
Mergenci and Korpeoglu EURASIP Journal onWireless Communications and

Networking (2015) 2015:202

DOI 10.1186/s13638-015-0427-x

RESEARCH Open Access

Routing in delay tolerant networks with
periodic connections
Cem Mergenci* and Ibrahim Korpeoglu

Abstract

In delay tolerant networks (DTNs), the network may not be fully connected at any instant of time, but connections

occurring between nodes at different times make the network connected through the entire time continuum. In such

a case, traditional routing methods fail to operate because there are no contemporaneous end-to-end paths between

sources and destinations. This study examines the routing in DTNs where connections arise in a periodic nature. We

analyze various levels of periodicity in order to meet the requirements of different network models. We propose

different routing algorithms for different kinds of periodic connections. Our proposed routing methods guarantee the

earliest delivery time and minimum hop-count, simultaneously. We evaluate our routing schemes via extensive

simulation experiments and compare them to some other popular routing approaches proposed for DTNs. Our

evaluations show the feasibility and effectiveness of our schemes as viable routing methods for delay tolerant

networks.

Keywords: Delay tolerant networks, Routing, Periodic connections

1 Introduction

In delay tolerant networks (DTNs) [1] an end-to-end path

between a source and destination is not guaranteed to

exist at any time instant. Connections between nodes at

different times provide an end-to-end path in the future,

therefore, connecting the network throughout the entire

time continuum. This condition causes DTNs to suffer

from large delays. Long disconnection times and parti-

tions in the network are also typical problems, whichmake

communication in DTNs a challenging task.

Not all network applications are suitable to run over

DTNs. Applications requiring a continuous flow of data,

such as multimedia streaming, or requiring a connec-

tion to be present, such as secure shell (SSH) or instant

messaging (IM), are not good candidates to run in a high-

delay, disconnected environment. On the other hand,

some applications can tolerate large delays and therefore

can still work as expected in a high-delay environment.

Email, Domain Name System (DNS), BitTorrent [2] are

good examples of delay tolerant applications.

*Correspondence: mergenci@cs.bilkent.edu.tr

Department of Computer Engineering, Bilkent University, Ankara, Turkey

As well as the existing applications, very different appli-

cation types have emerged with the DTN concept, such

as contextual applications using locally available data. For

example, a social networking application running on the

mobile handsets of conference participants in different

locations, can collect the profiles of attendees and sug-

gest which people have similar interests. Vehicular ad-hoc

networks (VANETs), military ad-hoc networks, wireless

sensor networks (WSNs), satellite, and free-space com-

munication [3] are other fields in which delay tolerant

networking concepts can be applied.

The main problem with DTNs is that existing network-

ing protocols in use today, such as the ubiquitous TCP/IP

protocols, assume the availability of an end-to-end path

and acceptable round-trip times in communication. These

assumptions make the methods unsuitable for a DTN

environment [4]. Even mobile ad-hoc network (MANET)

routing protocols such as AODV [5] and OLSR [6] are

not designed to work in a delay tolerant environment. As

a result, different sets of networking protocols have been

devised for DTNs to meet various requirements.

In this paper, we examine the routing issue in DTNswith

periodic connections.We begin the paper with an analysis

© 2015 Mergenci and Korpeoglu. Open Access This article is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-015-0427-x-x&domain=pdf
mailto: mergenci@cs.bilkent.edu.tr
http://creativecommons.org/licenses/by/4.0/

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 2 of 19

of a simple connectionmodel, in which contacts occur at a

given future time with no periodicity.We propose an algo-

rithm based on Dijkstra’s shortest path algorithm, with

customizations to meet the requirements of this simple

connection model. This algorithm guarantees the earli-

est delivery (ED), and therefore, is optimal in terms of

time. Then, we extend the connection model to incor-

porate periodic connections, which is the main focus of

this paper. In this model, contacts occur first at a given

time and repeats at certain intervals. We revise our rout-

ing algorithm to compute future contact times from the

new connection model by taking periodicity into account.

This connection model assumes contact durations to be

insignificant such that a connection becomes available

and unavailable instantly, though allowing enough time

for packet exchanges.

Assuming that very short contact durations may not be

applicable to all cases, we extend our connection model

to include significant connection durations. The new con-

nectionmodel has separate connection and disconnection

states lasting different durations. Again, connections and

disconnections occur periodically in an alternating fash-

ion. We provide the most general version of our ED

routing algorithm using this connection model. It com-

putes future contact times accordingly and exploits the

connection periods.

Earliest delivery routing is optimal in time, but not in

hop count. The greedy approach taken by the algorithm

(similar to the greedy approach taken by Dijkstra’s short-

est path algorithm) produces routes that are suboptimal

in hop count. We address this problem with our min-hop

earliest delivery routing (MHED) algorithm, which finds

paths that guarantee the earliest delivery and are also

minimal in hop count. We consider two types of MHED,

one based on a Dijkstra-like approach and one based

on a breadth-first search (BFS) approach. The running

time analysis reveals that the BFS-based and Dijkstra-

based MHEDs both run asymptotically equally fast, but

we conclude that the BFS-based MHED is more practical.

We also present a strictly min-hop (MH) routing

scheme as a complement to MHED routing. Min-hop

routing is not optimal in delivery time; however, it not

only routes through the shortest path in terms of hop

count, but also chooses the earliest delivery path among

minimum hop paths.

The rest of the paper is organized as follows: Section 2

gives some background to and related work in DTN

routing, comparing and contrasting those works with

our study. Section 3 defines the routing problem for

DTNs with periodic connections and proposes differ-

ent routing solutions for different connection models.

Section 4 explains our experiments and evaluates the

results. Section 5 concludes the paper, and gives exten-

sions and future research directions on the topic.

2 Related work

In [7], the authors formulate a DTN routing problem given

the connectivity patterns of nodes, then present a compre-

hensive framework for evaluating and classifying different

routing algorithms. A thorough examination of routing

algorithms by strategies employed such as forwarding,

replication, and coding [8] is given in [9]. The study

offers a guideline for choosing a proper routing method

for DTNs with different characteristics. Woungang et al.

[10] presents a broader view of routing in opportunistic

networks including DTNs, MANETs, and VANETs.

In [11], the authors apply the epidemic algorithm con-

cept of [12] to partially connected ad-hoc networks.

Nodes buffer messages they receive even if they do not

know a route to the destination. When two nodes come

into contact, they exchange messages. In this way, a mes-

sage is delivered to every contacting node and finally

delivered to its destination.

Similar to epidemic routing, PROPHET [13] introduces

probabilistic routing decisions. Every node maintains a

delivery predictability for each node it encounters. Nodes

that meet frequently have higher delivery predictability,

and this aspect decreases if nodes do not encounter each

other for a while. Epidemic forwarding of packets occurs

only when the delivery predictability of a neighbor is

higher than that of the node itself for a destination.

Single-copy routing schemes are presented by [14].

These strategies depend on the fact that every local pro-

gression will lead a packet to its destination. In the most

basic strategy, direct transmission, the source node for-

wards the packet only if it encounters the destination. In

utility-based routing, nodes forward a packet only if a

neighbor has a higher utility value to the destination.

Another single-copy technique is proposed by [15].

Using only average inter-contact time estimates between

nodes, a 2-hop relay strategy is extended to a recursive

multi-hop relay strategy.

Spray and Wait routing [16] aims to compromise

between epidemic routing and single-copy routing by lim-

iting the number of copies a packet can have. It reduces

the number of transmissions with respect to epidemic

routing and achieves a better delivery ratio than single-

copy schemes.

Spray and Focus [17] is an improvement to Spray and

Wait. Rather than a wait phase, it has a focus phase, in

which single copies are also forwarded to maximize a

utility function. Another alternative is Encounter-based

Routing [18], which uses contact history when selecting

nodes to spray. Yen et al. [19] propose a multi-copy rout-

ing algorithm for MANETs. A genetic algorithm is used

to meet quality of service (QoS) constraints. TTL Based

Routing (TBR) [20] also employs multi-copy routing. In

order to increase buffering efficiency, it prioritizes mes-

sages by a metric, preferring those that have a short time

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 3 of 19

to live, lower hop count, and smaller size. Buffering effi-

ciency is examined in detail in [21]. Based on a Markov

chain model, the authors analyze the effect of bundle sizes

to storage requirements and delivery success.

