mechanisms could be employed
to prevent such drops in some circumstances, but many exist-
ing methods for handling dynamic flow control do not work
well with long propagation delays. Thus, it would appear some
form of proactive admission control may be more appropriate,
but discovering the best form of this mechanism for DTNs re-
mains open. Removal of messages at a node, either because
they have expired or for application specific reasons, is another
approach for controlling buffer occupancy.

As mentioned earlier, in some environments contacts become
available opportunistically. Routing under such environments
might employ techniques of epidemic routing (data replica-
tion), and the most robust solution may incorporate those tech-
niques with the approaches described here. A related variant is
when oracles provide only probabilistic knowledge about avail-
able contacts (such as a time dependent probability distribu-
tion on waiting time). Here, we hope to leverage work from
the transportation community on stochastic dynamic shortest
paths [10].

The objective function we have selected here minimizes de-
lay, but in some scenarios other metrics (e.g. monetary cost),
which may not be directly derivable from delay, may be more
important. This would present the problem of how to measure
the metric of interest and would again raise the implementation
question for the corresponding new knowledge oracle. For the
case of village networking presented earlier, this may be espe-
cially true, and this line of research is already underway. As
can be seen, a rich collection of questions (both theoretical and
practical) arise in the context of these types of networks.

Acknowledgements
We are grateful to Gaetano Borriello, Ratul Mahajan, David
Wetherall and the SIGCOMM reviewers for providing helpful
feedback on the paper. This work was supported in part by the
Intel Research Council, Intel Corporation.

13. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice Hall, 1993.
[2] J. Alonso and K. Fall. A Linear Programming Formulation of

Flows over Time with Piecewise Constant Capacity and
Transit Times. Technical Report IRB-TR-03-007, Intel
Research Berkeley, July 2003.

[3] AMSAT. http://www.amsat.org/.
[4] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and

J. Jetcheva. A Performance Comparison of Multi-Hop Wireless
Ad Hoc Network Routing Protocols. In ACM Mobicom, Aug.
1998.

[5] X. Chen and A. L. Murphy. Enabling Disconnected Transitive
Communication in Mobile Adhoc Networks. In Workshop on
Principles of Mobile Computing, August 2001.

[6] CPLEX: Linear Programming Solver. http://www.ilog.com/.
[7] DTN Research Group. http://www.dtnrg.org/.
[8] K. Fall. A Delay-Tolerant Network Architecture for Challenged

Internets. In ACM SIGCOMM, Aug. 2003.
[9] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton

University Press, 1962.
[10] S. Gao. Routing Problems in Stochastic Time-Dependent

Networks with Applications in Dynamic Traffic Assignment.
Master’s thesis, MIT, 2002.

[11] P. Honeymoon and S. Bellovin. PATHALIAS: The Care and
Feeding of Relative Address. In USENIX Conference, 1986.
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