
y' 

LA-UR- Q 
Approved tor public relaase; 
distribution is unlimited <. 1 Title 

Author@): 

Submitted to: 

Los Alamos 
N A T I O N A L  L A B O R A T O R Y  

ROUTING IN TIME-DEPENDENT AND LABELED NETWORKS 

Christopher L. Barrett, D-2 
Keith Bisset, D-2 
Riko Jacob, University of Aarhus, Denmark 
Goran Konjevod, Arizona State University 
Madhav V. Marathe, D-2 

ACM-SIAM Symposium on D i s c r e t e  A l g o r i t h m s  ( S O D A  0 2 )  

San Francisco, CA 
January  2002  

Los Alamos National Laboratory, an aflinnative actionkqual opprtunity employer, is operated by the University of California for the 
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognlzes that the US. 
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow 
others to do so, for US. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article 
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports 
academic freedom and a researcher's rlght to publish; as an institulion. however, the Laboratory does not endorse thevlewpolnt 
of a publication 01' guarantee its technical conectness. Form 836 (1 W98) 

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact:



Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM  87544

Phone:  (505)667-4448

E-mail:  lwwp@lanl.gov



Routing in tirne-dependent and labeled networks 

CHRIS BARR.ETT2 KEITH BISSET~ RIKO JACOB' GORAN KONJEVOD3 MADHAV MAR AT HE^ 

August 

Abstract 

We study routing problems in time-dependent and edge- 
and/or vertex-labeled transportation networks. Labels 
allow one to express a number of discrete properties of the 
edges and nodes. The main focus is a unified algorithm 
that efficiently solves a number of seemingly unrelated 
problems in transportation science. Experimental data 
gained from modeling practical situations suggest that 
the formalism allows interesting compromises between the 
conflicting goals of generality and efficiency. 
1. We use edge/vertex labels in the framework of For- 

mal Language Constrained Path Problems to handle dis- 
crete choice constraints. The label set is usually small and 
does not depend on the graph. Edge labels induct! path 
labels, which allows us to impose feasibility constraints on 
the set of paths considered as shortest path candidates. 

Second, we propose monotonic piecewise-linear 
traversal functions to represent the time-dependent as- 
pect of link delays. The applications that can be modeled 
include scheduled transit and time-windows. 

3. Third, we combine the above models and capture a 
variety of natural problems in transportatiou science such 
as time-window constrained trip-chaining. The results 
demonstrate the robustness of the proposed formalisms. 

As evidence for our claims of practical efficiency in a 

realistic setting, we report preliminary computational ex- 
perience from TRANSIMS case studies of Portland, Ore- 
gon. 

2. 

1 Introduction 

We study route-planning models in the context of 
multi-modal urban transportation systems. The r e  
search reported in this paper should be viewed as 
applied research backed by experimental analysis in 
realistic settings. Specifically, much of the basic 
theoretical background for these results is not new 

'BRICS, Department of Computer Science, Univemity of 
Aarhus, Denmark. Email: rjacobQbrics .dk. 

2Los Alamos National Laboratory, P.O. Box 
1663, MS M997, Los Alarnos, NM 87545. Email: 
barrett,bisset,maratheOlanl.gov. 

'Department of Computer Science, Arizona State Wniver- 
sity, Tempe, AZ. Email: goranOasu.edu. 

1, 2001 

and can be found in [BJM98]. Our initial moti- 
vation for this study was the TRANSIMS project 
for transportation analysis and simulation [TR+95a]. 
Nevertheless, we argue that the solutions are not 
TRANSIMS-specific, but applicable to a number of 
other realistic transportation problems. 

TRANSIMS is a multi-year project at the Los 
Alamos National Laboratory and is funded by the 
Department of Transportation and by the Environ- 
mental Protection Agency. The purpose of TRAN- 
SIMS is to develop new models and methods for 
studying transportation planning questions. A proto- 
typical question considered in this context would be 
to study the economic and social impact of build- 
ing a new freeway in a large metropolitan area. 
We refer the reader to [TR+95a] and the web-site 
http://transims.tsasa.lanl.gov to obtain exten- 
sive details about the TRANSIMS project. TRAN- 
SIMS conceptually decomposes the transportation 
planning task into three time scales. First, a large 
time-scale associated with land use and demographic 
distribution as a characterization of travelers. In this 
phase, demographic information is used to create ac- 

tivitie,u for travelers. Activity information typically 
consists of requests that travelers be at a certain lo- 
cation at a specified time. and they include informa- 
tion on travel modes available to the traveler. Second, 
an intermediate time-scale consists of planning routes 
and trip-chains to satisfy the activity requests. This 
is the focus of our paper and the TRANSIMS module 
responsible for this computation is called the route 
planner. Finally, a very short time-scale is associated 
with the actual execution of trip plans in the network. 
This is done by a simulation that moves cellular au- 
tomata corresponding to the travelers through a very 
detailed representation of the urban transportation 
network. 

The basic purpose of the route planner is to use 
the activity information (generated earlier from de- 
mographic data) about a traveler to determine spe- 
cific optimal mode choices and travel routes for each 
individual traveler. The routes need to be computed 
for a large number of travelers (in the Portland case 
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study 5-10 million trips are planned). In order to 
remove the forward causality artificially introduced 
by this design, and with the goal of bringing the sys- 
tem to a “relaxed” state, TRANSIMS has a feedback 
mechanism: the link delays observed in the simula- 
tion are used by the route planner to re-plan a frac- 
tion of the travelers. Clearly, this mechanism requires 
a high computational throughput from the planner. 
The high level of detail in planning and the efficiency 
demand are both important design goals; methods 
to achieve rearonable performance are well known if 
only one of the goals needs to be satisfied. Here, we 
propose a framework that uses two independent ex- 
tensions of the basic shortest path problem to cope 
with these design requirements simultaneouslyu 

2 Theoretical Results 

Our main contribution is a unified modeling frame- 
work and an associated efficient algorithm for con- 
strained shortest paths in multi-modal and time- 
dependent networks. The advantages of our frame- 
work are: (1) translation of “real world” questions 
into mathemat,ically well-defined optimization prob- 
lems, (2) guidance in the development of algorithms 
for these problems, and (3) a single efficient dgo- 
rithm for a host of seemingly different optimiaation 
problems in transportation science. 

An additional goal is to show how to use this frame- 
work and the associated algorithm to solve extremely 
large realistic transportation problems. From a prag- 
matic point of view, a generic algorithm simplifies 
the implementation of and experimentation with al- 
ternative models. To illustrate the third point above, 
we give examples where alternative, more direct al- 
gorithms are known. The unified framework consists 
of the three parts described below. 

First, we consider models and algorithms for short- 
est paths with discrete choice constraints. These 
include travel modes, destination choice, roadway 
type, etc. In general many of these choices cannot 
be modeled adequately by edge-weights, but edge- 
or vertex-labels are more appropriate. Motivated 
by this, we represent the transportation network 
by a (possibly time-dependent) weighted, (vertex- 
and/or edge)-labeled graph. The labels denote modal 
or other discrete attributes of the edge (vertex) 
and are drawn from a finite set. We use regular 
expressions over the label set to describe feasible 
paths, explain how to solve these problems efficiently 
and show how this model encompasses a wide vari- 
ety of discrete-choice transportation problems (Sec- 
tion 4.2). Regular languages as models for con- 

strained shortest-path problems were suggested ear- 
lier by Romeuf [Rom88] and applications to database 
queries were described by Yannakakis [Ya90] and by 
Mendelzon and Wood [MW95]. For more details, we 
refer to Barrett, Jacob and Marathe [BJM98]. 

Second, we discuss finding (optimal) paths in time- 
dependent networks. This is an important problem in 
transportation science [Ch97a, Ch97b, ZM95, ZM92, 
ZM931. We propose monotonic piecewise-linear link 
travemal functions to model time-dependence. We 
argue that this class is (1) adequate for modeling 
time-dependent edge lengths in rapidly changing con- 
ditions on roadways and (2) flexible enough to de- 
scribe more complicated scenarios such as scheduled 
transit and time-window constraints but also (3) al- 
lows computationally efficient algorithms. For exam- 
ple, a prototypical question consists in finding the 
shortest route that takes into account the bus and 
train schedules. We solve this problem efficiently in 
our framework (Section 5.3). The ideas we present 
here are built on a well-established literature on time- 
dependent shortest-path problems (for a survey see 

Orda and Rom [OR91]). 
Finally, we show how to combine the two models 

(labels and time-dependence) and the proposed al- 
gorithms to capture a variety of important problems 
including time-windows, trip chaining, etc. These re- 
sults further demonstrate the robustness of our mod- 
els imd algorithms. To the best of our knowledge, 
only heuristic methods have been used so far to solve 
such problems. 

3 Experimental results 

As mentioned earlier, the algorithms described here 
have been implemented as part of the TRANSIMS 
project. This allows testing or our methods on real 
transportation networks. In order to anchor research 
in realistic problems, TRANSIMS uses example cases 
called Case studies (see [CS91 for details). Two 
case studies have been designed-the first one, con- 
cluded in May 1997, focused on the Dalias/Fort- 
Worth (DFW) metropolitan area. It was done in 
conjunction with a municipal planning organization 
(MPO) (the North Central Texas Council of Gov- 
ernments, NCTCOG). The second case study is cur- 
rently underway and focuses on Portland, Oregon. 
While the goal of the DFW case study was mainly 
validating uni-modal traffic simulation, the Portland 
case study will attempt to validate our models and 
algorithms for multi-modal time-dependent networks. 
Due to the focus of this paper, we will mainly focus on 
illustrative experiments done in the context of Port- 
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land network. A more detailed experimental study 
will be found in [BB-i-011. 

Section 7 discusses illustrative experiments that al- 
low us to infer (i) the scalability of our methods, 
(ii) the power of the modeling framework in captur- 
ing realistic problems, (iii) and empirical improve- 
ments obtained by augmenting the basic algorithm 
with heuristic methods. 

4 Language-constrained paths 

Consider a small pedestrian bridge across a river (or a 
highway). A traveler can only use the bridge on foot. 
Since we do not wish to update the network for every 
single routing question, we annotate the network with 
such information. More precisely (and abstractly), to 
each edge and/or vertex of the network, we assign a 
class (label) L G E. (C is a finite set we refer to as the 
alphabet.) We call such labels modes and say that a 
labeled network is multimodd. 

By concatenation, the edge and/or vertex labeling 
extends to walks. The resulting string of labels is 
called the label of the walk. This walk-label deter- 
mines whether or not the walk is acceptable as a par- 
ticular traveler’s itinerary. We usually refer to walks 
in the network as paths; in other words, we usually 
allow our paths to repeat edges and/or vertices and 
instead use the term simple path to denote paths. 

C* over 
the alphabet C such that any path whose label be- 
longs to L is acceptable. Now we can raise a shortest- 
path question: given a source node s and a destina- 
tion node d, find a shortest path p from s to d whose 
label belongs to L. 

Example 4.1. Multimodd planning. In a simple 
multimodal network the edgelabels denote modes of 
travel allowed on the link. For example, stret?trs will 
be labeled “c” for car travel, sidewalks and pedestrian 
bridges “w” for walk, segments of transit lines (buses, 
rail) “b” and “r’), respectively (or, in a simpler model, 
lumped together under “t” for transit). 

Consider routing a traveler who doesn’t own a car 
and takes a bus to her destination. Suppose trans- 
fers are undesirable. The traveler will use some walk 
links, then one or more bus links and finally again 
some walk links. 

In order to find a shortest path for this traveler, 
the following network suffices. Let there be a vertex 
for every intersection and every transit stop. For ev- 
ery street block passable to pedestrians (that is, with 
a sidewalk) between two intersections, add a bidirec- 
tional link labeled “w”. For every bus line, add a 

More precisely, we specify a language L 

unidirectional link between every consecutive pair of 

stops and label it “b”. Make sure that in order to 
transfer between buses, a walk link must be used. 
Now the goal is to find a shortest path between the 
traveler’s origin and destination whose label is of the 
form w.. . wb.. .h.. . w. 

Note that finding a shortest path with the restric- 
tion imposed in the example above does not become 
any more difficult if the network includes additional 
arcs with different labels (such as streets (“c”), rail- 
way links (“r”), etc.). This shows an important fea- 
ture of our framework: i t  is  possible t o  treat different 
modal constraints by changing only the constraining 
language. Thus we can plan all trips on the same 
underlying network and avoid the expensive network 
modification for each different modal constraint. 

The following definition formalizes the language 
constraints. If p is a path in G ,  by l (p)  we denote 
the label of p ,  that is, the concatenation of labels of 
consecutive edges in p. 

Definition 4.2. (Language-constrained shortest- 
paths.) Given a directed, labeled, weighted graph G ,  
a source s E V ( G ) ,  a destination d E V(G)  and a 
formal language (regular, context free, context sensi- 
tive, etc.) L, find a shortest (not necessarily simple) 
path p from s to d in G such that l (p)  E L. 

A complexity analysis of the formal-language- 
constrained shortest and shortest simple path 
problems was given by Barrett, Jacob and 
Marathe [BJM98]. We summarize their results here, 
using n to denote the number of vertices in the graph 
G: 
(1) If the path is required to be simple, almost all 
problems are NP-hard. Thus, we only consider short- 
est paths without the simplicity constraint. 
(2) The problem of finding a context-free-language- 
constrained shortest path is polynomial-time solv- 
able, but the high complexity O(n3sr) (where s is the 
number of nonterminals and T the number of rules in 
the Chomsky normal form of the grammar) of the 
fastest known algorithm restricts its practicality. 
(3) If the language is specified by a nondeterminis- 
tic finite automaton (NFA), the problem reduces to 
an ordinary shortest-path problem on a graph with 
n IC vertices, where IC is the number of vertices in the 
NFA. The solution is in fact a shortest path in the 
direct product of the graph G and the directed graph 
representing the NFA. 

The last model is the one we consider the most 
practical for transportation science applications. 
Hereafter we assume that the constraining language 
L is specified as a regular expression. 
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4.1 Algorithm for linear expressions 

We now describe the algorithm actually implemented 
in TRANSIMS. First, some (standard) notation: w+ 
denotes one or more repetitions of a word (string) w, 
x + y denotes either x or y, C typically denotes the 
alphabet, that is the set of all available symbols. 

TRANSIMS currently supports linear (or simple- 
path) regular expressions. They are of the form 
xfx: . . - x$’, where xi E 2: U (2: 4- E) for all i. 

Note that if R1 , Rz, . . . Rk are linear regular expres- 
sions, then the expression Iz1 + - . + Rk can also be 
easily handled by finding the best path for each Ri 
and then choosing the best one. We call such expres- 
sions rooted paths regular, since the automata graphs 
form a set of simple paths joined at the root. 

Algorithm 4.3. Input: A linear regular expression 
R (as the string R[O.. . IRI - 11, a directed edge- 
labeled weighted graph G, vertices s and d E V(G). 
Output: A minimum-weight path p* in G from s to d 
such that I ( $ )  E R. 
Conceptually the algorithm consists of running Dijk- 
stra’s algorithm on the direct product of G and the fi- 
nite automaton M ( R )  representing R. For efficiency, 
we do not explicitly construct G x M ( R ) ,  but con- 
catenate the identifier of each vertex of G with the 
identifier of the appropriate vertex in M ( R ) .  

In other words, we run Dijkstra’s shortest-path al- 
gorithm on G with the following changes: each vertex 
is referred to by the pair consisting of its index in G 
and an integer 0 5 a 5 IRI - 1 denoting the loca- 
tion within R. In the first step, a = 0 and the only 
“explored” vertex is (s,O). In each subsequent ex- 
ploration step of Dijkstra’s algorithm, consider only 
the edges e leaving the current vertex (v,a) with 
l ( e )  = R[a] or l(e) = R[a+ 11. If an edge e = 2rw with 
l (e)  = R[a f 11 is explored, then the vertex reached 
will be (w,a + 1). Otherwise the vertex reached is 
(w,a). The algorithm halts when it reaches the ver- 

0 

Theorem 4.4. Algorithm 4.3 computes the short- 
est R-constrained path in G (with nonnegative edge- 
weights) in time O(T(IRIIG()), where T(n) denotes 
the running time of a shortest-path algorithm on a 
graph with n nodes. 

The running time of the algorithm is equal to 

O(lG1 + (R1 + Heaplog(Heap)),  where ]GI, IRI and 
Heap respectively denote the encodings of graph and 
regular expression and the maximum size the heap 
grows to. The algorithm yields significant savings of 
time in practice. First, we do not need to construct 

the product explicitly saving us at least O(lG1 IRI) 

tex (d,  IRI - 1). 

time. Second, typically the heap size never grows to 
much. In fact, it appears that the run time of the al- 
gorithm is more a function of the path length rather 
than the entire graph. Our results in the experimen- 
tal section discuss this further. 

4.2 Examples of regular constraints 

We give some illustrative examples of regular expres- 
sions that might be useful in the context of trans- 
portation planning. Rather than being exhaustive, 
this is a list of problems solvable by a single algo- 
rithm and implementation. 

1. Trip chaining. Consider the following prob- 
lem: given a sequence of activities that can be per- 
formed at different locations, find the shortest path 
that allows the traveler to perform the activities in 
the &en order. To solve the problem, we create 
new “virtual” loop links at every possible activity 
location. We label these links according to the ac- 
tivity that can be performed there. For an activity 
sequence ABC . . . we would consider the regular ex- 
pression T A T B T C T . .  . where T denotes a regular 
expression that allows (arbitrary or restricted) travel 
in the network. Note that this does not solve the trav- 
eling salesman problem (TSP) problem in polynomial 
time--there we would have to consider all possible n! 
orderings of n activities to find an optimal solution. 
On the other hand, if the number of activities n is 
small, enumerating the n! sequences might be feasi- 
ble. Figure 1 shows an exmaple trip chained route 
produced for a traveler in Portland. 

2. Label subsets and consistent paths. In the 
course of generating valid activities for planning and 
microsimulation, it is necessary to ensure that the 
paths generated are consistent in their use of modes. 
For instance, if you parked a car at a subway station, 
the path found by these methods should make sure 
that you do not drive until you return to the par- 
ticular parking lot where you left the car. Additional 
examples include (1) finding a shortest path avoiding 
trains or highways; (2) making sure that if we drop 
our car at a parking lot and then use transit to go to 
work, we do not use the car for errands during the 
day; and (3) finding a shortest path that may use the 
freeway but not the interchange. In all of these exam- 
ples we restrict the path to use only a particular set 
of labels. This can be achieved by a single-state au- 
tomaton. (Alternatively we could remove unwanted 
links from the network, but doing this explicitly is 
time-consuming.) 

3. Intermediate location. Finding paths that 
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Figure 1: Example of two trip chained routes for two 
traverles in Portland generated using our router. The 
first person goes as follows: Home-work-lunch-work- 
Doctor-shop-home. 

use trains so that the train is boarded at a particular 
subway station. 

Here we have to mark the subway station(s) we 
consider using an appropriate label and then enforce 
the use of a vertex with this label within the path. 
This can be done with a two-state automaton. (Alter- 
natively we coiild split the question into two shortest 
path computations.) 

4. Multimodal plans. 

5. Selecting road types. As mentioned earlier, 
we can use regular expression to  express the choice 
of various road types a traveler might wish to take. 
Figure 2 illustrates this type of a query on a realistic 
traffic network-the Dallas/Ft. Worth road network. 
As explained in the Figure, a traveler can specify the 
type of roads (e.g. freeways, ramps, arterials) that 
(s)he wishes to use to complete the trip. 

6. Counting constraints. An automaton with 
IC -I- 1 states can count up to k occurrences of spe- 
cial links. Thus we can only examine paths with 
more than k, exactly k or less than k special links. 
In the latter case we get the simplicity for free. 
(This follows, for example, from a more general re- 
sult [MW95].) 

The following problems have been studied in the 
literature and can be immediately solved using the 
appropriate expression. 

See Example 1. 

Figure 2: Example in Dallas: unrestricted fastest 
route is depicted by a straight dashed line, (this is 
also the fastest route entering the highway system at 
most once), the fastest route that does not switch 
between different highways is dashed and curved, the 
fastest route that stays off the highways is solid. 

6a. k-similar paths. There has been consider- 
able interest in algorithms for alternatives to short- 
est paths [AM093]. For example, in a recent pa- 
per [SJB97], the authors consider the following prob- 
lem: given a graph G, a (shortest) path P in G and 
an integer parameter, find the shortest path Q in G 
that has at most IC links in common with P. Call this 
path the best k-similar path. The authors use a La.- 
grangian relaxation. Although the algorithm appears 
efficient in practice, it is exponential in the worst case. 

Using the above terminology, we make all the links 
of the (shortest) path P “special.” Then the de- 
scribed automaton ensures that the path found does 
not have more than k links in common with P .  

6b. Turn complexity. Assume we have an ex- 
tended network, where every movement across an in- 
tersection (going straight or turning) is explicitly r e p  
resented as a link. Then we can use 2 and 6a above to 
search for the shortest path using, for example, less 
than k left turns. 

6c. Transfers. If the network representation uses 
links of different type to represent bus transfers, we 
can easily encode the maximum number of transfers 



allowed. 

5 Time-dependent delays 

Experience with realistic transportation systems and 
simulations like TRANSIMS makes it clear that the 
dynamics of the link delays are an important com- 
ponent of urban traffic. The problem of finding the 
“best” path in a time-dependent network has been 
studied extenfiively (see for example [OR90, ZM95, 
ZM931). Since the literature on this subject contains 
different notions of time-dependence, we first define 
our terminology. 

The fundamental assumption is that the delay in- 
curred by traversing a link cannot be represented by 
a single value. Instead, every link (a,b) in the net- 
work has an associated link traversal function f(“,b), 

defined so that a traveler starting across the link at 
endpoint a and time t arrives at endpoint b at time 

f ( e , b ) ( t ) *  

Definition 5.1. A path from a source s to a desti- 
nation t i s  a sequence of n + 1 vertices vo, VI,. . . Vn 

and times to, t1 , .  . . , tn that satisfies (1) vo =: s; (2) 
there exists a link from vi to vi+l; (3) i f f  i s  the Iink 
traversal finction for the link from vi to vi+1, then 
ti+1 = f ( t i ) ;  and (4)  Vn = t .  The numbers t o  und tn  

are also referred to as the departure time and arrival 
time, respectively. 

Earliest arrivals and delay assumptions. 
As a motivation, consicler a traveler starting from 
an origin node at a certain point in time and look- 
ing for a route through the network with the earliest 
possible arrival time at the destin 
Rom [OR901 present a theoretical study 
plexity of such shortest-path problems. 
model consists of a functi 
lay incurred in traversing the link 
reaches the link at a given time. 
is called the link delay function. 
fer link traversal functions, howe 
ified that these two formalisms 
f : Q -+ Q be it link-delay functi 
alent link traversal function t : Q -+ 
by t (x )  = f ( x )  + x .  We assu 
delays/traversal times. 

The first is the delay n 
f(x) 2 0 which becomes t 
function t (we also write th 
sal function t whose equivalent link 
nonnegative is said to have 

The second is the first-in-first-out condition, that 
is a traveler entering the link first leaves the link first 

as well. This is ensured by the fact that the link 
traversal function t is monotone nondecreasing, that 
is f (t‘) 2 f ( t )  if t’ 2 t. Strictly speaking, this con- 
dition is not realistic because it ignores, for example, 
passing by cars on the roads. However, without it 
the problems become too difficult. Note that we do 
not restrict our functions to Q+ ; this is necessary in 
order to define itn incoming shortest-path tree, which 
correhiponds to a shortest-path request with a fixed 
arrival time. 

5.1 MPL functions 

The two assumptions of the previous section were mo- 
tivated by common sense (nonnegativity) and compu- 
tational feasibility (monotonicity). To get a class of 
functions that is flexible enough to model various ap- 
plications, but also allows efficient modeling within a 
computer program, we use monotonic piecewise- 
linear (MPL) functions. Among other properties, 
this class allows fast lookup of values and this is im- 
portant, being a part of the innermost loop of the 
algorithm. But first, the definitions. 

Using koo is a convenient shortcut for expressing 
(temporary) unavailability of a link. Thus we define 
the traversal functions on the extended set of rational 
numbers 0 = Q U (00, -00). 

Definition 5.2. A function f :  Q -+ a i s  called 
piecewise linear if there exist values XI, xa,  . . . , x n  E 

a such that xi 5 xi+l and for t E (xi, x i+ l )  the value 
of f i s  given by f ( t )  = ai + t . bi for some ai, bi E Q. 

Monotonic functions also have the advantage of b e  
ing (almost) invertible. 

Definition 5.3. Let f : Q -+ 0 be an MPL function. 
Then g :  a + a is a weak inverse of f if g is MPL, 
g( t )  2 sup{x : f(x) < t )  and g( t )  5 inf{x : t < 
f (2 ) )”  

This definition leaves one the choice of an “opti- 
mistic” or a “pessimistic” weak inverse for constant 
f .  Other than this, g is uniquely determined. Let g 

be any weak inverse of f, It is easy to verify that f is 
also a weak inverse of 9. Furthermore g is piecewise 
linear if f is piecewise-linear. (Proofs can be found 
in the appendix.) 

A data structure for MPL functions is for example 
a sorted set of pairs that can be searched for both 
x and (linearly interpolated) p values. For functions 
that do not need to be modified frequently, an imple- 
mentation using arrays and binary search performs 
well. 
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5.2 Properties of MPL functions 

After having introduced the basic concepts of MPL- 
functions, we now summarize several useful proper- 
ties and alternative characterizations. 

1. First-in-first-out property: If traveler A enters 
the link before traveler B, the monotonicity im- 
plies that B cannot leave the link before A. (No 
passing.) 

2. naversal-delay equivalence: A piecewise-linear 
traversal €unction corresponds to a piecewise- 
linear delay function and vice versa. 

3. (Temporary) unavailability of a link can be mod- 

4. (Weak) invertibility allows simultaneous answers 
to earliest arrival and latest departure questions. 
Simple data structures evaluate a function and 
(a specific) one of its weak inverses. 

eled using kt00 as the time values. 

5. Rounding errors are well understood. If appro- 
priate we can work with integers and (implicitly) 
approximate by piecewise-constant functions. 

6. Continuity is not necessary for the shortest-path 
algorithm. Even piecewise-constant, link traver- 
sal functions are suitable. (Not true for link de- 
lay functions.) 

every time bin into an imaginary car that arrives at 
the end of the link precisely in the middle of the time 
bin. Assuming the car haa been moving at the re- 
ported average speed, we calculate the correspond- 
ing departure time into the link. These interpolation 
points get are then joined by line segments. In sim- 
ilar ways we can use statistics that report average 
speed of cars starting into a link during a time bin 
or just speed averages during a time bin. The diffi- 
culty (if any) in interpreting this kind of statistic does 
not arise from the fact that we want to construct a 
piecewise linear function. However, we must verify 
that the resulting link traversal functions are in fact 
(weakly) monotonic, w expected. 

2. Transit with schedules. Consider the ear- 
liest arrival problem with scheduled transit. A fixed 
and accurate schedule for the public transportation 
system is given and used to create a network with 
link traversal functions. For simplicity we only look 
at transit, ignoring the walking part of using tran- 
sit, and assume that the source and destination are 
transit stops. 

The graph has a node for each transit stop, using 
the same node for several lines if a transfer is possible 
at the stop. This allows transfers even if the gains are 
minimal. Some important details like the volatility 
of real schedules (buses more than trains) and the 
inconvenience of transferring are ignored. 

A bus going from one stop to another defines a 

7. 

5.3 Time-dependence applications 

We illustrate the applicability of MPL functions to 
modeling link delays by giving a few examples. The 
main goal is to convince the reader that such func- 
tions are adequate for many real situations. 

1. Routing on a street network. Assume that 
we have statistics for every link in a road network 
used by cars. For example, consider the value of the 
average speed of the cars arriving at the end of the 
link within a 15-minute time bin. This data may 
come from real observations or (more likely) from a 
simulation, as is the case in TRANSIMS. In TRAN- 
SIMS link traversal functions are created using inter- 

polation points: we aggregate the information from 

To model several buses on the same line during 
the day, we simply combine the functions: the arrival 
time at the other end of the link coincides with the 
arrival time of the next bus on the same line. Such a 
combination is illustrated in Figure 3. In the figure 
all the buses but one are assumed to take the same 
time in traversing the link. It is straightforward to 
adjust the functions to the fact that at different times 
of the day the busses travel at different speeds; the 
buses may in fact be simulated themselves by forcing 
them to take the scheduled route and the actual sim- 
ulation delays and congestion may be incorporated in 
the schedule. 
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’ came 

enter time 
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Figure 3: Link traversal function for transit. 

3. Shortest path with  departure  time window. 
Another problem expressible in our formalism is the 
following: given a time-dependent network, a source- 
destination pair and a departure time window, find 
the departure time within the time window and a 
path that minimizes overall travel time. The algo- 
rithms presented so far cannot solve this question di- 
rectly. Moreover, although the problem is exactly 
solvable in polynomial time for unrestricted waiting 
or monotonic link traversal functions [ORSO], the run- 
ning time might be unacceptable. Therefore we pro- 
pose an approximation algorithm (in fact an approx- 
imation scheme with bounded absolute error) with 
significantly improved running time. We believe that 
for real world queries the performance is actually even 
better than our theoretical bounds imply. 

Choose a granularity parameter T. Find a se- 
quence s ~ , s z , .  . . , s,, such that si+1 - si < 7‘. The 
time window considered is then [SI, sn]. Evaluate the 
fastest path question for all the si and take the short- 
est of those. The worst case occurs when you might 
have stayed at origin for nearly time T and still ar- 
rive at the same time. Therefore the approximate 
path takes at most T times the optimal time. 

6 Combinations 

In this final technical section, we consider cornbina- 
tions of the two extensions discussed so far. A desir- 
able feature of the approach is that the algorithm for 
solving routing problems in timedependent and the 
algorithm for solving routing problems in labeled net- 
works can be combined to yield a unified algorithm 
for routing in time-dependent networks with labeling 
constraints. 

6.1. The Algorithm 

Algorithm 6.1. Input: A linear regular expression 
R (a the string RIO ...I R( - 11, a directed edge- 
labeled graph G, vertices s and d E V(G). An MPL 
traversal function associated with each edge. Output: 
A path from s to d that requires minimum travel time 
among all those whose labels satisfy R 
Similarly to the fixed-delay case, we run Dijkstra’s 
algorithm on G x M ( R ) .  The algorithm remains the 
same except that link-traversal delays are computed 
using the MPL functions. To see why this algorithm 
is correct, think of it as the standard Dijkstra’s algo- 
rithm run on a graph consisting of multiple copies of 
G x M ( R ) ,  one for each possible time-step. For each 
timwtep t ,  a copy of e = uzl E E(G x M ( R )  with 
delay f(e, t) joins the tth copy of u to the t + f ( e ,  t)- 
th copy of v The algorithm stops when it reaches any 
copy of the destination vertex d. No vertex is seen 
twice (even with time-dependence) because the MPL 
functions are FIFO. 

For efficiency, we still do not explicitly construct 
G x M ( R ) .  In fact, the only change in the algorithm 
is contained in the function that returns the time at 
which the traveler would arrive at the end of a link aa 
a function of the link identifier and the current time. 
Ci 

6.2 Examples 

1. Trip chaining with time windows. A real- 
world variant of the trip chaining problem includes 
a time-dependent transportation network and busi- 
ness hours of the locations where we could perform 
our activity. To accomplish this, we first create a vir- 
tual link (a self-loop) at each activity location. We 
then use an appropriate link traversal function on the 
virtual link representing the activity at a certain lo- 
cation. Note that this allows us to adapt to different 
business hours at different locations of the same type, 
for example grocery stores. The link traversal func- 
tion is created to capture the following semantics: if 
we “enter” before the shop opens, we “arrive” at the 
opening time of the shop, during working hours we 
arrive immediately (delay 0), after the shop closes we 
arrive at time +m, i.e. never. Formally let a shop 
s open at time to and closes at time t,. The link 
traversal function on the virtual link 1, is given by 

to, if t to; 

00, if t ,  < t ;  

t ,  if to < t 5 t,; (6.1) 
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A function corresponding to a business closed over 
lunch break is illustrated in Figure 4. To make sure 
the business is visited during office hours, we label its 
virtual link and require that the label be used by the 
path we find. Now solving the shortest-path problem 
on the modified network with the regular expression 
constraint yields the required solution. 

Note that we can encode the time needed to per- 
form the activity into the link traversal function, 
modeling for example a situation where we expect 
the length of queues at the counter to vary with the 
time of day. 

flt) exit time I 

enter time 

store opens t 

Figure 4: Link traversal function for a store that 
closes for lunch break and does a lot of business in 
the afternoon . 

2, Vehicle availability. The problem can be 
stated as follows: find a pair of trips from home to 

work and back, such that the car is picked up by 
the second trip exactly where it was left in the first 
trip. Minimize the overall travel time, i.e the time 
between departure and arrival at home. We assume 
fixed arrival and departure times at work. (Otherwise 
one can do the same type of interval search as for the 
time window cleparture,) We solve the problem in 
our framework as follows: 
1. Compute the time-dependent arrival and depar- 
ture shortest-path tree with transit (not using the 
car) from the workplace for the appropriate times. 
This gives a pair of times at every possible parking 
location p: t , (p) is the latest time we must arrive 
there in the morning to reach the office in time and 
t&) is the earliest time at which we can arrive at 
the parking location in the evening after starting at 
a fixed time from the office. 
2. Construct a virtual parking link (a self loop at 
each parking location p) and label it 1,. 
3. Each virtual link is assigned a link traversal func- 
tion as follows: as long as we come to the parkiiig lot 

earlier than tab) we arrive at the end of the link at 
time t&). Otherwise (we are late), we arrive at time 
+w, i.e. never. Formally, for each virtual link p with 

times tab) and t&), define fp( t )  = t d  for all t t,, 
and fp(t) = 00 for all t > t,. Note that this defines 
an MPL link traversal function. 
4. Then we choose a reasonable time window and run 
the fastest path with time windowed departure query 
from home to home subject to the constraint c+ZP+c+. 

Here c denotes label of a car link. The solution and 
the performance guarantee obtained by solving this 
last problem translate directly into a solution and 

0 
Note that for this algorithm, the street network to 

be used with the car and the network a transit pas- 
senger uses are completely independent. The process 
of parking the car and walking from the parking lot 
to transit stop is modeled “in between” the two ex- 
plicit networks. Reading out the “virtual parking’’ 
link from the two shortest-path trees allows us to 
model even additional details, like a crowded park- 
ing lot. 

This can be extended to the trip-chaining problem 
with one point of the trip fixed in time. 

guarantee for the original problem. 

7 Preliminary Experiments 

As mentioned, the experiments were carried out on 
a multi-modal transportation network spanning the 
city of Portland. The network representation is very 
detailed and contains all the streets in Portland. In 
fact, data also specifies the lanes, grade, pocket/turn 
lanes, etc. Much of this was not required in the route 
planner module. 

Types Street Parking Activity Bus+Rail Route 
Nodes 100511 121603 243423 9771+66 30874 
Edges 249222 722746 2285604 56676 30249 

Figure 5: Break down of links and edges by different 
types. 

Runtime 100 % 25 % 20 % 15 % 
14.74 3.64 3.19 2.45 

Figure 6: Running time in hours as a function of the 
fraction of total trips (8.9 million). This is the total 
wall clock running time on the 124 CPU system. 

The networks details are as follows: There were 
475 264 external nodes and 650 994 external links. 
Most of these links were bidirectional. Moreover, no 
connectivity to parking sites, houses, bus stops was 
provided. The composite network on which we could 
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route thus became quite large, spanning half a million 
nodes and over three million edges. (The number of 
links and edges by mode types is given in Figure 5.) 

For instance edges under parking column tell us how 
many edges go to and fro from parking locations. The 
Portland population located on this network in about 
650 000 households with approxi.rnate1y 1.8 million 
travelers .who participate in 8.9 million activities diu- 
ing the course of a 24 hour period. 
Results. We used (a subset) of the following val- 
ues measurable for a ningle or a specific number of 
computations to conclude the reported results 

0 (average) running time exchiding i/o 

a maximum heap size 

a number of links and length of the path 

Figure 6 shows the running time of our algorithm. 
Roughly, it took 14 hours to run 8.9 million trips on 
a 124 procensor system. The scaling can be saen to 
be roughly linear: 25 % trips required approxiniately 
4.5 hours. 

Figures 7 and 8 shows the traffic density in Port- 
land downtown in the morning using th.e routing in- 
formation. Figure 9 is a table describing the average 
path lengths for set of approximately 1500 trwelers 
using a given modal string. Three difrerent modal 
strings were used: w, wcw and wtw. The Figure shows 
the path length in terms the number of time talcen 
with free flow speed, the distance, and the nurnber of 
hops. All of thein report numbers for free flow speed. 
Numbers when we iterate a,re available from klie au- 

thors. The last two columns denote respectivelt the 
number of nodes touched and the running time taken 
to find such a route. 

Figures 10 and 11 show the tradeoff between the 
running time and quality of solution ai we increase 
the overdo parameter (as suggested by our tmlier 
work in [JMIY99] and the work of Stx~gewick and Vit- 
ter [SVSS]). See Section 9 for details on this method. 
For the discussion here it suflices 1,o remember that 
overdo parameter is a multiplicative factor uried to 
weigh the Euclidean distimce estimate of the current 
node to t'he destination. 

Figrires 12--l5 plot the dependence of the running 
time (in seconds) on (Fig. 12) the distance (in meters) 
between the origin and the destination, (Fig. 13) the 
length of the trip (in nodes) and the time (in seconds) 
the trip takes, for (Fig. 14) car and (Pig. 15) walk 

trips. Superficially, the depende:rice does not seem 
quite linear (as; we expected), but we postpone a more 
detailed statist,ical analysis for a later paper [BE!-I-011. 

Figure 7': Plot showing the expected number of 

people in the down town Portland area at 7 a.m. 
Color coding is green=normal, blue=dense, red=very 
dense. 

Figure 8: Plot showing the expected number of peo- 
ple in the down town Portland area at 8 a.m. Note 
the increase in traffic. 

mode time dist Hops Heapsize Runtime 

II 4447 4688 41 28391 0.795275 

cu 402 11445 58 25287 2.713795 

U t W  21149 154 3827461 62.905374 

Figure 9: Table showing the runtime and quality of 
paths for three different modes. The last two columns 
also show the number of nodes touched and the time 
taken to calculate the paths. 
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Figure 13: Runtime in terms of the number of nodes. 
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Figure 10: Graph showing the running time as a func- 
tion of overdo parameter. 

Figure 11: Gri%ph showing the quality as a function 
of overdo parameter. 

Figure 14: Runtime in terms of trip time (car trips). 

Figure 12: Runtime in terms of the distance 
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Appendix 

8 Experimental Setup 

Preparing the Network. The data about park- 
ing locations, houses, bus stops, etc came as separate 
file in form of geo-locations. Additionally the light 
rail data was given separately and thus a substantial 
amount of time was spent in creating a unified net- 
work with all the features. It also naturally increared 
the size of the network. 
Software Design. We used the object oriented 
features as well as the template mechanism of C++ 
to easily combine different implementations. We also 
used preprocessor directives and macros. As we did 
not want to introduce any unnecessary run time over- 
head, we avoided for example the concept of virtual 
inheritance. 
Hardware and Software Support. Most of 
the experiments were performed on a MPP Linux 
cluster with either 46 or 62 nodes with Dual 500 Mhz 
Pentium I1 processors in each node. Each node had 1 
Gb of main memory. Much of the experiments were 
done by executing independent shortest paths runs 
at each node. For this we had to create copies of 
the network. Fortunately the network fits in just un- 
der 1Gb of memory and thus did not cause problems. 
As mentioned earlier, the code can parallelized using 
threads but the above method turned out to be more 
suitable for the experiments reported here. In partic- 
ular it avoided much of the network contention. We 
used the GCC compiler. We note that due to design 
requirements our code is also portable to any SUN 

machine. 
Apart from the scalability tests, most of the exper- 

iments reported here were carried out with 1000 ran- 
domly selected travelers for each modal choice. For 
experiments we considered three basic modal choices: 
walk, walk-car-walk, walk-transit-walk, where transit 
wils either a bus or light rail. 

9 Shortcuts and heuristics 

A number of data structure and algorithmic heuris- 
tics were employed to improve the execution time of 
the algorithms. We list some of them below. 
Parallelization. The implementation may use 
multiple threads running in parallel and it may 
also be distributed across multiple machines using 
MPX. Threads enable the parallel execution of sev- 
eral copies of the path-finding algorithm on a shared- 
memory machine. Each thread uses the same copy of 
the network. Because separate threads are used for 
reading, writing and planning, improvements in the ’ 
running time may be observed even with a single- 
processor machine. 

Implicit vs. explicit network modification. 
We argued that a unified algorithm allows planning 
of multiple travelers on a single network, thus circum- 
venting the time-consuming task of generating a new 
network for each traveler. However, in our implemen- 
tation, some restrictions on the regular language are 
in fact implemented using a trick that allows trans- 
parent network modification on a traveler-by-traveler 
basis. Within the route planner, the network is con- 
structed in layers consisting of car, walk and transit 
links, with walk links also crossing between car and 
transit layers. It is possible to order the addition of 
edges to the network so that edges with a fixed label 
form a consecutive interval in the adjacency list of 
each vertex. Thus for example, edges numbered 0 to 
il will be car links, those from i l  + 1 to i2 transit links 
and those from ia + 1 to i3 transit links. Then if the 
traveler is only allowed to use walk and transit links, 
we ask Dijkstra’s algorithm to only examine the end 
of each adjacency list and ignore cw links completely, 
at the cost of a single extra table lookup per vertex 
examined. This trick can be extended to modifying 
the adjacency list in more general ways as long as the 
links are added to the network in a sensible order. 

Compile-time optimization. A simpler algo- 
rithm suffices for some types of plans. For example, 
all-car or all-walk plans should not require the over- 
head of examining the NFA and may be planned more 
efficiently if only a part of the network is examined. 
In addition to the network modification trick just de- 
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scribed, for such cases we use a separately optimized 
and compiled procedure implemented using the CS+ 
template mechanism. 

One of the additional 
optimizations we’ve used for all-car plans is the 
Sedgewick-Vitter [SVSS] heuristic for Euclidean 
shortest paths that biases the search in the direc- 
tion of the source-destination vector. We note that 
the above algorithms, only require that the Euclidean 
distance between any two nodes is a valid lower bound 
on the actual shortest distance between these nodes. 
This is typically the case for road networks; the link 
distance between two nodes in a road network typi- 
cally accounts for curves, bridges, etc. and is at least 
the Euclidean distance between the two nodes. More- 
over in the context of TRANSIMS, we need to find 
fastest paths, Le. the cost function used to calculate 
shortest paths is the time taken to traverse the link. 
Such calculations need an upper bound on the max- 
imum allowable speed. To adequately account for 
all these inaccuracies, we determine an appropriate 
lower bound factor between Euclidean distance and 
assumed delay on a link in a preprocessing step. 

We can modify the basic Dijkstra’s algorithm by 
giving an appropriate weight to the distance from 
2 to t .  By choosing an appropriate multiplicative 
factor, we can increase the contribution of the sec- 
ond component in calculating the label of a vertex. 
From a intuitive standpoint this corresponds to giv- 

ing the destination a high potentid, in effect biasing 
the search towards the destination. This modification 
will in general not yield shortest paths, nevertheless 
our experimental results suggest that the errors pro- 
duced can be kept reasonably small. This multiplica- 
tive factor is called the overdo parameter. 

Because street networks are not always dense and 
regular due to natural and man-made obstacles and 
also because our delays are not constant, the paths 
produced using SV are not strictly optimal. However, 
varying the amount of the bias allows a useful tradeoff 
between the speed and quality of paths found. 

The running 
time of Dijkstra’s algorithm directly depends on the 
size of the graph. With larger NFAs (and especially 
with time-dependence), this size may become a very 
large number, however with the fairly regular street 
networks, a more accurate predictor of the running 
time is in fact the length (the number of edges) of 
the path found by the algorithm. 

Traversal functions. The link-traversal func- 
tions are represented using an array of segments. 
To calculate the delay of an edge at a certain time, 
the correct segment is first determined using binary 

Sedgewick-Vit t er, 

Running time vs. graph size. 

search and then the rest is easy. 
Turning left may take more time 

than going straight on through the intersection or 
turning right. This is easy to implement by expand- 
ing each vertex into an in- and out-vertex for each 
in- and out-going link. However, this expansion need 
not be explicit: if the current node index also con- 
tains the index of the link used to enter the node, we 
can calculate the turn costs on the fly. 

In order to model 
certain apects of traveler behavior for which NFAs 
are insufficient, another component may be added to 
the time delays. For example, certain cost may be 
associated with some links and the objective might 
be to minimize a weighted sum of the costs and time- 
delays along a path. 