In [22], the authors discuss routing in networks with

predictable mobility. Nodes follow a certain determin-

istic trajectory that is defined as a function of time.

Given any time instant, a network graph can be con-

structed from the node locations. A space-time graph is

the combination of different network graphs at different

time instants in a single large graph, on which routing

is performed.

The authors of [23] focus on scalability issues in routing

for DTNs. Under the samemobility model defined by [22],

they propose DTN Hierarchical Routing (DHR), which

applies hierarchical routing to multiple levels of a multi-

level clustered network. Another study [24] examines

thoptimality issue for probabilistic forwarding protocols.

Authors define a 1-hop delivery probability metric and

extend it to K-hops. The forwarding rule defined using

the metric is formulated inside an optimal stopping rule

problem to find optimal routes.

Liu and Wu [25] focus on DTN routing under cyclic

mobility patterns. The study assumes that the probability

of contact between two nodes is higher if they have been

in contact in previous cycles. A probabilistic time-space

graph model is converted to an equivalent timeless prob-

abilistic state-space graph, on which a Markov decision

process is applied to calculate expected minimum delay

(EMD) routing.

Various studies define routing metrics based on one or

more network properties. Dvir and Vasilakos [26] present

a backpressure-based routing algorithm. Lindgren et al.

[13] use frequency of contacts, and [27] use elapsed time

since last contact. Daly and Haahr [28] and Hui et al. [29]

use similar techniques, defining betweenness, centrality,

and social similarity of nodes as routing metrics. Bulut

et al. [30] propose Conditional Shortest Path Routing

(CSPR) based on a routing metric (conditional intermeet-

ing time) that defines the time two nodes meet over an

intermediate node. Ayub et al. [31] combine statistics

such as recent encounters and transmit, drop, and receive

counts to calculate a per contact quality point, which

determines forwarding and buffering decisions. Routing

metrics of cognitive radio networks is surveyed in [32].

Presented framework can be applied to DTN routing

metrics.

Practical concerns about DTN routing are examined in

[33]. The presented protocol depends on an estimate of

how long a message waits on a host until transmission to

the next hop. The estimate is calculated from contact his-

tory, therefore does not use global contact information.

Forwarding is performed when a neighbor is estimated to

be closer to the destination than the current node.

According to the classification in [7], our study uses only

contact information. We do not utilize queueing or traf-

fic demand for routing decisions; therefore, our approach

is a partial knowledge routing method. As noted earlier,

we use routing algorithms based on Dijkstra’s algorithm.

Using contact information eliminates the need for proba-

bilistic routing decisions.

We propose a single-copy routing scheme, as opposed

to multi-copy schemes such as epidemic routing or spray-

and-wait. However, our algorithms ED and MHED are

similar to epidemic routing in terms of delivery time;

both are optimal strategies guaranteeing the earliest

delivery.

We focus on how connections are established, regard-

less of the reason behind it, whether it is mobility, avail-

ability, scheduling, or interference. Therefore, our study is

different than [22], [23], and [25], as our approach enables

us to devise exact routing algorithms that are general

enough to be tailored to various contexts in delay tolerant

networking.

To the best of our knowledge, we are the first to address

minimum hop and earliest delivery objectives together in

a routing algorithm in the context of DTNs.

3 Our proposed DTN routing protocols

In our delay tolerant network model, we assume that

connection opportunities arise periodically between two

nodes. This assumption is realistic due to the fact that

interactions between entities and people are periodic in

nature. As academic professionals, we see our colleagues

every morning, friends from other departments at lunch,

and our family in the evening. Similarly, students interact

in class and during breaks. Vehicles in public transporta-

tion arrive at stations periodically [34]; sensors periodi-

cally transmit data to base stations and so on.

We identify three cases of connectionmodels of increas-

ing complexity. In the first model, contacts occur only

once in the future. The second model introduces periodic

connections with negligible connection durations. Finally,

the third model considers both connection and discon-

nection durations separately for periodic connections.

We represent the network as an undirected connected

graph, where there is an edge between two nodes if there

is a possibility of connection between them, and apply

shortest path routing with some modifications to meet

our requirements. As noted, our proposed routing algo-

rithms depend on Dijkstra’s shortest path algorithm. We

follow the notation and presentation in [35]. For network

models with different properties, we only define a custom

relax method that relaxes edges according to the specific

requirements. Hence, in most of our algorithms presented

in this paper, the main Dijkstra’s shortest path algorithm is

left unmodified except for trivial argument modifications

for different network models.

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 4 of 19

3.1 Routing for DTNs with scheduled one-time

connections

We begin with a simple connection model, in which con-

nections occur only once according to a predetermined

schedule. We can calculate perfect shortest routes given

source, destination, packet generation/arrival time, and

connection establishment time between nodes. We fur-

ther simplify the model by neglecting contact durations,

which we consider in later versions. An established con-

nection is assumed to be lost as soon as all the necessary

packets have been exchanged between two nodes. Start-

ing with such a simple model facilitates developing the

algorithms for the more complex periodic connections

cases.

3.1.1 Basic model

We let edge weights, w(u, v), represent the contact times

between nodes in a DTN environment. Figure 1 shows an

example network. The link between Nodes 0 and 1 will be

available at t = 2, the link between Nodes 0 and 2 will be

available at t = 5, and so on.

In such a scenario, the shortest path is redefined to

be the shortest path in time with non-decreasing edge

weights because a decreasing edge weight from one link to

another would mean a missed contact opportunity. This

method implies that if a non-decreasing weight path does

not exist for a vertex, that vertex is not reachable from the

source.

Figure 2 shows the routing tree of Node 0 at t = 0.

Node 1 is reachable at t = 2. Although Node 2 is directly

reachable at t = 5, there exists a shorter path where pack-

ets destined to Node 2 can be delivered at t = 3 over

Node 1. The shortest path to Node 3 is over Node 2 at

t = 4. The link between Nodes 1 and 3, available only

at t = 1, cannot be utilized since packets arrive at Node 1

at t = 2 at the earliest.

The shortest distance t[u] to a vertex u from the source

is also redefined to be the time a packet generated at t = 0

Fig. 1 Example network with scheduled one-time connections

Fig. 2 Routing tree of Node 0 at t = 0 in the network in Fig. 1

is delivered. In the network given in Fig. 1, the shortest

distances to Nodes 1, 2, and 3 from Node 0 are 2, 3, and 4,

respectively.

The original vertex relaxation algorithm refined to work

under these conditions is given in Algorithm 1. The con-

dition in the if-statement checks whether the edge is in

a non-decreasing order in the path. Edge weights are not

accumulated as in the original version because they are

absolute contact times.

Algorithm 1 Vertex relaxation for scheduled one-time

connections
RELAX(u, v,w)

1: if w(u, v) ≥ t[u] and t[v]> w(u, v) then

2: t[v]← w(u, v)

3: π [v]← u

4: end if

3.1.2 Routing at t > 0

So far we have discussed how to compute a routing tree

at t = 0. Algorithm 2 is a simple modification of the

INITIALIZE-SINGLE-SOURCE(G, s) in Dijkstra’s algorithm,

to enable the shortest route computation at an arbitrary

time t.

Algorithm 2 Initialization of Dijkstra’s algorithm with

time t
INITIALIZE-SINGLE-SOURCE(G, s, t)

1: for all v ∈ V [G] do

2: t[v]← ∞

3: π [v]← nil

4: end for

5: t[s]← t

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 5 of 19

The initial distance to the source is set to given t. The

source node remains the first node to be extracted from

themin-heap, since t is smaller than the initial distances of

all other nodes, ∞. The relaxation method in Algorithm 1

considers only edges that have contact times now or in

the future; therefore, the non-decreasing edge weight path

property is still maintained.

