Routing in Networks

A. Borodin *
J.E. Hopcroft*
October 1981

TR 81-477

Department of Computer Science
Cornell University
Ithaca, New York 14853

* University of Toronto
** Cornell University

This research was supported in part by ONR contract N00014-76-
Cc-0018.

Routing in Networks

A. Borodin1

J.E. Hopcroft2

Introduction

The problem of routing packets in a network arises in a number of
situations. Various routing protocols have been considered. For packet
switching networks we are concerned with arbitrary interconnections.
For these generallnetworks. protocols such as forward state controllers
have been studied. For applications in parallel computer architecture
we are concerned with special networks such as a d-dimensional hypercube
or a shuffle exchange interconnection. In this setting O(log n) global

strategies are know as are O(logzn) local strategies.

For our purposes, a network is a diagraph <V,E> where the set of

nodes V are thought of as processors, and (i,j)€E denotes the ability of

University of Toronto

2 . .
Cornell University
This research was supported in part by ONR contract N00014-76-C-0018.

processor i to send one packet or message to processor j in a given time -
step. A packet is simply an <origin,destination> pair or, more gen-

erally, <origin,destination,bookkeeping information>.

A set of packets are initially placed on their origins, and they
must be routed in parallel to their destinations; bookkeeping informa-
tion can be provided by any processér along the route traversed by the
packet. The prototype question in this setting is that of full permuta-
tion routing; in which we must design a strategy for delivering N pack-
ets in an N node network, when n: {origins} -+ {destinations} is a permu-
tation of the node labels {1,2,...sN}. Other routing problems, in par-
ticular partial routing where @ is L1 but there may be less tham N pack-
ets, are also of immediate interest. Unless stated otherwise. a routing

strategy will dcozt2 a solution to thce full tcormutation routing problem.

There are three positive routing results which provide the motiva-

tion for this paper.

1. Batcher's (see Knuth [2]) 0(10g2N) sorting network algorithm (say,
based on the bitonic merge) can be implemented as a routing stra-
tegy on various sparse networks, such as the shuffle exchange
(Stone [6]), the n-dimensional cube (Valiant and Brebmer [7]), or
the cube connected cycles (Preparata and Vuillemin [4]). This con-
stitutes a local or distributed strategy, in that each processor p
decides locally on its next action using only the packets at p.
Indeed, the algorithm can be implemented so that there is exactly
one packet per processor throughout execution. We also note that
Batcher's bound is a worst case bound, holding for any initial per-

mutation of the packets; in fact, every initial permutation uses

the same number of steps.

2. Valiant and Brebmer [7] comstruct an O(log N) Monte Carlo 1local
routing strategy for the n-cube. Iﬁ a Ménte Carlo strategy, pro-
cessors can make random choices in deciding where to send a given
packet Valiant's strategy achieves 0(log N) in the sense that for
every permutation, with high probability (eg 21-N®) all packets
will reach that destination in < (l+c) log N steps. Valiant's
analysis can also be used to show that for a random input place-
ment, the "naive strategy" on the n-cube terminates in 0(log N)
steps with high probability (here, the probability is on the space
of possible inputs). The naive strategy is to order the dimensions
of the cube, and then proceed to move packets along those dimen-

sivns (ir vrder) in which the origin and destination differ.

3. The Slepian-Benes-Clos permutation network (see Lev, Pippenger and
Valiant [3]) can be implemented as a global worst case 0(log N)
routing scheme (on any of the above mentioned sparse networks) .
Here, a pair of processors at a given time step simulate a switch
of the permutation network; as such, the actions of any processor

depend on the entire permutation.

We note that each of these strategies can be modified to handle
partial routing. (This is immediate except for the strategy derived
from Batcher's algorithm.) The obvious question remains as to whether or
not there exists a local, worst case, 0(log N) routing strategy. In
order to make the distinction between local and global more meaningful
we must limit the amount of bookkeeping information (say to 0(log N)

bits) since otherwise we can funnel all the input permutation

&

information to a distinguished processor which then broadcasts this
information throughout thé network.
The Relation Between Fixed Connection and Global Memory Models

Before froceeding to discuss routing algorithms for fixed connec-
tion networks, we want to briefly relate such parallel machines with
parallel models based on a global memory. Indeed, this relation is yet
another motivation for the importance of the routing problem. The
importance of the routing problem is also emphasized in the paper of
Galil and Paul [1] who consider simulations between various parallel

models. We mention only a few global memory models:

1. PRAC (Lev, Pippenger and Valiant) - Simultaneous read or write (of

the same cell) is not allowed.

2. PRAM (Fortune and Wyllie) - Simultaneous fetches are allowed but no

simultaneous writes.

