
Routing Indices For Peer-to-Peer Systems

Arturo Crespo, Hector Garcia-Molina
Stanford University

fcrespo,hectorg@db.Stanford.edu

Abstract

Finding information in a peer-to-peer system currently
requires either a costly and vulnerable central index, or
flooding the network with queries. In this paper we in-
troduce the concept of Routing Indices (RIs), which allow
nodes to forward queries to neighbors that are more likely
to have answers. If a node cannot answer a query, it for-
wards the query to a subset of its neighbors, based on its lo-
cal RI, rather than by selecting neighbors at random or by
flooding the network by forwarding the query to all neigh-
bors. We present three RI schemes: the compound, the
hop-count, and the exponential routing indices. We eval-
uate their performance via simulations, and find that RIs
can improve performance by one or two orders of magni-
tude vs. a flooding-based system, and by up to 100% vs.
a random forwarding system. We also discuss the tradeoffs
between the different RI schemes and highlight the effects of
key design variables on system performance.

1 Introduction
Peer-to-peer systems (P2P) have grown dramatically in

recent years. In a P2P system, distributed computing nodes
of equal roles or capabilities exchange information directly
with each other. These systems represent an incredible
wealth of information allowing users to exchange docu-
ments (Freenet [7]), music files (Napster [17], Gnutella [8]),
and even computer cycles (Seti-at-home [20]). A key part
of a P2P system is document discovery. Our goal is to help
users find documents with content of interest across poten-
tial P2P sources efficiently.

There are many mechanisms for searching in a P2P sys-
tem, each with their own advantages and disadvantages.
These solutions can be classified in three categories: mecha-
nisms without an index, mechanisms with specialized index
nodes (centralized search), and mechanisms with indices
at each node (distributed search). Gnutella uses a mech-
anism where nodes do not have an index and queries are
propagated from node to node until matching documents
are found. This search mechanism works by flooding the
network (or a subset of it) in the hope of finding a match
for a query. Although this approach is simple and robust, it

x

CBA

D

RI x-z

Figure 1. Routing Indices
has the disadvantage of the enormous cost of flooding the
network every time a query is generated.

Centralized-search systems use specialized nodes that
maintain an index of the documents available in the P2P
system. To find a document, the user queries an index node
to identify nodes having documents with the content of in-
terest. These central indices may be built with the coopera-
tion of the nodes (e.g., Napster nodes provide a list of avail-
able files at sign-in time) or by crawling the P2P network (as
in a web search engine). The advantages of a centralized-
search mechanism is efficiency (just a single message is
needed to resolve a query). However, a centralized system
is vulnerable to attack (e.g., index sites can be shut down by
a court order or a hacker attack) and it is difficult to keep
the indices up-to-date.

A distributed-index mechanism, the option we will study
in detail in this paper, maintains indices at each node. These
distributed indices need to be small, so instead of using tra-
ditional “destination” indices, we use Routing Indices (RIs)
that give a “direction” towards the document, rather than
its actual location. To illustrate, consider Figure 1 which
shows four nodes A, B, C, and D, connected by the solid
lines. The document with content “x” is located at node C,
but the RI of node A points to neighbor B instead of point-
ing directly to C (dotted arrow). By using “routes” rather
than destinations, the index size is proportional to the num-
ber of neighbors, rather than to the number of documents.
We can reduce the size of RIs even further by using approxi-
mate indices, i.e., by allowing RIs to give a hint (rather than
a definite answer) about the location of a document. For ex-
ample, in the same figure, an entry in the RI of node A may
cover documents with contents “x,” “y,” or “z.” A request
for documents with content “x” will yield a correct hint, but
one for content “y” or “z” will not.

In this paper we study options for building effective RIs,

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

and evaluate their performance. In particular, the contribu-
tions of this paper are:

� We introduce Routing Indices, an efficient way of lo-
cating content in a P2P system (Sections 3 and 4).

� We present three RIs: the compound, the hop-count,
and the exponential routing indices (Sections 5).

� We evaluate the performance of RIs via simulations,
and find that RIs can improve performance by one or
two orders of magnitude over a flooding-based system,
and by 50-100% versus a random forwarding system
(Section 7).

2 Related Work

The problem of indexing a P2P network is related to the
problem of indexing a distributed database [13]. However,
algorithms for indexing distributed databases make two fun-
damental assumptions that are not applicable to P2P sys-
tems: that nodes are stable and connected most of the time,
and that the number of nodes is small.

There are several working P2P systems currently avail-
able, each with its own “indexing” approach. Napster [17]
uses centralized indices, which, as stated before, are vulner-
able to attack. Gnutella [8] does not build indices, instead,
queries flood a significant part of the network, resulting in
a simple but very costly approach as just one query can
expand into hundred of thousands of requests through the
Gnutella network. Freenet [7] uses an interesting approach
to indexing. Each node builds an index with the location
of recently requested documents, so if they are requested
again, the document can be retrieved at a very low cost.

There are a number of P2P research systems (CAN [18],
Oceanstore [14], CHORD [21], Pastry [19], and Tapestry
[26]) that can efficiently find documents in a P2P network.
The key differences between those systems and our ap-
proach is that we do not mandate a specific network struc-
ture and that queries are on the content of the documents
rather than on document identifiers.

Selecting a neighbor for forwarding a query is also re-
lated to traditional routing algorithms [23] such as Bellman-
Ford [1, 6]. The major difference with our algorithms is
that standard routing algorithms are designed to transmit a
packet between two nodes through the shortest route. In
our case, we need to get a “packet” from one node to one
or more nodes so we find the best answers to a query. Also,
the destination of a packet is not pre-defined (as in IP rout-
ing), but instead it depends on the query contained by the
packet. IP routing to multiple destinations (multicast algo-
rithms) has been studied extensively (see for example [16]).
However, multicast algorithms require the creation of a rel-
atively stable multicast tree.

The problem of selecting the best database to which to
send a query was studied as part of the GlOSS project [12,
9]. However, GlOSS assumes the we are selecting among

B

C

D

E

F

H

G

I

J

A

Q

Q

Q

Q

Figure 2. P2P Example
a set of databases, rather than among “paths” that lead to a
set of databases.

Some recent work has empirically evaluated P2P sys-
tems. A survey and evaluation of centralized-search P2P
systems can be found at [24]. An evaluation and description
of the present state of Gnutella can be found at [3]. Finally,
[25] focuses on search techniques that do not use indexes,
although it also studies one type of “local area index.” In
such indices, a node indexes the content of nodes within “r”
hops. However, these indices are not routing indices, they
are traditional indices.

3 Peer-to-peer Systems

A P2P system is formed by a large number of nodes that
can join or leave the system at any time and that have equal
capabilities. Each node is connected to a relatively small set
of neighbors which in turn is connected to more nodes. In
Figure 2, the neighbors of node A are nodes B, C, and D.
Note that there might be cycles in the network (such as the
one caused by the link between E and G). Each node has
a local document database that can be accessed through a
local index. The local index receives content queries (e.g., a
request for documents containing the words “database sys-
tems,” a request for documents containing a picture of the
sun, etc.) and returns pointers to the documents with the
requested content.

3.1 Query Processing in a Distributed-Search P2P
System

In a distributed-search P2P system, users submit queries
to any node along with a stop condition (e.g., the desired
number of results). A node receiving a query first evaluates
the query against its own database, returns to the user point-
ers to any results, and, if the stop condition has not been
reached, the node selects one or more of its neighbors and
forwards the query to them (along with some state infor-
mation). In turn, each of the neighbors evaluates the query
in a similar fashion, returns result pointers to the user and
forwards the query to neighbors.

To illustrate, consider Figure 2. NodeA initially receives
a query. Node A checks for local results and sends those re-
sults to the requesting node. Then, assuming that the stop

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Documents with topics:
Path # docs DB N T L
B 100 20 0 10 30
C 1000 0 300 0 50
D 200 100 0 100 150

B

C

D

E

F

H

G

I

J

A

Figure 3. A Sample Compound RI
condition has not been satisfied, node A selects node D
as the best neighbor to handle the query and forwards the
query to it (dashed arrow). Note that for nodes to be able
to verify if the stop condition has been reached, we need to
include the number of results found so far as state informa-
tion in each query-forwarding message. Then D processes
the query and selects I as the best neighbor to continue han-
dling the query. Let us assume now that I has processed the
query, but not enough results have been found to reach the
stop condition. In this case, I returns the query to D which
forwards the query to the next best neighbor (J in this case).

Queries can be forwarded to the best neighbors in par-
allel or sequentially. A parallel approach yields better re-
sponse time, but generates higher traffic and may waste re-
sources. In this paper, we focus on a sequential forwarding
of the queries.

4 Routing indices

In this section we present an example of how the com-
pound RI (CRI) works. A formal definition of the algo-
rithms and data structures for RIs can be found in [4]. Later,
in Section 5 we present two other RIs: the exponential RI
and the hop-count RI.

The objective of a Routing Index (RI) is to allow a node
to select the “best” neighbors to send a query to. A RI is
a data structure (and associated algorithms) that, given a
query, returns a list of neighbors, ranked according to their
goodness for the query. The notion of goodness may vary
but in general it should reflect the number of documents in
“nearby” nodes.

As a running example, we will use a P2P system for re-
trieval of text documents with the network depicted on the
right side of Figure 3. For simplicity, this network does not
have cycles (we discuss cycles in Section 6). In this sys-
tem, documents are on zero or more “topics,” and queries
request documents on particular topics. Each node has a lo-
cal index for quickly finding local documents when a query
is received. Nodes also have a CRI containing (i) the num-
ber of documents along each path and (ii) the number of
documents on each topic of interest In Figure 3 we show an
example of a CRI for node A with three neighbors (paths):
B, C, and D. For simplicity, we assume that there are only
four topics of interest: databases (DB), networks (N), the-

ory (T), and languages (L). In the figure, we can see that we
can access 1000 documents through C (i.e., there are 1000
documents in C, G and H) and that of those documents,
300 are about “networks” and 50 are about “languages.”

The RI may be “coarser” than the local indices main-
tained at nodes. For example, node A could maintain a
more detailed local index in which each document is further
classified into sub-categories. By keeping a summary of the
detailed index, we achieved a more compact RI at the cost
of introducing “errors” when user queries are based on the
subcategories. Specifically, the summarizing of the local
index may introduce overcounts or undercounts in the RI.
For example, a summarization that groups several subtopics
into a single topic (e.g., “indices”, “recovery”, and “SQL”
into “databases”) may introduce overcounts on the number
of documents available. In fact, a query for documents on
“SQL” will be converted into a query for documents on
“databases,” making us believe that there are many docu-
ments on “SQL” whereas in reality there may be few or even
none. Summarization can also introduce undercounts. For
example, if the summarization uses a frequency threshold
(e.g., throws away topics with very few documents), then
we may believe that there are no documents on a topic when
there are in fact a few.

