
y'

LA-UR- Q
Approved tor public relaase;
distribution is unlimited <. 1 Title

Author@):

Submitted to:

Los Alamos
N A T I O N A L L A B O R A T O R Y

ROUTING IN TIME-DEPENDENT AND LABELED NETWORKS

Christopher L. Barrett, D-2
Keith Bisset, D-2
Riko Jacob, University of Aarhus, Denmark
Goran Konjevod, Arizona State University
Madhav V. Marathe, D-2

ACM-SIAM Symposium on D i s c r e t e A l g o r i t h m s (S O D A 0 2)

San Francisco, CA
January 2002

Los Alamos National Laboratory, an aflinnative actionkqual opprtunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognlzes that the US.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for US. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher's rlght to publish; as an institulion. however, the Laboratory does not endorse thevlewpolnt
of a publication 01' guarantee its technical conectness. Form 836 (1 W98)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Routing in tirne-dependent and labeled networks

CHRIS BARR.ETT2 KEITH BISSET~ RIKO JACOB' GORAN KONJEVOD3 MADHAV MAR AT HE^

August

Abstract

We study routing problems in time-dependent and edge-
and/or vertex-labeled transportation networks. Labels
allow one to express a number of discrete properties of the
edges and nodes. The main focus is a unified algorithm
that efficiently solves a number of seemingly unrelated
problems in transportation science. Experimental data
gained from modeling practical situations suggest that
the formalism allows interesting compromises between the
conflicting goals of generality and efficiency.
1. We use edge/vertex labels in the framework of For-

mal Language Constrained Path Problems to handle dis-
crete choice constraints. The label set is usually small and
does not depend on the graph. Edge labels induct! path
labels, which allows us to impose feasibility constraints on
the set of paths considered as shortest path candidates.

Second, we propose monotonic piecewise-linear
traversal functions to represent the time-dependent as-
pect of link delays. The applications that can be modeled
include scheduled transit and time-windows.

3. Third, we combine the above models and capture a
variety of natural problems in transportatiou science such
as time-window constrained trip-chaining. The results
demonstrate the robustness of the proposed formalisms.

As evidence for our claims of practical efficiency in a

realistic setting, we report preliminary computational ex-
perience from TRANSIMS case studies of Portland, Ore-
gon.

2.

1 Introduction

We study route-planning models in the context of
multi-modal urban transportation systems. The r e
search reported in this paper should be viewed as
applied research backed by experimental analysis in
realistic settings. Specifically, much of the basic
theoretical background for these results is not new

'BRICS, Department of Computer Science, Univemity of
Aarhus, Denmark. Email: rjacobQbrics .dk.

2Los Alamos National Laboratory, P.O. Box
1663, MS M997, Los Alarnos, NM 87545. Email:
barrett,bisset,maratheOlanl.gov.

'Department of Computer Science, Arizona State Wniver-
sity, Tempe, AZ. Email: goranOasu.edu.

1, 2001

and can be found in [BJM98]. Our initial moti-
vation for this study was the TRANSIMS project
for transportation analysis and simulation [TR+95a].
Nevertheless, we argue that the solutions are not
TRANSIMS-specific, but applicable to a number of
other realistic transportation problems.

TRANSIMS is a multi-year project at the Los
Alamos National Laboratory and is funded by the
Department of Transportation and by the Environ-
mental Protection Agency. The purpose of TRAN-
SIMS is to develop new models and methods for
studying transportation planning questions. A proto-
typical question considered in this context would be
to study the economic and social impact of build-
ing a new freeway in a large metropolitan area.
We refer the reader to [TR+95a] and the web-site
http://transims.tsasa.lanl.gov to obtain exten-
sive details about the TRANSIMS project. TRAN-
SIMS conceptually decomposes the transportation
planning task into three time scales. First, a large
time-scale associated with land use and demographic
distribution as a characterization of travelers. In this
phase, demographic information is used to create ac-

tivitie,u for travelers. Activity information typically
consists of requests that travelers be at a certain lo-
cation at a specified time. and they include informa-
tion on travel modes available to the traveler. Second,
an intermediate time-scale consists of planning routes
and trip-chains to satisfy the activity requests. This
is the focus of our paper and the TRANSIMS module
responsible for this computation is called the route
planner. Finally, a very short time-scale is associated
with the actual execution of trip plans in the network.
This is done by a simulation that moves cellular au-
tomata corresponding to the travelers through a very
detailed representation of the urban transportation
network.

The basic purpose of the route planner is to use
the activity information (generated earlier from de-
mographic data) about a traveler to determine spe-
cific optimal mode choices and travel routes for each
individual traveler. The routes need to be computed
for a large number of travelers (in the Portland case

1

study 5-10 million trips are planned). In order to
remove the forward causality artificially introduced
by this design, and with the goal of bringing the sys-
tem to a “relaxed” state, TRANSIMS has a feedback
mechanism: the link delays observed in the simula-
tion are used by the route planner to re-plan a frac-
tion of the travelers. Clearly, this mechanism requires
a high computational throughput from the planner.
The high level of detail in planning and the efficiency
demand are both important design goals; methods
to achieve rearonable performance are well known if
only one of the goals needs to be satisfied. Here, we
propose a framework that uses two independent ex-
tensions of the basic shortest path problem to cope
with these design requirements simultaneouslyu

2 Theoretical Results

Our main contribution is a unified modeling frame-
work and an associated efficient algorithm for con-
strained shortest paths in multi-modal and time-
dependent networks. The advantages of our frame-
work are: (1) translation of “real world” questions
into mathemat,ically well-defined optimization prob-
lems, (2) guidance in the development of algorithms
for these problems, and (3) a single efficient dgo-
rithm for a host of seemingly different optimiaation
problems in transportation science.

An additional goal is to show how to use this frame-
work and the associated algorithm to solve extremely
large realistic transportation problems. From a prag-
matic point of view, a generic algorithm simplifies
the implementation of and experimentation with al-
ternative models. To illustrate the third point above,
we give examples where alternative, more direct al-
gorithms are known. The unified framework consists
of the three parts described below.

First, we consider models and algorithms for short-
est paths with discrete choice constraints. These
include travel modes, destination choice, roadway
type, etc. In general many of these choices cannot
be modeled adequately by edge-weights, but edge-
or vertex-labels are more appropriate. Motivated
by this, we represent the transportation network
by a (possibly time-dependent) weighted, (vertex-
and/or edge)-labeled graph. The labels denote modal
or other discrete attributes of the edge (vertex)
and are drawn from a finite set. We use regular
expressions over the label set to describe feasible
paths, explain how to solve these problems efficiently
and show how this model encompasses a wide vari-
ety of discrete-choice transportation problems (Sec-
tion 4.2). Regular languages as models for con-

strained shortest-path problems were suggested ear-
lier by Romeuf [Rom88] and applications to database
queries were described by Yannakakis [Ya90] and by
Mendelzon and Wood [MW95]. For more details, we
refer to Barrett, Jacob and Marathe [BJM98].