3. WRAM - WRAM denotes a variety of models that allow simultaneous
reads and (certain) writes, but differ in how such write conflicts

are to be resolved.

a. (Shiloach and Vishkin) a simultaneous write is allowed omnly if
all processors are trying to write the same thing, otherwise the

computation is not legal.
b. An arbitrary processor is allowed to write

c. (Goldschlager) the lowest numbered processor is allowed to

write.

For the purpose of comparison with an n-node fixed connection network,
we assumé the global memory models have n processors. It is obvious
that even the weakest of the above models, the PRAC, can efficiently
simulate a fixed connection network by dedicating a memory location for
each directed edge of the network. Conversely, Lev, Pippenge£ and Vali-
ant [3] observe that a fixed connection network capable of (partial)
routing in r(n) time, can simulate one step of a PRAC in time 0(r(m)).
With some extra care, one can also simulate one step of a PRAM in time

0(r(n)). The idea is roughly as follows:

a) Sort the read requests into consecutive locations; that is, sort
pairs <request for memory located in i, by processor j> by i and
then j. We note that other authors (see Schwartz [5] for the

Ultracomputcs

have indicated +that scirting can often be used to
implement partial routing which is all that is required here. The

omitted details are not difficult.

b) Fan in all requests fof a location i to a specified processor.
This 1is doné in such a way that a given processor only has to
remember to which neighbors the requested information must be
returned. This step will also be dependent on the network and will

take either 0(log n) or O(logz)n time.

c¢) In the specified processors do a memory fetch (i.e. this is another

partial sort).

d) The requested information (the memory contents) is distributed back

to requesting processors by the specified processor.

6

Obviously, this also gives a way to simulate a PRAM by a PRAC; we
do not know of a more efficient direct simulation. Finally, we note
that a p-processor PRAM can simulate a step of a p-processor WRAM by
running a tournament at a cost of 0(log p). By these observations, and
using Batcher's sort, one sees that all these parallel models have time

complexities within a multiplicative‘logan factor.
Almnb_o.ungfnnaspgcialgas_e

It turns out to be surprisingly difficult to analyze reasonable
simple strategies. We are able to show, however, that a very simple
class of strategies, including the naive strategy, cannot work well in
the worst case, this being the case for a wide class of networks.
Specifically, we study oblivious strategies where the roﬁte of any
packet is completely determined by the <origin,destination> of the
packet. Oblivious strategies are almost, but not quite, local by defin-

jtion; we might still determine when a processor sends a packet along an

edge by global means.

In this section we show that for any oblivious routing protocol for
a network of n processors in which the maximum number of processors

directly connected to any processor is d, there exists a permutation

3

. . 742 . .
that requires time \|n/d”. In particular, for an n-cube there exists a
3

. . i 2 . .
permutation that requires \|n/(log n)° For ease in understanding we
first prove the lower bound for a more restricted class of protocols,
namely those where the next step in the route of a packet depends only

on its present location and its final destination. For this class the

set of routes for a packet heading for a given destination forms a tree.
To see this observe that at any vertex there is a unique edge that the
packet will take. Following the sequence of edges from any vertex must

lead to the final destination.

If we superimpose the n trees determined by the n possible destina-
tions for packets, each vertex is on n trees. This suggests that we
might be able to route n packets through a vertex. Since at most d
packets can 1eave the vertex at any given time this would imply a delay
of n/d. The difficulty is that in order to force a packet headed for a
given destination to go through vertex v we must initially start the
packet on a vertex that is a descendent of v in the particular destina-
tion tree. But there may be only a small number of such descendents of
v and if many trees have the same set there wi:i not be enough cuscen-
dents to start each packet at a distinct vertex. For this reason we
wish to consider only vertices in destination trees that have a large

number of descendents. This motivates the following technical lemma.

Lemma: Let Td k(n) be the minimum number of vertices with k, k>=2, or

more descendents in any n vertex tree with maximum degree d, d>=2. Then

n-k+l
1+(d-1)(k-1)

Ty, () 2

Proof: The proof is by induction on n. The lemma is clearly true for
n<k. Let T be a tree with n>=k vertices. T consists of a root plus s
subtrees where s<=d. Let the ith subtree have n. vertices. Then, by

the induction hypothesis, T has at least

8 ni-k+1
+ 2
2 T+ @ D (2)

8
1+ 2 T; (n;) =1
i=1

s n.-k+l
+ 3
o 1+(d-1) (k-1)

<1

‘)
vertices with at least k descendents. Since 2 o, = n-1 this sum is
i=1 :

1+ n-s(k-1)-1 _ n-k+1 +1 - 1+(s-1)(k-1)
1+(d-1)(k-1) = 1+(d-1)(k-1) 1+(d-1)(k-1)

n-k+1
1+(d-1)(k-1)

2

In each destination tree mark those vertices that have at least k

descendents. Let k = Jgu In the network assign a count to each vertex

indicating the number of destination trees in which the vertex is

marked. Since at least jt vertices are marked in each tree, the sum of

2
the counts must be at least EE. Therefore, the average count (over all

h1y

vertices) is at least jt= d which implies there is at least one vertex

0 d d

For each of these descendent trees we can place the corresponding packet

v,. which has at least Jn'descendents in each of Jn'descendent trees.

at some vertex of the network so that it will pass through vertex vo©

Thus \g‘packets will go through Vo Since L is of degree at most d,
n..
d3

it requires time at least equal to J In particular any routing pro-

cedure for an n-cube where the route of a packet depends only on the

3

. . . . o 2
destination requires time at least \|n/(log n)”.