The signature of the main routing Dijkstra procedure

should be updated to DIJKSTRA(G,w, s, t) to accept the

time t at which the routing tree will be computed as.

Figure 3 shows the routing tree for Node 0 at t = 3. Only

Node 2 is reachable at t = 5, as the contact opportunities

of others are lost either at t = 3 or t = 5.

3.2 Routing for DTNs with scheduled periodic

connections

In this section, we extend our network model to uti-

lize periodic connections that occur according to a

pre-defined schedule. We first examine the case where

contact durations are insignificant and then consider

periodic connections with significant contact times.

3.2.1 Insignificant contact durations

We assign each edge (u, v) a period T(u, v) after which

connection is reestablished. In this model, no vertex is

unreachable (as long as the space-time graph representing

DTN is connected), because a connection will be available

after at most T(u, v) time. As stated earlier, we assume

that the graph representing possible connections among

nodes is a connected graph. All nodes have connection

opportunities to all other nodes.

Figure 4 shows an example network with periodic con-

nections. Each link is tagged with a pair (w,T), where

w represents the initial wait time of a link, after which

connections begin to occur with period T. For example,

the link between Nodes 0 and 1 becomes available at

t = 2 and then comes up again at every 3 units of time,

Fig. 3 Routing tree of Node 0 at t = 3 in the network in Fig. 1

Fig. 4 Example network with initial wait times and connection periods

t = {5, 8, 11, 14, . . .}. The function in Eq. 1 gives the kth

connection time for a link (u, v):

f (k,u, v) = w + k · T(u, v) (1)

The routing tree for Node 0 at t = 0 is identical to

the one depicted in Fig. 2 because exact schedules in the

scheduled one-time connection case correspond to initial

wait times in the periodic connection case. However, the

routing tree at t = 3, shown in Fig. 5, is different than

that in Fig. 3. The time signatures on the edges denote

when a link becomes available at the closest point in time

after one of its nodes receives a packet from Node 0 at

time t. All the nodes are reachable in this case because

connections arise periodically.

Algorithm 3 extends the Relax(u, v,w) given in

Algorithm 1 with another parameter for connection peri-

ods. The statement inside the first condition calculates

the first connection time after t = t[u] using T(u, v).

The first condition in the if-statement of Algorithm 1

is no longer needed since we ensure the weights are

non-decreasing with this initial calculation.

Fig. 5 Routing tree for Node 0 at t = 3 in the network in Fig. 4

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 6 of 19

Algorithm 3 Vertex relaxing for insignificant contact

durations
RELAX(u, v,w,T)

1: if w(u, v) < t[u] then

2: w(u, v) ← w(u, v) + T(u, v) ·
⌈

t[u]−w(u,v)
T(u,v)

⌉

3: end if

4: if t[v]> w(u, v) then

5: t[v]← w(u, v)

6: π [v]← u

7: end if

Throughout the execution of the algorithm, whenever

w(u, v) is assigned, it is assigned the next connection time

of the corresponding link.

3.2.2 Significant contact durations

So far we have assumed that connections remain avail-

able for a negligible amount of time. This assumption

is not very realistic, as connection times are compara-

ble to disconnection times. To alleviate this problem,

we define TON (u, v) and TOFF(u, v) to be connection

and disconnection durations between nodes u and v,

respectively. In this case, the original period definition

becomes T(u, v) = TON (u, v) + TOFF(u, v). Connection

and disconnection phases alternate after the initial wait

time.

Figure 6 shows a network with significant contact dura-

tions. Links are labeled with triple (w, (TON , TOFF)). A

link first goes up at the end of its initial wait time, w.

The connection lasts for TON time, after which a discon-

nection occurs for TOFF time. ON and OFF states follow

each other after that point. For instance, the link between

Nodes 0 and 1 becomes available at t = 2, disconnec-

tion occurs at t = 4, and the next connection period

begins at t = 5. The functions in Eqs. 2 and 3 give

Fig. 6 Example network with initial wait times, connection, and

disconnection periods

the beginning of the kth connection and disconnection

periods, respectively, for a link (u, v):

fON (k,u, v) = w + k · T(u, v) (2)

fOFF(k,u, v) = w + TON (u, v) + k · T(u, v) (3)

The routing tree for Node 0 at t = 3 is illustrated in

Fig. 7. For each link in the figure, the next time interval

just after or including the current time during which the

link is on, is given as the link label.When a node u receives

a packet at t[u], it can forward it to node v at t[v]= t[u]

if they are connected at that time (i.e., the link is on at

that time). Otherwise, node u should wait until the begin-

ning of the next connection to forward the packet, as in

previous cases. In the example in Fig. 7, every destination

receives the packet at t = 3, as all the links are on at that

time.

Algorithm 4 defines the relaxation method for the sig-

nificant contact durations model. w(u, v) keeps track of

the beginning time of the last ON period.

Algorithm 4 Vertex relaxing with arbitrary initial wait times

RELAX(u, v,w,TON ,TOFF)
1: if w(u, v) + T(u, v) ≤ t[u] then

2: w(u, v) ← w(u, v) + T(u, v) ·
⌊

t[u]−w(u,v)
T(u,v)

⌋

3: end if
4: if w(u, v) ≤ t[u] then ⊲ Initial wait time has passed
5: if t[v]> t[u] and t[u]< w(u, v) + TON (u, v) then
6: t[v]← t[u] ⊲ (u, v) is up at t = t[u]
7: π [v]← u
8: else if t[v]> w(u, v) + T(u, v) then
9: t[v]← w(u, v) + T(u, v)

10: π [v]← u
11: end if
12: else if t[v]> w(u, v) then
13: t[v]← w(u, v)
14: π [v]← u
15: end if

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 7 of 19

Fig. 7 Routing tree for Node 0 at t = 3 in the network in Fig. 6

3.3 Min-hop earliest delivery routing

So far, we have discussed routing to achieve earliest

delivery-routes that are shortest in time. In this section,

we define the shortcomings of earliest delivery routing

and introduce min-hop earliest delivery routing.

3.3.1 Motivation for Min-hop earliest delivery routing

Suppose we have the network in Fig. 8 with scheduled

one-time connections.

The earliest delivery algorithm run in Node 0 would find

the route to Node 3 as [0, 2, 1, 3], with t = 4 being the

delivery time. However, there exists a shorter route if we

consider hop-count as a secondary metric: route [0, 1, 3]

is shortest in delivery time (t = 4) and hop count (h = 3

vs h = 2).

The previous algorithms fail to detect such a route

because they make greedy choices based only on deliv-

ery time. The route to Node 1 from Node 0 travels over

Node 2, reaching Node 1 earliest. Once we set Node 2 as

the parent of Node 1, all routes descending from Node 1

in the routing tree travel over Node 2 independent of

their time. However, we can choose any other route to

Node 1 for routing packets destined to nodes that are chil-

dren of Node 1 in the original routing tree, as long as the

Fig. 8 Example network where ED and MHED differ

non-decreasing edge weight path property is satisfied end

to end. In this case, path [0, 1] with t = 3 satisfies the

non-decreasing edge weight path property for path [1, 3]

with t = 4; therefore, we can choose path [0, 1, 3] to route

packets fromNode 0 to Node 3. Since we are trying to find

min-hop routes, the paths we choose should be shorter in

terms of hop count.

Reducing hop count means reducing the number of

transmissions in a practical setting. In environments

where energy is constrained, such as in a network of

mobile handsets, the number of transmissions becomes

an important factor in communications. Wireless sensor

networks is another domain where energy conservation

is important. In such cases, having fewer transmissions

prolongs network lifetime.

3.3.2 Routing tree

In the routing tree concept, every node has a parent

node through which it receives packets. In min-hop earli-

est delivery routing, the routing tree concept is different;

every edge through which packets are routed has a par-

ent edge. This method causes a node to appear in different

branches of the routing tree; however, an edge can appear

only on a single branch.

Figure 9 shows the routing tree of min-hop earliest

delivery routing for the network in Fig. 8. There are two

branches in the routing tree, as shown in Fig. 9. Node 1

appears on the top branch as an intermediate node en

route to Node 3 and as a terminal node on the bottom

branch. Figure 10 presents an alternative view, showing

the routing tree inside the network graph.

3.3.3 MHED data structures

The solution to MHED routing comes from the observa-

tion that we should utilize paths that are shorter than the

earliest delivery path in hop count. Among those paths

having the same hop count, we should still choose the path

providing the earliest delivery so that the resulting path is

the shortest. We are not interested in paths that are longer

than the earliest delivery path in hop count because the

earliest delivery path is always shorter.

Fig. 9Min-hop earliest delivery routing tree for network of Fig. 8

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 8 of 19

Fig. 10Min-hop earliest delivery routing tree for network of Fig. 8, an

alternative view

Another important observation is that any-number-of-

hop paths to a vertex may become the shortest path for a

neighbor vertex. This observation is illustrated in Fig. 11.

AssumingNode 0 is the source, the earliest delivery path

to Node 4 is [0, 1, 2, 4], with h = 3 (hops) and t = 3.

The ED algorithm would route all the packets to Nodes 5

and 6 through this path over Node 4; however, there are

shorter alternatives. The shortest path to Node 5 is [0, 3, 4,

5] (h = 3, t = 5), and to Node 6 is [0, 4, 6] (h = 2, t = 7).

The shortest paths to both Nodes 5 and 6 is still through

Node 4, but the route uses different paths with different

numbers of hops until Node 4. In this example, all possible

number-of-hop paths (1-hop, 2-hop, 3-hop) to Node 4 are

utilized as a shortest path to a node.

As a result, our solution should keep track of n-hop ear-

liest delivery routes to all nodes, where n ≤ hop count of

the earliest delivery path.

The initialization of the MHED algorithm’s data struc-

tures is given in Algorithm 5. hop[v] is the hop count

of the earliest delivery path to a vertex. t[v, n] and

π [v, n], respectively, hold the earliest delivery time of

and parent vertex for an n-hop path to vertex v. There-

fore, t[v, hop[v]] and π [v, hop[v]] correspond to t[v]

and π [v], respectively, in the earlier initialization pro-

cedure, INITIALIZE-SINGLE-SOURCE(G, s, t), defined in

Algorithm 2. Lastly, the earliest delivery time of source

node at 0 hops is set to t.

Fig. 11 Example network with many MHED routes

Algorithm 5 Initialization procedure for MHED algorithm

INITIALIZE-MHED(G, s, t)

1: for all v ∈ V [G] do

2: hop[v]← 0

3: for n = 0 to |V | − 1 do

4: t[v, n]← ∞

5: π [v, n]← nil

6: end for

7: end for

8: t[s, 0]← t

The size of t[v] and π [v] is |V | − 1, since the shortest

paths are simple paths, and the length of a simple path

can be at most |V | − 1. Although these structures allocate

|V | − 1 space, at most |Adj[v] | of them (one for each

neighbor) will be used for a vertex v.

3.3.4 MHED algorithm

In the main algorithm, we should traverse the graph and

fill the data structures at the nodes with the correct values

and therefore obtain the routing tree. The objective is to

find the n-hop earliest delivery paths to each vertex. We

already know that previous algorithms based on Dijkstra’s

algorithm achieve the earliest delivery. Now, we also keep

track of hop counts together with earliest delivery times.

We modify the min-heap structure to keep hop-vertices,

a two-tuple (u, n), where u is the vertex and n is the hop

count. Comparison between two hop-vertices is done in

the order of hop and delivery time to the vertex at n hops.

Equation 4 gives the formal definition of themin function

used by the min-heap.

min((u, n), (v,m)) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(u, n) if n < m

(u, n) if n = m and t[u, n]≤ t[v,m]

(v,m) if n = m and t[u, n]> t[v,m]

(v,m) if n > m

(4)

The min function implies that all n-hop hop-vertices

will be extracted from the heap before an (n + 1)-hop

hop-vertex is extracted.

Algorithm 6 presents the MHED algorithm. The fun-

damental difference from Dijkstra’s shortest path algo-

rithm is the structure of the heap. Since we do not know

which hop-vertices will be used, we initialize an empty

min-heap and add the hops in the relaxation procedure

as needed. The set of extracted vertices S in the previ-

ous version is omitted, because the heap now contains

hop-vertices.

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 9 of 19

Algorithm 6 MHED algorithm based on Dijkstra’s

algorithm

MHED(G,w, s, t)

1: INITIALIZE-MHED(G, s, t)

2: Q ← MAKE-HEAP()

3: INSERT(Q, (s, hop[s]))

4: while Q �= ∅ do

5: (u, n) ← EXTRACT-MIN(Q)

6: for all v ∈ Adj[u] do

7: RELAX(u, v, w, n)

8: end for

9: end while

The relax function in Algorithm 7 takes hop count n,

after which edge (u, v) is reached. The first condition in

the if-statement checks whether this edge satisfies the

non-decreasing edge weight path property after traveling

the n-hop path to vertex u. The second condition checks

whether this edge constitutes a shorter path than up to

n-hop paths to vertex v. Because of the way hop-vertices

are extracted from the min-heap, hop[v] is never greater

than n + 1 and converges to the path length of the

earliest delivery path throughout the execution. If both

of these conditions hold, it means edge (u, v) forms an

(n + 1)-hop path to v. If hop[v]< n + 1, we need to

insert a new hop-vertex in the heap; if it is not, the

hop-vertex is already in the heap and we need to per-

form a DECREASE-KEY operation. DECREASE-KEY, which

was implicit in previous versions, is explicitly written for

clarity.

Note that inserted hop-vertices can have a hop count

of n + 1. By the definition of the min function over

hop-vertices, all n-hop hop-vertices are extracted before

(n + 1)-hop ones. It can be concluded that only n-hop

and (n + 1)-hop hop-vertices can occur in the heap at

the same time. Therefore, the hop difference between the

minimum and maximum hop hop-vertex is at most 1.

This property is the same as the property of a BFS queue

in operation; therefore, we can substitute min-heap with a

first-in, first-out (FIFO) queue. Algorithm 8 presents the

MHED algorithm based on a BFS. The only difference

from the Dijkstra-based version is the use of queue oper-

ations instead of min-heap operations.

Algorithm 8MHED algorithm based on a BFS

MHED(G,w, s, t)

1: INITIALIZE-MHED(G, s, t)

2: Q ← MAKE-QUEUE()

3: ENQUEUE(Q, (s, hop[s]))

4: while Q �= ∅ do

5: (u, h) ← DEQUEUE(Q)

6: for all v ∈ Adj[u] do

7: RELAX(u, v, w, h)

8: end for

9: end while

Vertex relaxing requires some modifications. Since we

are not using amin-heap, we can omit the DECREASE-KEY

operation, which is implicitly satisfied by the ordering in

the queue, and use ENQUEUE instead of INSERT. Vertex

relaxing for a BFS-based MHED is given in Algorithm 9.

For the sake of brevity, in Algorithm 9, we omit the

insignificant contact durations connectionmodel and give

the MHED relaxation procedure for significant contact

durations with arbitrary initial wait times. The MHED

relaxation routine corresponds to the ED relaxation rou-

tine defined in Algorithm 4. The main difference from

the previous versions is the use of a temporary variable w

instead of the actual w(u, v). We do this because a vertex

is enqueued multiple times (once for each hop), there-

fore its edges are traversed multiple times. If we were

to assign connection times to w(u, v), the values might

not be correct for subsequent times. By using the tempo-

rary w, the next contact time is calculated from the initial

w(u, v) every time, regardless of how many times a vertex

is dequeued.