Second, we discuss finding (optimal) paths in time-
dependent networks. This is an important problem in
transportation science [Ch97a, Ch97b, ZM95, ZM92,
ZM931. We propose monotonic piecewise-linear link
travemal functions to model time-dependence. We
argue that this class is (1) adequate for modeling
time-dependent edge lengths in rapidly changing con-
ditions on roadways and (2) flexible enough to de-
scribe more complicated scenarios such as scheduled
transit and time-window constraints but also (3) al-
lows computationally efficient algorithms. For exam-
ple, a prototypical question consists in finding the
shortest route that takes into account the bus and
train schedules. We solve this problem efficiently in
our framework (Section 5.3). The ideas we present
here are built on a well-established literature on time-
dependent shortest-path problems (for a survey see

Orda and Rom [OR91]).
Finally, we show how to combine the two models

(labels and time-dependence) and the proposed al-
gorithms to capture a variety of important problems
including time-windows, trip chaining, etc. These re-
sults further demonstrate the robustness of our mod-
els imd algorithms. To the best of our knowledge,
only heuristic methods have been used so far to solve
such problems.

3 Experimental results

As mentioned earlier, the algorithms described here
have been implemented as part of the TRANSIMS
project. This allows testing or our methods on real
transportation networks. In order to anchor research
in realistic problems, TRANSIMS uses example cases
called Case studies (see [CS91 for details). Two
case studies have been designed-the first one, con-
cluded in May 1997, focused on the Dalias/Fort-
Worth (DFW) metropolitan area. It was done in
conjunction with a municipal planning organization
(MPO) (the North Central Texas Council of Gov-
ernments, NCTCOG). The second case study is cur-
rently underway and focuses on Portland, Oregon.
While the goal of the DFW case study was mainly
validating uni-modal traffic simulation, the Portland
case study will attempt to validate our models and
algorithms for multi-modal time-dependent networks.
Due to the focus of this paper, we will mainly focus on
illustrative experiments done in the context of Port-

2

land network. A more detailed experimental study
will be found in [BB-i-011.

Section 7 discusses illustrative experiments that al-
low us to infer (i) the scalability of our methods,
(ii) the power of the modeling framework in captur-
ing realistic problems, (iii) and empirical improve-
ments obtained by augmenting the basic algorithm
with heuristic methods.

4 Language-constrained paths

Consider a small pedestrian bridge across a river (or a
highway). A traveler can only use the bridge on foot.
Since we do not wish to update the network for every
single routing question, we annotate the network with
such information. More precisely (and abstractly), to
each edge and/or vertex of the network, we assign a
class (label) L G E. (C is a finite set we refer to as the
alphabet.) We call such labels modes and say that a
labeled network is multimodd.

By concatenation, the edge and/or vertex labeling
extends to walks. The resulting string of labels is
called the label of the walk. This walk-label deter-
mines whether or not the walk is acceptable as a par-
ticular traveler’s itinerary. We usually refer to walks
in the network as paths; in other words, we usually
allow our paths to repeat edges and/or vertices and
instead use the term simple path to denote paths.

C* over
the alphabet C such that any path whose label be-
longs to L is acceptable. Now we can raise a shortest-
path question: given a source node s and a destina-
tion node d, find a shortest path p from s to d whose
label belongs to L.

Example 4.1. Multimodd planning. In a simple
multimodal network the edgelabels denote modes of
travel allowed on the link. For example, stret?trs will
be labeled “c” for car travel, sidewalks and pedestrian
bridges “w” for walk, segments of transit lines (buses,
rail) “b” and “r’), respectively (or, in a simpler model,
lumped together under “t” for transit).

Consider routing a traveler who doesn’t own a car
and takes a bus to her destination. Suppose trans-
fers are undesirable. The traveler will use some walk
links, then one or more bus links and finally again
some walk links.

In order to find a shortest path for this traveler,
the following network suffices. Let there be a vertex
for every intersection and every transit stop. For ev-
ery street block passable to pedestrians (that is, with
a sidewalk) between two intersections, add a bidirec-
tional link labeled “w”. For every bus line, add a

More precisely, we specify a language L

unidirectional link between every consecutive pair of

stops and label it “b”. Make sure that in order to
transfer between buses, a walk link must be used.
Now the goal is to find a shortest path between the
traveler’s origin and destination whose label is of the
form w.. . wb.. .h.. . w.

Note that finding a shortest path with the restric-
tion imposed in the example above does not become
any more difficult if the network includes additional
arcs with different labels (such as streets (“c”), rail-
way links (“r”), etc.). This shows an important fea-
ture of our framework: i t is possible t o treat different
modal constraints by changing only the constraining
language. Thus we can plan all trips on the same
underlying network and avoid the expensive network
modification for each different modal constraint.

The following definition formalizes the language
constraints. If p is a path in G , by l (p) we denote
the label of p , that is, the concatenation of labels of
consecutive edges in p.

Definition 4.2. (Language-constrained shortest-
paths.) Given a directed, labeled, weighted graph G ,
a source s E V (G) , a destination d E V(G) and a
formal language (regular, context free, context sensi-
tive, etc.) L, find a shortest (not necessarily simple)
path p from s to d in G such that l (p) E L.

A complexity analysis of the formal-language-
constrained shortest and shortest simple path
problems was given by Barrett, Jacob and
Marathe [BJM98]. We summarize their results here,
using n to denote the number of vertices in the graph
G:
(1) If the path is required to be simple, almost all
problems are NP-hard. Thus, we only consider short-
est paths without the simplicity constraint.
(2) The problem of finding a context-free-language-
constrained shortest path is polynomial-time solv-
able, but the high complexity O(n3sr) (where s is the
number of nonterminals and T the number of rules in
the Chomsky normal form of the grammar) of the
fastest known algorithm restricts its practicality.
(3) If the language is specified by a nondeterminis-
tic finite automaton (NFA), the problem reduces to
an ordinary shortest-path problem on a graph with
n IC vertices, where IC is the number of vertices in the
NFA. The solution is in fact a shortest path in the
direct product of the graph G and the directed graph
representing the NFA.

The last model is the one we consider the most
practical for transportation science applications.
Hereafter we assume that the constraining language
L is specified as a regular expression.

3

4.1 Algorithm for linear expressions

We now describe the algorithm actually implemented
in TRANSIMS. First, some (standard) notation: w+
denotes one or more repetitions of a word (string) w,
x + y denotes either x or y, C typically denotes the
alphabet, that is the set of all available symbols.

TRANSIMS currently supports linear (or simple-
path) regular expressions. They are of the form
xfx: . . - x$’, where xi E 2: U (2: 4- E) for all i.

Note that if R1 , Rz, . . . Rk are linear regular expres-
sions, then the expression Iz1 + - . + Rk can also be
easily handled by finding the best path for each Ri
and then choosing the best one. We call such expres-
sions rooted paths regular, since the automata graphs
form a set of simple paths joined at the root.

Algorithm 4.3. Input: A linear regular expression
R (as the string R[O.. . IRI - 11, a directed edge-
labeled weighted graph G, vertices s and d E V(G).
Output: A minimum-weight path p* in G from s to d
such that I ($) E R.
Conceptually the algorithm consists of running Dijk-
stra’s algorithm on the direct product of G and the fi-
nite automaton M (R) representing R. For efficiency,
we do not explicitly construct G x M (R) , but con-
catenate the identifier of each vertex of G with the
identifier of the appropriate vertex in M (R) .

In other words, we run Dijkstra’s shortest-path al-
gorithm on G with the following changes: each vertex
is referred to by the pair consisting of its index in G
and an integer 0 5 a 5 IRI - 1 denoting the loca-
tion within R. In the first step, a = 0 and the only
“explored” vertex is (s,O). In each subsequent ex-
ploration step of Dijkstra’s algorithm, consider only
the edges e leaving the current vertex (v,a) with
l (e) = R[a] or l(e) = R[a+ 11. If an edge e = 2rw with
l (e) = R[a f 11 is explored, then the vertex reached
will be (w,a + 1). Otherwise the vertex reached is
(w,a). The algorithm halts when it reaches the ver-

0

Theorem 4.4. Algorithm 4.3 computes the short-
est R-constrained path in G (with nonnegative edge-
weights) in time O(T(IRIIG()), where T(n) denotes
the running time of a shortest-path algorithm on a
graph with n nodes.

The running time of the algorithm is equal to

O(lG1 + (R1 + Heaplog(Heap)), where]GI, IRI and
Heap respectively denote the encodings of graph and
regular expression and the maximum size the heap
grows to. The algorithm yields significant savings of
time in practice. First, we do not need to construct

the product explicitly saving us at least O(lG1 IRI)

tex (d, IRI - 1).

time. Second, typically the heap size never grows to
much. In fact, it appears that the run time of the al-
gorithm is more a function of the path length rather
than the entire graph. Our results in the experimen-
tal section discuss this further.

4.2 Examples of regular constraints

We give some illustrative examples of regular expres-
sions that might be useful in the context of trans-
portation planning. Rather than being exhaustive,
this is a list of problems solvable by a single algo-
rithm and implementation.

1. Trip chaining. Consider the following prob-
lem: given a sequence of activities that can be per-
formed at different locations, find the shortest path
that allows the traveler to perform the activities in
the &en order. To solve the problem, we create
new “virtual” loop links at every possible activity
location. We label these links according to the ac-
tivity that can be performed there. For an activity
sequence ABC . . . we would consider the regular ex-
pression T A T B T C T . . . where T denotes a regular
expression that allows (arbitrary or restricted) travel
in the network. Note that this does not solve the trav-
eling salesman problem (TSP) problem in polynomial
time--there we would have to consider all possible n!
orderings of n activities to find an optimal solution.
On the other hand, if the number of activities n is
small, enumerating the n! sequences might be feasi-
ble. Figure 1 shows an exmaple trip chained route
produced for a traveler in Portland.

2. Label subsets and consistent paths. In the
course of generating valid activities for planning and
microsimulation, it is necessary to ensure that the
paths generated are consistent in their use of modes.
For instance, if you parked a car at a subway station,
the path found by these methods should make sure
that you do not drive until you return to the par-
ticular parking lot where you left the car. Additional
examples include (1) finding a shortest path avoiding
trains or highways; (2) making sure that if we drop
our car at a parking lot and then use transit to go to
work, we do not use the car for errands during the
day; and (3) finding a shortest path that may use the
freeway but not the interchange. In all of these exam-
ples we restrict the path to use only a particular set
of labels. This can be achieved by a single-state au-
tomaton. (Alternatively we could remove unwanted
links from the network, but doing this explicitly is
time-consuming.)

3. Intermediate location. Finding paths that

4

Figure 1: Example of two trip chained routes for two
traverles in Portland generated using our router. The
first person goes as follows: Home-work-lunch-work-
Doctor-shop-home.

use trains so that the train is boarded at a particular
subway station.

Here we have to mark the subway station(s) we
consider using an appropriate label and then enforce
the use of a vertex with this label within the path.
This can be done with a two-state automaton. (Alter-
natively we coiild split the question into two shortest
path computations.)

4. Multimodal plans.

5. Selecting road types. As mentioned earlier,
we can use regular expression to express the choice
of various road types a traveler might wish to take.
Figure 2 illustrates this type of a query on a realistic
traffic network-the Dallas/Ft. Worth road network.
As explained in the Figure, a traveler can specify the
type of roads (e.g. freeways, ramps, arterials) that
(s)he wishes to use to complete the trip.

6. Counting constraints. An automaton with
IC -I- 1 states can count up to k occurrences of spe-
cial links. Thus we can only examine paths with
more than k, exactly k or less than k special links.
In the latter case we get the simplicity for free.
(This follows, for example, from a more general re-
sult [MW95].)

The following problems have been studied in the
literature and can be immediately solved using the
appropriate expression.

See Example 1.

Figure 2: Example in Dallas: unrestricted fastest
route is depicted by a straight dashed line, (this is
also the fastest route entering the highway system at
most once), the fastest route that does not switch
between different highways is dashed and curved, the
fastest route that stays off the highways is solid.

6a. k-similar paths. There has been consider-
able interest in algorithms for alternatives to short-
est paths [AM093]. For example, in a recent pa-
per [SJB97], the authors consider the following prob-
lem: given a graph G, a (shortest) path P in G and
an integer parameter, find the shortest path Q in G
that has at most IC links in common with P. Call this
path the best k-similar path. The authors use a La.-
grangian relaxation. Although the algorithm appears
efficient in practice, it is exponential in the worst case.

Using the above terminology, we make all the links
of the (shortest) path P “special.” Then the de-
scribed automaton ensures that the path found does
not have more than k links in common with P .

6b. Turn complexity. Assume we have an ex-
tended network, where every movement across an in-
tersection (going straight or turning) is explicitly r e p
resented as a link. Then we can use 2 and 6a above to
search for the shortest path using, for example, less
than k left turns.

6c. Transfers. If the network representation uses
links of different type to represent bus transfers, we
can easily encode the maximum number of transfers

allowed.

5 Time-dependent delays

Experience with realistic transportation systems and
simulations like TRANSIMS makes it clear that the
dynamics of the link delays are an important com-
ponent of urban traffic. The problem of finding the
“best” path in a time-dependent network has been
studied extenfiively (see for example [OR90, ZM95,
ZM931). Since the literature on this subject contains
different notions of time-dependence, we first define
our terminology.

The fundamental assumption is that the delay in-
curred by traversing a link cannot be represented by
a single value. Instead, every link (a,b) in the net-
work has an associated link traversal function f(“,b),

defined so that a traveler starting across the link at
endpoint a and time t arrives at endpoint b at time

f (e , b) (t) *

Definition 5.1. A path from a source s to a desti-
nation t i s a sequence of n + 1 vertices vo, VI,. . . Vn

and times to, t1 , . . . , tn that satisfies (1) vo =: s; (2)
there exists a link from vi to vi+l; (3) i f f i s the Iink
traversal finction for the link from vi to vi+1, then
ti+1 = f (t i) ; and (4) Vn = t . The numbers t o und tn

are also referred to as the departure time and arrival
time, respectively.

Earliest arrivals and delay assumptions.
As a motivation, consicler a traveler starting from
an origin node at a certain point in time and look-
ing for a route through the network with the earliest
possible arrival time at the destin
Rom [OR901 present a theoretical study
plexity of such shortest-path problems.
model consists of a functi
lay incurred in traversing the link
reaches the link at a given time.
is called the link delay function.
fer link traversal functions, howe
ified that these two formalisms
f : Q -+ Q be it link-delay functi
alent link traversal function t : Q -+
by t (x) = f (x) + x . We assu
delays/traversal times.

The first is the delay n
f(x) 2 0 which becomes t
function t (we also write th
sal function t whose equivalent link
nonnegative is said to have

The second is the first-in-first-out condition, that
is a traveler entering the link first leaves the link first

as well. This is ensured by the fact that the link
traversal function t is monotone nondecreasing, that
is f (t‘) 2 f (t) if t’ 2 t. Strictly speaking, this con-
dition is not realistic because it ignores, for example,
passing by cars on the roads. However, without it
the problems become too difficult. Note that we do
not restrict our functions to Q+ ; this is necessary in
order to define itn incoming shortest-path tree, which
correhiponds to a shortest-path request with a fixed
arrival time.

5.1 MPL functions

The two assumptions of the previous section were mo-
tivated by common sense (nonnegativity) and compu-
tational feasibility (monotonicity). To get a class of
functions that is flexible enough to model various ap-
plications, but also allows efficient modeling within a
computer program, we use monotonic piecewise-
linear (MPL) functions. Among other properties,
this class allows fast lookup of values and this is im-
portant, being a part of the innermost loop of the
algorithm. But first, the definitions.

Using koo is a convenient shortcut for expressing
(temporary) unavailability of a link. Thus we define
the traversal functions on the extended set of rational
numbers 0 = Q U (00, -00).

Definition 5.2. A function f : Q -+ a i s called
piecewise linear if there exist values XI, xa, . . . , x n E

a such that xi 5 xi+l and for t E (xi, x i+ l) the value
of f i s given by f (t) = ai + t . bi for some ai, bi E Q.

Monotonic functions also have the advantage of b e
ing (almost) invertible.

Definition 5.3. Let f : Q -+ 0 be an MPL function.
Then g : a + a is a weak inverse of f if g is MPL,
g(t) 2 sup{x : f(x) < t) and g(t) 5 inf{x : t <
f (2))”

This definition leaves one the choice of an “opti-
mistic” or a “pessimistic” weak inverse for constant
f . Other than this, g is uniquely determined. Let g

be any weak inverse of f, It is easy to verify that f is
also a weak inverse of 9. Furthermore g is piecewise
linear if f is piecewise-linear. (Proofs can be found
in the appendix.)

A data structure for MPL functions is for example
a sorted set of pairs that can be searched for both
x and (linearly interpolated) p values. For functions
that do not need to be modified frequently, an imple-
mentation using arrays and binary search performs
well.

6

5.2 Properties of MPL functions

After having introduced the basic concepts of MPL-
functions, we now summarize several useful proper-
ties and alternative characterizations.

1. First-in-first-out property: If traveler A enters
the link before traveler B, the monotonicity im-
plies that B cannot leave the link before A. (No
passing.)

2. naversal-delay equivalence: A piecewise-linear
traversal €unction corresponds to a piecewise-
linear delay function and vice versa.

3. (Temporary) unavailability of a link can be mod-

4. (Weak) invertibility allows simultaneous answers
to earliest arrival and latest departure questions.
Simple data structures evaluate a function and
(a specific) one of its weak inverses.

eled using kt00 as the time values.

5. Rounding errors are well understood. If appro-
priate we can work with integers and (implicitly)
approximate by piecewise-constant functions.

6. Continuity is not necessary for the shortest-path
algorithm. Even piecewise-constant, link traver-
sal functions are suitable. (Not true for link de-
lay functions.)

every time bin into an imaginary car that arrives at
the end of the link precisely in the middle of the time
bin. Assuming the car haa been moving at the re-
ported average speed, we calculate the correspond-
ing departure time into the link. These interpolation
points get are then joined by line segments. In sim-
ilar ways we can use statistics that report average
speed of cars starting into a link during a time bin
or just speed averages during a time bin. The diffi-
culty (if any) in interpreting this kind of statistic does
not arise from the fact that we want to construct a
piecewise linear function. However, we must verify
that the resulting link traversal functions are in fact
(weakly) monotonic, w expected.

2. Transit with schedules. Consider the ear-
liest arrival problem with scheduled transit. A fixed
and accurate schedule for the public transportation
system is given and used to create a network with
link traversal functions. For simplicity we only look
at transit, ignoring the walking part of using tran-
sit, and assume that the source and destination are
transit stops.

The graph has a node for each transit stop, using
the same node for several lines if a transfer is possible
at the stop. This allows transfers even if the gains are
minimal. Some important details like the volatility
of real schedules (buses more than trains) and the
inconvenience of transferring are ignored.

A bus going from one stop to another defines a

7.

5.3 Time-dependence applications

We illustrate the applicability of MPL functions to
modeling link delays by giving a few examples. The
main goal is to convince the reader that such func-
tions are adequate for many real situations.

1. Routing on a street network. Assume that
we have statistics for every link in a road network
used by cars. For example, consider the value of the
average speed of the cars arriving at the end of the
link within a 15-minute time bin. This data may
come from real observations or (more likely) from a
simulation, as is the case in TRANSIMS. In TRAN-
SIMS link traversal functions are created using inter-

polation points: we aggregate the information from

To model several buses on the same line during
the day, we simply combine the functions: the arrival
time at the other end of the link coincides with the
arrival time of the next bus on the same line. Such a
combination is illustrated in Figure 3. In the figure
all the buses but one are assumed to take the same
time in traversing the link. It is straightforward to
adjust the functions to the fact that at different times
of the day the busses travel at different speeds; the
buses may in fact be simulated themselves by forcing
them to take the scheduled route and the actual sim-
ulation delays and congestion may be incorporated in
the schedule.

7

’ came

enter time

1

Figure 3: Link traversal function for transit.

3. Shortest path with departure time window.
Another problem expressible in our formalism is the
following: given a time-dependent network, a source-
destination pair and a departure time window, find
the departure time within the time window and a
path that minimizes overall travel time. The algo-
rithms presented so far cannot solve this question di-
rectly. Moreover, although the problem is exactly
solvable in polynomial time for unrestricted waiting
or monotonic link traversal functions [ORSO], the run-
ning time might be unacceptable. Therefore we pro-
pose an approximation algorithm (in fact an approx-
imation scheme with bounded absolute error) with
significantly improved running time. We believe that
for real world queries the performance is actually even
better than our theoretical bounds imply.

Choose a granularity parameter T. Find a se-
quence s ~ , s z , . . . , s,, such that si+1 - si < 7‘. The
time window considered is then [SI, sn]. Evaluate the
fastest path question for all the si and take the short-
est of those. The worst case occurs when you might
have stayed at origin for nearly time T and still ar-
rive at the same time. Therefore the approximate
path takes at most T times the optimal time.

6 Combinations

In this final technical section, we consider cornbina-
tions of the two extensions discussed so far. A desir-
able feature of the approach is that the algorithm for
solving routing problems in timedependent and the
algorithm for solving routing problems in labeled net-
works can be combined to yield a unified algorithm
for routing in time-dependent networks with labeling
constraints.

6.1. The Algorithm

Algorithm 6.1. Input: A linear regular expression
R (a the string RIO ...I R(- 11, a directed edge-
labeled graph G, vertices s and d E V(G). An MPL
traversal function associated with each edge. Output:
A path from s to d that requires minimum travel time
among all those whose labels satisfy R
Similarly to the fixed-delay case, we run Dijkstra’s
algorithm on G x M (R) . The algorithm remains the
same except that link-traversal delays are computed
using the MPL functions. To see why this algorithm
is correct, think of it as the standard Dijkstra’s algo-
rithm run on a graph consisting of multiple copies of
G x M (R) , one for each possible time-step. For each
timwtep t , a copy of e = uzl E E(G x M (R) with
delay f(e, t) joins the tth copy of u to the t + f (e , t)-
th copy of v The algorithm stops when it reaches any
copy of the destination vertex d. No vertex is seen
twice (even with time-dependence) because the MPL
functions are FIFO.

For efficiency, we still do not explicitly construct
G x M (R) . In fact, the only change in the algorithm
is contained in the function that returns the time at
which the traveler would arrive at the end of a link aa
a function of the link identifier and the current time.
Ci

6.2 Examples

1. Trip chaining with time windows. A real-
world variant of the trip chaining problem includes
a time-dependent transportation network and busi-
ness hours of the locations where we could perform
our activity. To accomplish this, we first create a vir-
tual link (a self-loop) at each activity location. We
then use an appropriate link traversal function on the
virtual link representing the activity at a certain lo-
cation. Note that this allows us to adapt to different
business hours at different locations of the same type,
for example grocery stores. The link traversal func-
tion is created to capture the following semantics: if
we “enter” before the shop opens, we “arrive” at the
opening time of the shop, during working hours we
arrive immediately (delay 0), after the shop closes we
arrive at time +m, i.e. never. Formally let a shop
s open at time to and closes at time t,. The link
traversal function on the virtual link 1, is given by

to, if t to;

00, if t , < t ;

t , if to < t 5 t,; (6.1)

8

A function corresponding to a business closed over
lunch break is illustrated in Figure 4. To make sure
the business is visited during office hours, we label its
virtual link and require that the label be used by the
path we find. Now solving the shortest-path problem
on the modified network with the regular expression
constraint yields the required solution.

Note that we can encode the time needed to per-
form the activity into the link traversal function,
modeling for example a situation where we expect
the length of queues at the counter to vary with the
time of day.

flt) exit time I

enter time

store opens t

Figure 4: Link traversal function for a store that
closes for lunch break and does a lot of business in
the afternoon .

2, Vehicle availability. The problem can be
stated as follows: find a pair of trips from home to

work and back, such that the car is picked up by
the second trip exactly where it was left in the first
trip. Minimize the overall travel time, i.e the time
between departure and arrival at home. We assume
fixed arrival and departure times at work. (Otherwise
one can do the same type of interval search as for the
time window cleparture,) We solve the problem in
our framework as follows:
1. Compute the time-dependent arrival and depar-
ture shortest-path tree with transit (not using the
car) from the workplace for the appropriate times.
This gives a pair of times at every possible parking
location p: t , (p) is the latest time we must arrive
there in the morning to reach the office in time and
t&) is the earliest time at which we can arrive at
the parking location in the evening after starting at
a fixed time from the office.
2. Construct a virtual parking link (a self loop at
each parking location p) and label it 1,.
3. Each virtual link is assigned a link traversal func-
tion as follows: as long as we come to the parkiiig lot

earlier than tab) we arrive at the end of the link at
time t&). Otherwise (we are late), we arrive at time
+w, i.e. never. Formally, for each virtual link p with

times tab) and t&), define fp(t) = t d for all t t,,
and fp(t) = 00 for all t > t,. Note that this defines
an MPL link traversal function.
4. Then we choose a reasonable time window and run
the fastest path with time windowed departure query
from home to home subject to the constraint c+ZP+c+.

Here c denotes label of a car link. The solution and
the performance guarantee obtained by solving this
last problem translate directly into a solution and

0
Note that for this algorithm, the street network to

be used with the car and the network a transit pas-
senger uses are completely independent. The process
of parking the car and walking from the parking lot
to transit stop is modeled “in between” the two ex-
plicit networks. Reading out the “virtual parking’’
link from the two shortest-path trees allows us to
model even additional details, like a crowded park-
ing lot.

This can be extended to the trip-chaining problem
with one point of the trip fixed in time.

guarantee for the original problem.

7 Preliminary Experiments

As mentioned, the experiments were carried out on
a multi-modal transportation network spanning the
city of Portland. The network representation is very
detailed and contains all the streets in Portland. In
fact, data also specifies the lanes, grade, pocket/turn
lanes, etc. Much of this was not required in the route
planner module.

Types Street Parking Activity Bus+Rail Route
Nodes 100511 121603 243423 9771+66 30874
Edges 249222 722746 2285604 56676 30249

Figure 5: Break down of links and edges by different
types.

Runtime 100 % 25 % 20 % 15 %
14.74 3.64 3.19 2.45

Figure 6: Running time in hours as a function of the
fraction of total trips (8.9 million). This is the total
wall clock running time on the 124 CPU system.

The networks details are as follows: There were
475 264 external nodes and 650 994 external links.
Most of these links were bidirectional. Moreover, no
connectivity to parking sites, houses, bus stops was
provided. The composite network on which we could

9

route thus became quite large, spanning half a million
nodes and over three million edges. (The number of
links and edges by mode types is given in Figure 5.)

For instance edges under parking column tell us how
many edges go to and fro from parking locations. The
Portland population located on this network in about
650 000 households with approxi.rnate1y 1.8 million
travelers .who participate in 8.9 million activities diu-
ing the course of a 24 hour period.
Results. We used (a subset) of the following val-
ues measurable for a ningle or a specific number of
computations to conclude the reported results

0 (average) running time exchiding i/o

a maximum heap size

a number of links and length of the path

Figure 6 shows the running time of our algorithm.
Roughly, it took 14 hours to run 8.9 million trips on
a 124 procensor system. The scaling can be saen to
be roughly linear: 25 % trips required approxiniately
4.5 hours.

Figures 7 and 8 shows the traffic density in Port-
land downtown in the morning using th.e routing in-
formation. Figure 9 is a table describing the average
path lengths for set of approximately 1500 trwelers
using a given modal string. Three difrerent modal
strings were used: w, wcw and wtw. The Figure shows
the path length in terms the number of time talcen
with free flow speed, the distance, and the nurnber of
hops. All of thein report numbers for free flow speed.
Numbers when we iterate a,re available from klie au-

thors. The last two columns denote respectivelt the
number of nodes touched and the running time taken
to find such a route.

Figures 10 and 11 show the tradeoff between the
running time and quality of solution ai we increase
the overdo parameter (as suggested by our tmlier
work in [JMIY99] and the work of Stx~gewick and Vit-
ter [SVSS]). See Section 9 for details on this method.
For the discussion here it suflices 1,o remember that
overdo parameter is a multiplicative factor uried to
weigh the Euclidean distimce estimate of the current
node to t'he destination.

Figrires 12--l5 plot the dependence of the running
time (in seconds) on (Fig. 12) the distance (in meters)
between the origin and the destination, (Fig. 13) the
length of the trip (in nodes) and the time (in seconds)
the trip takes, for (Fig. 14) car and (Pig. 15) walk

trips. Superficially, the depende:rice does not seem
quite linear (as; we expected), but we postpone a more
detailed statist,ical analysis for a later paper [BE!-I-011.