A lower bound for oblivious routing

The above proof can be modified to apply to oblivious routing
schemes. Consider a single destination. For each source construct the
path for a packet héaded for the destination. We no longer have a tree
since the route of a packet depends on the source as well as the desti-
- nation. However, we can prove a lemﬁa analogous to the above lemma for
trees. We modify the lemma to say that there must be at least Td.k(n)
vertices having at least k paths through them. The inductive hypothesis
is that in any directed graph with maximum fan-in d, with n loop-free
directed paths to a designated vertex.'at least Td.k(n) vertices must be
on at least k paths. The lower bound for oblivious routing then follows
exactly as in the special case.
An oblivious routing algorithm for an n-cube

The question remaining is how tight.is the lower bound. The answer
depends on the actual structure of the network.. One important parameter
in addition to the degree is the diameter of the graph. Clearly if the
diameter of the graph is n we cannot hope for a 0(\55) algorithm. How-
ever, even for some O(log n) diameter graphs with degree 2 we cannot
achieve an O(qu algorithm since there may be an isthmus or other type
of bottleneck. However, for many structures there are oblivious routing

algorithms that are close to this lower bound.

Consider a d-dimensional hypercube. The following oblivious algo-
rithm will route packets for any permutation in time O(Hn). Since the

hypercube has maximum degree log n this is close to the lower bound of

3

\I:/(log n)z. Order the dimensions X;sX,s « & » . At time 1

*X1og n

10

tfansmit any packet whose destination is on the opposite subcube deter-
mined by the Xy dimension. This may result in as many as two packets
being on a vertex. Next transmit packets-across the x, dimension, etc.
After élog n dimensions there may be as many as q;'packets at a vertex
causing a delay of \E;. In each subsequent step the maximum number of
packets that can be on a vertex halves. with eventually each packet
arriving at its destination. It seems possible to improve this bound to
q;)log n if one partitions the q;.vertices that could go through a ver-

tex Yo into log n groups and routes them by different edges.

Future work

Another restriction on routing is minimality. A minimal routing
scheme forbids transmitting along an edge if it increases the distance
of the packet from its destination. Thus every packet must follow a
shortest path. For minimal routing schemes it is an interesting open
problem whether there is a local (or even a global) routing scheme that
is 0(log™n) for any r. For regular networks such as the n-cube we know

__n_)
log n’*

of no monotone scheme better than 0O(

Another interesting question is whether there is a local routing
algorithm for say an n-cube that is better than 0(1og2n). In particu-
lar, does the following algorithm or some variant of it, route an arbi-
trary permutation in O(log n). Consider some vertex. At a given stage
as many as d packets, where d is the dimension of the cube, will arrive.
As many as possible will be sent closer to their destinations. The
remaining packets will be shipped to vertices of distance one greater.

Since packets are not allowed to build up at a vertex the effect is to

enlarge bottlenecks to several vertices and hence to allow more packets

11

to get to their destinations in a given time. Although the algorithm

appears promising we have no analysis better than 0(n), n=2d.

We note that the above strategy avoids queues. It is also an

interesting question to study the class of strategies which do not use

queues (like Batcher).

12

References

[1] Galil, Z., and W.J. Paul. An efficient genmeral purpose parallel
computer. Proceedings 13th Annual ACM Symposium on Theory of Com-
puting, Milwaukee, Wisconsin, (1981), 247-256.

[2] Knuth, D.E. The Art of Computer Programming, Yol. 3: Sorting and

 Searching. Addison-Wesley, Reading, Massachusetts, 1972.

[3] Lev, G., N. Pippenger and L.G, Valiant. A fast parallel algorithm
for routing in permutation networks. IEEE Transactions on Comput-
ers (1981).

[4] Preparata, F.P., and J. Vuillemin. The cube-connected cycles.
Proceedings 20th Symposium on Foundations of Computer Science
(1979), 140-147.

[5] Schwartz, J.T. Ultracomputers. ACM TOPLAS 2 (1980), 484-521.

[6] Stone, H. Parallel processing with the perfect shuffle. IEEE
Transactions on Computers C20:2 (1971), 153-161.

[7] valiant, L.G., and G.J. Brebner. Universal schemes for parallel

computation. Proceedings 13th Annual ACM Symposium on Theory of
Computation, Milwaukee, Wisconsin (1981), 263-277.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif

