
3

Routing in Self-Organizing Nano-Scale
Irregular Networks

YANG LIU, CHRIS DWYER, and ALVIN R. LEBECK

Duke University

The integration of novel nanotechnologies onto silicon platforms is likely to increase fabrication de-
fects compared with traditional CMOS technologies. Furthermore, the number of nodes connected
with these networks makes acquiring a global defect map impractical. As a result, on-chip networks
will provide defect tolerance by self-organizing into irregular topologies. In this scenario, simple
static routing algorithms based on regular physical topologies, such as meshes, will be inadequate.
Additionally, previous routing approaches for irregular networks assume abundant resources and
do not apply to this domain of resource-constrained self-organizing nano-scale networks. Conse-
quently, routing algorithms that work in irregular networks with limited resources are needed.

In this article, we explore routing for self-organizing nano-scale irregular networks in the context
of a Self-Organizing SIMD Architecture (SOSA). Our approach trades configuration time and a
small amount of storage for reduced communication latency. We augment an Euler path-based
routing technique for trees to generate static shortest paths between certain pairs of nodes while
remaining deadlock free. Simulations of several applications executing on SOSA show our proposed
routing algorithm can reduce execution time by 8% to 30%.
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1. INTRODUCTION

The trend toward increased functional capabilities on a single chip requires
commensurate development of on-chip communication networks. These net-
works must provide reliable communication without requiring excessive re-
sources. The incorporation of novel nanotechnologies (e.g., nanowires) emerges
because the decreasing feature sizes may decrease control over the entire fab-
rication process (e.g., with self-assembly) and thus increase fabrication defects.
As a result, it is increasingly difficult to reliably create interconnects and net-
works may become highly irregular.

Irregular networks present challenges for programming, system design (e.g.,
coherence protocols), and developing efficient routing algorithms, particularly
for direct networks. It is difficult to map computation and data placement onto
irregular topologies. One way to overcome this challenge is to overlay a more
conventional regular topology (e.g., tree or ring) on the irregular network. Sim-
ilarly, by providing the guarantees (e.g., ring ordering) of the overlay network,
coherence protocol design can be simplified [Barroso and Dubois 1993; Marty
and Hill 2006].

Another challenge is to provide an efficient routing algorithm for a given
irregular network. Previous approaches for routing on irregular networks as-
sume the nodes are workstations or complete processors: an environment with
abundant resources [Federico and Duato; Chi and Wu 2003]. As we move to
the nano-scale domain, the resources dedicated to routing (e.g., routing tables)
must be balanced against those required for computation (e.g., functional units,
caches, etc.) [Bolotin et al. 2005, 2007]. In a nano-scale network consisting of
thousands of nodes, each node has limited resources and many nodes must
be grouped together to form a full computational unit. Great challenges are
presented since the previous techniques may no longer apply in this environ-
ment (i.e., large routing tables are infeasible to simply connect one node to
another).

In this article we explore routing for self-organizing nano-scale irregular net-
works. Our analysis is performed primarily in the context of SOSA [Patwardhan
et al. 2006c], a self-organizing nano-scale SIMD architecture, but is broadly ap-
plicable to any system that maps logical rings onto irregular networks. SOSA
uses a one-time configuration process to organize the nano-scale irregular phys-
ical network into a regular physical network (a tree) by disabling certain links,
and then maps a regular logical network (a ring) onto the regular physical net-
work. The logical structure of the whole network is a large ring of processing
elements and each processing element is a small ring of functional units, called
nodes. There are two special nodes, head and tail, in each small ring where data
packets enter or leave the processing element.

The head and tail nodes within a single processing element are logically
adjacent but may be physically far apart. Operations that rely on the logical
adjacency of the head and tail nodes in a ring (e.g., any operation requiring a
round-trip of the ring) may incur significant latency due to the physical sepa-
ration of the nodes. Therefore, we focus on reducing the physical path length
between head and tail nodes.
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Our approach trades configuration time and a little storage space to reduce
communication latency. During the configuration process the shortest physical
path between the pair of head and tail nodes in each processing element is
discovered and appropriate information is stored within each node to inform
routing decisions during execution. For the networks we examine, there is little
difference in the head/tail shortest path on the irregular physical network (a
graph) versus the regular physical network (a tree). Therefore, our routing
optimizations augment existing Euler path routing techniques [Patwardhan et
al. 2006c] for trees. In essence, our approach provides express channels between
pairs of nodes on an Euler path.

Simulation results show that our routing optimization can reduce overall
execution time by 8% to 30% across a set of six benchmark applications. In
general, these programs spend at least 20% of their time executing operations
that require tail to head communication and obtain at least 8% improvement in
execution time. We also provide a proof that our routing optimizations maintain
the deadlock-free property of Euler path routing (see Appendix A).

The remainder of this article is as follows. Section 2 provides a brief intro-
duction to SOSA. Section 3 presents statistics of instructions using the logical
adjacency of head and tail nodes, and analysis of self-assembled nano-scale
networks. Section 4 describes our proposed routing algorithm and Section 5
describes our implementation in detail. Section 6 presents simulation results
and analyzes the performance of the proposed routing algorithm. Section 7
summarizes related work and Section 8 concludes.

2. BACKGROUND AND SOSA OVERVIEW

SOSA [Patwardhan et al. 2006c] is a defect-tolerant self-organizing nano-scale
SIMD architecture built from a random network of simple computational nodes.
SOSA relies on a novel DNA self-assembly process to create small-scale nodes
with limited digital compute and storage capabilities.

2.1 DNA Self-Assembled Systems

We assume an assembly process to place electronic circuits on a DNA grid
[Winfree et al. 1998; Yan et al. 2003]. The basic principle is to replicate a sim-
ple unit cell on a large scale to build a circuit. The unit cell consists of a tran-
sistor placed in the cavity of a DNA-lattice [Patwardhan et al. 2004]. Current
self-assembly processes produce limited size DNA grids and thus limit circuit
size (e.g., < 10,000 FETs). However, the parallel nature of self-assembly en-
ables constructing many nodes (∼109–1012) that may be linked together by self-
assembled conducting nanowires [Yan et al. 2003]. The proposed self-assembly
method does not control the placement and orientation of nodes as they are
interconnected, resulting in a random network of nodes that contains defective
nodes and links. Communication with external CMOS circuitry occurs through
a metal junction (“via”) that overlaps several nodes but interfaces with the net-
work of nodes through a single “anchor node.” There may be several via/anchor
node pairs in large networks. Figure 1 shows a small network of nodes, including
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Fig. 1. Self-assembled network of nodes.

regions with defective links, and a via/anchor. In the rest of the article we use
the term “anchor” to refer to an anchor node/via pair.

2.2 SOSA Overview

The aforesaid self-assembly method results in a large-scale (i.e., billions) ar-
bitrary network composed of limited capability nodes. Networks built using
DNA self-assembly techniques have inherent irregularity since it is difficult to
control node placement, node orientation, and link growth.

The overall goal of this work is to build a defect-tolerant computing system
with a random network of nodes using a mix of new solutions and adaptations
of known techniques and achieve performance comparable to future CMOS-
based systems. To efficiently utilize large numbers (>109–1012) of nodes we
implement a SIMD architecture and focus on data parallel workloads. Our pro-
posed system, called the Self-Organizing SIMD Architecture (SOSA), supports
a three operand register-based ISA with predicated execution and explicit shift
instructions to move data between Processing Elements (PEs) and communi-
cate with an external controller. We assume that the external controller has
access to a conventional memory system.

Each self-assembled node is a fully asynchronous circuit and there is no
global clock to synchronize data transfers between or within nodes. Each node
has a 1-bit ALU, a small register file (32 bits total), a data buffer, and con-
nects to other nodes with (up to four) single wire links. Each link supports
low-bandwidth asynchronous communication that transfers 1 data bit per
handshake. To support deadlock-free routing, we add support for three virtual
channels (1 bit each). The virtual channels are used to broadcast instructions
(VC0) and route data in opposite directions (VC1 along the depth-first path,
VC2 along the reverse depth-first path).

2.2.1 System Configuration. The random network of nodes is organized
at two levels during a configuration phase. First, since a node is too small
to hold an entire PE, we group sets of nodes to form a PE. Second, PEs are
linked in a logical ring, providing programmers a simplified system view to
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reason about inter-PE communication. However, the first step is to impose a
regular topoloty onto the arbitrary graph created through self-assembly. For
this, we use a variant of the Reverse Path Forwarding (RPF) algorithm [Dalal
and Metcalfe 1978] to map out defective nodes and generate a broadcast tree
from the random network. We inject a small packet through an anchor which
is broadcast on all the anchor node’s active links.

The RPF algorithm states that any node receiving the broadcast propagates
it on all links except the receiving link if and only if the node has not seen the
broadcast before. The node also stores the direction (“gradient”) from which it
received the broadcast and sets up internal routing information based on this
direction. Following the gradient through a set of nodes leads to the broad-
cast source: the tree root. A depth-first traversal is established by nodes lo-
cally selecting links in a predefined order relative to their gradient link. Op-
posite orderings are used for forward (VC1) and reverse (VC2) traversals. This
method can be used to have all nodes in the system self-organize into a tree
or it can be used to create multiple trees by initiating the broadcast through
multiple anchors. For example, we could self-assemble the random network of
nodes on a silicon wafer with a grid of vias to create a system with multiple
anchors.

After the broadcast tree is generated, it is traversed in depth-first order
(Euler path) and a specified number of sequential nodes are grouped into one
Processing Element (PE). The first node in a PE along the Euler path is defined
as the head node of the PE and the last node is defined as the tail node. The
configuration process maps a logical ring onto the physical broadcast tree and
produces a logical abstraction of a set of PEs connected via a ring with a data
parallel (SIMD) execution model. Applications can be executed on the network
after configuring all PEs.

2.2.2 Routing Algorithm. An Euler path-based routing algorithm is used
in SOSA for communication both within and between PEs. The Euler path is
chosen for two main reasons. First, it is easy to configure. In SOSA, each link is a
bidirectional link so the Euler path visits each link exactly twice but in different
directions. VC 1 and VC 2 together form an Euler path in SOSA, performing
communication in two opposite directions on the logical ring topology. It is
simple to configure an Euler circuit by first generating a tree structure and
then traversing the tree in depth-first order with the root as both the starting
and ending node. Second, when an Euler path is used for routing, each node only
needs to store the incoming and outgoing directions for each virtual channel
and thus only a few bits are required at each node. In contrast, other methods
require significant storage or computational resources and are thus impractical
for SOSA.

Although the Euler path-based routing algorithm has its advantages, it is not
time efficient. The distance between two nodes along an Euler path can be much
longer than the length of the shortest path between them. Consider the system
shown in Figure 2 with two 8-node PEs configured from a 16-node network. In
this example node 0 is the anchor, PE 0 has head node 0 and tail node 7, while
PE 1 has head node 8 and tail node 15. If the Euler path is followed, the path
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Fig. 2. Euler path and shortest path.

between PE1’s tail node (15) and its head node (8) is 15-0-1-4-11-14-11-4-9-12-
13-12-9-10-9-4-5-6-8, which has 18 physical hops whereas the shortest path is
15-1-4-5-6-8 which has only 5 physical hops.

This length discrepancy is particularly problematic in SOSA for latency-
critical operations, such as predicate setting instructions. For most instructions,
information flows from the head node toward the tail node (e.g., the carry bit
for addition) of a PE and must visit each intermediate node. However, recall
that SOSA is an SIMD processor. To support conditional execution for individual
PEs, SOSA provides predicated instructions (i.e., instructions that only execute
if a predicate condition is satisfied). Predicated instructions utilize predicate
bits stored in the head node of each PE. Predicate bits are set by Predicate
Setting Instructions (PSIs) that require propagation of information from the tail
node back to the head node. It is PSIs that are most affected by the length of
the Euler path routing.

3. NANO-SCALE IRREGULAR NETWORK ANALYSIS

In this section we begin by analyzing the impact of PSIs on execution time
and how a new routing algorithm may be able to reduce their latency. We also
examine the difference between the shortest path in the graph and the shortest
path in the tree formed through the RPF algorithm.

3.1 Execution Time Analysis

The proposed routing algorithm focuses on reducing the physical path length
between head and tail nodes to reduce the latency of Predicate Setting Instruc-
tions (PSIs) often found on critical control flow paths. PSIs have the highest
average latency of any instructions because they generate data packets that
must travel from the tail to the head, which is the longest path in a processing
element. We analyze the impact of shortening the length of tail-to-head paths
on execution time by simulating a nano-scale network of processing elements

ACM Journal on Emerging Technologies in Computing Systems, Vol. 6, No. 1, Article 3, Pub. date: March 2010.



Routing in Self-Organizing Nano-Scale Irregular Networks • 3:7

0

100
200

300
400

500

600
700

800
900

1000

Add BinPack GauFilter GenFilter MedFilter Search

A
ve

ra
ge

 I
ns

tr
uc

ti
on

 L
at

en
cy

 (C
yc

le
s)

 

All Instructions Predicate Settiing Instructions

Fig. 3. Average instruction latency.

0
10

20
30
40
50

60
70
80

90
100

Add BinPack GauFilter GenFilter MedFilter Search

N
or

m
ai

li
ze

d 
E

xe
cu

ti
on

 T
im

e

Other Instructions Predicate Setting Instructions

Fig. 4. Normalized execution time.

within SOSA. The study we present is specific to SOSA; however, our analysis
is applicable to other systems with request/acknowledge cycles that traverse a
network.

We analyze the average latency of PSIs and the fraction of execution time
spent on PSIs in 20 randomly generated networks. The networks we use to run
the test programs are generated with placement control but without orienta-
tion control or interconnect control (see Section 3.2 for details on the network
fabrication control), and there are 4500 nodes in each network. The average
results of the 20 runs are shown in Figure 3 and Figure 4.

An optimization that reduces the tail and head path length will only re-
duce the execution time of PSIs since only these instructions require tail-to-
head communication. Figure 3 compares the average latency of PSIs with all
instructions among six test programs simulated by a timing-accurate SOSA
simulator. The SOSA simulator is an event-driven simulator where each ac-
tivity in a node is an event and its latency is a multiple of “time quantum”
defined as the time taken to perform one part of the internode asynchronous
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communication handshake [Patwardhan et al. 2006c]. The test programs in-
clude Add, a software-emulated floating point program for addition and nor-
malization, BinPack, a pipelined version of integer bin-packing with a first-fit
heuristic using N PEs for N bins, GauFilter, GenFilter, and MedFilter which
are image processing programs that apply a generic 3x3 filter, a separable Gaus-
sian filter, and a median filter to an NxN image using N 2 PEs, respectively, and
finally Search, a program that finds a 32-bit input string in a database using
O(N ) PEs for N strings.

Figure 3 shows that PSIs can have as high as 8.5 times average latency of the
overall average instruction latency. Therefore, a small number of PSIs will take
a large number of cycles to execute. As shown in Figure 4, PSIs take from 20%
to 95% of the total execution time across the test suite. Add has instructions
to normalize floating point results and Search has instructions to compare the
input string with strings in the database. Both these two types of instructions
are PSIs so a large fraction of execution time is spent on them.

The large fraction of PSIs found in these test programs motivates the need to
reduce the path length between tail and head nodes. However, the irregularity
of the nano-scale network and limited resource at each node preclude a deter-
ministic shortest path algorithm. To find an efficient optimization, we analyze
a variety of network topologies in the next section to gauge the benefit of three
simple routing strategies on program execution: the Euler path, the shortest
path in the graph, and the shortest path in the tree.

3.2 Free Link Analysis

Within the context of a self-assembled nano-scale network there are three prin-
ciple controls over the integration of components (i.e., random versus regu-
lar or periodic): (1) placement, (2) orientation, and (3) node interconnection)
[Patwardhan et al. 2006a]. Future self-assembly technology may provide all
three types of control; however, whether and when full control can be achieved
remains an open question. To fully analyze the characteristics of nano-scale
irregular networks we simulate all eight combinations of control and also net-
works with full control but different fractions of defective nodes or transceivers.
Placement control is modeled as either precisely placing a node on a grid or ran-
domly placing it in a fixed area. Orientation control is modeled as either aligning
a node both vertically and horizontally or allowing a random rotation about its
center. Finally, interconnection control is modeled as either straight wires or
wires formed through a guided random walk, with parameters obtained from
actual DNA self-assemblies.

We analyze networks with different numbers of nodes: 3000, 4500, 6000,
7500, and 9000. For each number of nodes and each combination of control,
20 networks are generated and analyzed. For each number of nodes and each
fraction of defective nodes or transceivers, 20 networks with full control are
also generated and analyzed. All the following results in this section are the
average across networks with differing numbers of nodes. We use a 3-bit binary
number to represent different control combinations where the leftmost bit in-
dicates placement control, the middle bit indicates orientation control, and the
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Fig. 5. Free link percentage in networks with different controls and defect rates.

rightmost bit indicates interconnect control. A bit with value 1 means that we
have the corresponding control over the integration.

As shown in Figure 2, the dashed link between node 15 and node 1 is used to
form the shortest path between nodes 15 and 8 in the graph. However, the tree
structure does not include this link in the Euler path and it will be unused, thus
we define it as a free link. Since free links may be used to form shorter paths than
the Euler path, we evaluate the potential impact of free links on the tail-to-head
path length. This is an upper bound on the possible improvement over an Euler
path route since discovering the actual shortest path will require additional
resources and increase node complexity and possibly instruction latency.

Figure 5(a) shows the percentage of free links in the networks without de-
fects, and Figure 5(b) shows the percentage of free links in the networks with
different node defect rates and transceiver defect rates. We can see that in the
networks without defects, the free link percentage is around or less than 10%,
except when there is at least both placement and orientation control (110 and
111). Even with almost 50% free links in the networks with full control (111), as
the fraction of defective nodes or transceivers increases the percentage of free
links decreases. Although free links could be used to form paths shorter than
the Euler path, their benefit may be limited due to the low free link percentage
across the networks with only one or two controls or those with high defect
rates.

As described in Section 3.1, PSIs requiring tail-to-head data transfer within
a PE take a large fraction of total execution time, thus it is more practical to
focus on shortening the path between tail node and head node within the same
PE rather than trying to reduce the path between every pair of nodes. In order to
check how much improvement we can obtain by following the shortest paths, we
compare the average lengths of the Euler path, the shortest path in the graph
(which means that free links are used to form the shortest path), and the short-
est path in the tree between the tail node and the head node in the same PE.

Figure 6 compares the average lengths of the three different paths in the
networks without defects. For all networks without placement control (0XX)
the results are nearly identical (see leftmost bars). Similarly, for networks with
placement but without orientation control, the results are nearly identical (bars
labeled 10X). For all networks except those with full control (111), there is at
least a 50% reduction in the average tail-to-head path length if we follow the
shortest path in the graph or the tree instead of the Euler path.
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Fig. 6. Comparison of average length of tail-to-head paths in networks without defects.
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Fig. 7. Comparison of average length of tail-to-head paths in networks with defects.

In networks with full control, the average length of the tail-to-head paths
along the Euler path is similar to those networks with other types of control, but
the average lengths of the shortest path in the graph and in the tree between
the tail and head nodes are both longer. The possible cause of the longer shortest
tail-to-head paths in the graph is that there is a smaller fraction of free links
connecting two nodes in the same PE, which we call intra-PE free links, and
this type of free link has more contribution to the path length reduction. The
likely reason why the shortest tail-to-head paths in the tree are longer is that
the networks with full control have regular mesh structures and the physical
structure of a single PE is more likely to be linear, making the shortest path in
the tree overlap more with the Euler path.

Figure 7 compares the average lengths of the three different paths in the full-
controlled networks with different node defect rates and different transceiver
defect rates. When there are more defects in the networks with full control, the
regular mesh structures become more irregular. Consequently, there are more
intra-PE free links and the single PE structure becomes more nonlinear. As a
result, the average lengths of the shortest path in the graph and in the tree
become shorter and so do the differences between them.
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The results shown in Figure 6 and Figure 7 establish that in both irregular
networks and regular networks with defects, the shortest paths in the graph
and in the tree are both much shorter than the Euler path between the tail and
head nodes. Moreover, in these two types of networks, the shortest paths in the
graph and in the tree have similar average length, which indicates that free
links actually do not have a large effect in reducing average tail-to-head path
length. It would be more efficient to not use free links to form the shortest path,
since in both cases the average tail-to-head length paths are almost the same,
but the configuration cost to route within the already configured tree structure
is much lower than introducing new complexity to identify and route along the
free links.

4. NEW ROUTING ALGORITHM

In this section we propose a new algorithm for establishing static routes in
nano-scale irregular networks, which follows the shortest path in a generated
tree structure between the tail and head nodes within a PE instead of the Euler
path. Importantly, each node in a nano-scale irregular network has very limited
storage space (a few bits) and computational power (a 1-bit ALU). As a result,
we cannot afford a routing table [Sancho 2004] (especially when it is possible
to have billions of nodes in our network) or complex computation [Ibanez et al.
2008] for full dynamic routing at each node as in general irregular networks.
We thus determine the shortest tail-to-head paths during the configuration
process and trade increased configuration time for reduced storage space and
computational power during execution. Note that some storage space is still
required to route tail-to-head packets; however, the storage space needed is
much less than required by a routing table.

4.1 Optimized Tail-to-Head Paths

There are two types of information that need to be collected and stored at
each node during the configuration process: (1) if the node is on the shortest
tail-to-head path in the generated tree (which we call the optimized tail-to-head
path); and (2) if it is, where to forward the tail-to-head packet. Each node must
know whether it will perform routing along the optimized tail-to-head path.
Tail-to-head data generated by a PSI at the tail node only needs to be seen by
the head node and it can bypass as many intermediate nodes as possible. If
an intermediate node is bypassed by the optimized tail-to-head path, it must
be able to proceed to the next instruction without observing the tail-to-head
data. On the other hand, if an intermediate node is not bypassed, it should
stall until it receives and sends out the tail-to-head data before it may proceed
to the next operation.

If an intermediate node needs to route data generated by a PSI, it also needs
to know which neighbor should receive the data. By choosing different destina-
tion neighbors from the Euler path at certain nodes, the optimized tail-to-head
path can be obtained. The optimization method is based on the following ob-
servation: when the Euler path is followed, we may visit an intermediate node
more than once in order to transfer data from the tail node to the head node;
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(a) Euler path                                                 (b) Optimized path 

Fig. 8. Two PEs with eight nodes per PE.

when the optimized tail-to-head path is followed, we should visit each interme-
diate node exactly once. The observation indicates that an intermediate node
may have multiple appearances on the Euler path but only appears once on the
optimized path between one pair of tail and head nodes. In order to obtain the
optimized tail-to-head path, when a node is visited for the first time along the
Euler path, the successor node of its appearance nearest to the head node on
the Euler path is chosen as the destination neighbor.

Figure 8 shows a simple example with two PEs and eight nodes per PE. PE
0 has node 0 as the head node and node 7 as the tail node; PE 1 has node 8
as the head node and node 15 as the tail node. When PE 1 executes a PSI, a
predicate bit is sent from node 15 to node 8. Figure 8(a) shows that the Euler
path from node 15 and node 8 is 15-0-1-4-11-14-11-4-9-12-13-12-9-10-9-4-5-6-
8 and Figure 8(b) shows that the optimized path is 15-0-1-4-5-6-8. When we
already know the reverse depth-first path and there are multiple appearances
of one node, such as node 4, on the Euler path, after this node receives the tail-
to-head data for the first time, instead of forwarding the data to the successor
of this appearance, which is node 11, it can forward the data to the successor of
the appearance nearest to the head node, which is node 5. In this way, the Euler
path between the first and the last appearances of a certain node is pruned off
and we can obtain the optimized path instead of the Euler path.

4.2 Our Algorithm versus Up*/Down* Routing

The original up*/down* routing algorithm and several improved versions
[Schroeder et al. 1991; De Pallegrini et al. 2004; Sancho 2004; Ibanez et al. 2008]
are widely used in irregular networks with abundant resources. The basic idea

ACM Journal on Emerging Technologies in Computing Systems, Vol. 6, No. 1, Article 3, Pub. date: March 2010.



Routing in Self-Organizing Nano-Scale Irregular Networks • 3:13

of up*/down* routing is to inhibit certain turns to break cycles in a network,
thus obtaining deadlock-free routing. In order to generate the shortest path in
a tree, every link in the tree is assigned with up direction if the end is closer to
the root or down direction otherwise, and then a legal route is formed by first
following several up links and then several down links.

The optimized tail-to-head paths generated by our algorithm are similar
to the up*/down* routing in the tree. However, our algorithm focuses on only
pairs of tail and head nodes rather than random pairs of nodes and our opti-
mized paths are static as established during configuration. Less randomness
and static optimized paths mean less and fixed size storage space. As a result,
no full routing tables are needed and the time to look up the routing tables
is saved. As a contrast, although there are improved versions of up*/down*
routing trying to get rid of routing tables, more computation is actually needed
during execution to encode the routing information included in the destination
address [Ibanez et al. 2008].

4.3 Deadlock-Free Routing

An important aspect of a routing algorithm is that it must avoid deadlock. SOSA
already ensures deadlock-free routing by using Euler path forwarding and pro-
viding three virtual channels [Patwardhan et al. 2006c]. Our routing algorithm
does not change the routing along VC0 or VC1, but only affects VC2. Since we
follow the optimized path by pruning some nodes and links off the Euler path,
we are using fewer resources. Combined with the fact that the optimized path is
the same as applying up*/down* routing in the generated tree, routing a single
tail-to-head packet will not cause deadlock. For the case when multiple opti-
mized tail-to-head paths cross over at one single node, because the resources
required by different paths are from different disjoint sets, there is no possibil-
ity of deadlock. In Appendix A we prove that our routing algorithm is deadlock
free, even if multiple optimized tail-to-head paths cross over at one single node.

5. IMPLEMENTATION

The proposed routing algorithm is divided into two processes, configuration and
routing, and implemented in the SOSA simulator. The SOSA simulator is an
event-driven simulator. Each activity in a node is an event and its latency is a
multiple of “time quantum,” which is defined as the time taken to perform one
part of the internode asynchronous communication handshake [Patwardhan
et al. 2006c]. During the configuration process, the information about whether
a node is on the optimized path is collected and stored in the node and the
information about where to send the data is stored in the related transceivers
of the node. During the routing process, each node decides whether to forward
packets along the Euler path or the optimized path based on the combination
of the data packet type and the virtual channel.

5.1 Configuration

The configuration process starts after a tree structure is generated from
the nano-scale irregular network using the RPF (Reverse Path Forwarding)
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Fig. 9. Configuration process of PE 1 at node 4.

algorithm [Dalal and Metcalfe 1978] already implemented in SOSA. One con-
figuration packet is sent out from the root and forwarded along the Euler path
to configure one PE. A configuration bit is added to the configuration packet
and initialized to 0. When the corresponding PE is being configured, the con-
figuration bit is set to be 1 at the head node and set back to be 0 at the tail
node. When a node receives a configuration packet, if the configuration bit is
1, it means that this node is on the Euler path between the tail and the head
nodes of the PE that is currently being configured.

As described in Section 2, each node in SOSA has four transceivers and each
transceiver has an input port and an output port with separate buffers. During
the configuration process, each port needs one bit of temporary storage space
to store the value of the configuration bit when the configuration packet goes
through this port. We call the bit stored in the input port of a transceiver the
input (I) configuration bit of the transceiver and the bit stored in the output of
a transceiver the output (O) configuration bit of the transceiver. The I/O config-
uration bits may have different values when different PEs are being configured
since each configuration packet is only used to configure one PE.

Figure 9 shows how the I/O configuration bits are set at node 4 in Figure 8
when PE 1 is being configured. The node shown has four active transceivers:
up, down, left, and right, and connected to node 1, node 5, node 9, and node 11,
respectively. The head node of PE 1 is in the left direction and the tail node is in
the up direction. Each transceiver has one input port and one output port so we
also have four input ports and four output ports. In each transceiver, the left bit
shown is the I configuration bit and the right bit is the O configuration bit. The
configuration packet for PE 1 arrives at the up input port with configuration
bit 0 (step a), leaves the left output port with configuration bit 0 and returns
to the left input port with configuration bit 1 (steps b and c), leaves the down
output port and returns to the down input port with configuration bit 1 (steps
d and e), leaves the right output port and returns to the right input port with
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Fig. 10. Output port index setting at node 4.

configuration bit 1 (steps f and g), and finally leaves the up output port with
configuration bit 1 (step h).

A node finishes forwarding the current configuration packet after sending
out the packet from the transceiver that initially received it. Afterwards, data
packet routing decisions are made based on the I/O configuration bits. Each
output port in a node is given an index to identify it and two bits are needed to
represent this index since we have four output ports per node. One such index
is stored in each transceiver as a pointer and we call it as output port index. If
a tail-to-head PSI packet arrives at the input port of a transceiver, the output
port index will point to the output port that the node should forward the packet.

Figure 10 shows how the output port indices of all the four transceivers are
set in node 4 after PE 1 is configured. Figure 10(a) shows the values of all
the four I/O configuration bits pairs after PE 0 is configured and Figure 10(c)
shows the values after PE 1 is configured. Figure 10(b) and Figure 10(d) show
the values of all the four output port indices after the configuration of PE 0 and
PE 1, respectively. The values of the output port indices are defined as follows:
00 for the up output port, 01 for the left, 10 for the down, and 11 for the right.

All the output port indices are initialized to be NULL before the configuration
of the first PE in the network. After the configuration of each PE i, the values of
all four pairs of I/O configuration bits in each node are checked. If a transceiver
has I/O configuration bits equal to 0/0 (such as the down and right transceivers
in Figure 10(a)) or 1/1 (such as the down and right transceivers in Figure 10(c)),
the output port index remains NULL since the tail-to-head packet sent out by
the tail node of PE i during PSI execution will not go through this transceiver. If
a transceiver has I/O configuration bits equal to 0/1 (such as the left transceiver
in Figure 10(a) and the up transceiver in Figure 10(c)), it means that the tail
node of PE i is in the corresponding direction (left for PE 0 and up for PE 1).
Similarly, if a transceiver has I/O configuration bits equal to 1/0 (such as the up
transceiver in Figure 10(a) and the left transceiver in Figure 10(c)), it means
that the head node of PE i is in the corresponding direction (up for PE 0 and left
for PE 1). As a result, suppose transceiver x has I/O configuration bits 0/1 and
transceiver y has I/O configuration bits 1/0, the output port index of transceiver
x should be y, since x to y is the direction of the PE tail to PE head, while the
output port index of transceiver y remains unchanged. For example, as shown
in Figure 10(b), the output port index of the transceiver 01 (left) is set to be 00
(up), and as shown in Figure 10(d), the output port index of transceiver 00 (up)
is set to be 01 (left).
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Besides the 2-bit storage space at each transceiver to indicate where to for-
ward the tail-to-head packet along the optimized path, we need one additional
bit of storage space per node. This bit is called as tail-to-head bit and is used
to indicate whether the node is on the optimized tail-to-head path of its own
PE (note that nodes can route packets on behalf of other PEs). The tail-to-head
bit of each active node is initialized to be 1 before the PE configuration pro-
cess. After the configuration of each PE i, for each node in PE i, if all active
transceivers in a node have I/O configuration bits 1/1, the tail-to-head bit is set
to 0, indicating that the predicate data will not go through this node.

5.2 Routing

During the routing process, all data travels in the units of packets. Predicate
data packets generated by PSIs are routed along the optimized tail-to-head
path and other data packets going from tail to head are routed along the Euler
path. The main problem is for each node to determine if the incoming data
packet is a predicate data packet or not.

One possible solution is to add one bit in the data packet as a flag. When a
data packet is generated and sent out to a head node by a tail node executing
a PSI, the flag is set and later each intermediate node receiving this packet
knows that the packet should go along the optimized path by checking the flag.
However, since only one bit can be transferred through a link at a time and one
packet in SOSA only has four bits, adding one bit to the data packet may cause
unnecessary overhead.

Another solution, which we implement, is to use the combination of the vir-
tual channel index and control information in the data packet. There are three
virtual channels in SOSA: VC0 as the broadcast channel, VC1 as the forward
channel, and VC2 as the backward channel. Predicate data packets only go
through VC2. However, other data packets, such as those generated by shift in-
structions, also go through VC2, so more information is needed to differentiate
these data packets from predicate ones. There are currently two control bits in
each packet indicating whether the packet is a data packet with control bits as
11 or different control packets with control bits as 00, 01, or 10. For VC0 and
VC1, these two bits are useful since there can be both data packets and control
packets traveling through these two virtual channels. However, for VC2 there
are only data packets, therefore we can use one of the other three values repre-
senting a control packet to indicate a predicate data packet. By checking both
the virtual channel index and the value of the two control bits in the packet, a
node can decide whether the incoming packet is a predicate packet or not and
route the packet either on the Euler path or on the optimized tail-to-head path.

6. EVALUATION

We compare the performance of the proposed routing algorithm (optimized)
against routing along the Euler path (nonoptimized). Using a network size of
4500 nodes, we simulate the six different test programs we used to analyze
the execution time and the latency of PSIs in Section 3.1. Figure 11 shows
the normalized execution time in networks without defects averaged across 20
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Fig. 11. Benefit of optimized routing in networks without defects.

different randomly generated topologies with placement control but without
orientation or interconnect control.

Figure 12 shows the normalized execution time in regular mesh networks
(full control over placement, orientation, and interconnect) with varying defect
rates for nodes and transceivers, respectively. In each of these graphs, N means
nonoptimized and O means optimized.

From these results we can see that there is up to a 30% reduction in total
execution time for the optimized routing algorithm. As expected, the execution
time spent in other instructions remains almost the same for both optimized
and nonoptimized routing. The benefit of optimized routing depends primarily
on the fraction of time spent executing PSIs in the base, nonoptimized system.
There is no dependence on defect rates of nodes or transceivers in the net-
works. For all test programs, except GenFilter, more than 25% of their execu-
tion time is spent executing predicate instructions in the nonoptimized system.
These programs exhibit at least 12% reduction in total execution time with
the optimized routing algorithm. GenFilter spends less than 20% of its execu-
tion time on PSIs before the optimization, so the improvement is smaller than
other test programs, but we still observe an 8% reduction in total execution
time. Search has around 90% of its execution time spending on PSIs. However,
only around half of the PSI execution time is spent on tail-to-head communi-
cation and we can reduce the tail-to-head communication time by around 60%.
As a result, the reduction in total execution time of Search should be around
27% (90%×50%×45%), which is exactly what is shown in both Figure 11 and
Figure 12.

