
Routing in Socially Selfish Delay Tolerant Networks
Qinghua Li, Sencun Zhu, Guohong Cao

Department of Computer Science & Engineering
The Pennsylvania State University, University Park

Email: {qxl118,szhu,gcao}@cse.psu.edu

Abstract—Existing routing algorithms for Delay Tolerant Net-
works (DTNs) assume that nodes are willing to forward packets
for others. In the real world, however, most people are socially
selfish; i.e., they are willing to forward packets for nodes with
whom they have social ties but not others, and such willingness
varies with the strength of the social tie. Following the philosophy
of design for user, we propose a Social Selfishness Aware Routing
(SSAR) algorithm to allow user selfishness and provide better
routing performance in an efficient way. To select a forward-
ing node, SSAR considers both users’ willingness to forward
and their contact opportunity, resulting in a better forwarding
strategy than purely contact-based approaches. Moreover, SSAR
formulates the data forwarding process as a Multiple Knapsack
Problem with Assignment Restrictions (MKPAR) to satisfy user
demands for selfishness and performance. Trace-driven simula-
tions show that SSAR allows users to maintain selfishness and
achieves better routing performance with low transmission cost.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) [1] have the unique fea-
ture of intermittent connectivity, which makes routing quite
different from other wireless networks. For example, since
an end-to-end connection is hard to setup, store-carry-and-
forward is used to deliver the packets to the destination.
Although many routing algorithms [2]–[7] have been proposed
to increase data delivery reliability, they are purely based on
contact opportunity; i.e., they are designed without considering
users’ willingness and implicitly assume that all nodes are
willing to forward packets for others.

In the real world, most people are selfish. As a result, in
civilian DTNs such as PeopleNet [8] and Pocket Switched
Network [9], a node may not be willing to forward packets
for others. Then, previous algorithms may not work well since
some packets are forwarded to nodes unwilling to relay, and
will be dropped. Although many researchers have designed
incentive schemes to stimulate selfish nodes to forward packets
in mobile ad hoc networks [10], [11], they go to another
extreme; i.e., they believe that users are selfish and are not
willing to forward packets for anyone else.

To capture user selfishness in a more realistic manner, we
have two observations from the social perspective. First, a
selfish user is usually willing to help others with whom he has
social ties (e.g., friends, coworkers, roommates), because he
got help from them in the past or will probably get help from

This work was supported in part by National Science Foundation under
grant CNS-0721479 and CAREER NSF-0643906, and by Army Research
Office under MURI grant W911NF-07-1-0318.

them in the future. In this paper, a social tie means an interper-
sonal tie that falls into the strong or weak category defined in
[12]. Second, for those with social ties, a selfish user may give
different preferences. That is, he is willing to provide better
service to those with stronger ties than those with weaker
ties, especially when there are resource constraints. For easier
presentation and comparison, such refined selfishness model
will be referred to as social selfishness and the previously well
studied simple model is called individual selfishness. Social
selfishness is not totally contradictory to individual selfishness,
but is a generic extension to it. When a node has no social tie
to the outside world, his social selfishness becomes individual
selfishness. However, in most cases, social selfishness conveys
more meaning.

Social selfishness will affect node behaviors. As a forward-
ing service provider, a node will not forward packets received
from those with whom it has no social ties, and it gives
preference to packets received from nodes with stronger ties
when the resource is limited. Thus, a DTN routing algorithm
should take the social selfishness into consideration.

In this paper, different from existing incentive based
schemes which stimulate individually selfish nodes to forward
for all other nodes, we follow a new philosophy of “design for
user”. We will take social selfishness as a user demand and
allow socially selfish nodes to behave in the aforementioned
ways to satisfy such demand. With this in mind, we need to
address the problem of how to enforce users’ social selfishness
in routing. This is not easy since the routing performance (e.g.,
the number of packets delivered to their destinations) may be
affected when social selfishness is considered. For example,
when a packet is forwarded to a node that is unwilling to
forward, it will most likely be dropped. As such, we also need
to address how to maintain acceptable routing performance
when social selfishness is maintained.

We propose a Social Selfishness Aware Routing (SSAR)
algorithm to address these challenges. To maintain social
selfishness, SSAR allocates resources such as buffers and
bandwidth based on packet priority which is related to the
social relationship among nodes. To maintain the routing per-
formance, SSAR quantifies the relay’s willingness to evaluate
its forwarding capability and thus reduces the packet dropping
rate. Furthermore, SSAR formulates the forwarding process as
a Multiple Knapsack Problem with Assignment Restrictions
(MKPAR). It forwards the most effective packets for social
selfishness and routing performance. Our trace-driven simu-
lations show that SSAR achieves very good selfishness and

routing performance with low transmission cost.
We make the following contributions:

• We introduce social selfishness into DTN routing.
• We present a routing algorithm SSAR for DTNs, which

follows the philosophy of design for user.
• We incorporate user willingness into relay selection.

Combined with contact opportunity, it results in a better
metric to evaluate a node’s forwarding capability.

• We formulate the forwarding process as an MKPAR and
provide a heuristic based solution.

The remainder of this paper is structured as follows. Section
II presents an overview of SSAR. Section III gives the detailed
design. Section IV introduces the trace-driven simulations
and discusses the results. The last three sections present
discussions, related work, and conclusions, respectively.

II. SSAR OVERVIEW

In this section, we first introduce our design philosophy,
then discuss our models and assumptions, and finally give an
overview of SSAR and explain how it works.

A. Philosophy: Design for User

The existing literature has focused on addressing individual
selfishness such as using reputation-based, credit-based, or
game-theory based approaches to stimulate users to cooperate
and forward packets for others. If the nodes cooperate with
others, they will get help from others as a return; if not they
will be punished; e.g., being deprived of access to the network.

However, these incentive schemes may not be directly
applied to deal with social selfishness, since the incentive
schemes do not consider social selfishness. By using incen-
tives, every node will have to provide service to others no
matter there is a social tie or not. As a result, social selfishness
is violated.