Algorithm 7 Vertex relaxing for MHED with scheduled one-time connections

RELAX(u, v,w, n)

1: if w(u, v) ≥ t[u, n] and t[v, hop[v]]> w(u, v) then ⊲ hop[v]≤ n + 1

2: t[v, n + 1]← w(u, v)

3: π [v, n + 1]← u

4: if hop[v]< n + 1 then

5: hop[v]← n + 1

6: INSERT(Q, (v, n+1))

7: else ⊲ hop[v]= n + 1

8: DECREASE-KEY(Q, (v, hop[v]))

9: end if

10: end if

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 10 of 19

Algorithm 9 Vertex relaxing for a BFS-based MHED

RELAX(u, v,w, n)

1: if w(u, v) ≥ t[u, n] and t[v, hop[v]]> w(u, v) then ⊲ hop[v]≤ n + 1

2: t[v, n + 1]← w(u, v)

3: π [v, n + 1]← u

4: if hop[v]< n + 1 then

5: hop[v]← n + 1

6: ENQUEUE(Q, (v, n+1))

7: end if

8: end if

3.3.5 Running time analysis of MHED

We begin the running time analysis of the BFS-based

MHED, by inspecting the number of iterations of the

while-loop in Line 4 of Algorithm 8. The while-loop runs

until there are no hop-vertices left in the queue; therefore,

the iteration count is equal to the number of enqueue and

dequeue operations. As discussed earlier, there can be at

most |Adj[v] | number of n-hop paths to a vertex v, if every

neighbor provides a path with a different number of hops

from the source. Considering the whole graph, all vertices

cannot have incoming paths from all of their neighbors

since some of the edges will be used for outgoing paths.

More specifically, the edges of a vertex through which

a new vertex is discovered cannot constitute an n-hop

path to that vertex. Aggregating the number of n-hop

paths up to all vertices gives the number of edges, |E|.

As a result, there are at most |E| number of hop-vertices,

enqueue, and dequeue operations.

The for-loop in Line 6 executes |E| times, and each

execution iterates through |Adj[u] | number of edges.

A total of |V | loop executions results in 2|E| itera-

tions; therefore, the iteration count in |E| executions is
2|E|2

|V |
. The relaxation method runs in constant time, since

every statement, including the enqueue operation on the

FIFO queue, takes constant time.

The initialization procedure takes O(V 2) time;

therefore, the running time of the BFS-based MHED

algorithm is O
(

V 2 + E2

V

)

, which is always between

O(V 2) and O(V 3) for an arbitrary network.

The Dijkstra-based MHED algorithm uses insert and

extract-min operations on a min-heap instead of enqueue

and dequeue operations on a FIFO queue. The implica-

tion is that the min-heap is the same size as the BFS

queue, which is O(V) in size. There are also decrease-key

operations inside the relax method.

Using a binary heap, insert and extract-min opera-

tions take O(Elg V) time on the aggregate. Decrease-key

operations may occur in every iteration of the for-loop

except when insert is called, therefore making the aggre-

gate run time O
((

E2

V

)

lgV
)

. Together with initialization

and for-loop iterations, overall running time becomes

O
(

V 2 + E2

V +
(

E2

V + E
)

lgV
)

= O
(

V 2 +
(

E2

V

)

lgV
)

,

which is between O
(

V 2
)

and O
(

V 3lgV
)

.

Using a Fibonacci heap, extract-min operations take

O
(

ElgV
)

amortized time and the running time of the

decrease-key operations decreases to O
(

E2

V

)

amortized

time. Taking the initialization procedure and for-loop iter-

ations into account, the amortized running time of the

Dijkstra-basedMHED algorithm using a Fibonacci heap is

O
(

V 2 + E2

V + ElgV
)

= O
(

V 2 + E2

V

)

.

Although the running times of the BFS-based and the

Dijkstra-based Fibonacci heap solutions are the same, the

former has a worst case and the latter has an amortized

running time. When the simplicity of a FIFO queue is also

considered over the complexity of a Fibonacci heap, we

conclude that the BFS-based approach is preferable to the

Dijkstra-based approach.

3.4 Min-hop routing

Min-hop earliest delivery routing achieves optimal deliv-

ery time while using the minimum number of hops possi-

ble. A natural successor isMH routing, which is optimal in

hop count while achieving the earliest delivery time pos-

sible. It could be called earliest delivery min-hop (EDMH)

routing, but we simply call it min-hop routing because it

is trivial to achieve earliest delivery while finding min-hop

routes.

Min-hop routes are already computed within the

MHED procedure. Since the algorithm finds all n-hop

paths to a vertex with corresponding delivery times, the

smallest n such that t[v, n] �= ∞ for a vertex v gives the

MH value.

A simpler way to find MH routes is to use a BFS.

When a vertex is reached, its hop distance is compared

to the reached hop distance. If the latter is smaller, it

means that vertex is recently discovered and its deliv-

ery time should be set to the delivery time over the

reaching edge. If the reached hop distance and the ver-

tex hop distance are the same, we set the delivery time

to the smaller of the delivery time of the vertex and

the delivery time over the reaching edge. If the reached

hop distance is larger, then there is already a shorter

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 11 of 19

route to the reached vertex. Details are omitted for

brevity.

The MH procedure runs in linear time, O(E + V), the

same as a BFS.

4 Simulation experiments and evaluation

In this section, we present the experiment results of the

proposed DTN routing algorithms and evaluate the find-

ings. We first define the simulation environment and the

properties and parameters of the simulations, then discuss

the results and their implications.

4.1 Simulation properties

We performed simulations to find the properties of

our routing algorithms for different parameter values.

We measured transmission count, average path length

to destination, delivery time, and routing tree stability

statistics. Implementation was done on a Java platform

using a custom graph and routing code. Simulations

were run on a Linux machine with a quad-core AMD

64-bit processor and 4 GB memory, though the min-

imum requirements for the implementation are much

lower.

We performed a simulation as follows: First, a ran-

dom graph was generated with a given node count,

connection model, and network density with a unit of

d =
2|E|

(|V |(|V |−1)) . Then, measures were taken over a

time interval of 16 h of simulation time, separately for

each node as the source. Similarly, the remaining node

became the destination for each source node. The results

at each step were averaged. The overall procedure was

repeated 30 times to ensure enough randomness and

samples.

We produced random graphs given the vertex count

and graph density. Since DTNs are connected graphs,

we needed to ensure our random graph was connected.

To achieve this, we had two sets of vertices: connected

and disconnected. Until the graph became connected,

we chose one random node from the set of connected

vertices and one from the set of disconnected vertices

and then connected them. When all of the vertices were

connected, we had a connected graph with |V | − 1

number of edges. Then, we added edges by randomly

choosing two vertices until the density constraint was

satisfied. Note that the produced graph cannot have a

lower density than the density of a minimally connected

graph, 2
|V |

d.

For some of the experiments, we considered two sce-

narios with different connection models. Scenario 1 sim-

ulated a DTN on a university campus. Nodes repre-

sented college students attending 50-min lectures and

having 10-min breaks. We assumed that connections

occured mainly during break times, though we took

into account slightly shorter and longer connections and

disconnections. Therefore, TON ranged between 5 and 20

min and TOFF ranged between 15 and 60 min. The key

property of this scenario is the fact that connections take

less time than disconnections.

Scenario 2 was a more homogenous environment,

where connection and disconnection periods were the

same. It simulated connection properties of a public trans-

portation network. Nodes represented vehicles (bus, sub-

way, etc.) and passengers. Connections occurred either

in stations or during travel. We assumed that the waiting

time for a vehicle and travel time were similar; therefore,

TON and TOFF values had a range between 10 and 30 min.

For both scenarios, we used an initial wait time between

the minimum and maximum of the connection or dis-

connection times. For Scenario 1, it was 5 to 60 min; for

Scenario 2, it was 10 to 30min. Actual values for each con-

nection were drawn from a uniform distribution between

determined intervals.

In the experiment results, ED refers to the earliest deliv-

ery algorithm based on original Dijkstra’s algorithm using

the vertex relaxing procedure in Algorithm 4. MHED

refers to the min-hop earliest delivery algorithm based on

a BFS, presented in Algorithm 8 using the vertex relax-

ing procedure in Algorithm 10. Min-hop routes were

computed using MHED data structures, as defined in

Section 3.4.