The additional configuration time cost by simple operations to decide the
routing direction is not a problem since configuration can be done only once
before the system is ready to use. The extra storage space required at each
node is totally nine bits and it has little effect on the node size compared
with the already existing resources. It is worthwhile to add the extra con-
figuration time and storage space because of the significant performance
improvement.
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(b) 20% defective nodes    
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 (c) 30% defective nodes   

(d) 10% defective transceivers 

(e) 20% defective transceivers
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Fig. 12. Benefit of optimized routing in networks with defective nodes or defective transceivers.

7. RELATED WORK

Routing in irregular networks has always been a challenging problem to solve.
Several routing algorithms based on different network structures have been
proposed to provide high throughput and low latency while at the same time
avoiding deadlocks [Federico and Duato; Chi and Wu 2003]. These algorithms
work well in irregular networks composed with single processors and worksta-
tions. However, as CMOS feature sizes decrease and nanotechnology develops
in order to bypass the Red Brick Wall and we enter the field of nano-scale net-
works, it becomes more difficult to route in irregular networks because each
component has less storage space and computation power.

People have proposed several routing algorithms for networks in which each
component has fewer resources than processors and workstations but more
resources than nano-scale devices. Some algorithms still use meshes [Kumar
et al. 2002; Taylor et al. 2002; Wiklund and Liu 2003], while some algorithms
work on partially irregular networks using irregular meshes [Bolotin et al.
2005; Schafer et al. 2005]. There are also some algorithms [Palesi et al. 2006;
Bolotin et al. 2007] focusing on compressing routing tables in regular mesh-
like networks. For nano-scale irregular networks, there is a tree-based routing
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algorithm using RPF and virtual channel cut-through [Patwardhan et al. 2006b,
2006c].

8. CONCLUSION

In this article, we propose a new routing algorithm for self-organizing nano-
scale irregular networks. Our approach trades configuration time and a small
amount of storage space to reduce communication latency. We augment the ex-
isting Euler path routing technique for trees to generate static shortest paths
between specific pairs of nodes, while remaining deadlock free. Simulations of
several applications executing on a nano-scale data parallel architecture show
our proposed routing algorithm can reduce execution time by 8% to 30% com-
pared with the original Euler path-based routing algorithm. Moreover, even if
there are up to 30% defective nodes or transceivers in the networks, we can still
obtain a similar reduction in total execution time. Although our analysis is spe-
cific to one system, we believe that the general approach of providing optimized
routing between specific pairs of nodes is applicable to a broader set of systems,
particularly those that implement logical hierarchical ring topologies on top
of irregular physical topologies. In systems with more available resources per
node than we have in our nano-scale networks, we could store more information
at each node and potentially optimize routing between more pairs of nodes than
just the PE tail/head.

APPENDIX A. PROOF

In this section, we prove that the proposed routing algorithm is deadlock free.
As described in Section 4.3 the optimized routing algorithm only affects VC2
and uses fewer overall network resources. Combined with the fact that the
optimized path is the same as applying up*/down* routing in the generated
tree, routing a single tail-to-head packet will not cause deadlock. We need to
prove that when multiple optimized tail-to-head paths cross over at one single
node, the optimized routing algorithm is still deadlock free. The intuition is
that different tail-to-head paths use disjoint resources in the network and thus
cannot cause deadlock.

Definition 1. The tail-to-head Euler path of a PE is the Euler path between
the first appearance of the tail node and the first appearance of the head node.

THEOREM 1. The tail-to-head Euler path of a PE can be optimized at a node
if the node appears at least two times on the Euler path between the head node
and the tail node of this PE.

PROOF. Suppose node i is on the Euler path between the head and the tail
of PE 0.

If node i only appears once on the Euler path between the head and the tail
of PE 0, the destination neighbor of node i on the optimized path is the same as
on the Euler path. As a result, no optimization can be done at node i for PE 0.

If node i appears more than once on the Euler path between the head and
the tail of PE 0, the destination neighbor of node i on the optimized path is the
predecessor of the appearance nearest to the head node. As a result, the path
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between the first appearance and the last appearance of node i can be pruned
off the Euler path and a shorter optimized path can be obtained.

THEOREM 2. If the tail-to-head Euler paths of multiple PEs can be optimized
at a single node, the input and output resources required by different paths are
disjoint.

PROOF. Suppose both the tail-to-head Euler paths of PE 0 and PE 1 can be
optimized at node i. PE 0 has node j as the head node and node k as the tail
node. PE 1 has node m as the head node and node n as the tail node.

If we only look at the first appearance of each node, obviously, node j appears
before node k and node m appears before node n on the Euler path. Because
of Definition 1, either node k appears before node m, or node n appears before
node j . Without loss of generality, we assume that node k appears before node
m. As a result, the tail-to-head Euler paths of PE 0 and PE 1 are disjoint.

Because the Euler path traverses each link in the network for exactly two
times in different directions, each time the Euler path enters or leaves a node,
a different resource (an input resource when entering and an output resource
when leaving) is used. Since the tail-to-head Euler paths of PE 0 and PE 1 are
disjoint, the input and output resources required by different paths are also
disjoint.
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