We address this problem from a different point of view.
We allow users to behave as what their social selfishness
requires, but try to improve the routing performance under
the social selfish behavior. Our underlying philosophy is that
social selfishness is a kind of user demand that should be
satisfied. It should be treated as a design metric to measure
the user satisfaction, similar to other traditional performance
metrics such as data delivery ratio and delay. We call such
design philosophy “design for user”.

B. Models and Assumptions

Network Graph We model the socially selfish network as
a fully-connected weighted directed graph, where the vertex
set V consists of all the nodes and the edge set E consists
of the social links between nodes. The weight of edge

−−→
AB

is A’s willingness to forward packets for B. The weight of
edge

−−→
AB and that of

−−→
BA may be different. The value of

willingness is a real number within [0, 1], where 0 means
unwilling to forward and 1 means the most willing to forward.
The social willingness between two nodes depends on the
social tie between them. The stronger the social tie is, the
larger the social willingness is.

Delivery Probability
Estimator

Forwarding Set
Manager

Expiration Dropping
Estimator

Buffer Overflow
Dropping Estimator

Packet Priority
Manager

Packet Priority
Manager

Buffer
Manager

Buffer
Manager

Forwarding Set
Manager

Expiration Dropping
Estimator

Buffer Overflow
Dropping Estimator

N MPriority
Destination

Available
buffer size

Delivery
probability

Delivery Probability
Estimator

Expiration timeNew
priority

Step 2

Step 3

Fig. 1. SSAR overview where node N meets node M. The dashed rectangles
enclose the information exchanged in step 2 and step 3 (Section II-D).

We assume that the willingness information is available.
This should be achievable since each node only needs to
know its willingness to forward for others. From the system
perspective, this can be done as one system configuration step,
in which the user assigns its willingness values for people he
knows via some user interface in the mobile device. Actually,
one recent study already shows that people can quantitatively
rate their friendships [13]. In addition, the user can set a default
value (e.g., 0) for strangers. To be more user-friendly, the
interface can provide several willingness levels (e.g., “most”,
“much”, “average”, “poor”, “none”) for the user to choose
from. Such levels can be easily mapped into numerical values.
The willingness information is configured when the user joins
the network or migrates to a new mobile device, and is updated
when his social ties change. However, such update is quite
infrequent since social ties are usually stable.

Network Model In DTNs, nodes have limited bandwidth
and computational capability. As in other studies [4], we
assume each node has unlimited buffer for its own packets, but
limited buffer for others. As for data traffic, we only consider
unicast, and assume each packet has a certain lifetime (i.e.,
TTL). We further assume bidirectional links, which can be
provided by some MAC layer protocols, e.g., IEEE 802.11.

Trust Model We assume the source of a packet is anony-
mous to intermediate nodes. For example, the source ID can
be encrypted in a way so that only the destination can decrypt.
Then intermediate nodes provide data forwarding service only
based on the previous hop information. This assumption is
not essential to SSAR, and we add it just to simplify the
routing model. We also assume that some authentication
service is available so that one node can not impersonate
another. Otherwise, a node may claim to be someone else to
obtain forwarding services from that node’s social ties. How
to provide such authentication service has been well studied
(e.g., [14]) and is out of the scope of this paper.

Adversary Model In this paper, we only consider socially
selfish behaviors. Malicious attacks (e.g., DoS, wormhole,
blackhole) and free-riding behaviors are not our focus. This is
not because we do not think they are important, but because
we believe they deserve separate studies. Thus, we leave them
for future work, and discuss more in Section V.

C. Architecture

Figure 1 shows the architecture of SSAR, which has the
following four components.

Packet priority manager It calculates a priority for each
buffered packet based on the willingness between nodes that
the packet has traversed. This priority of a packet measures
the social importance of the packet to the node.

Buffer manager It manages buffers based on packet priority:
(i) packets with priority 0 will not be buffered; (ii) when
buffer overflows, packets of low priority are dropped first. That
is, a new incoming packet can preempt the buffer occupied
by lower-priority packets. This policy exactly follows the
philosophy of “design for user”.

Delivery probability estimator It estimates a node’s “de-
livery probability” of a packet, which is used to quantify the
node’s forwarding capability for that packet. A node forwards
the packet to the neighbor with a higher delivery probability.

Traditionally, the quality of a relay is measured solely based
on its contact opportunity to the destination node. SSAR
measures the delivery probability of a node based on both of
its contact opportunity to the destination and its willingness to
forward. It is straightforward that a node with a low contact
opportunity should not be a relay. Interestingly, a node with
a high contact opportunity but low willingness should not be
a relay either. This is illustrated in Figure 2(a). Suppose S
has a packet m1 to send to D, and it successively meets A,
C, and B. If only contact opportunity is considered, it will
forward m1 to A. Unfortunately, A will drop m1 since it is
unwilling to forward for S (the edge weight is 0). SSAR will
avoid such forwarding. Though C is willing to forward m1,
its willingness is so low that m1 may suffer high risk of being
dropped, so SSAR will avoid such forwarding. As a result, B
is the optimal forwarder for m1 in this scenario, since it has
high willingness to forward and a high contact opportunity.

Forwarding set manager After a node determines a set
of packets that should be forwarded to a better relay, exist-
ing routing protocols greedily transmit them no matter the
receiver has enough buffers to hold these packets or not [5].
Obviously, bandwidth will be wasted if the transmitted packets
are dropped due to buffer overflow. To address this issue,
the forwarding set manager decides which packets to transmit
by solving an MKPAR formulation. It considers the buffer
constraint and transmits the packets that are most effective for
social selfishness and routing performance.

D. The Protocol

We use an example (Figure 1) to illustrate how SSAR works
in the following five steps.

1) After neighbor discovery, node N and M deliver packets
destined to each other in the decreasing order of priority.
During packet delivery, they also exchange information
related to their willingness to forward.

2) If N ’s willingness for M is positive, M sends N a sum-
mary list of 〈destination ID, expiration time, priority〉 for
its buffered packets.

3) From the priority information, N calculates the new
priority value for each packet (Section III-A). Based on
the new priority and other information in the summary
list, N calculates its delivery probability (Section III-B)

(a)

m1

m2

p

L0

dropped due to
buffer overflow

others

(b)

Fig. 2. (a) Examples of willingness-aware forwarding. (b) Heuristics used
to estimate Pover . Triangles and squares are historical samples.

and available buffer size (Section III-C) for each packet
in the list, and returns them to M .

4) M determines a candidate set of packets for which N
has higher delivery probabilities.

5) Considering the available buffer size information, M
further decides which candidates to transmit by solving
the MKPAR (Section III-C) formulation. Packets will be
deleted after being forwarded, so there is only one copy
for each packet.

Without loss of generality, in the last four steps we only
describe how node M determines which packets to transfer to
node N . Node N does so in similar ways.

Though not very frequent in opportunistic DTNs, a node
may be in contact with multiple neighbors at the same time.
Then it would be very difficult to extend the MKPAR formu-
lation to the whole neighborhood. As a simple solution, the
node contacts neighbors one by one.

III. DETAILED DESIGN

This section describes the detailed design of the packet
priority calculation, the delivery probability estimation, and
the forwarding set optimization.

A. Packet Priority

When a node receives and buffers a packet, it assigns a
priority p to the packet. We borrow the idea of transitive trust
[15] from the literature on reputation system and calculate
packet priority in a chained way. Formally:

pi = pi−1 · ω i ≥ 1 (1)
where pi is the packet’s priority in its ith hop and ω is the ith

hop’s willingness to forward the packets from the (i − 1)th

hop. The initial priority p0 is set by the source. Since source
anonymity is assumed, the packet source is not considered by
intermediate hops.

The priority assignment method and the buffer management
policy are used to enforce social selfishness. First, packets that
traverse stronger social edges tend to have higher priorities.
As shown in Figure 2(a), although m1, m2, and m3 have the
same priority in the previous hop, they will receive different
services in B after traversing different links. m3 will not
receive any forwarding service; m1 will receive better service
than m2. Second, packets from the same upstream node are
also differentiated. In this example, m2 receives better service
than m4 in B although they come from the same node.

Since priority is updated hop by hop, it may improve
cooperation in some cases. In Figure 2(a), if m3 from F arrives
at B via E, its priority becomes 0.36 (instead of 0 through
direct transmission) and will receive B’s service.

B. Delivery Probability Estimation

Suppose each packet has some expiration time, the question
is: at a given time t, how to estimate node N ’s probability of
delivering packet m to its destination D before its expiration
time texp?

1) Overall Delivery Probability: As a starting point, we
first look at the complement of delivery probability, i.e.,
dropping probability, which is the probability that m will be
removed from N ’s buffer before being delivered to D. Assume
that N can deliver m when it meets D, then there are two
cases of dropping. First, m expires before N reaches D due
to insufficient contact opportunity. Second, N drops m before
N reaches D because m’s priority is too low and N does not
have sufficient buffers for it.

Suppose the next contact between N and D happens at time
tc, and N has to drop m due to buffer overflow at time tover.
Further denote the overall delivery probability by Pdelivery . By
definition the first and second dropping probability are given
by P{texp ≤ tc} and P{tover ≤ tc}, respectively. Note that
the temporal order of tc and texp is determined by system
parameters and the mobility pattern of N and D, while the
time of buffer overflow depends on N ’s traffic load. Thus we
can assume that the two dropping events are independent. Then
we integrate them to get the delivery probability:

Pdelivery = (1 − P{texp ≤ tc})(1 − P{tover ≤ tc}) (2)

In DTNs with unpredictable connectivity, when N makes
such estimation it is impossible to know the exact tc, and
thus it is impossible to compute the r.h.s of Eq. 2. So
we have to make some approximations. When texp > tc,
P{tover ≤ tc} ≤ P{tover ≤ texp} because the probability
density function of tover is nonnegative. After inserting this
inequation into Eq. 2, we get a conservative estimation:

Pdelivery ≥ (1 − P{texp ≤ tc})(1 − P{tover ≤ texp}) (3)

The above estimation of Pdelivery can be seen as determined
by two independent droppings, P{texp ≤ tc} and P{tover ≤
texp}. The first one means that the packet expires before
N ’s next contact with D, so we call it expiration dropping
probability and denote it by Pexp. The second one means that
the packet overflows before expiration, so we call it buffer
overflow dropping probability and denote it by Pover. Next,
we discuss how to estimate them individually.

2) Expiration Dropping Probability: To estimate Pexp, we
adopt an approach similar to that in [16]. Let random variable
X denote the inter-contact time between N and the destination
D. Assume that each inter-contact time is independent, then
according to Markov’s Inequality:

Pexp = P{X > texp − t̂} ≤ E(X)/(texp − t̂) (4)

where E(X) is the mean of X and t̂ is the most recent contact
time between N and D before the estimation time t. E(X)

can be approximated by the average of historical inter-contact
times. The value of Pexp should be bounded by 1. Eq. 4
intuitively means that nodes with a lower average inter-contact
time (i.e., a higher contact frequency) with the destination have
a lower expiration dropping probability.

3) Buffer Overflow Dropping Probability: The most impor-
tant factor that affects Pover is m’s priority value p due to the
buffer policy. Other two minor factors are the current empty
buffer size L0 and the residual time tr = texp − t before
expiration. L0 is positively related to how long m can stay
before being removed. But tr is negatively related: the longer
tr is, the more likely it will be dropped due to buffer overflow.

Without clear knowledge of how these factors interact, it
is extremely hard to theoretically model Pover. Therefore we
turn to data mining techniques and model it as a supervised
classification problem. Whenever N drops or forwards a
packet, it generates a record < p,L0, tr, β >. With data
mining terminology, each record is called a sample, p, L0, and
tr are called feature dimensions and β is called class label.
β = 1 if N drops the packet due to buffer overflow and β = 0
if N does not drop it or drops it due to expiration.

Our basic heuristic is that the probability that m will be
dropped is similar to some historical packets which have
similar feature values when they enter N ’s buffer. Suppose
we match m to a set S of similar packets, and its dropped
subset is Sdrop, then Pover is estimated as:

Pover = |Sdrop|/|S| (5)

Figure 2(b) illustrates the idea in a two-dimensional space
< p,L0 >, where the historical packets in the dashed circle
are the matched ones. In this example, the estimated Pover of
m1 and m2 are 0.83 and 0.25, respectively.

To match m to similar packets, we choose the K-Nearest-
Neighbor (KNN) [17] algorithm from the data mining liter-
ature, which identifies the K packets that have the shortest
distance to m in the feature space. However, KNN traverses
all samples during matching, which induces high online com-
putation cost, and leaves less contact duration time for data
transmission. Although some techniques have been proposed
to improve its online matching time, they are too complex
[18] to be applied to DTN nodes. To address this problem, we
combine KNN with the Kcenter algorithm [19] to propose a
two-phase solution:

• In the offline phase (when not in contact with others),
nodes use the Kcenter algorithm to cluster samples into
K̂ clusters around K̂ points in the feature space.

• In the online phase, nodes scan the K̂ points in the
increasing order of their distances with m’s feature vector
until K samples are included in the scanned clusters.

Based on previous work in this area [20], we set K =
√

n,
where n is the number of samples. We also set K̂ =

√
n.

Simulations show that they perform well. Then the time and
space complexity of offline clustering is O(n

√
n) and O(n).

The time complexity of online matching is O(
√

n log n),
which is much smaller than O(n

√
n), the time complexity of

naive KNN. To reduce the computation overhead, the offline

phase does not have to be run whenever a packet is dropped
or forwarded; it can be run when a certain number of packets
have been dropped or forwarded since the last run.

Both the online and offline phase need to compute the
distance between two feature vectors. When doing so, L0 is
normalized to [0, 1] based on the total buffer size of N , and
tr is normalized to [0, 1] based on the packet TTL. Moreover,
since Euclidean distance performs poorly when samples are
sparse in the feature space, we propose a distance metric by
assigning different weights to different feature dimensions. We
observe that if dropped samples spread narrowly in one feature
dimension, this dimension is sensitive and should be highly
weighted and vice versa. Suppose m1 and m2 are two feature
vectors. Then their distance is:

D(m1,m2) =

√√√√ 3∑
i=1

σ̂i
2

σ2
i

(mi
1 − mi

2)2 (6)

where σ2
i and σ̂i

2 denote the variance of feature i in dropped
samples and all samples, respectively.

Algorithm 1 : Greedy Algorithm for MKPAR, pseudo-code
for M
1: Compute the selfish gain g for any packet in C
2: Sort C in the decreasing order of g/l (Let i denote the ith packet in C)
3: for Packet i from 1 to |C| do
4: if N is not in contact with M anymore then
5: break
6: end if
7: if Li ≥ li then
8: Forward i to N
9: for Packet j from i + 1 to |C| do

10: Lj− = li
11: end for
12: else
13: continue
14: end if
15: end for

C. Forwarding Set Optimization

In this subsection, we solve the following problem: suppose
a node M contacts N , and M has determined a candidate
packet set C for which N has higher delivery probabilities.
Since N ’s buffer may be inadequate to accept all packets in
C, and the contact duration may be too short to transmit all
these packets, how to determine a subset of C to transmit and
in what order?

We follow two principles. First, M will not forward a packet
to N if N does not have sufficient buffers for that packet.
According to the buffer management rule, N ’s available buffer
size Lm for m is:

Lm = L0 +
∑

{k|pk<p}
lk (7)

where L0 denotes N ’s empty buffer size, {k|pk < p} denotes
the packets in N ’s buffer whose priority is smaller than that
of m (p), and lk denotes the size of packet k.

Second, M tries to maximize its selfish gain through this
contact, which is defined as follows.

Definition 1 (Selfish Gain) The selfish gain g that M
achieves by forwarding m to N is the product of m’s priority
p in M and the increment of delivery probability, i.e., g =
p · ΔPdelivery .

Both factors in the definition are related to selfishness. p
means how socially important the packet is. The larger p
is, the more selfishness is gained. ΔPdelivery means how
much this forwarding can increase the packet’s probability
to be delivered. The larger ΔPdelivery is, the more help is
provided. So their product is a natural representation of the
gained selfishness.

Suppose all the packets in C are sorted by priority in the
increasing order, then we can simply use i to denote the ith

packet. Let Xi denote if packet i is selected by the to be
transmitted subset (Xi = 1) or not (Xi = 0). According to
the above two principles, the problem can be formulated as:

max
∑
i∈C

giXi s.t. ∀i
∑
j≤i

Xj lj ≤ Li (8)

Next we convert it into an MKPAR formulation [21], where
each item can only be assigned to a subset of the knapsacks.
Suppose the original buffer is divided into |C| + 1 knapsacks
such that the first knapsack has size S1 = L1, the jth (j ∈
{2, ..., |C|}) one has size Sj = Lj −Lj−1, and the (|C|+ 1)th

one consists of buffers that cannot be preempted by any packet
in C. Then packet i can only be packed into knapsacks indexed
smaller than or equal to i. Let Xij denote if packet i is packed
into knapsack j (Xij = 1) or not (Xij = 0), then Xij = 0
when i < j. Eq. 8 can be rewritten as an MKPAR:

max

|C|∑
i=1

|C|∑
j=1

giXij

s.t. ∀i
∑

j

Xij ≤ 1, ∀j
∑

i

Xij li ≤ Sj

(9)

Since a simpler variation of MKPAR has been proved by
Dawande et al. [21] to be NP-hard, MKPAR is also NP-hard.
Thus, we give a greedy algorithm, which ranks the packets
in the decreasing order of selfish gain weighted by packet
size, and packs them one by one until no more packets can
be packed. The details are shown in Algorithm 1. The time
complexity of this algorithm is O(|C|2), which is acceptable
because most handsets have such computing capability.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of SSAR and
compare it to other existing routing algorithms.

A. Experiment Setup

The evaluation is based on the MIT Reality trace [22],
[23], on which a recent work [24] has validated the existence
of the so-called “small-world” phenomenon, a well-known
phenomenon in social networks. In this trace, 97 Nokia 6600
smart phones were carried by students and staff at MIT over
nine months. These phones run Bluetooth device discovery
every five minutes and log about 110 thousand contacts with

each other. Each logged contact includes the two contact
parties, the start-time, and the duration. We use the contacts
to generate trace-driven simulations.

Since the trace does not have the accurate social relation-
ship information among participants, we need to construct a
weighted directed social graph upon them. To better study
SSAR, we evaluate it on two types of social graphs.

The first type of social graph is probabilistically contact-
dependent. It can be built based on the following heuristic,
which has been verified by many sociology studies [12].
The stronger tie two individuals have, the more likely they
contact frequently. Individuals with more social ties are more
likely to meet other people. Let f∗ denote the overall contact
frequency of the whole trace, fN denote node N ’s overall
contact frequency, and fNM denote the contact frequency
between N and M . The graph is constructed in four steps:

1) We generate power-law distributed node degrees based
on several measurement studies [25].

2) We repeatedly assign those degrees to nodes in the trace,
i.e., assign the largest degree to a node in such a way
that node N ’s probability to be selected is fN/f∗, and
repeat this for the remaining degrees and nodes.

3) We generate weights for the social ties (edges) of each
node. The best empirical data we can find about social
tie strength is from one recent study in which partici-
pants rate their friendship nearly uniformly between 0
and 1 [13]. Thus, we generate weights for each node’s
social ties that are uniformly distributed within [0,1].

4) For each node N , we connect its ties to other nodes. We
connect the strongest tie to another node in a way that
node M ’s probability to be connected is fNM/fN , and
repeat this for the other ties and not-connected nodes.
In the end, for any ordered node pair NM that has not
been connected yet, the weight of edge

−−→
NM is set 0.

The second type is random social graph that is also con-
structed in four steps. The first and third steps are the same,
but in the second and fourth steps we assign degrees to random
nodes, assign weights to random social ties, and connect social
ties to random nodes.

One important feature of a social network is the average
number of social ties per node; i.e., the number of nodes with
a social tie strength larger than 0. In some networks, each
node only has a few social ties; while in others, each node
has many social ties. To generate social graphs with different
average numbers of social ties per node, we fix the power-
law coefficient at 1.76 [25] when generating node degrees,
but change the minimum acceptable degree.

In the simulation, each node generates one packet every
day to random destinations. The packet size is uniformly
distributed from 50 KB to 100 KB. Each packet has a certain
TTL and will be removed after the TTL expires. All packets
have initial priority 1. Each node has buffer size 5MB and
bandwidth 2Mbps. In each run, the first 1/3 of the trace is used
for warm-up, and the results are collected from the remaining
part. To avoid end-effects, no packet is generated in the last
1/3 of each trace. All results are averaged over 10 runs.

B. Routing Algorithms and Metrics

1) Routing Algorithms: We compare SSAR with two
other benchmark algorithms, PROPHET [2] and SimBet [7].
PROPHET is a standard non-oblivious benchmark that has
been used to compare against several previous works [6]. It
calculates a metric, delivery predictability, based on contact
histories, and relays a packet to a node with higher delivery
predictability. We use the same parameters as in [2], and age
the delivery predictability upon every contact as done in [6].
SimBet has also been used as a benchmark in several works
[3]. It calculates a simbet metric using two social measures
(similarity and betweenness). A packet is forwarded to a node
if that node has higher simbet metric than the current one. We
use the same parameters as in [7].

Since the original algorithms do not define the order of
packets to be transmitted during a contact, we adopt the
transmission order used in RAPID [5]. Because this order
has been shown to be the most effective, we believe such
refinement does not favor SSAR in comparison. Since the
original algorithm either assumes infinite buffer (SimBet) or
assumes finite buffer but does not specify the packet dropping
policy (PROPHET), we apply three policies (drop-tail, random
drop, and minimum-utility-drop-first) in simulation, and only
present the results of the best policy here, i.e., minimum-
utility-drop-first. Since it is impossible to traverse all dropping
policies and choose the optimal one, we tried our best to
impose the minimum influence on the original algorithms.

PROPHET and SimBet are designed without considering
social selfishness. For fair comparison, we modified them to
be selfishness-aware. That is, nodes do not forward packets
to others who are not willing to forward for them, and avoid
immediate droppings caused by selfishness. However, when
nodes forward packets to others who are willing to forward
for them, they still follow the aforementioned transmission
order and buffer policy. To show the effect of such selfishness-
awareness, we also include the basic PROPHET in our
simulations. For convenience, we label the selfishness-aware
PROPHET PROPHET-1, and label the basic one PROPHET-2.

2) Metrics: We use the following metrics to evaluate these
algorithms: packet delivery ratio, the total number of transmis-
sions, and selfishness satisfaction (SS). Packet delivery ratio is
defined as the proportion of packets that are delivered to their
destinations out of the total unique packets generated. The
total number of transmissions can be used as a cost factor [7],
and fewer transmissions mean lower cost. SS is defined as
the ratio of the average priority of all forwarded or delivered
packets over the average priority of all dropped packets. SS
reflects how much users are satisfied with the network, because
a larger SS indicates more important messages are served.
SSAR, PROPHET, and SimBet are expected to have similar
cost since all of them have only one replica of a packet.

C. Results

1) Performance and Cost: The Effects of TTL We change
the packet TTL from 0 to 125 days to see its effects on the
packet delivery ratio and the cost. Each node has 25 social ties

0 25 50 75 100 125 150
0

0.1

0.2

0.3

0.4

0.5

Packet TTL (Day)

P
ac

ke
t D

el
iv

er
y

R
at

io

SSAR SimBet PROPHET−1 PROPHET−2

(a) Performance

0 25 50 75 100 125 150
0

5

10

15

20

25

30

35

40

Packet TTL (Day)

T
ot

al
 N

um
be

r
of

 T
ra

ns
m

is
si

on
s

(x
10

00
)

SSAR SimBet PROPHET−1 PROPHET−2

(b) Cost

0 25 50 75 100 125 150
0

0.1

0.2

0.3

0.4

0.5

Packet TTL (Day)

P
ac

ke
t D

el
iv

er
y

R
at

io

SSAR SimBet PROPHET−1 PROPHET−2

(c) Performance

0 25 50 75 100 125 150
0

5

10

15

20

25

Packet TTL (Day)

T
ot

al
 N

um
be

r
of

 T
ra

ns
m

is
si

on
s

(x
10

00
)

SSAR SimBet PROPHET−1 PROPHET−2

(d) Cost

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Packet Generation Rate (Packet/Node/Day)

P
ac

ke
t D

el
iv

er
y

R
at

io

SSAR SimBet PROPHET−1 PROPHET−2

(e) Performance

1 2 3
0

20

40

60

80

100

120

Packet Generation Rate (Packet/Node/Day)

T
ot

al
 N

um
be

r
of

 T
ra

ns
m

is
si

on
s

(x
10

00
)

SSAR SimBet PROPHET−1 PROPHET−2

(f) Cost

12 25 38
0

0.1

0.2

0.3

0.4

0.5

Average Number of Social Ties per Node

P
ac

ke
t D

el
iv

er
y

R
at

io

SSAR SimBet PROPHET−1 PROPHET−2

(g) Performance

0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

Willingness for Node without Social Tie

P
ac

ke
t D

el
iv

er
y

R
at

io

SSAR SimBet PROPHET−1 PROPHET−2

(h) Performance
Fig. 3. Comparison of performance and cost. For (e)-(h), the packet TTL is 100 days. (a)(b) Results under the contact-dependent social graph. (c)(d) Results
under the random social graph. (e)(f) Results under different workloads. (g) Performance v.s. the number of social ties. (h) Performance v.s. willingness for
those without social ties.

on average. Figure 3(a) shows the packet delivery ratio under
the contact-dependent social graph. As the TTL increases,
all algorithms can deliver more packets to the destinations.
However, the delivery ratios will not increase after the TTL
reaches a certain value, e.g., 25 days in SimBet and 50 days
for the other three algorithms. This is because, after the TTL
reaches some value, the forwarding capacity of the network
becomes the performance bottleneck.

Among all algorithms, SSAR has the highest packet delivery
ratio. It outperforms PROPHET-1 by 35%-40%, and outper-
forms SimBet and PROPHET-2 by 100%. This is because
SSAR incorporates several factors such as user willingness,
buffer constraint, and contact opportunity into relay selection.
It avoids low-willingness nodes or overloaded hot spots, and
avoids being dropped by these nodes. But in SimBet, since it
tends to swarm packets to hot spot nodes (with higher central-
ity), it has the worst delivery ratio due to congestion. In SSAR,
its MKPAR formulation does not forward a packet to the
receiver whose buffer is insufficient. However, the other three
algorithms cannot achieve this, resulting in many packet drops
due to buffer overflow. As expected, PROPHET-1 significantly
outperforms PROPHET-2 by about 50%, because PROPHET-2
forwards many packets to those who are unwilling to forward,
and those packets are dropped.

Figure 3(b) shows the cost under the contact-dependent
social graph. As the TTL increases, all algorithms have more
transmissions, because packets stay longer in the network and
have more opportunities to be transmitted. The total number
of transmissions does not increase too much after the TTL
reaches some value (about 75 days), when the number of
transmissions is limited by the contact opportunities of the
trace. Among the algorithms, SimBet has the most number
of transmissions, which is about 60% more than that SSAR
and 150% more than PROPHET-1 and PROPHET-2. Interest-

ingly, PROPHET-2 has similar cost to PROPHET-1. Though
PROPHET-2 uses more contacts to forward packets, its packets
traverse fewer hops than PROPHET-1 before being dropped.

Figure 3(c) and Figure 3(d) show the results under the ran-
dom social graph. Similar with the results under the contact-
dependent graph, SSAR delivers the most number of packets
to the destinations. It outperforms PROPHET-2, SimBet, and
PROPHET-1 by 200%, 60%, and 30%, respectively. SimBet
has the most number of transmissions, about 60% more than
SSAR and 150% more than PROPHET-1 and PROPHET-2.

Based on the results under the two types of social graphs,
we found that SimBet delivers 35% more packets under the
random social graph than that under the contact-dependent
graph, and PROPHET-2 delivers 35% less packets. This is
because in the latter graph a socially popular node is very
likely to be a hot spot node in contact, while in the former
graph such probability is much lower. Since SimBet tends
to forward packets to socially popular nodes, it overloads
more hot sport nodes in the contact-dependent social graph.
PROPHET-2 forwards packets out no matter if the contacted
node is socially tied or not. But in the random social graph
the contacted node is more likely to be the ones without social
ties, resulting in low packet delivery ratio. Both SSAR and
PROPHET-1 deliver similar amounts of packets under the two
types of social graphs. In the random social graph, the three
selfishness-aware algorithms have fewer packet transmissions
because fewer contacts occur between two socially tied nodes.

Since SSAR has similar performances under both social
graphs, in the following, we only present the results under
the contact-dependent social graph.

The Effects of Workload To evaluate the performance
of SSAR under higher workloads, we change the packet
generation rate from 1 packet per node per day to 3 packets per
node per day. Each node on average has 25 social ties. Figure

3(e) and Figure 3(f) show the results. When the workload
increases, all algorithms have lower packet delivery ratios and
more transmissions. However, they change at different rates,
especially SSAR and PROPHET-1. When the packet gener-
ation rate is 1 packet per node per day, SSAR delivers 40%
more packets than PROPHET-1 with 60% more transmissions.
When the rate increases to 3 packets per node per day, SSAR
delivers 60% more packets than the latter with only 10% more
transmissions. This means that SSAR is more efficient under
high workloads.