Figure 7': Plot showing the expected number of

people in the down town Portland area at 7 a.m.
Color coding is green=normal, blue=dense, red=very
dense.

Figure 8: Plot showing the expected number of peo-
ple in the down town Portland area at 8 a.m. Note
the increase in traffic.

mode time dist Hops Heapsize Runtime

II 4447 4688 41 28391 0.795275

cu 402 11445 58 25287 2.713795

U t W 21149 154 3827461 62.905374

Figure 9: Table showing the runtime and quality of
paths for three different modes. The last two columns
also show the number of nodes touched and the time
taken to calculate the paths.

10

zr-- -7

smpm.

Ilmm.

PmJ.

Figure 13: Runtime in terms of the number of nodes.

L& . T

u s . m

. .
+ . e

2ff. + * :
p. .+:: 5 . *

4 :

Figure 10: Graph showing the running time as a func-
tion of overdo parameter.

Figure 11: Gri%ph showing the quality as a function
of overdo parameter.

Figure 14: Runtime in terms of trip time (car trips).

Figure 12: Runtime in terms of the distance

11

Acknowledgements: The research was per-
formed under contract from Department of Trans-
portation and the Environmental Protection Agency
and also supported by Department of Energy under
Contract W-7405-ENG-36. Riko Jacob and Goran
Konjevod worked on this project while visiting Los
Alamos National Laboratory. We thank the mem-
bers of the TRANSIMS team in particular, Richard
Beckman, Kathy Birkbigler, Brian Bush, Stephan
Eubank, Deborah Kubicek, Kristie Henson, Phil
Romero, Jim Smith, Ron Smith, Paula Stretz, for
providing the software infrastructure, pointers to re-
lated literature and numerous discussions on topics
related to the subject. This paper would not have
been possible without their support. We also thank
David Bernstein, Joseph Cheriyan, Terrence Kelly,
Albert0 Mendelzon, Kai Nagel, S.S. Ravi, Daniel
Rosenkrantz, Prabhakar Ragde, R. Ravi and Aravind
Srinivasan for constructive comments and pointers to
related literature.

References

[AHU] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The De-
sign and Analysis of Computer Algorithms, Addison
Wesley, Reading MA., 1974.

[AM0931 R. K. Ahuja, T. L. Magnanti and J. B. Orlin,
Network Flows: Theory, Algorithms and Applications,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[BB+Ol] C. Barrett, R. Beckman, K. Bisset, B. Bush, S.
Eubank, G. Konjevod and M. Marathe Esperimental
Analysis of Routing Algorithms in in Time Dependent
and Labeled Networks, manuscript, 2001.

[TR-k95a] C. Barrett, K. Birkbigler, L. Smith, V. Loose,
R. Beckman, J. Davis, D. Roberts and M. Williams,
An Opemtional Description of TRA NSIMS, Technical
Report, LA-UR-95-2393, LOB Alamos National Labora-
tory, 1995.

[BJM98] C. Barrett, R. Jacob, M. Marathe, Formal Lan-
guage Constmined Path Problems in SIAM J. Comput-
ing, 30(3), pp. 809-837, June 2001. Preliminary version
in Pm. 6th Scandanavian Workshop on Algorithmic
Theory (SWAT), Stockholm, Sweden, LNCS 1432, pp.
234-245, Springer Verlag, July 1998.

[CS97] R. Beckman et. al. TRANSIMS-Release 1.0 - The Dal-
las Fort Worth Case Study, LA-UR-97-4502

[Ch97a] I. Chabini, Discrete Dynamic Shortest Path Problems
in Tiunsportation Applications: Complezity and Al-
gorithms with Optimal Run Time, Presented at 1997
Transportation Research Board Meeting.

[Ch97b] I. Chabini, A New Algorithm for Shortest Paths in
Discrete Dynamic Networks, 8th IFAC/IFIP/IFORS
Symposium, Chania, Greece, pp. 551-557.

[CGR96] B. Cherkamky, A. Goldberg and T. Radzik, Shortest
Path algorithms: Theory and Experimental Evaluation,
Mathematical Programming, Vol. 73, 1996, pp. 129-
174.

[CH66] K L. Cooke and E. Hasley, The shortest path through a

network with time dependent internodal transit times,
J. Math. Anal. Appl. No. 14, (1966), pp. 493-498.

[De691 S. E. Dreyfus, An appraisal of some shortest path al-
gorithms, Operations Research, Vol. 17, 1969, pp. 395-
412.

[GGK84] F. Glover, R. Glover and D. Klingman, Computa-
tional Study of am Improved Shortest Path Algorithm,
Networks, Vol. 14, 1985, pp. 65-73.

[Ha771 J. Halpern, The shortest mute with time dependent
length of edges and limited delay possibilities on nodes,
Z. Operations Research, No. 21, 1977, pp. 117-124.

[Ha921 R. Hassin, “Approximation schemes for the restricted
shortest path problem”, Mathematics of Opemtions
Research 17, 1 (1992), 36-42.

[HU’79J J. E. Hopcroft and J. D. Ullman, Introduction to Au-
tomata Theory, Languages and Computation, Addison
Wesley, Reading MA., 1979.

[JMN99] R. Jacob, M. Marathe and K. Nagel, A Computa-
tional Study of Routing Algorithms for Realistic ?has-
portation Networks, invited paper appears in ACM
J. Experimental Algorithmics, Volume 4, Article 6,
1999. http://uw.jsa.acm.org/lDD9/JacobRouting/
Preliminary version appeared in Proc. 2nd Workshop
on Algorithmic Engineering, Saarbrucken, Germany,
August 1998.

[KS93] D. E. Kaufman and R, L. Smith, The Fastest Path
in Time Dependent Networks for Intelligent Vehi-
cle/Highway Systems, IVHS Journal, Vol. 1 (1993),

(KIT21 E. Klafszky, Determination of Shortest Path in a Net-
works with time Dependent Edge Lengths, Math. Oper-
ations for Sch. and Statistics No. 3 (1972), pp, 255-257.

[MWSti] A. Mendelzon and P. Wood, “Finding Regular Simple
Paths in Graph Databases,” SIAM J. Computing, vol.

[NB97] K. Nagel and C. Barrett, Using Micmsimulation Feed-
back for trip Adaptation for Realistic Thafic in Dal-
las, International Journal of Modern Physics C, Vol. 8,

[OR901 A. Orda and R. Rom, “Shortest Path and Minimum
Delay Algorithms in Networks with Time Dependent
Edge Lengths,” J. ACM Vol. 37, No. 3, 1990, pp. 607-
625.

[OR911 A. Orda and R. Rom, Minimum Weight Paths in
Time Dependent Networks, Networks, Vol. 21, (1991),

[Pa841 S. Pallottino, Shortest Path Algorithms: Complex-
ity, Interrelations and New Propositions, Networks,

[Pa741 U. Pape, Implementation and Efficiency of Moore Al-
gorithm for the Shortest Root Problem, Mathematical
Programming, Vol. 7, 1974, pp. 212-222.

[Po711 I. Pohl, “Bidirectional Searching,” Machine Intelli-
gence, No. 6, 1971, pp. 127-140.