4.2 Results and evaluation

This section presents the evaluation of our experiment

results. We analyzed our algorithms in terms of transmis-

sion count, path length, delivery time, and routing tree

stability.

4.2.1 Transmission count

Epidemic routing was one of the earliest and remains

one of the most popular routing algorithms for DTNs.

The source node forwards its packet to every node it

encounters and those nodes forward the packet to their

encountered nodes in turn, eventually delivering the

packet to the destination at some time in the future. This

scheme is aptly called epidemic flooding. Although ED

and MHED algorithms are single-copy routing strategies

utilizing contact information, they are comparable to epi-

demic routing in terms of delivery time. All three methods

guarantee earliest delivery.

Figure 12 shows the average transmission count to

deliver a single packet to a destination for epidemic, ED,

MHED, and MH routing in a network with a density of

0.2 d. The figure shows the results for Scenario 1, and

trend for Scenario 2 is very similar.

For epidemic routing, the network does not have the

knowledge of the packet reaching its destination; there-

fore, nodes continue to transmit the packet to other

nodes until every node in the network has a copy. For a

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 12 of 19

Algorithm 10 Vertex relaxing of MHED with significant contact durations

RELAX(u, v,w,TON ,TOFF)

1: τ ← w(u, v)

2: relax ← false

3: if w + TON (u, v) ≤ t[u, n] then

4: w ← w + T(u, v) ·
⌊

t[u,n]−w
T(u,v)

⌋

5: end if

6: if w ≤ t[u, n] then ⊲ Initial wait time has passed

7: if t[v, hop[v]]> t[u, n] and t[u, n]< w + TON (u, v) then

8: t[v, n + 1]← t[u, n] ⊲ (u, v) is up at t = t[u, n]

9: π [v, n + 1]← u

10: relax ← true

11: else if t[v, hop[v]]> w + T(u, v) then

12: t[v, n + 1]← w + T(u, v)

13: π [v, n + 1]← u

14: relax ← true

15: end if

16: else if t[v]> w then

17: t[v, n + 1]← w

18: π [v, n + 1]← u

19: relax ← true

20: end if

21: if relax and hop[v]< n + 1 then

22: hop[v]← n + 1

23: ENQUEUE(Q, (v, n+1))

24: end if

Fig. 12 Average transmission count to deliver a single packet to a destination in a network with density = 0.2 d

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 13 of 19

better comparison, we count only the number of trans-

missions until the packet reaches the destination. The

transmission count of epidemic routing increases linearly

with the number of nodes in the network. This method

delivers the packet to 90 % of the network with a node

count of as low as 50. For higher node counts, the deliv-

ery ratio increases to 97 % on the average. With ED

and MHED, routing earliest delivery is achieved with

very few transmissions, MHED performing better than

ED. The MH method achieves the lowest transmission

counts of all the methods; however, it is not optimal in

time, therefore it delivers packets later than the other

methods. This is evident in the delivery time results

in Section 4.2.3.

We conclude that ED and MHED successfully uses

contact information to deliver packets with much fewer

transmissions compared to epidemic routing.

4.2.2 Path length

In this experiment, we measure average path lengths

(hop counts) to a destination for different network sizes

(number of nodes). Note that since all the methods are

single-copy routing schemes, average path length corre-

sponds to average transmission count.

Figures 13 and 14 show results in a network with den-

sity of 0.2 d. Intuitively, because the network grows, one

expects average path length to increase as the num-

ber of nodes in the network increases. Inspecting MH

results, however, shows that our hypothesis does not hold.

Even though the number of nodes increases, the average

breadth of the network stays almost the same because we

construct the network by connecting disconnected ver-

tices randomly to connected ones. Such a procedure does

not produce wider graphs, but graphs with similar aver-

age path lengths. Since the average path length does not

change with network size, we can conclude that the num-

ber of alternative routes between two nodes increases as

the network size increases.

Increasing the number of alternative routes becomes a

disadvantage for ED routing. The greedy choices it can

make among more alternatives result in longer paths

on the average. On the other hand, MHED routing

uses alternative routes to its advantage and decreases

average path length. The MH results show distance

to destination in the minimum number of hops. This

method is suboptimal in delivery time, however, min-

imizing hop count first, therefore the values are the

same for both scenarios. The MH approach repre-

sents a lower bound in path length for any routing

method. As the number of nodes increases, the path

length of MHED routes moves closer to the lower

bound.

The MHED results for Scenario 1 display a maximum

at smaller network sizes. This is a practical maximum,

occurring because there are fewer alternative paths in

smaller networks and those alternatives do not constitute

Fig. 13 Average path length to destination in a network with density = 0.2 d under Scenario 1

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 14 of 19

Fig. 14 Average path length to destination in a network with density = 0.2 d under Scenario 2

an earliest delivery path shorter in hop count. Increasing

the number of alternative paths increases the probabil-

ity of achieving shorter earliest delivery paths; after some

point, MHED routes become shorter.

Comparing different scenarios, the average difference

between ED and MHED routes is greater in Scenario 1

than in Scenario 2. As every other parameter is the same

for the two scenarios in this experiment, the explanation

of the difference is found in the connection profiles. Dis-

connection times in Scenario 1 are greater than those in

Scenario 2, on the average. Higher disconnection times

make next-connection opportunities later, therefore giv-

ing MHED a greater time interval to find routes in fewer

hops.

Another difference between the scenarios is the path

length, regardless of the algorithm. Paths in Scenario 2 are

shorter than those in Scenario 1. The explanation for this

result is very similar to the previous one. Due to longer

disconnection times in Scenario 1, ED and MHED search

for shorter paths in time by increasing the hop count.

Since disconnection times are already shorter for Scenario

2, the algorithms are more likely to find earlier delivery

paths without increasing the number of hops.

Delay tolerant networks are typically considered to be

sparse networks; therefore, we chose a 0.2 d network den-

sity in our experiments. However, our proposed methods

can be generalized to different situations and environ-

ments with different characteristics. Therefore, we also

present experiments with different network densities.

Figures 15 and 16 present average path length results for

100-node networks with different densities. The results

are parallel with previous experiments. The MHED algo-

rithm performs better than ED in terms of hop count. Its

performance is closer to that of MH (the lower bound)

in denser networks, because it is easier to find shorter

routes among more alternatives. The same argument

applies to the decreasing difference between ED and MH

values.

An interesting observation is the increase in path

length for ED routing from a density of 0.02 d to 0.10 d

inScenario 1. Links that are added after the network

becomes connected at 0.02 d provide earlier delivery

paths through more hops. The MHED paths get shorter,

because the algorithm is able to exploit routes with

fewer hops.

4.2.3 Delivery time

In terms of hop count, MH performs better than ED

and MHED. When delivery time is considered, the

strong advantage of earliest delivery methods are realized.

Figures 17 and 18 show average delivery times for differ-

ent network sizes. Note that ED results are omitted from

the figures because they are the same as MHED results in

terms of delivery time.

In Scenario 1, the message delivery time for MHED is

under 1 min for networks larger than 50 nodes, and even

lower for higher numbers of nodes. On the other hand,

in a 120-node network, MH delivers messages in 11 min

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 15 of 19

Fig. 15 Average path length to destination in a 100 node network under Scenario 1

at best. By having 1.8 times (1.6 hops) longer routes than

MH, MHED achieves delivery 7.5 times (14.2 min) faster

than MHED, on the average. The delivery time differ-

ence increases to more than 50 times when we consider

networks larger than 50 nodes.

In Scenario 2, MHED message delivery is at most tens

of seconds for networks with more than 20 nodes. The

MHmethod performs relatively better than in Scenario 1,

delivering messages in just under 3 min for the largest net-

work. Using MHED, routes are 1.4 times (0.7 hops) longer

Fig. 16 Average path length to destination in a 100 node network under Scenario 2

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 16 of 19

Fig. 17 Average delivery time of a packet in a network with density = 0.2 under Scenario 1

than MH routes, whereas MHED delivery is 13.2 times

(4.7 min) faster.

An important conclusion so far is that MHED deliv-

ers messages quite fast in a network with periodic

connections, while minimizing the transmission count

(number of hops). This approach leads to practical

benefits. Consider a network consisting of battery-

constrained devices. These devices need to save energy

by employing sleep/wake schedules, and by transmit-

ting as little as possible. If the contact and schedule

Fig. 18 Average delivery time of a packet in a network with density = 0.2 under Scenario 2

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 17 of 19

information is known by the whole network, impor-

tant gains in battery life are achievable with low-delay

communications.

4.2.4 Routing tree stability

We define routing tree stability as the tendency of the

paths to destinations to remain the same at successive

time intervals. Figures 19 and 20 present routing tree

stability for different network sizes. The MH routes are

independent of time to a great extent, since the algorithm

chooses routes in a hop-count-first manner. The differ-

ence in routes is only due to preferring earlier routes

among routes with the minimum number of hops. This

method results in a higher retention of routes, compared

to other methods.

For two reasons, MHED routes are more stable than

ED routes. First, MHED routes are shorter in hop count,

therefore, are less likely to change from time to time than

a path with more hops. Second, MHED routes prefer

paths with later delivery times at the beginning of a path,

because the algorithm does not make greedy decisions

about delivery time.

Although routing tree stability is a metric distinguish-

ing among proposed routing methods, it does not provide

any practical benefits because routes need to be calcu-

lated at every time unit. A time unit is defined as the

finest granularity of time in which connection durations

are delineated. In our experiments, we used a time unit of

1 min.

We cannot know for sure whether routes have changed

before calculating them. Calculating routes at every time

unit could be tedious, but fortunately, we do not need

to do this unless we need to route a packet. Therefore,

the routing calculation can be performed depending on

which occurs later: a time unit passes or a packet to

be routed arrives. Indeed, the exact route that a packet

will follow is known when the packet is generated at

the source. We can use source routing to avoid recal-

culations at each hop. With source routing, routing cal-

culations are done only when a packet is generated. If

the packet generation rate is faster than one per time

unit, a single route calculation suffices for each time

unit.

5 Conclusion

The MHED routing algorithm achieves earliest delivery,

as ED and epidemic routing do, while routing messages

over the minimum number of hops, therefore achiev-

ing the minimum number of transmissions. Simulation

results verify that MHED finds shorter routes than ED.

The advantage of MHED over ED increases for increas-

ing network size and decreasing density. These properties

make MHED routing suitable for DTNs with periodic

connections.

Our routing algorithms address periodic connections.

In our most detailed connection model, a period con-

sists of a connection and a following disconnection,

each of certain durations. It is possible to extend this

Fig. 19 Routing tree stability for network with density = 0.2 d under Scenario 1

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 18 of 19

Fig. 20 Routing tree stability for network with density = 0.2 d under Scenario 2

model to super-periods that consist of a cycle of multiple

periods with different properties. Super-periods would

be useful when connection periods arise due to node

availability or sleep schedules. With little modification,

our algorithms are capable of routing in such situ-

ations, though, for practicality, we need methods to

extract and disseminate super-period information from

schedules. We are considering super-periods and their

application to wireless sensor networks as a future

work.

An extension to this study is to apply the MHED rout-

ing algorithm to non-scheduled periodic connections, in

which connection and disconnection times are not known

in advance. Future contact times could be estimated by

observing past connection patterns, and routing algo-

rithms could be used accordingly.

In this work, we have abstracted from the mobility and

have focused on connections. Another future work idea

is the application of presented connection models and

routing algorithms to different mobility models.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work is supported by TUBITAK (The Scientific and Technological Research

Council of Turkey) in part with project 113E274.

Received: 21 February 2015 Accepted: 16 July 2015

References

1. K Fall, in SIGCOMM ‘03: Proceedings of the Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications. A

delay-tolerant network architecture for challenged internets (ACM, New

York, 2003), pp. 27–34. doi:10.1145/863955.863960
2. B Cohen, BitTorrent Protocol (2001). http://bittorrent.org
3. X Sun, Q Yu, R Wang, Q Zhang, Z Wei, J Hu, A Vasilakos, Performance of

dtn protocols in space communications. Wirel. Netw. 19(8), 2029–2047

(2013). doi:10.1007/s11276-013-0582-0
4. AV Vasilakos, Y Zhang, T Spyropoulos, Delay tolerant networks: protocols

and applications, 1st edn. (CRC Press, Inc., Boca Raton, 2011)

5. CE Perkins, EM Royer, inMobile Computing Systems and Applications, 1999.

Proceedings. WMCSA ‘99. Second IEEEWorkshop On. Ad-hoc on-demand

distance vector routing (IEEE Computer Society Washington, DC, USA,

1999), pp. 90–100. doi:10.1109/MCSA.1999.749281

6. T Clausen, P Jacquet, Optimized link state routing protocol (OLSR), 1–75

(2003). doi:http://dx.doi.org/10.17487/RFC362610.17487/RFC3626

7. S Jain, K Fall, R Patra, in SIGCOMM ‘04: Proceedings of the Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications. Routing in a delay tolerant network (ACM, New York,

2004), pp. 145–158. doi:10.1145/1015467.1015484

8. P Li, S Guo, S Yu, AV Vasilakos, in INFOCOM, 2012 Proceedings IEEE.

Codepipe: An opportunistic feeding and routing protocol for reliable

multicast with pipelined network coding (IEEE Communications

Society New York, NY, USA, 2012), pp. 100–108.

doi:10.1109/INFCOM.2012.6195456

9. T Spyropoulos, R Rais, T Turletti, K Obraczka, A Vasilakos, Routing for

disruption tolerant networks: taxonomy and design. Wirel. Netw. 16(8),

2349–2370 (2010). doi:10.1007/s11276-010-0276-9

10. I Woungang, SK Dhurandher, A Anpalagan, AV Vasilakos, Routing in

opportunistic networks. (Springer, Springer Science+Business Media New

York, 2013)

11. A Vahdat, D Becker, Epidemic routing for partially-connected ad hoc

networks. Department of Computer Science, Duke University, (Durham,

North Carolina, NC, USA, 2000). http://www.cs.duke.edu/techreports/

2000/2000-06.ps

12. A Demers, D Greene, C Hauser, W Irish, J Larson, S Shenker, H Sturgis, D

Swinehart, D Terry, in PODC ‘87: Proceedings of the Sixth Annual ACM

http://dx.doi.org/10.1145/863955.863960
http://bittorrent.org
http://dx.doi.org/10.1007/s11276-013-0582-0
http://dx.doi.org/10.1109/MCSA.1999.749281
http://dx.doi.org/10.1145/1015467.1015484
http://dx.doi.org/10.1109/INFCOM.2012.6195456
http://dx.doi.org/10.1007/s11276-010-0276-9
http://www.cs.duke.edu/techreports/2000/2000-06.ps
http://www.cs.duke.edu/techreports/2000/2000-06.ps

Mergenci and Korpeoglu EURASIP Journal onWireless Communications and Networking (2015) 2015:202 Page 19 of 19

Symposium on Principles of Distributed Computing. Epidemic algorithms for

replicated database maintenance (ACM, New York, 1987), pp. 1–12.

doi:10.1145/41840.41841

13. A Lindgren, A Doria, O Schelén, Probabilistic routing in intermittently

connected networks. SIGMOBILE Mob Comput. Commun. Rev. 7(3),

19–20 (2003). doi:10.1145/961268.961272

14. T Spyropoulos, K Psounis, CS Raghavendra, in 2004 First Annual IEEE

Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, IEEE SECON 2004. Single-copy routing in

intermittently connected mobile networks (IEEE Communications Society

New York, NY, USA, 2004), pp. 235–244

15. V Conan, J Leguay, T Friedman, Fixed point opportunistic routing in delay

tolerant networks. IEEE J. Sel. Areas Commun. 26(5), 773–782 (2008).