The Effects of the Average Number of Social Ties per
Node The packet delivery ratios of the algorithms are shown
in Figure 3(g). As the average number of social ties per node
increases from 12 to 38, PROPHET-2’s packet delivery ratio
increases from 16% to 26%, because fewer packets are for-
warded to nodes without social ties. Such significant increase
does not exist in the other three selfishness-aware algorithms.
The packet delivery ratio of SimBet and PROPHET-1 even
drops a little bit. The reason is as follows. With the contact-
dependent social model, social ties are more likely to be added
to nodes with frequent contacts first, and then to nodes with
less frequent contacts. As a result, most later-added nodes
contact each other less frequently, and the network’s contact
opportunity does not increase too much. Moreover, the extra
data traffic due to the new social ties may overload the existing
hot spots, affecting the packet delivery ratio negatively. Despite
all these issues, SSAR still manages to deliver some more
packets, because it makes more balanced use of social ties
considering their contact opportunity, willingness, and buffer
constraint. In summary, SSAR outperforms the other three
algorithms when nodes have various numbers of social ties.

The Effects of Willingness to Forward for Nodes without
Social Ties In previous simulations, a node’s willingness to
forward for others without social ties has been set as 0. In
some networks, a generous user may be willing to forward
packets for those who have no social tie with him, though
the willingness is lower than that for those with social ties.
To evaluate SSAR under such environments, we set a small
weight for nodes without social ties to forward for others, and
generate higher weights for nodes with social ties. In this case,
each node can be seen as having a social tie with every other
node, and PROPHET-2 becomes identical to PROPHET-1. The
results are shown in Figure 3(h). As the willingness for nodes
without social ties changes from 0 to 0.1 and 0.2, the three
selfishness-aware algorithms do not change much in packet
delivery ratio, but PROPHET-2 delivers more packets.

2) Allowed Selfishness: One key feature of SSAR is that
it allows users to be socially selfish. To compare SSAR with
other algorithms on how much selfishness is allowed, we plot
the SS metric in Figure 4. The packet TTL is 25 days, and
each node on average has 25 social ties.

SSAR allows better selfishness than the other three algo-
rithms. Specifically, SS in SSAR is one magnitude larger
than that of the other three algorithms. SSAR allows more
selfishness for two reasons. First, its buffer management policy
satisfies social selfishness. Second, because of the MKPAR

Contact−dependent Random
0

2

4

6

8

10

12

Social Graph Type

S
S

SSAR SimBet PROPHET−1 PROPHET−2

Fig. 4. Comparison of allowed selfishness.

formulation, high-priority packets are more likely to be for-
warded than low-priority ones, as determined by the selfish
gain metric defined in Section III-C. In contrast, the other three
algorithms manage buffers without selfishness information and
forward packets purely based on contact opportunity, so they
perform much worse.

V. DISCUSSION

Though the current design of SSAR does not consider
malicious behaviors, it can tolerate many of them. Suppose
a malicious attacker joins the network and launches flooding-
based DoS attacks. If other network members do not trust
this attacker and assign 0 or very low social tie strength to
the attacker, the flooding traffic will not be allocated any
buffer/bandwidth resource or only allocated very few resources
to mitigate the DoS attack. If the attacker launches a blackhole
attack (i.e., drop all received packets), SSAR can still tolerate it
with the least modification that a node never forwards packets
to those without social ties from its point of view. Therefore,
the blackhole attack also fails. In summary, SSAR can deal
with outside attackers.

For an inside attacker which is already known by some
existing members, it may successfully launch flooding-based
DoS or blackhole attacks in the short run. However, the
effect of such attacks is limited by the number of social
ties the attacker has, and will be weakened beyond one hop.
Furthermore, when such behaviors are detected, the attacker
may loose social ties with others, rendering its future attacks
impossible. Certainly, this does not mean SSAR should not
take care of such behaviors, but we believe such insider attacks
deserve a separate study. Issues like how to determine legiti-
mate or malicious packet droppings in DTN nodes are different
from those in mobile ad hoc networks where people often
make such decisions based on wireless channel reliability. We
leave it as our future work.

We note that misreporting behaviors are possible in SSAR.
For example, a node may set higher priority values for its
buffered packets than they should have to make them more
competitive in the next hop. To prevent such behaviors, we can
apply ideas similar to rate limiting. For example, a node may
limit the number of high-priority packets or the total priority
from a neighbor; when the actual received number is over the
limit, it will randomly degrade some of them. We will look
into this problem in our future work.

VI. RELATED WORK

A. DTN Routing

We review existing works along three lines.
Forwarding decision When a node contacts another, it needs

to determine which packets to forward. Existing algorithms
vary in what information is used to evaluate a node’s forward-
ing capability and make forwarding decisions. Earlier works
[2], [4] evaluate the forwarding capability of a node by the
historic contact information. Algorithms [26], [27] have also
been proposed for finding the right relays for data forwarding
in vehicular ad hoc networks. Recently, several algorithms [6],
[7], [28], [29] use social metrics calculated from contacts.
These approaches evaluate the forwarding capability of a node
purely based on its contact opportunity. However, we consider
contact opportunity, social willingness and buffer constraint in
an integrated way.

Forwarding set and order Since a contact may be too
short to transmit all packets, it is important to determine in
what order to forward the packets. Existing algorithms usually
decide a greedy transmission sequence by weighting some
metric (like RAPID [5]), and transmit the packets one by
one until the contact ends or no packet is left. However,
these approaches ignore that the forwarded packets may be
immediately dropped by the receiver due to buffer constraint.
So attention should also be given to what to forward. Note that
deciding the forwarding packet set is different from deciding if
a neighbor is a better relay for a packet. SSAR uses MKPAR
to determine both the forwarding set and the order, which is
different from the MKP formulation in [28].

Buffer management Balasubramanian et al [5] give a good
survey on this topic. Most routing protocols assume unlimited
buffer (e.g., delegation forwarding [3]), which is unrealistic
especially when the traffic load is high and replication is used.
Others consider buffer constraints [4], [5]. However, existing
works only discuss the packet drop policy (e.g., [4]). SSAR
integrates the buffer constraint into forwarding decision and
forwarding set optimization.

B. Individual Selfishness

Individual selfishness has been widely studied in mobile
ad hoc networks [10], [11] and even in DTNs [16], [30].
The solutions proposed so far fall into two categories, credit-
based approaches (e.g., [11]) and reputation-based approaches
(e.g., [10]). The principle idea is to stimulate users to forward
packets for others. As discussed in Section II-A, they cannot
be directly applied to the social selfishness problem.

VII. CONCLUSION

This paper introduces the social selfishness problem into
DTNs and proposes a routing algorithm SSAR following the
philosophy of design for user. SSAR allows user selfishness
and improves performance by considering user willingness,
resource constraints, and contact opportunity when selecting
relays. Extensive simulations on the MIT Reality trace show
that SSAR can maintain social selfishness and achieve a very
good routing performance in an efficient way.

REFERENCES

[1] K. Fall, “A delay-tolerant network architecture for challenged internets,”
Proc. SIGCOMM, pp. 27–34, 2003.

[2] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in inter-
mittently connected networks,” ACM SIGMOBILE CCR, vol. 7, no. 3,
pp. 19–20, 2003.

[3] V. Erramilli, A. Chaintreau, M. Crovella, and C. Diot, “Delegation
Forwarding,” Proc. MobiHoc, 2008.

[4] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “Maxprop: Routing
for vehicle-based disruption-tolerant networks,” Proc. INFOCOM, 2006.

[5] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Dtn routing
as a resource allocation problem,” Proc. ACM SIGCOMM, 2007.

[6] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” Proc. MobiHoc, pp. 241–250, 2008.

[7] E. Daly and M. Haahr, “Social network analysis for routing in discon-
nected delay-tolerant MANETs,” Proc. MobiHoc, pp. 32–40, 2007.

[8] M. Motani, V. Srinivasan, and P. Nuggehalli, “PeopleNet: engineering a
wireless virtual social network,” Proc. MobiCom, pp. 243–257, 2005.

[9] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket switched networks and human mobility in conference environ-
ments,” SIGCOMM Workshops, 2005.

[10] J. J. Jaramillo and R. Srikant, “Darwin: Distributed and adaptive
reputation mechanism for wireless ad-hoc networks,” Proc. MobiCom,
2007.

[11] S. Zhong, J. Chen, and Y. R. Yang, “Sprite: A simple, cheat-proof, credit-
based system for mobile ad-hoc networks,” Proc. IEEE INFOCOM,
vol. 3, pp. 1987–1997, 2003.

[12] M. Granovetter, “The strength of weak ties,” The American Journal of
Sociology, vol. 78, no. 6, 1973.

[13] E. Gilbert and K. Karahalios, “Predicting tie strength with social media,”
Proc. CHI, 2009.

[14] A. Seth and S. Keshav, “Practical security for disconnected nodes,” First
IEEE ICNP Workshop on Secure Network Protocols (NPSec), 2005.

[15] A. Josang and S. Pope, “Semantic constraints for trust tansitivity,”
Proceedings of the Asia-Pacific Conference of Conceptual Modelling
(APCCM) (Volume 43 of Conferences in Research and Practice in
Information Technology), 2005.

[16] U. Shevade, H. Song, L. Qiu, and Y. Zhang, “Incentive-aware routing
in dtns,” IEEE ICNP, 2008.

[17] G. Mclachlan, Discriminant Analysis and Statistical Pattern Recogni-
tion. Wiley, 1992.

[18] J. H. Friedman, J. L. Bentler, and R. A. Finkel, “An algorithm for
finding best matches in logrithmic expected time,” ACM Transactions
on Mathimatical Software, vol. 3, no. 3, pp. 209–226, 1977.

[19] T. Gonzalez, “Clustering to minimize the maximum inter-cluster dis-
tance,” Theoret. Comput. Sci., vol. 38, pp. 293–306, 1985.

[20] D. . Loftsgaarden and C. P. Quesenberry, “A nonparametric estimate of
a multivariate density function,” Ann. Math. Statist., vol. 36, 1965.

[21] M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F. Salman,
“Approximation algorithms for the multiple knapsack problem with
assignment restrictions,” Journal of Combinatorial Optimization, vol. 4,
pp. 171–186, 2000.

[22] N. Eagle and A. Pentland, “Reality mining: sensing complex social
systems,” Personal and Ubiquitous Computing, vol. 10, no. 4, pp. 255–
268, 2006.

[23] A. community resource for archiving wireless data at Dartmouth,
“http://crawdad.cs.dartmouth.edu/data.php.”

[24] A. Chaintreau, A. Mtibaa, L. Massoulie, and C. Diot, “The diameter of
opportunistic mobile networks,” Proc. ACM CoNEXT, 2007.

[25] A. Mislove, M. Marcon, K. P. Gummadi, Druschel, and Bhattacharjee,
“Measurement and analysis of online social networks,” Proc. IMC, 2007.

[26] J. Zhao and G. Cao, “Vadd: Vehicle-assisted data delivery in vehicular
ad hoc networks,” Proc. IEEE INFOCOM, 2006.

[27] Y. Zhang, J. Zhao, and G. Cao, “Roadcast: A popularity aware content
sharing scheme in vanets,” IEEE International Conference on Distrib-
uted Computing Systems (ICDCS), 2009.

[28] C. Boldrini, M. Conti, and A. Passarella, “Contentplace: Social-aware
data dissemination in opportunistic networks,” Proc. MSWiM, 2008.

[29] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: A social network perspective,” Proc. ACM MobiHoc, 2009.

[30] F. Li, A. Srinivasan, and J. Wu, “Thwarting blackhole attacks in
distruption-tolerant networks using encounter tickets,” Proc. IEEE IN-
FOCOM, 2009.