Delay noise. One of the attempts to speed up 
the convergence of the system in successive planner- 
microsimulation iterations included adding a small 
random noise value to each link delay. Strange be- 
havior resulted, but this should have been expected. 
For example, cars would pull out of a parking lot, 
drive to the first intersection and promptly make a 
U-turn to go back in the direction they could have 
taken the first time. The problem of course is that 
random noise violates the FIFO condition. 

Parking lo- 
cations in the network caused other problems as well. 
For example, unless care is taken (by implementing 
turn costs or by separating parking lots associated 
with the two directions along a link), drivers will use 
parking lots to make illegal U-turns. Buses were a 
whole other story. Early after transit modes were 
implemented, a number of travelers were noticed to 
transfer between buses multiple times on a trip to 
save only a few seconds. One of the fixes used has 
been to increase the time required to transfer between 
buses (by forcing the traveler to walk off the bus to 
the node in the walk layer of the network associated 
with the transit stop). 

Turn costs. 

Millticost experiments. 

Other  jokes the planner told us. 

10 More on time-dependence 

Definition 10.1. Let f : + be a (weakly) mono- 
tonic (piecewise-linear) function. Then g :  a + as 

a weak inverse of f if for all x and t in a f(x) < 
t =+ z 5 g ( t )  and t < f(x) =+ g( t )  5 x. 

Let g be any weak inverse of f .  This definition 
leaves the freedom of choosing an “optimistic” or 
“pessimistic” weak inverse for the local situations 
where f is constant. Otherwise g is uniquely deter- 
mined. This stems from the fact that { ~ ( f ( x )  = t} 

14 



is for all t an interval. For values of :c, where f is 
not locally constant, i.e. when {zlf(z) = t} is a 
single value. Then for all E > 0 we have (by weak 
monotonicity of f that f (z - E )  < f ( s )  < f(s + E ) .  

This implies then x - E 5 g ( f ( z ) )  5 z + E ,  hence 

g is non-decreasing (weak monotone increasing). 
Let t < s. If there exists an s such that t < f ( z )  < s, 
we immediately get g ( t )  5 x 5 g(s). Otherwise take 
some u such that t < u < s. By the assumption of 
this case, there can’t be an s such that f(z) = u. 
Therefore are I = {.I f (x) < u }  and J = {slf(x) > 
u} are two intervals such that I U J = Q. If both 
of them are open, there exists an z such that for all 
e > 0 we have z - E E I and z + E E J. So we have 
~ ( Z S E )  > u > t and hence z f a  2 g ( t ) .  Analogously 

we get f(z - E )  < u < s and hence z - E g(s) .  

Together we get g( t )  5 z 5 g(s) .  
If J is the empty set or then singleton { ~ o o } ,  we 

get for all z E Q that f (z) < sand therefore z < g(s) ,  
hence g(s)  = 00. Analogously, if I is not open we get 
g(t)  = -00. S o  we trivially get weak monotonicity in 
these cases. It is easy to verify that f is also weak 
inverse of 9. 

g ( f  (.I) = 2. 

Proof. (Proposition 5.4.) To verify the above claim, 
assume c is given by the value pairs cz( i )  and 
c,(i).Define az(i )  = c5(i) and a,,(i) = a,(i) -I- f . 
(cy(i) - cz( i ) )  Define b,(i) = a,(i) and b,(i) = c,(i). 
The condition that a splits c at fraction f is obvious 
by the definition of a. For the second condition, first 
note that aob matches with c for the values cm(i) .  As 
the images of cz( i )  under a are the only non-linearity 
points in the domain of b, it follows a o b = c. Note 
that in the above proof the definition of a can more 
or less arbitrarily depend on c and there still exists a 
proper extension function b. 0 

10.1 Waiting models and theory 

Three different waiting policies have been studied in 
the literature [OR90]. 
Forbidden waiting: compatible with Definition 5.1. 
Unrestricted waiting: waiting allowed everywhere. 
Relaxes Definition 5.1 to f ( t i )  5 t i+l.  
Source Waiting: waiting only allowed at the source. 

Especially with unrestricted waiting, it is useful to 
consider a modification of the link traversal function. 
Given the original link traversal function f ,  we de- 
fine the optimal-waiting link traversal function g by 
g ( t )  = inftl>t f(t). This captures the optimal wait- 
ing strategffor a traveler by combining the optimal 
waiting at a node with the time needed to traverse 

the link. If the infimum is not a minimum, there 

may be no optimal path. Then the best we can hope 
for is to find a path such that adjusting the waiting 
times achieves an arrival time arbitrarily close to the 
optimal arrival time. In the sequel we assume for 
simplicity that this infimum is always achieved. As 
mentioned earlier, the basic results on this topic can 
be found in [Ch97a, Ch97b, OR90, ZM95]. 

We summarize the computational complexity of 
shortest-path problems in time-dependent networks 
with various forms of waiting. As stated earlier some 
of these results are not new [Ch97a, Ch97b, OR90, 
ZM95], 

Theorem 10.2. (1) In the forbidden waiting model 
with arbitrary link-traversal functions and a given 
departure tame, finding a path with earliest arrival 
tame i s  NP-hard. For monotonic, nonnegative link- 
traversal functions, the problem is polynomial time 
solvable. 
( 2 )  In the Unrestricted waiting model with positive 
delay link traversal functions, with polynomial time 
computable optimal-waiting link-traversal functions, 
the problem of computing a path with the earliest ar- 
rival time is solvable in polynomial time. 
(3)  For the source waiting model with arbitrary func- 
tions, the earliest possible arrival time is as hard as 
the problem for the forbidden waiting model. * 

Sketch of the Proof of Theorem 10.2: 

Part 1. NP-hardness follows by a polynomial time 
reduction from the partition problem. For a mono- 
tonic, positive delay function, the problem can be 
solved using a straightforward extension of Dijkstra’s 
label setting algorithm: instead of setting labels for 
the shortest path distance we set labels for the earli- 
est possible arrival time. As the functions represent 
positive delays, we can set the labels starting from 
the smallest without having to change them later on. 
Because the functions are monotonic, it is sufficient 
to consider the earliest possible time to start into a 
link (it cannot pay off to start into it later). 

Part 2. Note that the Optimal-Waiting link 
traversal functions are monotonic and inherit the pos- 
itive delay property. Therefore the algorithm de- 
scribed in the main body of the paper can be used. 
As for every topology of a path one fastest path is 
represented, the computed path is optimal. 

Part 3. By adding links that can only be traversed 
at a certain point of time, we get a reduction from 
the Forbidden Waiting earliest arrival problem. 0 

include 
the source 
waiting 
easiness 

(71) 
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