Given the index, we need now to compute the “good-
ness” of each node for a query. For CRIs we will use the
number of documents that may be found in a path as a mea-
sure of goodness. To compute the number of documents, we
will use the estimators in [10, 11]. Given that our focus is
not on the estimators but on the use and maintenance of RIs,
throughout the paper we will use a simplified model where
queries are conjunction of subject topics, documents can
have more than one topic, and document topics are indepen-
dent. Thus, we can estimate the number of results in a path
as: NumberOfDocuments �

Q
i

CRI(si)
NumberOfDocuments

where CRI(si) is the value for the cell at the column for
topic si and at the row for a neighbor.

To illustrate, let us assume that A receives a query for
documents on “databases” and “languages.” We estimate
the number of results as 20

100 �
30
100 � 100 = 6 at B,

0
100 �

0
100 � 100 = 0 at C, and 100

200 �
150
200 � 200 = 75 at

D. Therefore, the “goodness” of pathB will be 6, of pathC
will be 0, and of pathD will be 75. Note that these numbers
are just estimates and they are subject to overcounts and/or
undercounts. In particular, if there is a strong correlation
between the topics “databases” and “languages,” then path
B may have as many as 20 documents matching the query
for topics “databases” and “languages” On the other hand,
if there is a strong negative correlation between the topics
“databases” and “languages,” then there may be no docu-
ments in path B on either topic.

A limitation of using CRIs is that they do not take into
account the difference in cost due to the number of “hops”

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Local Index

I

J

A D

B

C

A
B

D
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10

 200 100 0 100 150

D
A
I
J

 100 60 0 60 75
 1400 50 380 10 90

 50 25 0 15 50
 50 15 0 25 25

J
D

 50 15 0 25 25
 1550 135 380 85 215

I
D

 50 25 0 15 50
 1550 125 380 95 190

 # DB N T L # DB N T L

 # DB N T L

 # DB N T L

Figure 4. Routing Indices
necessary to reach a document. For example, the docu-
ments along path B may all be just one hop away, while the
documents along path C may be scattered in a long chain
of nodes and finding them would require many messages.
Later, we will introduce more sophisticated RIs that do not
have this limitation.

In the rest of the section we describe how compound RIs
are used, created, and maintained.

4.1 Using Routing Indices

In this subsection we show how RIs, and in particular
compound RIs, can improve the performance of query pro-
cessing in a P2P system. Consider the P2P system described
in Figure 3. In Figure 4 we present part of the P2P network
with RIs attached to each node. For compactness, we are
representing the four topics of interest: database, network,
theory, and languages with the letters DB, N, T, and L re-
spectively. In the example we are assuming that the first row
of each RI contains the summary of the local index. (This
summary can be obtained, e.g., by consolidating subtopics
into the main topics, or perhaps by using clustering on a
local keyword index to generate topics for each of its docu-
ments.) In particular, the summary ofA’s local index shows
that A has 300 documents: 30 about databases, 80 about
networks, none about theory, and 10 about languages. The
rest of the rows represent a compound RI. In the example,
the RI shows that node A can access 100 database docu-
ments through D (60 in D, 25 in I , and 15 in J).

When A receives from a client a query for documents
about “databases” and “languages,” it first uses the local
database to answer the query. If not enough answers are
found, it computes the goodness of each path as explained
earlier. In this case, the goodness of B, C, and D is 6, 0,
and 75 respectively, so A selects D as the best neighbor to
forward the query to. In turn, D returns all local results to
the client of A and, if not enough results are found, com-
putes the goodness of I and J (25 and 7.5). Since I has
the highest goodness, D forwards the query to I . In turn,
I returns local results, but it cannot forward the query any
further, so (if more results are needed) it returns the query
to D which forwards it to its best next neighbor J . Even
though the network in the example is very small, a query

with a stop condition of 50 documents will generate 9 mes-
sages when using flooding; but only 3 messages if we use
the RI. Even if we send the query serially in a depth-first
fashion to neighbors ranked randomly, we will have 3 mes-
sages in the best case and 9 messages in the worst case. The
savings in the number of messages when using RIs are the
result of forwarding the query only to the nodes that have a
high potential of having results.

The storage space required by an RI in a node is modest
as we are only storing index information for each neighbor.
Furthermore, the storage space per neighbor can be adjusted
by increasing or decreasing the level of summarization of
the index. Specifically, if s is the counter size in bytes, c
is the number of categories, N the number of nodes, and
b the branching factor (i.e., number of neighbors), then a
centralized index would require c�(t+1)�N bytes, while
each node of a distributed system would need c�(t+1)�b
bytes. Thus, the total for the entire distributed system is
c� (t + 1)� b�N bytes. Although the RIs require more
storage space overall than a centralized index, the cost of
the storage space is shared among the network nodes.

4.2 Creating Routing Indices

Let us now turn our attention to how RIs are created. Re-
turning to our running example, let us assume that initially
there is no connection betweenA andD. The initial state of
the system is shown by the solid lines of Figure 5a. When
the A �D connection is established, node A informs node
D of all the documents that can be accessed through node
A. Specifically, node A aggregates its RI and sends it to
D. In our example, the aggregation is done by adding all
the vectors in the RI. (We describe additional aggregation
procedures in [4].) Thus, A sends D a vector saying that
it has access to 1400 documents (300 + 100 + 1000), of
which 50 are on databases (30 + 20 + 0), 380 on networks
(80 + 0 + 300), 10 on theory (0 + 10 + 0), and 90 on lan-
guages (10+30+50). A does not need to send more infor-
mation as D does not need to know the precise location of
the documents, but only that they can be accessed through
A. After D receives the aggregated RI from A, it adds an
additional row to its RI with A’s identifier and A’s aggre-
gated RI (as shown in Figure 5b). Note that by aggregating
RIs we reduce both the amount of information transmitted
and the storage space used. Similarly, D, aggregates its RI
(excluding the row for A if it is already in the RI) and sends
its aggregated RI to A. Note that the RI creation process at
A and D can be done in parallel.

AfterA andD update their RIs, they need to inform their
other neighbors that now they have access to more docu-
ments. Thus, D sends an aggregate of its RI to I (excluding
I’s row) and to J (excludingJ’s row) as shown in Figure 5b.
Then I and J update their RI by replacing the row for D
with the new information (not shown in the figure). If I and

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

I

J

A D

B

C

A
B
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10 D

I
D

J
D

 150 75 0 85 100
 50 25 0 15 50

I
J

 50 25 0 15 50
 50 15 0 25 25

 100 60 0 60 75

 150 85 0 85 125
 50 15 0 25 25

200 100 0 100 150

1400 50 380 10 90

 # DB N T L # DB N T L

 # DB N T L

 # DB N T L

(a)

I

J

A D

B

C
 # D N O S

I
D

 50 25 0 15 50

 # D N O S

J
D

 50 15 0 25 25

 150 75 0 85 100

 150 85 0 85 125

A
B

D
C

 20 0 10 30
1000 0 300 0 50
 100
 300 30 80 0 10

 200 100 0 100 150

 # D N O S # D N O S

D
A
I
J

 100 60 0 60 75

 50 25 0 15 50
 50 15 0 25 25

 1400 50 380 10 90

1550 135 380 85 215

1550 125 380 95 190

Updates for B and C

(b)
Figure 5. Creating a Routing Index

J were connected to nodes other than D, they would have
to send an update to those nodes too.

4.3 Maintaining Routing Indices

The process of maintaining RIs is identical to the process
used for creating them. To illustrate, let us suppose now that
client I introduces two new documents about “languages”
in its database. To update the RIs of its neighbors, I sum-
marizes its new local index, aggregates all the rows of its
compound RI (excluding the row for D), and sends this in-
formation to D. Then D replaces the old row for I with
the received aggregated RI. In turn, D computes and sends
new aggregates to A and J . When receiving the update,
A and J update their RIs and compute new aggregates for
their neighbors, and so on. For efficiency, we may delay
exporting an update for a short time so we can batch sev-
eral updates, thus, trading RI freshness for a reduced update
cost. We can also choose not to send updates when the dif-
ference between the old and the new value is not significant.
By not sending minor updates, we can again trade reduced
update cost for accuracy of the RI.

Finally, a special but frequent update case occurs when
a node disconnects from the network. To illustrate, let us
suppose that I disconnects from the network. Node D de-
tects the disconnection and updates its RI by removing the
row for I . Then D informs its neighbors of the change on
the number of documents it can access by sending new ag-
gregates of its RI to them. In turn, the neighbors of D up-
date their RIs and propagate the new information to their
neighbors. Note, that we did not need I’s participation (or
the participation of any other neighbor) in the disconnection

1 Hop 2 Hops
Node # DB N T L # DB N T L
X 60 13 2 5 10 20 10 10 4 17
Y 30 0 3 15 12 50 31 0 15 20
Z 5 2 0 3 3 70 10 40 20 50

W

X

Y

Z

X1

X2

Y1

Y2

Z2

Z1

Y21

Figure 6. A sample Hop-count RI for node W

process. Not requiring the participation of a disconnecting
node is an important feature in a P2P system where nodes
can come and go at will.

5 Alternative Routing Indices

5.1 Hop-count Routing Indices

In this subsection, we present an alternative data struc-
ture for an RI: a hop-count RI. The main limitation of the
compound RI is that it does not take into account the num-
ber of “hops” (query forwardings) required to find docu-
ments. In the hop-count RI we stored aggregated RIs for
each “hop” up to a maximum number of hops. We call this
number the horizon of the RI. We show in Figure 6 a sample
hop-count RI with a horizon of 2 hops. The node with this
hop-count RI has three neighbors: X , Y , and Z. With one
hop via neighborX , the node can find 60 documents, out of
which 4 are about databases, 2 about networks, 5 about the-
ory, and 10 about systems. The node can also find 20 more
documents through X with 2 hops (i.e., at X’s neighbors).
Note, that we do not have information beyond the horizon
with this kind of RI.

The estimator of a hop-count RI needs a cost model to
compute the goodness of a neighbor. For example, neighbor
X may be preferable over neighbor Y for a query on topic
“DB,” as through X we would find 13 results with one hop,
while it would require two hops to find that many results
through Y . On the other hand, we can find more results
(31) when going through Y .

If we define cost in terms of number of messages (we
will expand on the notion of cost in Section 7), then we can
define the goodness of a neighbor as the ratio between the
number of documents available through that neighbor and
the number of messages required to get those documents.
So a neighbor that allows us to find 3 documents per mes-
sage is better than a neigbor that allows us to find 1 docu-
ment per message.

A simple model that allows us to compute this ratio is the
regular-tree cost model. The model assumes that document
results are uniformly distributed across the network and that
the network is a regular tree with fanout F . Under these as-
sumptions, it takes F h messages to find all documents at
hop h. Threfore, we can compute the number of documents

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Path # DB N T L
X 66.67 16.33 5.33 6.33 15.67
Y 46.67 10.33 3.00 20.00 18.67
Z 28.33 5.33 13.33 9.67 19.67

W

X

Y

Z

X1

X2

Y1

Y2

Z2

Z1

Y21

Figure 7. A sample Exponential Routing Index
for Node W

per message by dividing the expected number of result doc-
uments at each hop by the number of messages needed to
find them. Formally, we define the goodness (goodnesshc)
of Neighbori with respect to query Q for hop-count RI as:
goodnesshc(Neighbori; Q) =

P
j=0::h

goodness(Ni[j];Q)
F j ,

where h is the horizon of the hop-count RI, goodness()
is the estimator for CRI, and Ni[j] is the RI entry for j
hops through Neighbori. In our example, if we assume
F = 3, the goodness of X for a query about “DB” docu-
ments would be 13 + 10=3 = 16:33 and for Y would be
0 + 31=3 = 10:33, so we would prefer X over Y .

Creation and update mechanisms for hop-count RIs are
described in the extended version of this paper [4].

5.2 Exponentially aggregated RI

The hop-count RI is effective in taking into account the
number of hops. However, this benefit comes at a higher
storage and transmission cost than the compound RI. More-
over, in Section 7.2 we will see that the hop-count RI per-
formance is negatevely affected by the lack of information
beyond the horizon (a hybrid CRI-HRI overcomes this dis-
advantage, but it still does not solve the storage and trans-
mission cost problem). In this subsection we present an
alternative index structure, the exponential aggregated RI,
that overcomes these shortcomings at the cost of some po-
tential loss in accuracy.

The exponentially aggregated RI stores the result of ap-
plying the regular-tree cost formula to a hop-count RI.
Specifically, each entry of the ERI for node N contains a
value computed as:

P
j=1::th

goodness(N [j];T)
F j�1 , where th is

the height and F the fanout of the assumed regular tree,
goodness() is the Compound RI estimator,N [j] is the sum-
mary of the local index of neighbor j of N , and T is the
topic of interest of the entry.

We show in Figure 7 an exponentially aggregated RI
computed from our sample network of Figure 6. In the fig-
ure, we assume that the neighbors of X , Y , and Z are leaf
nodes and that the fan out of the tree is 3. The entries for
topic “DB” forX and Y have the values 13+10=3 = 16:33
and 0 + 31=3 = 10:33.

The exponential RI makes the same assumptions as the
regular-tree cost model and may not be realistic in some
configurations, but it can still be used as an approximate

B

C

D

E

F

H

G

I

J

A

Update

Figure 8. Cycles and Routing Indices
index. There is a fundamental difference between the ex-
ponential RI and the hop-count RI. While the hop-count RI
does not have any information beyond the horizon, with the
exponential RI we can keep information for all nodes ac-
cessible from each neighbor in the RI. In fact, we will see
in Section 7.2 that the exponential RI outperforms the hop-
count RI in most cases.

Creation and update mechanisms for exponential RIs are
described in the extended version of this paper [4].

6 Cycles in the P2P Network

In this section we analyze how cycles affect the process
of creating and updating RIs as well as strategies to mini-
mize those effects. To illustrate the effect of cycles, we will
use the initial setup of Figure 3, but with the network de-
picted in Figure 8 (with the cycleA�B�E�G�C�A).
Let us assume that node A adds to its database two new
“theory” documents and sends a new aggregate of its RI to
B. Node B sends the update to its E and F neighbors,
promptingE to send an update to G, which sends an update
to C, which finally sends an update to A. When A receives
this update, it will mistakingly assume that more “theory”
documents are available via node C, but those extra doc-
uments are its own. Worse than that, the update from C
will promptA to send an update to its neighbors, informing
them that they can access two more theory documents, cre-
ating an infinite loop. There are three general approaches
for dealing with cycles:
No-op solution: No changes are made to the algorithms;
this solution only works with the hop-count and the expo-
nential RI schemes. In the case of the hop-count RI, cy-
cles longer than the horizon will not affect the RI. However,
shorter cycles will affect the hop-count RI but their effect
will be limited if we are using the regular-tree cost model.
However, the cycle increases the cost of creating/updating
the hop-count RI as updates sent by a node return to it (via
the cycle), causing the node to send a new update to all its
neighbors (which in turn send the update back to the node
again). The cycle is broken when the update reaches the
horizon of the hop-count RI. Similarly, in the case of the ex-
ponential RI, updates are sent back to the originator. How-
ever, the effect of the cycle will be smaller and smaller every
time the update is sent back (due to the exponential decay),

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

until the difference between the old update and the new up-
date is small enough and the algorithm stops propagating
the update. As in the hop-count RI, the main effect of the
cycle is the increase in cost of creating/updating the RI.
Cycle avoidance solution: In this solution we do not al-
low nodes to create an “update” connection to other nodes
if such connection would create a cycle. The techniques for
cycle avoidance have been extensively studied (see [22] for
a survey) and we do not cover it further in this paper. The
main disadvantage of this approach is that in the absence of
global information we may end with a suboptimal solution.
Cycle detection and recovery: This solution detects cy-
cles sometime after they are formed and, after that, takes
recovery actions to eliminate (or neutralize) the effect of the
cycles. In the example of Figure 8, cycles can be detected
by having the originating node of a query or an update, let
us say A, include a unique message identifier in the mes-
sage. Any update (or query forwarding) that any other node
sends as a consequence of this message will have the origi-
nal message identifier. If a message with the same identifier
returns to A (let us say from C), then A knows that there is
a cycle and that a recovery procedure should be started.

7 Experimental Results

In this section, we evaluate search mechanisms for P2P
systems. First, we present our model of a P2P system. Then
we introduce a simulation tool that allows us to evaluate
different search mechanisms efficiently. We then use our
tool to study the performance of different mechanisms as
well as the factors that affect their performance. We close
the section with an analysis of the cases where RIs can be
used effectively.

7.1 Modeling search mechanisms in a P2P system

Our goal in this subsection is to identify the elements
of a typical search mechanism in a P2P system, so we can
model each element and study its impact on performance.
A typical P2P system is a network of nodes T where each
node contains a set of documents. Users send requests con-
sisting of a query q and a stopCondition to a node of the
P2P system. The objective of the search mechanism is to
answer those requests by obtaining a set of documents of
size stopCondition that matches the query q. In addition,
search mechanisms allow for updates such as the addition
of nodes or new documents.

To process queries and updates we use the mechanisms
described in the previous sections (CRIs, HRIs, ERIs). For
comparison purposes, we add an additional mechanism:
No-RI. Instead of using an RI to choose the best neighbor
to forward a query, this search mechanism simply chooses
a random neighbor.

To further model the elements of a search mechanism,
we need to define the topology of the network, the loca-

Parameter Name Description Value
Network Configuration Parameters
NumNodes Number of nodes in the network 60000
T Topology of the P2P network tree
F Branching factor for tree topology 4
EL Extra links for tree+cycle topology 10
o Outdegree exponent for power law -2.2088
Document Distribution Parameters
QR Total Number of Query Results 3125
D Document distribution 80/20
RI Parameters
Creationsize Avg. size of creation/update message 1000 b
Querysize Avg. size of query message 250 b
StopCondition Number of documents requested 10
H Horizon for HRIs 5
A Decay for ERs 4
c RI Compression 0%
minUpdate min % diff for update propagation 1%

Figure 9. Simulation Parameters

tion of document results, how costs are measured, and cycle
policies (described in detail in [4]).

The topology of the network defines the number of nodes
and how they are connected. In our model, we consider
three kinds of network topologies: a tree, a tree with added
cycles, and a power-law graph [15]. The first topology, a
tree, is of interest because it does not have cycles (a good
base case for our algorithms). For the second topology, we
start with a tree and we add extra vertices at random (creat-
ing cycles) so we can measure the impact of cycles on the
search mechanisms. The third topology, a power-law graph,
is considered a good model for P2P systems and allows us
to test our algorithms against a “realistic” topology [5].

We model the location of document results using two dis-
tributions: uniform and an 80/20 biased distribution. Under
the uniform distribution all nodes have the same probabil-
ity of having each document result (nodes can have more
than one document result). The second distribution assigns
uniformly 80% of the document results to 20% of the nodes
(and the remaining 20% of the documents to the remaining
80% of the nodes).

Modeling the cost of a search mechanism is a complex
task. We can model the cost based on the resources used in
the P2P system (e.g., network, storage space, or processing
power) or based on the user experience (e.g., mean query re-
sponse time, query throughput, or query turnaround time).
In current P2P systems, the critical resource is the net-
work [3] as many of the nodes are connected through links
with limited bandwidth (e.g., dial-up connections, DSL, and
cable). Therefore, in this paper we focus on the network
and we use the number of messages generated by each algo-
rithm as a measure of cost. This is not to say that user-based
factors (such as response time) are not important, but by fo-
cusing on the network we are also improving those factors.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

0

100

200

300

400

500

600

CRI HRI ERI No RI

Routing Index

N
u

m
b

er
o

f
M

es
sa

g
es

uniform

80/20

Figure 10. Comparison of CRI, HRI, and ERI
7.2 Evaluating P2P Search Mechanism

In this section we experimentally compare the three pro-
posed RIs: compound RI (CRI), hop-count RI (HRI), and
exponential RI (ERI) against each other and against the No-
RI search mechanism. We also explore how the perfor-
mance of the RIs are affected by approximate indices, dif-
ferent stop conditions, document result distribution, number
of document results, and network topology.

To evaluate search mechanisms we built a simulator. The
simulator receives as input a P2P model and an operation
that can be an update or a query. The simulator iterates over
different network topologies and document result locations,
and outputs the average number of messages necessary to
perform the operation plus a confidence interval. All results
were computed with at least a 95% confidence interval of
having a relative error of 10% or less. Parameters are set
to the base values presented in Figure 9 unless stated other-
wise. In the extended version of this paper [4], we explain
in detail the operation of the simulator as well as the choice
of the base values for the parameters.

Figure 10 shows the number of messages needed to pro-
cess a query when using each kind of RI for two document
distributions. The advantage of using RIs is obvious, we
are able to reduce the number of messages by half when
compared to not using RI. Among the RIs, CRI had the best
performance, followed by the ERI and HRI. This difference
in performance is a function of the number of nodes used
to generate the index. In particular, CRI uses all nodes in
the network, HRI uses nodes within a predefined a horizon,
and ERI uses nodes until the exponentially decayed value
of an index entry reaches a minimum value (resulting in us-
ing more nodes than HRI, but fewer than CRI). This result
shows that the more nodes an RI uses to compute the good-
ness of a path, the better the RI is. However, we will see
that a larger number of nodes implies a higher update cost.

In Figure 10 we also present the effect of using two docu-
ment distributions, an 80/20 biased and a uniform document
distribution. Surprisingly, a 80/20 biased distribution does
not improve the performance of RIs much, but it degrades
the performance of a No-RI search mechanism. To under-

0

50

100

150

200

250

300

350

400

450

500

0% 50% 67% 75% 80% 83%

Index Compression

M
es

sa
g

es

CRI

HRI

ERI

No-RI

Figure 11. Effect of Overcounts

stand this result, we analyzed traces of our simulations. In
the case of RIs under a 80/20 document distribution, the al-
gorithm directed the queries to nodes with a high number of
document results, but to reach those content-loaded nodes
the queries needed to travel through several nodes that had
very few or no document results. On the other hand, under a
uniform document placement, the algorithms followed good
paths where at each node it obtained a few results. In sum-
mary, in one case, we collected results by traveling over an
almost empty path to a full node, while in the other case,
we collected results by traveling through a path of a similar
length where each node contributes a few documents. The
overall result was that the number of messages per docu-
ment result was about the same in both cases. In the case of
the No-RI approach, an 80/20 document distribution penal-
izes performance as the search mechanism needs to visit a
number of nodes until it finds a content-loaded node (gen-
erating a large number of messages in the process).

We also compared RIs against non-index/flooding solu-
tions such as Gnutella. In that case, RIs reduce the number
of messages by two orders of magnitude (graph not shown).
However, this comparison is not completely fair as non-
index systems find all results (versus only a user-defined
number of results when using RIs) and they potentially have
a better response time (as queries are processed in parallel,
rather than sequentially). However, finding all results may
be an overkill for most applications as users rarely exam-
ine more than the first 10 top results returned by a search
engine [2]. In addition, low response times may be hard to
achieve in Gnutella-like systems because of network con-
tention created by tens of thousands of messages generated
by each query.

We studied how increases in the requested number of
documents affects RIs (graph not shown). As expected, the
higher the number of requested documents, the more mes-
sages are generated. However, the increase on the number
of messages is linear for all RIs, showing that they scale
well on this parameter. We also analyzed the effect of a de-
crease on the number of document results available (graph
not shown). In that case, we obtained a very similar graph

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

0

100

200

300

400

500

600

0 1 10 100 1000

Added Links

M
es

sa
g

es

Detect

Ignore

Figure 12. Effect of Cycles

where the number of messages grows linearly with a reduc-
tion of document results.

We now investigate how errors in RIs, and particularly
overcounts, affect RI performance. As discussed in Sec-
tion 4, errors can occur in a variety of ways; here we select
one scenario to illustrate. We assume that documents are
organized into categories, and the index is a hash table of
categories. Several categories may hash to the same bucket,
so the count in a bucket represents the aggregate number
of documents in those categories. For example, suppose
there are 3 “database” documents, and 2 “network” ones.
If “database” and “network” hash to the same bucket, the
consolidated bucket will have a count of 5 documents. If a
query is looking for “database” documents, when using the
RI, we will believe that they are 5 of them, when in reality
there are only 3 (an overcount). (Instead of adding the orig-
inal document counts, we could have also chosen to take
the minimum of them, generating undercounts; or we could
have averaged them, generating mixed errors.)

As the table size is reduced, more and more overcounts
occur. In Figure 11, we show the performance of CRI, HRI
and ERI, as a function of the “index compression.” For ex-
ample, a 50% value means that the number of hash table
buckets is half the number of categories, while 83% repre-
sents a table with one-sixth the categories. (Note that the
scale is not linear.) From the graph, we can see that even
though there is a loss of performance because of overcounts,
this loss is modest even in the case of significant reductions
on the size of the index. Moreover, query processing when
using RIs is still far cheaper than No-RI even if we use the
highest compression levels. We conducted additional ex-
periments for undercounts and mixed errors as well as for
other error models. Those experiments had similar results
to the one presented here and are omitted for brevity.

In Figure 12 we study how ERIs perform when cycles
are added to a tree network. Cycles are created by adding
random links to a tree network with NumNodes� 1 links.
As expected, the number of messages increases as we add
more links and cycles are created. The increase in the traffic
is the result of two factors. First, there is a loss of accuracy

0

100

200

300

400

500

600

700

CRI HRI ERI No RI

M
es

sa
g

es Tree

Tree+Cycle

Powerlaw

Figure 13. Network topology

of the RI. In the case of the “detect and recover” policy,
this loss is the result of missing the best route to the results
(as explained in Section 6), and in the case of the “no-op”
policy the accuracy suffers because overcounts introduced
in the generation of the RI. Second, during query process-
ing the number of messages increases. In the case of the
“detect and recover” policy, those extra messages are the
result of return-queries messages sent by a node that detects
a cycle. In the case of the no-op policy, extra messages are
generated when we traverse a cycle more than once, find-
ing document results that were already found in a previous
iteration. In the figure, we observe that the increase in the
number of messages is small if we use the “detect and re-
cover” policy, but it can be significant if we choose to ignore
cycles. An unexpected result is that the number of messages
drops if we add a large number of links. This drop is the re-
sult of the added connectivity that additional links create,
which allows shorter routes to document results. Similar
performance to the one presented for ERI is shown by HRI
and CRI (when using the ignore-detect policy, as CRI is not
guaranteed to terminate when using the no-op policy).

In Figure 13 we study how RIs perform in different net-
work topologies. The result of our analysis is surprising
at first glance: RIs perform better in a power-law network
than in a tree network. There are two reasons for this result.
First, while in a tree-like network the connectivity of every
node (except leaf nodes) is the same, in a power-law net-
work a few nodes have a significantly higher connectivity
than the rest. By analyzing the traces of our simulation, we
found that the query algorithms actually direct the queries
towards those well-connected nodes. After getting to these
highly connected nodes, a large number of results is col-
lected without having to issue many messages. The second
reason for this performance improvement is that power-law
distributions generate network topologies where the average
path length between two nodes is lower than in tree topolo-
gies. Lower path length improves performance as we need
less messages to go from node to node. On the other hand,
these same two factors hinder the performance of the No-
RI approach. In a power-law network, there are very few

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

0

10000

20000

30000

40000

50000

60000

70000

CRI HRI ERI

M
es

sa
g

es Tree

Tree+Cycle

Powerlaw

Figure 14. Updates and Network Topology
highly connected nodes and it is not easy to find them if we
just move randomly as No-RI does. As a result, the No-RI
approach visits a significant number of nodes until it finally
stumbles onto a highly connected node (generating a large
number of messages in the process). Shorter path length
also hinders No-RI as bad decisions about which neighbor
to contact often result in return-query messages.

Figure 14 shows the number of messages needed to up-
date each kind of RI for each network topology. The graph
shows the cost of one batch of updates, propagated through-
out the network. In the graph we can see that the cost
of CRI is much higher when compared with HRI and ERI.
This is the result of CRI propagating the update to all nodes,
while HRI and ERI only propagate the update to a subset of
the network. This result confirms that the additional infor-
mation and better query performance of CRIs come with a
high price tag. On the other hand, HRIs and ERIs have very
low update costs and their query processing performance is
very close to the one of CRIs, making them an excellent
choice as the search mechanism of a P2P system. In the
graph we can also see that network topology has little im-
pact on the update performance of RIs, as there is low or no
correlation between the network topology and the number
of nodes that needs to be updated.

We also studied the tradeoff between query and update
costs for RIs (figure not shown). For a system processing
1032 queries per minute (the average query load observed
on a section of the Gnutella network [24]), the point where
the total cost of using ERIs is the same as the cost of a sys-
tem without RIs was at an update load of 36 updates per
minute. In practice we would expect the number of updates
to be way below 36 per minute, especially since it is not
that critical to keep indexes up to date and updates can be
batched together. Thus, the search improvements afforded
by RIs are seldom outweighed by the cost of updating them.
8 Conclusions

In this paper we studied how to improve the efficiency of
content search in a peer-to-peer system. We achieve greater
efficiency by placing Routing Indices in each node. Three
possible RIs: compound RIs, hop-count RIs, and exponen-

tial RIs were proposed and experimentally evaluated using
simulations. From our experiments we conclude that ERIs
and HRI offer significant improvements versus not using an
RI, while keeping update costs low. We belive that routing
indices, and in particular ERIs and HRIs, can help improve
the search performance of current and future P2P systems.

References

[1] R. Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, 1957.

[2] S. Brin. The anatomy of a large-scale hypertextual web
search engine. In 7th WWW Conference, 1998.

[3] Clip2.com, at: http://dss.clip2.com/gnutella.html. Gnutella:
To the Bandwidth and Beyond.

[4] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. Technical report, Computer Sci-
ence Department, Stanford University, March 2002. At
http://dbpubs.stanford.edu/pub/2001-48.

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM, 1999.

[6] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, NJ, 1962.

[7] Freenet. At http://freenet.sourceforge.com.
[8] Gnutella. At http://gnutella.wego.com.
[9] L. Gravano and H. Garcia-Molina. Generalizing gloss for

vector-space databases and broker hierarchies. In Proceed-
ings of VLDB, 1995.

[10] L. Gravano, H. Garcia-Molina, and A. Tomasic. The effec-
tiveness of gloss for the text-database discovery problem. In
Proceedings of SIGMOD, 1994.

[11] L. Gravano, H. Garcia-Molina, and A. Tomasic. Precision
and recall of gloss estimators for database discovery. In Pro-
ceedings of PDIS, 1994.

[12] L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss: Text-
source discovery over the internet. TODS, 2000.

[13] D. Kossman. The state of the art in distributed queyr pro-
cessing. ACM Computing Survey, September 2000.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. In ASPLOS, 2000.

[15] B. H. L.A. Adamic A.R. Puniyani, R. M. Lukose. Search
in power-law networks. Technical report, HP Labs, 2001.
Available at http://www.hpl.hp.com/shl/papers/plsearch/.

[16] C. K. Miller. Multicast Networking and Applications. Addi-
son Wesley, 1998.

[17] Napster. At http://www.napster.com.
[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In ACM
SIGCOMM, August 2001.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Middleware, 2001.

[20] Seti At Home. At http://setiathome.ssl.berkeley.edu.
[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. ACM SIGCOMM, 2001.

[22] A. Tanenbaum and A. Woodhull. Operating Systems Design
and Implementation. Prentice-Hall, Inc., 1999.

[23] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.
[24] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-

peer systems. In VLDB, 2001.
[25] B. Yang and H. Garcia-Molina. Efficient search in peer-to-

peer networks. In ICDCS, 2002.
[26] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-

frastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, Computer Sci-
ence Division, U. C. Berkeley, April 2001.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