[Rom88] J. F. Romeuf, Shortest Path under Rational
Constmint Information Processing Letters 28 (1988),

(SJB971 K. Scott, G. Pabon-Jimenez and D. Bernstein, “Find-
ing Alternatives to the Best Path,” Proc. 76th Annual
Meeting of The Thansportation Research Board, Wash-
ington, D.C. Paper No. 970682, Jan. ’97. Also avail-
able as Draft Report Intelligent Thnsport Systems Pro-
gwm, Princeton University, ’97.

[SV86] R. Sedgewick and J. Vitter ‘‘Shortest Paths in Eu-
clidean Graphs,” Algorithmica, 1986, Vol. 1, No. 1, pp.

pp. 91-95.

24, NO. 6, 1995, pp. 1235-1258.

NO. 3, 1997, pp. 505-525.

pp. 295-319.

Vol. 14, 1984, pp. 257-267.

pp. 245-248.

31-48.

12

[SI+97] T. Shibuya, T. Ikeda, H. Imai, S. Nishimura, H. Shi-
moura and K. Tenmoku, “Finding Realistic Detour by
AI Search Techniques,” Transportation Research Board
Meeting, Washington D.C. 1997.

[YaSO] M. Yannakakis “Graph Theoretic Methods in Data
Base Theory,” invited talk, Proc. 9th ACM SIGACT-
SIGMOD-SIGART Symposium on Database Systems
(ACM-PODS), Nashville TN, 1990, pp. 230-242.

[ZN98] F. B. Zhan and C. Noon, Shortest Path Algorithms:
An Evaluation using Real Road Networks Transporta-
tion Science, Vol. 32, No. l , (1998), pp. 65-73.

[ZM95] A. Ziliaskopoulos and H. Mahmassani, Minimum Path
Algorithms for Networks with Geneml Time Dependent
Arc Costr, Technical Report, December 1997.

[ZM92] A. Ziliaskopoulos and H. Mahmassani, Design and Im-
plementation of a Shortest Path Algorithm with Time
Dependent Am Costs, Proc. 5th Advanced Technology
Conference, Washington D.C., (l992), pp. 221-242.

[ZM93] A. Ziliaskopoulos and H. Mahmassani, A Time De-
pendent Shortest Path Algorithm for Real Time Intel-
ligent Vehicle/Highway Systems, h o c . ”Ikansportation
Research Record, Washington D.C., (1993), pp. 94104.

Appendix

8 Experimental Setup

Preparing the Network. The data about park-
ing locations, houses, bus stops, etc came as separate
file in form of geo-locations. Additionally the light
rail data was given separately and thus a substantial
amount of time was spent in creating a unified net-
work with all the features. It also naturally increared
the size of the network.
Software Design. We used the object oriented
features as well as the template mechanism of C++
to easily combine different implementations. We also
used preprocessor directives and macros. As we did
not want to introduce any unnecessary run time over-
head, we avoided for example the concept of virtual
inheritance.
Hardware and Software Support. Most of
the experiments were performed on a MPP Linux
cluster with either 46 or 62 nodes with Dual 500 Mhz
Pentium I1 processors in each node. Each node had 1
Gb of main memory. Much of the experiments were
done by executing independent shortest paths runs
at each node. For this we had to create copies of
the network. Fortunately the network fits in just un-
der 1Gb of memory and thus did not cause problems.
As mentioned earlier, the code can parallelized using
threads but the above method turned out to be more
suitable for the experiments reported here. In partic-
ular it avoided much of the network contention. We
used the GCC compiler. We note that due to design
requirements our code is also portable to any SUN

machine.
Apart from the scalability tests, most of the exper-

iments reported here were carried out with 1000 ran-
domly selected travelers for each modal choice. For
experiments we considered three basic modal choices:
walk, walk-car-walk, walk-transit-walk, where transit
wils either a bus or light rail.

9 Shortcuts and heuristics

A number of data structure and algorithmic heuris-
tics were employed to improve the execution time of
the algorithms. We list some of them below.
Parallelization. The implementation may use
multiple threads running in parallel and it may
also be distributed across multiple machines using
MPX. Threads enable the parallel execution of sev-
eral copies of the path-finding algorithm on a shared-
memory machine. Each thread uses the same copy of
the network. Because separate threads are used for
reading, writing and planning, improvements in the ’
running time may be observed even with a single-
processor machine.

Implicit vs. explicit network modification.
We argued that a unified algorithm allows planning
of multiple travelers on a single network, thus circum-
venting the time-consuming task of generating a new
network for each traveler. However, in our implemen-
tation, some restrictions on the regular language are
in fact implemented using a trick that allows trans-
parent network modification on a traveler-by-traveler
basis. Within the route planner, the network is con-
structed in layers consisting of car, walk and transit
links, with walk links also crossing between car and
transit layers. It is possible to order the addition of
edges to the network so that edges with a fixed label
form a consecutive interval in the adjacency list of
each vertex. Thus for example, edges numbered 0 to
il will be car links, those from i l + 1 to i2 transit links
and those from ia + 1 to i3 transit links. Then if the
traveler is only allowed to use walk and transit links,
we ask Dijkstra’s algorithm to only examine the end
of each adjacency list and ignore cw links completely,
at the cost of a single extra table lookup per vertex
examined. This trick can be extended to modifying
the adjacency list in more general ways as long as the
links are added to the network in a sensible order.

Compile-time optimization. A simpler algo-
rithm suffices for some types of plans. For example,
all-car or all-walk plans should not require the over-
head of examining the NFA and may be planned more
efficiently if only a part of the network is examined.
In addition to the network modification trick just de-

13

scribed, for such cases we use a separately optimized
and compiled procedure implemented using the CS+
template mechanism.

One of the additional
optimizations we’ve used for all-car plans is the
Sedgewick-Vitter [SVSS] heuristic for Euclidean
shortest paths that biases the search in the direc-
tion of the source-destination vector. We note that
the above algorithms, only require that the Euclidean
distance between any two nodes is a valid lower bound
on the actual shortest distance between these nodes.
This is typically the case for road networks; the link
distance between two nodes in a road network typi-
cally accounts for curves, bridges, etc. and is at least
the Euclidean distance between the two nodes. More-
over in the context of TRANSIMS, we need to find
fastest paths, Le. the cost function used to calculate
shortest paths is the time taken to traverse the link.
Such calculations need an upper bound on the max-
imum allowable speed. To adequately account for
all these inaccuracies, we determine an appropriate
lower bound factor between Euclidean distance and
assumed delay on a link in a preprocessing step.

We can modify the basic Dijkstra’s algorithm by
giving an appropriate weight to the distance from
2 to t . By choosing an appropriate multiplicative
factor, we can increase the contribution of the sec-
ond component in calculating the label of a vertex.
From a intuitive standpoint this corresponds to giv-

ing the destination a high potentid, in effect biasing
the search towards the destination. This modification
will in general not yield shortest paths, nevertheless
our experimental results suggest that the errors pro-
duced can be kept reasonably small. This multiplica-
tive factor is called the overdo parameter.

Because street networks are not always dense and
regular due to natural and man-made obstacles and
also because our delays are not constant, the paths
produced using SV are not strictly optimal. However,
varying the amount of the bias allows a useful tradeoff
between the speed and quality of paths found.

The running
time of Dijkstra’s algorithm directly depends on the
size of the graph. With larger NFAs (and especially
with time-dependence), this size may become a very
large number, however with the fairly regular street
networks, a more accurate predictor of the running
time is in fact the length (the number of edges) of
the path found by the algorithm.

Traversal functions. The link-traversal func-
tions are represented using an array of segments.
To calculate the delay of an edge at a certain time,
the correct segment is first determined using binary

Sedgewick-Vit t er,

Running time vs. graph size.

search and then the rest is easy.
Turning left may take more time

than going straight on through the intersection or
turning right. This is easy to implement by expand-
ing each vertex into an in- and out-vertex for each
in- and out-going link. However, this expansion need
not be explicit: if the current node index also con-
tains the index of the link used to enter the node, we
can calculate the turn costs on the fly.

In order to model
certain apects of traveler behavior for which NFAs
are insufficient, another component may be added to
the time delays. For example, certain cost may be
associated with some links and the objective might
be to minimize a weighted sum of the costs and time-
delays along a path.

Delay noise. One of the attempts to speed up
the convergence of the system in successive planner-
microsimulation iterations included adding a small
random noise value to each link delay. Strange be-
havior resulted, but this should have been expected.
For example, cars would pull out of a parking lot,
drive to the first intersection and promptly make a
U-turn to go back in the direction they could have
taken the first time. The problem of course is that
random noise violates the FIFO condition.

Parking lo-
cations in the network caused other problems as well.
For example, unless care is taken (by implementing
turn costs or by separating parking lots associated
with the two directions along a link), drivers will use
parking lots to make illegal U-turns. Buses were a
whole other story. Early after transit modes were
implemented, a number of travelers were noticed to
transfer between buses multiple times on a trip to
save only a few seconds. One of the fixes used has
been to increase the time required to transfer between
buses (by forcing the traveler to walk off the bus to
the node in the walk layer of the network associated
with the transit stop).

Turn costs.

Millticost experiments.

Other jokes the planner told us.

10 More on time-dependence

Definition 10.1. Let f : + be a (weakly) mono-
tonic (piecewise-linear) function. Then g : a + as

a weak inverse of f if for all x and t in a f(x) <
t =+ z 5 g (t) and t < f(x) =+ g(t) 5 x.

Let g be any weak inverse of f . This definition
leaves the freedom of choosing an “optimistic” or
“pessimistic” weak inverse for the local situations
where f is constant. Otherwise g is uniquely deter-
mined. This stems from the fact that { ~ (f (x) = t}

14

is for all t an interval. For values of :c, where f is
not locally constant, i.e. when {zlf(z) = t} is a
single value. Then for all E > 0 we have (by weak
monotonicity of f that f (z - E) < f (s) < f(s + E) .

This implies then x - E 5 g (f (z)) 5 z + E , hence

g is non-decreasing (weak monotone increasing).
Let t < s. If there exists an s such that t < f (z) < s,
we immediately get g (t) 5 x 5 g(s). Otherwise take
some u such that t < u < s. By the assumption of
this case, there can’t be an s such that f(z) = u.
Therefore are I = {.I f (x) < u } and J = {slf(x) >
u} are two intervals such that I U J = Q. If both
of them are open, there exists an z such that for all
e > 0 we have z - E E I and z + E E J. So we have
~ (Z S E) > u > t and hence z f a 2 g (t) . Analogously

we get f(z - E) < u < s and hence z - E g(s) .

Together we get g(t) 5 z 5 g(s) .
If J is the empty set or then singleton { ~ o o } , we

get for all z E Q that f (z) < sand therefore z < g(s) ,
hence g(s) = 00. Analogously, if I is not open we get
g(t) = -00. S o we trivially get weak monotonicity in
these cases. It is easy to verify that f is also weak
inverse of 9.

g (f (.I) = 2.

Proof. (Proposition 5.4.) To verify the above claim,
assume c is given by the value pairs cz(i) and
c,(i).Define az(i) = c5(i) and a,,(i) = a,(i) -I- f .
(cy(i) - cz(i)) Define b,(i) = a,(i) and b,(i) = c,(i).
The condition that a splits c at fraction f is obvious
by the definition of a. For the second condition, first
note that aob matches with c for the values cm(i) . As
the images of cz(i) under a are the only non-linearity
points in the domain of b, it follows a o b = c. Note
that in the above proof the definition of a can more
or less arbitrarily depend on c and there still exists a
proper extension function b. 0

10.1 Waiting models and theory

Three different waiting policies have been studied in
the literature [OR90].
Forbidden waiting: compatible with Definition 5.1.
Unrestricted waiting: waiting allowed everywhere.
Relaxes Definition 5.1 to f (t i) 5 t i+l.
Source Waiting: waiting only allowed at the source.

Especially with unrestricted waiting, it is useful to
consider a modification of the link traversal function.
Given the original link traversal function f , we de-
fine the optimal-waiting link traversal function g by
g (t) = inftl>t f(t). This captures the optimal wait-
ing strategffor a traveler by combining the optimal
waiting at a node with the time needed to traverse

the link. If the infimum is not a minimum, there

may be no optimal path. Then the best we can hope
for is to find a path such that adjusting the waiting
times achieves an arrival time arbitrarily close to the
optimal arrival time. In the sequel we assume for
simplicity that this infimum is always achieved. As
mentioned earlier, the basic results on this topic can
be found in [Ch97a, Ch97b, OR90, ZM95].

We summarize the computational complexity of
shortest-path problems in time-dependent networks
with various forms of waiting. As stated earlier some
of these results are not new [Ch97a, Ch97b, OR90,
ZM95],

Theorem 10.2. (1) In the forbidden waiting model
with arbitrary link-traversal functions and a given
departure tame, finding a path with earliest arrival
tame i s NP-hard. For monotonic, nonnegative link-
traversal functions, the problem is polynomial time
solvable.
(2) In the Unrestricted waiting model with positive
delay link traversal functions, with polynomial time
computable optimal-waiting link-traversal functions,
the problem of computing a path with the earliest ar-
rival time is solvable in polynomial time.
(3) For the source waiting model with arbitrary func-
tions, the earliest possible arrival time is as hard as
the problem for the forbidden waiting model. *

Sketch of the Proof of Theorem 10.2:

Part 1. NP-hardness follows by a polynomial time
reduction from the partition problem. For a mono-
tonic, positive delay function, the problem can be
solved using a straightforward extension of Dijkstra’s
label setting algorithm: instead of setting labels for
the shortest path distance we set labels for the earli-
est possible arrival time. As the functions represent
positive delays, we can set the labels starting from
the smallest without having to change them later on.
Because the functions are monotonic, it is sufficient
to consider the earliest possible time to start into a
link (it cannot pay off to start into it later).

Part 2. Note that the Optimal-Waiting link
traversal functions are monotonic and inherit the pos-
itive delay property. Therefore the algorithm de-
scribed in the main body of the paper can be used.
As for every topology of a path one fastest path is
represented, the computed path is optimal.

Part 3. By adding links that can only be traversed
at a certain point of time, we get a reduction from
the Forbidden Waiting earliest arrival problem. 0

include
the source
waiting
easiness

(71)

15