doi:10.1109/JSAC.2008.080604

16. T Spyropoulos, K Psounis, CS Raghavendra, inWDTN ‘05: Proceedings of the

ACM SIGCOMMWorkshop on Delay-tolerant Networking. Spray and wait: an

efficient routing scheme for intermittently connected mobile networks

(ACM, New York, 2005), pp. 252–259. doi:10.1145/1080139.1080143

17. T Spyropoulos, K Psounis, CS Raghavendra, in Proceedings of the Fifth IEEE

International Conference on Pervasive Computing and Communications

Workshops. Spray and focus: Efficient Mobility-assisted Routing for

Heterogeneous and Correlated Mobility (IEEE Computer Society

Washington, DC, USA, 2007), pp. 79–85. doi:10.1109/PERCOMW.2007.108

18. SC Nelson, M Bakht, R Kravets, in INFOCOM 2009, IEEE. Encounter-based

routing in DTNs (IEEE Communications Society New York, NY, USA, 2009),

pp. 846–854. doi:10.1109/INFCOM.2009.5061994

19. Y-S Yen, H-C Chao, R-S Chang, A Vasilakos, Flooding-limited and

multi-constrained qos multicast routing based on the genetic algorithm

for {MANETs}. Math. Comput. Model. 53(11–12), 2238–2250 (2011).

Recent Advances in Simulation and Mathematical Modeling of

Wireless Networks

20. AT Prodhan, R Das, H Kabir, GC Shoja, TTL based routing in opportunistic

networks. J. Netw. Comput. Appl. 34(5), 1660–1670 (2011). Dependable

Multimedia Communications: Systems, Services, and Applications

21. Z Yang, Q Zhang, R Wang, H Li, A Vasilakos, On storage dynamics of space

delay/disruption tolerant network node. Wirel. Netw. 20(8), 2529–2541

(2014). doi:10.1007/s11276-014-0756-4

22. S Merugu, M Ammar, E Zegura, Routing in space and time in networks with

predictable mobility. Technical report, College of Computing, Georgia

Institute of Technology, (Atlanta, Georgia, GA, USA, 2004). http://hdl.

handle.net/1853/6492

23. C Liu, J Wu, inMobiHoc ‘07: Proceedings of the 8th ACM International

Symposium onMobile Ad Hoc Networking and Computing. Scalable routing

in delay tolerant networks (ACM, New York, 2007), pp. 51–60.

doi:10.1145/1288107.1288115

24. C Liu, J Wu, inMobiHoc ‘09: Proceedings of the Tenth ACM International

Symposium onMobile Ad Hoc Networking and Computing. An optimal

probabilistic forwarding protocol in delay tolerant networks (ACM, New

York, 2009), pp. 105–114. doi:10.1145/1530748.1530763

25. C Liu, J Wu, in Proceedings of the 9th ACM International Symposium on

Mobile Ad Hoc Networking and Computing.MobiHoc ‘08. Routing in a

cyclic mobispace (ACM, New York, 2008), pp. 351–360.

doi:10.1145/1374618.1374665

26. A Dvir, AV Vasilakos, Backpressure-based routing protocol for dtns.

SIGCOMM Comput. Commun. Rev. 41(4), 405–406 (2010)

27. H Dubois-Ferriere, M Grossglauser, M Vetterli, in Proceedings of the 4th

ACM International Symposium onMobile Ad Hoc Networking & Computing.

MobiHoc ‘03. Age matters: efficient route discovery in mobile ad hoc

networks using encounter ages (ACM, New York, 2003), pp. 257–266.

doi:10.1145/778415.778446

28. EM Daly, M Haahr, in Proceedings of the 8th ACM International Symposium

onMobile Ad Hoc Networking and Computing.MobiHoc ‘07. Social network

analysis for routing in disconnected delay-tolerant manets (ACM, New

York, 2007), pp. 32–40. doi:10.1145/1288107.1288113. http://doi.acm.org/

10.1145/1288107.1288113

29. P Hui, J Crowcroft, E Yoneki, in Proceedings of the 9th ACM International

Symposium onMobile Ad Hoc Networking and Computing.MobiHoc ‘08.

Bubble rap: social-based forwarding in delay tolerant networks (ACM,

New York, 2008), pp. 241–250. doi:10.1145/1374618.1374652

30. E Bulut, SC Geyik, BK Szymanski, in Proceedings of the 2010 IEEE

International Symposium on AWorld of Wireless, Mobile andMultimedia

Networks (WoWMoM).WOWMOM ‘10. Conditional shortest path routing

in delay tolerant networks (IEEE Computer Society Washington, DC,

2010), pp. 1–6. doi:10.1109/WOWMOM.2010.5534960

31. Q Ayub, S Rashid, MSM Zahid, AH Abdullah, Contact quality based

forwarding strategy for delay tolerant network. J. Netw. Comput. Appl.

39(0), 302–309 (2014). doi:10.1016/j.jnca.2013.07.011

32. M Youssef, M Ibrahim, M Abdelatif, L Chen, AV Vasilakos, Routing metrics

of cognitive radio networks: a survey. IEEE Commun. Surv. Tutorials. 16(1),

92–109 (2014). doi:10.1109/SURV.2013.082713.00184

33. EPC Jones, L Li, PAS Ward, inWDTN ‘05: Proceedings of the ACM SIGCOMM

Workshop on Delay-tolerant Networking. Practical routing in delay-tolerant

networks (ACM, New York, 2005), pp. 237–243.

doi:10.1145/1080139.1080141

34. Y Zeng, K Xiang, D Li, A Vasilakos, Directional routing and scheduling for

green vehicular delay tolerant networks. Wirel. Netw. 19(2), 161–173

(2013). doi:10.1007/s11276-012-0457-9

35. TH Cormen, CE Leiserson, RL Rivest, C Stein, Introduction to algorithms, 2nd

revised edn. (The MIT Press, Cambridge, Massachusetts, MA, USA, 2001)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1145/961268.961272
http://dx.doi.org/10.1109/JSAC.2008.080604
http://dx.doi.org/10.1145/1080139.1080143
http://dx.doi.org/10.1109/PERCOMW.2007.108
http://dx.doi.org/10.1109/INFCOM.2009.5061994
http://dx.doi.org/10.1007/s11276-014-0756-4
http://hdl.handle.net/1853/6492
http://hdl.handle.net/1853/6492
http://dx.doi.org/10.1145/1288107.1288115
http://dx.doi.org/10.1145/1530748.1530763
http://dx.doi.org/10.1145/1374618.1374665
http://dx.doi.org/10.1145/778415.778446
http://dx.doi.org/10.1145/1288107.1288113
http://doi.acm.org/10.1145/1288107.1288113
http://doi.acm.org/10.1145/1288107.1288113
http://dx.doi.org/10.1145/1374618.1374652
http://dx.doi.org/10.1109/WOWMOM.2010.5534960
http://dx.doi.org/10.1016/j.jnca.2013.07.011
http://dx.doi.org/10.1109/SURV.2013.082713.00184
http://dx.doi.org/10.1145/1080139.1080141
http://dx.doi.org/10.1007/s11276-012-0457-9

	Abstract
	Keywords

	1 Introduction
	2 Related work
	3 Our proposed DTN routing protocols
	3.1 Routing for DTNs with scheduled one-time connections
	3.1.1 Basic model
	3.1.2 Routing at t>0

	3.2 Routing for DTNs with scheduled periodic connections
	3.2.1 Insignificant contact durations
	3.2.2 Significant contact durations

	3.3 Min-hop earliest delivery routing
	3.3.1 Motivation for Min-hop earliest delivery routing
	3.3.2 Routing tree
	3.3.3 MHED data structures
	3.3.4 MHED algorithm
	3.3.5 Running time analysis of MHED

	3.4 Min-hop routing

	4 Simulation experiments and evaluation
	4.1 Simulation properties
	4.2 Results and evaluation
	4.2.1 Transmission count
	4.2.2 Path length
	4.2.3 Delivery time
	4.2.4 Routing tree stability

	5 Conclusion
	Competing interests
	Acknowledgements
	References

